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Sampling the Configuration Space of Finite Atomic Systems: How Ergodic Is Molecular
Dynamics?
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We compare the efficiencies of deterministic molecular dynamics (MD) and Monte Carlo (MC) methods for
sampling the configuration space of finite atomic systems, in both the microcanonical and canonical ensembles.
By the examples of a nonlinear moleculegAand a linear molecule, Ar and several physical observables

such as the absorption spectrum or the average kinetic energy release in unimolecular dissociation, we show
that MD sampling can exhibit significant differences with respect to MC results. At low energy or low
temperature, regular orbits and vanishing Lyapunov exponents prevent Newtonian MD from being ergodic.
Also, a larger effect is observed because of angular momentum conservation, which is neglected in conventional
MC. We show how the use of a suitable MC scheme can notably improve the ergodic properties of Newtonian

molecular dynamics sampling.

I. Introduction Kolmogorov-Arnold—Moser (KAM) theorem occurs when
only a small perturbation is applied. As the number of degrees
of freedom increases, the KAM energy threshold will decrease

hrapidly. However, for molecules or small clusters, this threshold

jcan be quite large, and the dynamics can be regular in a
reasonably wide energy range. Regular molecular dynamics

often conveniently performed by numerical simulation of the trajectpries are not ergodic_: "J!”d should not be used for ergodic

atomic or molecular systei? Molecular dynamics (MD) and sampling. Second, thg statistical ensembles sampled by MD and
MC methods are not rigorously the same, regardless of whether

Monte Carlo (MC) methods are commonly used to sample the ! ture is th d ter. The diff
configuration space but are very different in essence. Standard ENEr9Y or lemperature s the conserved parameter. The difierence

deterministic MD follows the dynamical trajectory of the real 'Sh duet to t.thef :q?se;vat!on 3f ar;gul?r motmentuAntw andt 'St
system by solving the equations of motion. On the other hand characterstic of finite atomic and molecular systems. At constan

MC is a stochastic approach where only the equilibrium total energy, the microcanonical ensemble (NVE) is thus

distribution of phase space points is meaningful. For some replaced by another ensemble where the angular momentum

urposes, it can also be helpful to incorporate some stochasticVECtor is prescribed to hiin addition to the numbgr of particles
purp ' P P N, volumeV, and energye. The NVEJ ensembile is called the

elements in MD simulations (as in Langevin molecular dynam- lecular d - bl d has b devoted a f
ics) or some guiding elements to MC simulations (as in force- molecular ynamlg:s ensemble and has been devoted a few
bias Monte Carlo). Usually, such a mixing results in the short- stu_dles n the past.” At constant temperature, extended systems
time dynamics being no longer physically relevant. Obviously, which include thgr.mostat vanables_ also conserve a_mgular
momentum when it is set to zero. While regular trajectories are

the need for measuring actual dynamical quantities in simulation ;
g y 9 less likely to occur because of the extra degrees of freedom,

requires one to choose MD methods over stochastic techniques;

On the other hand, the sampling required for observables castthe ensemble sampled by such MD methods is not, strictly

as a statistical problem can be equally obtained from MC or speaking, the canonical (NVT) ensemble, but rather the NVT

MD methods. However, the physical parameters and statisticalensemble withy - 0. This difference may seem u.nlmpf)rtant,
ensembles come into play and may affect this choice. For or even academic, but should be noted when dealing with phase

instance, when simulating a bulk system at constant pressuresD"che averages for small molecules. More generally, this topic

or temperature, the numerical integrators required by adding is.relevant !n unimolecu!ar rgactions or dissociations, where
extra degrees of freedom for the thermostat are generally of amlcroca_mom(_:al or canonical integrals mgst. be evaluated.
higher order than those for constant energy systems, or they N this article, we compare the predictions of molecular
require shorter time steps. By comparison, Monte Carlo methodsdynamics and Monte Carlo methods, for two Hamiltonian
are relatively straightforward to implement. systems which model Arand Ag, respectively, in both the
Although the situation described above is still somewhat Microcanonical and canonical ensembles. The two molecules
system-dependent, finite systems exhibit specific peculiarities illustrate very different kinds of structures, originating from
which can bring difficulties when sampling the phase space. €ither loosely bound (van der Waals) or strongly bound forces.
First, at sufficiently low energy, a Hamiltonian system will As such, they can be seen as representative of the various

display regular trajectories. This behavior predicted by the interactions usually found in molecular systems. Our main
results are that sampling the configuration space of these small

* To whom correspondence should be addressed. atomic clusters can be very difficult with MD simulations, and
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The increasing development of realistic simulations for
molecular systems, including liquids, solids, biomolecules, and
clusters, has emphasized the wide interest and need for hig
quality sampling of the phase space. The dynamical or statistical
study of multidimensional potential energy surfaces (PES) is
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also that angular momentum conservation strongly affects the
equilibrium statistical distribution, especially for very asym-
metric molecules. To achieve more ergodic MD sampling, we

Calvo et al.

by Weerasinghe and Amar in a study of cluster evapor#tion
but does not hold for nonzerd As a consequence, only the
3N — 6 internal vibrational degrees of freedom are thermalized

show that a Monte Carlo scheme can be used to generate thén the Nose-Hoover chains method, out oN3 This explains

suitable initial conditions of the trajectories.
The paper is organized as follows. In the next section, we
recall the basic principles of simple MD and MC methods in

the N — 6 factor in the rhs of eq 1.
As will be seen in the next section, this conservation can
lead to some deviations with respect to the actual canonical

the microcanonical and canonical ensembles, and we emphasizensemble sampling. Noséloover chains are one straight-

how to include the conservation of angular momentum in Monte
Carlo simulation. In Section Ill, we study in detail the cases of
Arz and Ar§ modeled by a simple classical and a more
accurate quantum potential energy function, respectively. The
effect of angular momentum conservation on two observables,

forward extension of the original extended-ensemble formalism
introduced by Nosand Hoovet! As shown by Martyna, Klein,

and Tuckerma#,more than one thermostat are required for
simple oscillators to behave in an ergodic way. A possible
alternative consists of using quartic feedback forces for the

the kinetic temperature and the instantaneous Lyapunov expo-thermostat variables, as recently suggested by Hoover and co-

nent of Ag, is studied in a wide energy range. We also compare

workers1?

the various sampling schemes on a more physical observable B. Monte Carlo. The Metropolis scheme was used for single-

for Ar3+, namely, the absorption spectrum, and we calculate the

temperature (or energy) simulations. The sampling of the

average kinetic energy released during unimolecular dissociationstatistical distributiorp(I') of phase space poiniSis conven-

of an argon atom from Arand Ar;, respectively. Finally, we
give concluding remarks in Section IV.

Il. Sampling Techniques

A. Molecular Dynamics. In the microcanonical ensemble
sampling, the usual Newtonian equations of motion have been
solved using a fifth-order AdamsMoulton numerical integrator.
The initial conditions were taken at the lowest energy config-
uration with a choice of random initial velocities which satisfy
the three mechanical conditions: (a) total energl,igb) total
linear momentunP is zero, and (c) total angular momentum
is zero. Step c requires one to invert the inertia matrix, which
is only possible for a nonlinear molecule. In the case O},Ar
we slightly shifted one atom off the axis with a small amplitude,
therefore not affecting the total energy significantly.

tionally done by alternating random moves frdrpg to I'new

and by accepting these moves with probability &ga(— Tnew)

= min[1, p(T'mew)/p(Toig)]. FOr an atomic system, the statistical

distributionp can be factorized into configuration- and momenta-

dependent parts. In the canonical ensembeis simply

proportional to the Boltzmann fact@kyt(R) = e VR, V(R)

being the potential energy at configurati®rand 8 = 1/kgT

the inverse temperature. In the microcanonical ensemble and

up to a normalization constan,is given by-3
pnve(R) = [E- VRN PB[E-V(R)]  (2)

where® stands for the step functidh(x) = 0 if x < 0, 6(X) =

1 otherwise. Sampling the microcanonical ensemble using

Monte Carlo techniques was previously proposed in a rigorous

fashion by Schranz, Nordholm, and Nyméarollowing the

Sampling the configuration space at constant temperature waspioneering work of Severin and co-workéfgven though these

achieved by molecular dynamics using Nestoover chaing.
The equations of motion are néw

_ b
=
_ oV
P = B_q. vy,
= Uy,
!
Z'Jm = _— (3N - 6)kBT —_ Uﬂlvﬂz
27;71 = [Qj—an—l —kgT] — Uy Uyt 1<j<M

— kg T 1)
where{q}, {pi} are the respective coordinates and momenta
of theN atoms, and#;} and{v,} are the respective coordinates
and velocities of theM thermostats of the chain. Following
Martyna, Klein, and Tuckermahthe thermostat masses were
chosen to b&; = (3N — 6)kgT/w? andQj = ke T/w? for j > 1,

o being a typical frequency of the system found after diago-

. 2
v, = V.
Y QM_l vm-1

nalizing the mass-weighted Hessian matrix at the lowest-energy

structure. The initial conditions were chosen simply at this
geometry without any nonzero velocity except for the thermostat
variables. Simple symmetry arguméhthow that an initial
angular momentum set to zero in the simulations is conserved
by the above equations of motion. This was previously noticed

authors were not specifically interested in the ergodicity matters.

Simulations were also performed starting with the lowest-energy

configuration and doing individual moves with a step size

adjusted to yield between 40% and 60% accepted MC moves.
It is possible to include conservation of angular momentum

in the expressions of the equilibrium densitggT and pnve.

One findg-516

eavt(R)
v detl(R)
eave(R)

Jdetl(R)

I (R) being the inertia tensor of configuratiéh The two above
equations are only valid for nonlinear molecules. In the systems
keeping a linear shape,detl should be replaced byR), and

the number of independent degrees of freedom should also drop
by one. For a larger, nonlinear molecule, the extra geometrical
factor 1A/detl exhibits small variations in the range of
available configuration space. However, not including it can
cause some quantitat®/& or even qualitative disagreement
with molecular dynamics data.

Pravr(R, J= 6) O

enve(R, J= 6) U 3)

lll. Test Cases: Arz and Arg

For the two systems studield,= 3 atoms and all simulations
consisted of 1®different initial conditions and ¥0time steps
(MD) or Monte Carlo cycles. The first 10% of the collected
data were rejected for equilibration, and only one MC step every
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(a) Ar, E=26.4 cm”’ (b) Ar, T=12K
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Figure 1. Potential energy distribution of Afrom Monte Carlo simulations withJ(= 0) and without conservation of angular momentum and also
from molecular dynamics simulations. (a) Microcanonical ensemble at total ekerg26.4 cnt?; (b) canonical ensemble at temperatilire- 12
K.

N steps was included in the Monte Carlo sample to avoid above the minimum can be crossed and spontaneous isomer-

excessive correlations. ization between two equivalent triangular shapes (but with
A. Ars. The simple Lennard-Jones (LJ) potential was different labelings of the atoms) can occur. Isomerization in
employed to model the interaction within neutralkbAWe did Ar; can be seen as the precursor to the so-called “phase changes”
not need more accurate descriptions for the present statisticalseen in larger clusters such as A To estimate the influence
purposes. With the usual parameters (for argor)172.4 cn?, of the extra factor /detl(R) on the thermodynamic behav-

o = 3.405 A, the only equilibrium geometry is an equilateral jor, we have calculated two specific indicators which can be
triangle with lengtho and energy—3e. The harmonic zero-  sensitive to changes in geometry, hencel(R). The first
point energy, calculated from the three vibrational frequencies indicator is simply the kinetic temperature:
at this minimum, is ZPE= 26.4 cnt! above this minimum. At
constant temperature, the molecular dynamics simulations used 2KE)

i - B = e
a time step obt = 1 fs. At constant total energy, we were able K (3N — 6)kg
to get a good conservation of the mechanical quantities using a

larger time stepot = 10 fs. S where the average of the kinetic enef#{is a microcanonical

We have plotted in Figure 1a the probability distribution of  4ne When isomerization occurs, the cluster spends relatively
potential energy found in microcanonical simulations with |5ng times near the saddle configuration, which results in a
(MC and MD) and without (MC) angular momentum conserva- gecrease of the kinetic temperature. The general shape of the

tion_, at total energy corresp_onding_ to the zero-point ENergy. cluster is then characterized by very large values ofdbtl.
While the two Monte Carlo distributions can hardly be distin- In Figure 2a, we see that the variationsTaf with respect to

gwshed, the molecular. dynamics resullts show. a somev‘.'hatenergy are significantly changed by whether we consider this
|rregulqr pattern, espemglly atllow'and |ntermed|§t(.e.energ|e.s.Weight or not in the Monte Carlo sampling scheme. The
Repeatlng the computations with different sets of initial condi- deviations become notably large below the onset of isomeriza-
tions Pfo‘?‘uc‘?d the same MC. curves, but still a badly converged tion and increase even further at higher energies.

MD distribution, especially in the case of fewer but longer The second observable computed here is a finite-time

tsrllmu!atlo?s. TTS polor cog'\{erge;celof m(()iIeCl:Iar l:jynamuczjs ITSI’I Lyapunov exponent. Lyapunov characteristic exponents (LCES)
€ signature of regular orbits and only moderate chaos and Will .o contain a lot of information related to the topography of

be explored further below. L the potential energy surface, as the robe the different
A.t the total energy of 26.4 cmt the kinetic t.emperature was conv?axities of this sgli/rface near a minin):urﬁ and near a saddle
est|mated_ to b_e arou_nd 12 K, the value which was chosen for point. While calculating LCEs is in principle a purely dynamical
the canonical _S|mu_|at|ons. The re:_;ults _Of MC and_MD have been task, recent analytical theoriéhave been developed for high-
represented in Flgurle 1b, again with and W'thOUt angwarddimensional Hamiltonian systems. These theories give estimates
momentum conservation. Only one thermostat variable was use of the LCEs as functions of various geometrical parameters such

in the NosteBHtoover i;‘gm’ zu’tvl‘gedn?w f'lr:g a ?UCh better ”as the Gaussian curvature, its mean, and its variance values.
agreement between an ata, although some Smalltpey nave peen previously used in the context of clugfers,
disagreement can still be seen between the two MC dlstrlbutlons.but they were much less accurate for small systems. A

gherefo(rjg :Ee iontSt?Qt ter?pe(;ature M?f sm:julatlovr\ll SeEmskt(()jcomplementary approach is that of short-time LCEs. In the limit
€ ergodic thanks o the exira degree of freedom. VWe checke of infinitely short times, Wales and Befyhave found an exact,

the stability of the present MD results by performing simulations _. : .
. . simple expression for the local Lyapunov exponerit$:
with a larger number of thermostat variables. P P yap ponel

The previous results show that neglecting angular momentum 2 _ _2
A ; A5 = max—w?, 0) (5)
conservation only affects low energy or temperature sampling I wz<o !
in small amounts. We have also performed a series of simula-
tions in a wide range of total energies. When the cluster is hot In the above expression, thﬁj2 are the eigenvalues of the
enough, the linear saddle configuration located about 173 cm mass-weighted Hessian matrix at the current configuration. Only

(4)
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(a) Ar, kinetic temperature (b) Ar, local Lyapunov exponent
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Figure 2. Variations of some statistical observables with total energy in microcanonical simulationg fsbAr MC and MD. (a) Kinetic temperature;
(b) local largest Lyapunov exponent. The vertical line marks the zero-point energy, 264 cm

one specific aspect of Lyapunov instability is accounted for here, In a previous work on A§ Bastida and Gddé’ already
namely, the existence of negative curvature of the potential noticed the presence of periodic orbits and poor ergodicity of
energy surface. Other contributions such as the fluctuations ofthis system when modeled with the Foreman poteftial.
positive curvatur® are neglected. However, for small systems However, with the present Aziz potential, a reasonable conver-
eq 5 was seen to yield a reasonable approximation of the large-gence of the absorption spectra could be obtained from MD
time, asymptotic Lyapunov exponents by averaging over many simulations at constant total energy. The initial conditions were
instantaneous valué$??Here, we have measured both by the generated by very slightly distorting the global minimum
MD and MC methods the largest local Lyapunov expon&nt  geometry so that the inertia matrix could be inverted and a set

in the microcanonical ensemble: of velocity vectors could yield the total energy required without
5 any global linear momentum or any global angular momentum.
AB) = mnjax /rrgaé(o, —oj)U (6) The time step used was taken as 1 fs in both the constant energy
(1)] <

and constant temperature MD runs.

The results for Ag are plotted in Figure 2b. The general shape  In contrast with Ag, there is an added interest in studying

is similar to the “exact” largest Lyapunov exponent calculated charged systems, as they are much more conveniently produced
by Yurtsevef? and Calvé* and also bears some great resem- experimentally. Moreover, the DIM approach allows one to
blance with the Kolmogorov entropy calculated by Hinde, Berry, calculate new physical observables of spectroscopic type, which
and Waleg? Below some threshold energy, no instability is are also more readily accessible in measurements. The potential
seen and\ = 0. The onset of chaos, when the KAM theorem energy surface of Ajr is very different from that of A, and
appears to be no longer valid, is located near 20'cabove the ground-state geometry of Ais that of a linear molecule,

the minimum energyA then increases and shows a plateau or ith effective Coulombic charge of Ge5on the center atom
even a small drop at the isomerization energy, and increasesand 0.2% on each other atom. The atoms are also much more

further at higher energy. The drop it has been previously  tightly bound to one another in A the ZPE being about 225
interpreted by Wales and Berry as resulting from the momentary o1

greater harmonicity as the cluster is likely to be located more

often (or with a larger probability) near the saddle pdéinas

for the kinetic temperature, we observe some disagreement
between the results with and without angular momentum

conservation. However, and to our surprise, this disagreement
is small compared to the kinetic temperature itself. Thus, even
for a system as small as three atoms these results show tha
e o s e o e e FIS. T mrocanonica N tsibuton exots o
ensemble is essentially identical to the molecular dynamics |rre.gular.|t|es ki agamn reveal the eX|sten9e of periodic

ensemble, once the trajectories have become chaotic enought_raJeCtO”eS' Even by adding one thermostat variable, molecular

At the zero-point energy, the largest Lyapunov exponent is only dﬁ/namlcs remains sgn:jewhat nonergodic, S|_nﬁeMact: Ieastl two
slightly larger than zero, hence the longer time required for thermostats are needed to get agreement wit results at
ergodic convergence. constant]l = 0. Conservation of angular momentum plays here
B. Ari. The charge in A§ clusters is delocalized. and a & greater role, simply because the molecule is nearly linear.
. 3 il . . .
realistic model must include these quantum effects at the atomic 1 nérefore 1 detl has very large variations, that is, several

level. A relatively simple approach is found in the so-called Orders of magnitude.

diatomic-in-molecules (DIM) approximatioi. We refer the We have also simulated the absorption spectra gf using
reader to the artic for further details on the DIM method. the different samplings above. The absorption spectrum is
The full description of the parameters used here is given in ref calculated following semiclassical ide&#s In a histogram

27. In particular, the interaction between neutral atoms is corresponding to energy differences from the ground electronic
described by the semiempirical potential of AZ%z. state to the various excited states, a quantity proportional to

The equilibrium distributions of potential energy in both the
microcanonical and canonical ensembles have been plotted in
Figures 3a and b. The canonical temperatdres 100 K, is
close to the kinetic temperature in microcanonical ensemble
runs. Compared to Ar we now observe a much larger

isagreement between MD and MC results and between the two

C results with and without angular momentum conservation.
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(a) Ar,” E=225 cm’ (b) Ar,” T=100 K
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Figure 3. Same as Figure 1 for /§r (a) Microcanonical ensemble at total enefgy= 225 cnt?; (b) canonical ensemble at temperatlires 100
K.

(a) Ar,” Absorption spectrum E=225 cm’ (b) Ar3+ Absorption spectrum T=100 K
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Figure 4. Absorption spectra of A*r from MC and MD samplings. (a) Microcanonical ensemble at total en&rgy 225 cnt?; (b) canonical
ensemble at temperatufe= 100 K.

the absorption efficiency is accumulated using a set of geom- 50 ' '
etries which sample the selected characteristic ensemble. We
refer the reader to articles 27, 30, and 31 for further details on 40 | E MB/MC

this subject.

The different Monte Carlo and molecular dynamics samplings 9
induce some changes in the absorption spectrum, as can be seen :; 30
in Figure 4. The nonergodic character of microcanonical MD o
simulation is reflected in these curves, as the four absorption S
peaks may again show very irregular patterns. The two peaks ne.

at 430 and 700 nm are the most sensitive to the sampling of
configuration space near the linear geometry, and the intensity 10
gets 20-40% lower if we include conservation df

To reduce the ergodicity problems of MD simulations in the
microcanonical ensemble, we have implemented a hybrid MD/ 0 0.004 0.008 0.012
MC approach where the initial conditions of MD are taken from Lyapunov exponent (arb. units)
a MQ _run at the same total energy aig= 0. The initial Figure 5. Probability distributions of largest Lyapunov exponent from
\_/elocmes are randomly chosen to yield the total energy and MD simulations of A{ at total energyE = 225 cnt, with initial
linear and angular momenta wanted. The absorption spectrumegpitions starting at the global minimum (MD) or taken from set of
obtained this way is much closer to the Monte Carlo results, as Mc configurations (MD/MC).
can be seen in Figure 4a. The regions of phase space visited by
the corresponding trajectories are more chaotic than thosetangent space equation of motion in the usual ¥ayut not
starting exactly at the equilibrium geometry. To further support by accumulating the instantaneous exponents as was made
these results, we have compared in Figure 5 the distributionsabove. The two distributions clearly show that the trajectories
of the largest Lyapunov exponent calculated along the 10 starting at the equilibrium geometry are much less chaotic than
trajectories. These numbers have been estimated by solving thehose where the initial conditions are sampled in a ergodic way.
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The poorly ergodic cases studied here could be quite general.overlapping potential energy distributions. The calculation of
Nonergodic behavior can be quite easily identified. Quasier- [é[pstthus offers a direct way to compare the microcanonical
godicity, on the other hand, may be much more difficult to and molecular dynamics ensemble samplings.
detect. Even when convergence seems to have been reached, Alternatively, a simple analytical expression féflis found
different pictures could emerge from, for instance, different sets by simplifying the above densities of states in the PST equation
of initial conditions. The absorption spectrum obtained from by their harmonic approximation. This is the basis of the
constant energy MD simulations at 225 thalid not converge Engelking and Weisskopf modeis:
correctly in the present work, while the alternate choice of initial
conditions used by Bastida and Gadgeems to have worked _E 5
quite well for the same statistié§ Therefore, the usual warning [élgngeiind E) = 2 v—1 ©)
of difficulty in reaching converged observables does not apply
systematically. Quasiergodicity, as illustrated here for a small The Engelking prediction can be used to quantify the extent of
system, could also be the rule rather than the exception for short-harmonicity in the product molecule by comparing its value to
time dynamics in larger molecules, often driven by local the PST estimate. As seen in previous wdf@&;8calculating
interactions. the average KER can reveal the existence of phase changes,

C. Statistics of Unimolecular Dissociation.Phase space  provided that a proper estimation of the vibrational DOS is made
integrals are a common ingredient in the calculation of reaction first.
rates or in the distribution of energy released during dissociation. For each system investigated previously, we have performed

The simple monomer evaporation fromg]&with g=0orlis a series of 30 MC simulations at constant energies, up to 150
a barrierless process, cm 1 for Arz and 800 cm? for Ar;, and we have calculated
the vibrational DOS. Then, the average kinetic energy release
ArZE — Ar® + Ar in the reactions Af" — Ard" + Ar, g = 0 or 1, has been

estimated using the RRK, PST, and Engelking statistical rate
and the product molecule A is the transition state. One can  theories. The results are represented in Figure 6 for the two
estimate such quantities using various statistical theories (for amolecules. Phase space theory is known to be fairly accurate
review, see ref 33, for instance). The evaluation of absolute with respect to the statistics gathered from actual molecular
evaporation rates is usually difficult because most of the dynamics simulation of the evaporation process, as shown by
prefactors are unknown a priori. Another physical observable Weerasinghe and Amar in argon clust€is more recently by
which involves a smaller number of parameters or functions is Calvo in G clusters®® As was also seen in these works, the
the average kinetic energy release (KER). Most importantly in RRK value strongly underestimates both the PST and Engelking
the present work, this quantity is closely related with the predictions.
thermodynamics of the parent cluster. The average kinetic energy release in the dissociation of Ar
We have employed three distinct statistical theories to give follows the same qualitative behavior as the kinetic temperature
estimates of the KER at various total energies of the reactant. of Ars, with a small backbending at the isomerization threshold
These theories will not be described in detail, as this is not the near 90 cm*. The effect of including the conservation of angular
purpose of the present article. The RidRamspergerKassel momentum in the phase space sampling has the same magnitude
(RRK) theory assumes that the dissociating molecule is a as in Figure 2 and gets notable as the cluster starts to isomerize.
v-dimensional harmonic oscillator and that evaporation corre- The deviation from the harmonic line of the Engelking value
sponds to the breaking of one harmonic bond. In the RRK becomes apparent near 30 @mwhich is consistent with the
theory, the average KERLIE) at total energ¥e of the reactant rise in the Lyapunov exponent of Figure 2b.
system is given by The average kinetic energy released in the dissociation of
E_E Ary into Argy + Aris much larger, which simply reflects the
R0ey(E) = 0 ) stronger b.ondlng of this molecule.' The difference petween the
4 two sampling schemes shows again that conservation of angular
momentum has the effect of increasing harmonicity. However,
he reasons for this increase are different for the two molecules.
ngular momentum conservation favors the linear configuration
of Ard*, which is a saddle point for Ar but the equilibrium
structure of Ag. In the former case, harmonicity increases as

i ; — ) ic o the system gets close to the saddle point, as previously shown
rotational density of states (DO%)e, J = 0) is given by the . ; )
kinetic energye of the fragment, up to a multiplicative by Wales and Berry* On the contrary, distortions from the

. . . .4
constant® This leads to the expression for the average KER: linear geometry are disfavored at low energies i Aand

In this equationf, is the dissociation energy and= 3n — 3.
Phase space theory (PST), in the sense of Chesnavich an
Bowers?* includes the restriction in the phase space integrals
because of the rotation of the product. Parneix, Amar, and
Bréchignaé® have shown that a good approximation to the

35,36 harmonicity is further reinforced. As can be seen in Figure 6b,
even at 800 cmt, Ar3+ behaves in a quite harmonic way. This
fE* E0629 (E—E,— €)de is in agreement with the observed regular trajectories in
— 0 n 0 lecular dynamics simulations and the difficulty to achieve
IEI;S‘l’(E) - E-E (8) mo L y . Yy
fo °€Q (E — E, — €)de ergodicity in this system.

whereQn(E) is the vibrational DOS of the (nonrotating) product IV. Discussion and Conclusion

molecule. The functiof2,, can be calculated from simulations From a conceptual point of view, isolated finite atomic or
of the product molecule, either in the microcanonical or molecular systems are conveniently studied at constant total
canonical ensembles, by the multi-histogram methddhis energy rather than at constant temperature. Because the mo-

method requires one to perform several simulations at variouslecular dynamics approach closely mimics the actual physical
total energies or temperatures and to bufly from the behavior, it may be thought to be more accurate in providing a
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Figure 6. Average kinetic energy release during monomer evaporation in the reactioné{(a) Ar;r + Ar; (b) Ary — Ars + Ar. For each panel,
the two straight lines are the predictions of the RRK and Engelking theories, respectively. The two other curves are the result of phase space theory
using the vibrational densities of states from Monte Carlo microcanonical sampling in the NVE and B\WEensembles.

representative set of configurations than nondeterministic, obtained from MD and the ones from standard MC (i.e., without
stochastic methods. However, the typical time required for constantJ) simulations should be less important for larger
convergence can be approximated as the Lyapunov tirre systems, as linear configurations are less frequent. However,
1/A. Therefore at low energies,may rise to very large values the increasing complexity of the potential energy landscape
or even to infinity in the KAM regime. This can cause some should also be seen in the much larger number of isomers or
major limitations for MD simulations to reach convergence, as stable configurations. The competition between available iso-
was seen in the present work. Our two examples,afd Ar;, mers may yield new nonergodicity or quasiergodicity problems
have only a modest number of degrees of freedom, but they because of the long relaxation time required to cross the barriers
both show such nonergodic properties at low (but physically separating these isomers. Even stochastic methods, in their basic
sound) energies. In our examples, the statistical data wasform, can be very slow in reaching convergeft& They must
gathered over Findependent initial conditions and accumulated be improved using specific techniques such as jump-watking
over 10 steps each. If only one initial condition had been or parallel tempering? which have been shown to be efficient
chosen, the disagreement between MC and MD data would havein both the microcanonical and canonical ensembfés.

been worse. In fact, a 1@ime steps long MC simulation Finally, by seeding the molecular dynamics runs with
converges exactly the same way, but the unique MD trajectory configurations taken from a properly made Monte Carlo
can remain close to a periodic orbit, therefore preventing ergodic simulation within the same statistical ensemble, we have
convergence. Moreover, such long trajectories can raise prob-significantly improved the ergodic properties of MD simulations.
lems for the accurate conservation of mechanical quantities. Of course, this hybrid MD/MC approach is rigorously equivalent

In the two cases presently investigated, only one basin of to a pure Monte Carlo method in the limit of many infinitely
the potential energy surface is accessible, and standard Monteshort MD trajectories. In practice, the length of the MD
Carlo simulation can easily produce ergodic sampling. Never- trajectories and the time spent doing MD simulation relative to
theless, MC and MD predictions could be brought to agreement the time spent doing MC simulation should be adapted to the
only if we included conservation of angular momentum in the system under study. When the forces are computationally
Monte Carlo scheme. This can be achieved by adding a expensive, Monte Carlo could be a better choice. On the other
geometrical factor 3/detl to the equilibrium phase space hand, the dynamics may be faster than MC in some cases. For
density. In AE, this weight 14/detl can be especially large  instance, CarParrinello dynamics offers a convenient way to
near the linear geometry. For Asome differences in several ~ accelerate the computation of the potential energy in the ground
observables occur when the linear configurations become €lectronic state. This method is nevertheless also sensitive to
available. nonergodic troubles.

Strictly speaking, deterministic molecular dynamics at con-  In the present work, we have focused on nonrotating systems.
stant energy does conserve all mechanical quantities includingBY emphasizing the possibly important role of angular momen-
angular momentund, so do Nose Hoover type methods at  tum conservation at= 0, we have studied physical observables
constant temperature, provided that 0. The corresponding  that can be amenable to experimental comparison, such as the
“NVT J = 0" statistical ensemble is somewhat unphysical, as photoabsorption spectrum or the average kinetic energy released
there is no reason the System should keep its angu|ar momentunj]n unimolecular dissociation. This situation is relevant to any
constant while being thermostated. It appears as a naturalmolecular system whose vibrational energy is much larger than
restriction because of the use of deterministic MD methods, its rotational energy, as in the experimentally studied.Ar
which will affect the outcome of simulation results for any finite Rotating systems with constant but nonzeracan also be
system. investigated with means of Monte Carlo methods, as first shown

Thus, we expect that sampling the configuration space of by Nyman and co-workers.Constant energy or constant
linear systems must be done carefully depending on the physicatemperature simulations with finitd involve the effective
or chemical situation, which may or may not require to kdep ~ rovibrational potential energy surfac#j(R) = V(R) +
constant. Obviously, the disagreement between the samplingJ’I=1(R)J/2 but also the geometrical weight idetl in
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the phase space integrals. A comparison with molecular dynam-  (13) Pearson, E. M.; Halicioglu, T.; Tiller, W. A2hys. Re. A 1985

ics data has shown previously that this weight should not be 32 3030.

neglected even for quite large systems such ag ir the 94(11)875_”“”2' H. W.; Nordholm, S.; Nyman, &.Chem. Phys1991,

vicinity of the solidlike-liquidlike phase change. '(15) Severin, E. S.: Freasier, B. C.. Hamer, N. D.. Jolly, D.
However, and whatever the angular momentum, constant Nordholm, S.Chem. Phys. Lettl978 57, 117.

energy molecular dynamics has inherent limitations when several (16) Dumont, R. SJ. Chem. Phys1991, 95, 9172.

basins of the energy landscape are available but not connected. (17) Miller, M. A. Ph.D. Thesis, Cambridge University, 1999.

In this case, the energy barriers higher than the total energy _(18) Jellinek, J.; Beck, T. L.; Berry, R. 8. Chem. Phys1986 84,

prevent isomerization and hinder ergodicity, which can only 2783.

- . (19) Casetti, L.; Livi, R.; Pettini, MPhys. Re. Lett. 1995 74, 375.
be restored by exchange techniques and the use of simultaneoug ,¢erii |_; Clementi, C.; Pettini, MPhys. Re. E 1996 54, 5969.

trajectories as in parallel-tempering Monte Cérlo. (20) Mehra, V.; Ramaswamy, Rhys. Re. E 1997, 56, 2508.

In conclusion, stochastic simulation methods have several (21) wales, D. J.; Berry, R. Sl. Phys. B1991, 24, L351.
advantages over deterministic molecular dynamics in terms of  (22) Hinde, R. J.; Wales, D. J.; Berry, R. .Chem. Phys1992 96,
exploring the configuration space ergodically. These advantages!376. Hinde, R. J.; Berry, R. S. Chem. Phys1993 99, 2942.
must be balanced with the need for time-dependent observables. (23) Yurtsever, EEurophys. Lett1997 37, 91.

At constant temperature, Langevin dynamics offers an interest-  (24) Calvo, F.J. Chem. Phys1998 108 6861.

ing alternative to extended ensemble molecular dynamics, evenChgnsq). F',Erl]ls'/sscig'?g' 6?1"‘]3'12‘{2: Chem. S0d963 85, 3540. Tully, J. CJ.
though it is known to be inaccurate at short times. An isolated  (56) kuntz, P. J.; Valdorf, Zz. Phys. D1988 8, 195.

system, that is, with constant energy but also with linear and (27 Bastida, A.; Gade F. X.Chem. Phys1996 209, 291.

angular momentum, still requires standard MD simulations to  (28) Aziz, R. A.J. Chem. Phys1993 99, 4518.

get explicit dynamical information. A proper use of Monte Carlo (29) Foreman, P. B.; Lees, A. B.; Rob, P. K. Unpublished results.

methods appears then as the natural choice for selecting the

initial conditions.
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