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We provide here a quantum mechanical investigation of the resonance states found in a study of conically
intersecting electronic surfaces. The dynamical system under investigation consists of a bound electronic
state having a conical intersection with a dissociative electronic state. Quantum mechanical resonances arise
from the predissociation of vibrational states of the bound potential surface via the nonadiabatic coupling to
the dissociative potential surface. Resonance energies and wave functions are computed using the complex
coordinate method, and the resonances are characterized in terms of contributions from states of the uncoupled
potential surfaces. Key results found in this study include the following: (i) there is no correlation between
resonance positions and widths in that when the resonances are ordered by their positions, the corresponding
widths (and lifetimes) fluctuate irregularly; (ii) the resonance energetically below the conical intersection
cannot be identified as a tunneling resonance of the lowest adiabatic potential surface since its resonance
lifetime is orders of magnitude larger than the tunneling lifetime; (iii) the resonance states (even those whose
positions are energetically much higher than the conical intersection) are found to arise from a small number
of vibrational states of the bound diabat coupling to each other via the continuum of the dissociative diabat;
and (iv) none of the resonance states emanate from a bound state of the upper adiabatic cone-shaped potential
surface. We also briefly investigate the resonance energies as a function of the nonadiabatic coupling strength;
the irregular behavior of the resonance lifetimes with the coupling strength is a fingerprint of the conical
intersection. Furthermore, we have performed a symmetry analysis of the resonances and introduced an effective
Hamiltonian which, with the aid of a simple model, yields results in agreement with numerically exact results.

I. Introduction who have made tremendous strides in extending the pioneering
work of Landau and ZenérThe role of quasibound states, i.e.
guantum mechanical resonances, in model one-dimensional
electronically nonadiabatic reactions has also been investigjated.
In systems with only one internal degree of freedom, Born

The Born-Oppenheimer approximatiéns of fundamental
importance in the study of many dynamical processes. Within
this approximation, the electronic problem is first solved at fixed

nuclear geometries, yielding a potential energy surface (PES); . . . .
the motion of the nuclei on the PES is then treated. For many Oppenheimer (adiabatic) potential energy surfaces of the same

dynamical systems, nuclear motion is confined to a single SPatidl symmetry cannot intersect. However, in dynamical
potential surface, often the surface associated with the electronicSYStems possessilginternal degrees of freedom, it is possible
ground state of the system. However, “nonadiabatic” processesthat adiabatic PES intersect along a generalized line of dimen-
for which nuclear motion “evolves” on or is influenced by SionN — 2276 Thus, two-dimensional potential surfaces, which
several coupled potential surfaces are in fact ubiquitous (see,can intersect at a point, present the lowest dimensionality
for examples, refs 26 and refs therein.) necessary for a so-called conical intersection.

Considerable research has been undertaken to understand The simplest system that is a generalization of the one-
nonadiabatic effects in model one-dimensional systems in which dimensional, two-state LandaZener model and that involves

two adiabatic potential energy curves can undergo an avoidedy conical intersection is the motion of a point-mass particle
crossing. Notable is the work of Nakamura and collaborattors, across a pair of coupled two-dimensional PES with particle

motion constrained to a plane generating the hyperbolic conical
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states has resulted in explicit analytical expressions for resonancesurface. By appropriately using the complex coordinate method

positions and width&® the authors of ref 37 computed decay rates of the cone states
The effects of conical intersections betwdsmundelectronic ~ mediated by this coupling. . .
states have undergone numerous theoretical investigatioss. In section II, we provide the theoretical formalism for the

The studies range from investigations on small molecules suchanalysis of resonance states; results are presented in section Il
as NQ,12 for which the ground state conically intersects an In section IV, we discuss the symmetry of the resonance states
excited state resumng in avery Comp|ex experimenta| absorption which is decisive for a detailed description of the resonances.
spectrumi3 to larger systems such as pyrazine where the effect Also in this section, a method of analysis is provided by the
of all 24 modes have been computed via wave packet propagaintI’OdUCtion of an effective Hamiltonian; with the aid of this
tion.4 Since resonance states, i.e. decaying states, are the subjedtamiltonian a simple model can be derived to help provide
of the present work, we would like to mention for completeness Valuable insight into understanding the resonance results. Section
that conical intersections can have a dramatic impact on theV gives concluding remarks.
radiative lifetimes of vibronic states.

Conical intersections involvinglissociatve or continuum
electronic states are also critically important, for example in  A. Electronic States and the Potential Matrix. The simplest
the nonadiabatic effects accompanying the photodissociation oftype of conical intersection arises from two nondegenerate
polyatomic molecule$:® Numerous experimental and theoreti- electronic states of different symmetries interacting through a
cal studies have been undertaken that provide strong evidencenontotally symmetric mode, whereas, in addition, a totally
for the critical role of nonadiabaticity in photodissociation symmetric mode regulates the separation in energy of the
dynamics, including studies of ammonia and its methyl- interacting state%.In accord with this form for the conical
substituted derivative'$, acetyl, bromoacetyl and bromopro- intersection, we undertake here a reduced-dimensionality quantal
pionyl chloridei” nitric oxide?® nitrous oxide!® dinitrogen study of two conically intersecting diabatic electronic states

Il. Resonance States: Complex Scaling Characterization

tetraoxide3® monohalogen and multihalogen alkyl halidésert- whose potential energy surfaces depend on two dimensionless
butyl nitrite?2 metal carbonyl$® H,O and its deuterated normal-mode coordinates{a symmetric coordinate) arydan
analogueg? OCIOZ>ICN;26 HCO?” OH—H,?8 and Ar—H,0?° asymmetric coordinate). One diabatic electronic state, denoted
van der Waals complexes; the @bH radicaf® and NO dime#? @y, is bound in both coordinates and is associated with the
HNCO3 and Q.33 potential Vpd. The other diabatic electronic state, denoteg

One important nonadiabatic mechanism for photodissociation iS bound iny and dissociative irx; it is associated with the
in polyatomics involves photoabsorption from the ground potentialVd. The electronic states are coupled via the potential
electronic state to a bound electronically excited state which \/ﬂc. The quantum dynamics is solved in the diabatic represen-
conically intersects a dissociative excited state. Time-dependenttation; however, in section 1l.C below, we will also use the
wave packet calculations have been utilized for&ldnd HS®® adiabatic potential energy surfaces to help interpret the resonance
using the ground and two excited potential surfaces to computeresults.
photodissociation cross-sections and product branching ratios; The diabatic potential energy matrix is therefore given by
theoretical and experimental results for both molecular systems
are in good agreement. The computed cross-sections provide
strong evidence for the existence of resonances; the latter arise
from levels of the bound excited PES which are predissociated

via the nonadiabatic coupling to the dissociative PES. A time- Tne vibrational states ovd are predissociated via the nona-
dependent wave packet study was also undertaken for thediabatic couplingvgc to the dissociativeVd resulting in the

Iphot|0|o'n|za(ti|.on Of. HCN; in which the Tgsultant HCmeo- appearance of resonance states. The diabatic potential matrix
ecular lon dissoclates due to a conical intersection between agi o5 rise to conically intersecting electronic states: if we

bound and repulsive electronic state; time-dependent populationqnrlagine that bottd, and®, represenexcitedelectronic states,

of diabatic and adiabatic electronic states were computed. then the dynamical system is a model for molecular photodis-
Although the effects of resonances were observed in the abovesgciation in which photon absorption from a ground electronic

wave packet investigations, detailed analyses of the resonancestate results in predissociation from excited states undergoing

(e.g., calculations of positions, widths and wave functions of 5 conical intersection.

resonance states) were not undertaken. To provide such an A potential energy matrix as in eq 1 is applicable to realistic

analysis of the resonances resulting from a conical intersectioncases and can easily be generalized to more dimensions. In this

between a bound and dissociative PES, we present below &irst study we consider here a simple form fét given by
quantum mechanical investigation of conically intersecting

electronic states, analyzing the resonances arising in such a
system using the complex coordinate method. Since at least two
degrees of freedom are required to have a conical intersection
and because this investigation of resonances arising from a d _ —px+o) 4 1
conical intersection is the%irst such study of its kind, W% focus Velxy)=ce + Ewyyz +tA (2b)
on a two-coordinate system.

We would like to mention that the complex coordinate method Vi) =2y (2¢)
has been previously us€din connection with a conical
intersection, in particular a linear Jahmeller system in which The coupling\/‘gC is chosen for clarity and simplicity to be a
two adiabatic surfaces occur one inside the other and arelinear function of the coupling modgas in previous models
connected by a point of conical intersection. In a bound linear of electronic coupling:38 The potential parameters are given
Jahn-Teller system the vibrational states in the upper adiabatic in Table 1; we use atomic units unless otherwise indicated. The
potential surface (cone states) couple to those of the lower parameters have been chosen by comparison to model systems

d
Vb bc

A

C

Vi(x,y) = (1)

1 1
Vl(x, y) = 50 X+ 50y (2a)
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0.07 Bea |y b CiE) TAdBLE 2: Vibrational Energy Levels for States |ny, my, > of
A(0.6) ?\(?l ; \ ™ -1 B[16] B[17] \
0.06 | Agziz) \ \\— 11 Af15] 1 N m, Ebna (En) N m, Eond (En)
AGO) BOS5) \ AL13] A[14]
B3 | \ a1z 0 0 0.012 0 5 0.057
005 | B1)  \w\mommessenes S EM) ] 0 1 0.021 3 0 0.057
A(0,4)
i\ \ A 1 0 0.027 2 2 0.060
- e\ \ 1 A7) Alg) 0 2 0.030 1 4 0.063
S 004 | 809 | \ / ] 1 1 0.036 0 6 0.066
& B(1.1) 0 3 0.039 3 1 0.066
Z 008 A02) 2 0 0.042 2 3 0.069
2 A(1,0) 1 2 0.045 1 5 0.072
0 4 0.048 4 0 0.072
0.02 - B(0,1) 2 1 0.051 0 7 0.075
1 3 0.054 3 2 0.075
i A(0,0) — _ . . : .
001 scaled Hamiltoniam, is obtaine@ by scaling the dissociative
coordinatex via x — X where
0.00 L
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 ~
x X = (x = %) exp(o) + X, ®)
Figure 1. Bound diabaticv,® and dissociative diabati¢.® potentials
aty = 0 as functions ok. The energies of the vibrational levels,( The complex scaled square-integrable (diabatic) resonance wave

m,) of Vi¥(, y) are indicated by horizontal dotted lines; some of the functions are associated with the eigenfunctionsipf
unperturbed levels are doubly degenerate. The positinsf the

resonances are indicated by horizontal solid lines (Group 1), thicker 0 i 0
dashed lines (Group 2) and thickest long-dashed lines (Group 3). The Hy lpre%(x, y) = (Ea - Era)‘presu(X, y) (6)
placement of the horizontal lines representing the resonance positions

is chosen only for convenience; i.e., the resonances are not localize . .
inside the upper adiabatic cone and do not result from cone states. Th((jeWhereE“ andT’, are, respectively, the resonance position and

symmetry A or B) of the vibrational states and the resonances is shown width for th_e resonance labeled The width is inversely related
as well as the numben(] of the resonance state. to the lifetime of the resonance state. The complex scaled

Hamiltonian can be further written as
TABLE 1: Values of Potential Energy Parameters

wyx=0.015 Hy=T1+ V(% y) (7)
wy=0.009

€=0.04 where

=05

6=0.5 1 a2 1 82
A=0 T=TX +T(y) = —Zw, exp (26 ——Zw,— (8

Other values are considered in section Il D. The diabatic resonance wave function is a column vector given

in the literature®® The choice for the potential energy matrix by

(1) provides us with a model simple enough that we can clearly

study the effects of conical intersections on resonances.
Cuts of the diabatic potentialg® andVd aty = 0 are shown

in Figure 1. For the potential parameters given, the conical

intersection occurs at the pointe{ = 1.427,yc = 0) with an

energy Ec; = 0.01526 au. The bound surfasg® supports

Y
lp?esu = 11;0“ (9)
Cll

where‘Pﬁu is the component associated with the bound surface

0 - . . .
harmonic vibrational states which we dendtg, m, > and Vpd and IPC(x is the component associated with the continuum
although the vibrational energies are given simply by surfaceV’.
C. Computational Considerations: Basis SetdVe describe
1 1 details for the computation of resonance energies and wave
E,.=E,+tE,=|n+3Z + + = 3 . . .
bnd M my ( x 2) @x (mY 2) oy G functions. The basis sets chosen for the solution of eq 6 are

particularly well-suited for determining the percent contributions

we list the first 22 vibrational levels in Table 2 for future  from individual vibrational levels of the (uncoupled) PES!
reference. The energies of the vibrational states up to 0.07 augnqv, to the resonance state.

are indicated in Figure 1. The dissociative surfelgt‘supports” In the first step, we consider the bound coordinaté set
states|E;, iy > where | Ej > is a continuum state in the  of particle-in-a-box basis set functions (centereg at 0) are
x-coord!nate andiy > is a harmonic vibrational state in the |,5eq to compute eigenfunctions for trelependent part dfl,
y-coordinate. o n , li.e., for T(y) + V3(x = 0, y)] and then for they-dependent
B. (;omplex Scaled. HamHtoman.Wlthln.the.ba5|s of the part of He [i.e., for T(y) + Vd(x = 0, y)]. These (real harmonic
two diabatic electronic states, the Hamiltonian for nuclear oscillator) eigenfunctions are denotégh(y) andYa(y), respec-

motion takes the form tively; they correspond to the staties, > and|iy > respectively.
Values for the numerical parameteugs(the number of basis-
H(x, y) = (Hb Vgc) 4) set functions) angyox (the box size iny) must be specified.
' vgc H. In the second step, we consider the dissociative coordinate

and choose values @) and the rotation anglé to specifyX in
whereHy, is the nuclear Hamiltonian for the bound diabatic state eq 5. We then use tha,,s particle-in-a-box basis functions to
d, and H, for the continuum diabatic sta®.. The complex find the eigenfunctions for thedependent part of the complex
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scaledHﬁ [i.e., for T(X) + W% y = 0)] and then for the The dissociativeV,? PES supports statgg;, iy >; the total
x-dependent part of the complex scaled [i.e., for T(X) + percent contribution to resonancefrom a given vibrational
VA%, y = 0)]. We denote the eigenfunctiop@n(;() andxgj(i), stateliy > in the boundy dimension is obtained by summing
respectively; the former represents a (complex scaled) harmonicover the discrete set of rotated continuum Stﬁ?
oscillator staten’ > and the latter a rotated continuum state iy _ 2 0
|EJ?9 >, The box Siz&pox = Xmax — Xmin Must be specified; the Pcu - z |diiu| x 100% (15)
basis functions are centered in the middle of the box. !

We then form the set of eigenfunctions of the complex scaled Thjs |atter probability is experimentally significant because it
Hp, which is given by the productsx{,Yin); these are the s related to the probability that the molecular photodissociation

eigenfunctions associated with the (uncoupled) REE, y). process results in a particular vibrational level of one of the

Similarly, the set X(%Yz) is a set of the eigenfunctions of the resulting fragments.

complex scaledHZ associated with the (uncoupled) PEJ(X, E. Contributions to Resonance Eigenfunctions in the

y). Adiabatic Representation.The resonance wave function was
A basis for the full complex scaled Hamiltoni&ty is then computed above using the diabatic representation. We would

taken to be a subset of th¥(Y;) and Q(ngZi) functions. This also like to discuss the resonances in connection with the
subset is chosen using an energy cutoff criterion; all eigenfunc- commmon adiabatic potential energy surfaces as obtained from
tions ofH andH? whose eigenvalues have real parts which do the ab initio calculations of electronic energies. The adiabatic
not exceedEq, are included in the basis fai . potential energy matri®/ad is obtained by diagonalizing the
Upon evaluating its matrix elements, we diagonalize the diabatic potential matrix of eq 1
complex scaled Hamiltonian matrix using the routine described T
in ref 40, yielding resonance eigenvalues and eigenfunctions. VA%, y) = UT(x y) V(x, y) U(x, y) (16)
We then ensure that resonance results are converged with respect, ore
to the numerical parameters described above.
D. Contributions to Resonance Eigenfunctions in the d o
Diabatic Representation. In the diabatic representation the Vad(x, y) =( ! d) a7)
resonance state wave function has two components which are 0 Vg
linear combinations of the eigenfunctions of the two uncoupled

diabatic PES and
0 _ 0 _ [cos¢ —sing
lpb(1 - ; Cnm1 X1nY1m (108.) U(X! y) (sind) COS(b ) (18)
) ) with
We = di XYy (10b)
M 1 2Vgc
(X y) = — > arctan——— (29)
where the coefficients,m, andd;, are obtained via the matrix Ve =V
diagonalization and the resonance state wave function is initially
normalized such that The lower adiabatic PEV{"j resembled/yd at points §, y) with
X < Xci and it resemble¥d at points &, y) with x > Xxc,. It is
Zcﬁ + Zdﬁ =1 (11) a dissociative PES which itself can support continuum states
&G ™ and, perhaps, resonance states. The upper adiabatid/EgES

resembled/? at points &, y) with x < x¢; and it resemble¥,

With ‘Pfesu re-normalized such that at points &, y) with x > Xq. It is a cone-shaped PES which,
5 5 ignoring potential coupling, supports bound states which will
Zlcnnh| + Z'djial =1 (12) be denotedu(x, y).
nm I

We do not intend to recompute the resonance energies and
eigenfunctions via complex rotation of the Hamiltonian in the
adiabatic representation into the complex energy plane. We are
rather interested in projecting the computed resonance eigen-
functions in the diabatic representation on the adiabatic elec-
tronic states. In this way, we can interpret the results we have
obtained above in the common context of adiabatic potential
surfaces. The resulting square-integrable projected resonance

we now define the percent populations of resonance staie
the two diabatic PES

Py, = Z'Cnmu'z x 100% (13a)
nm

and
state wave function is obtained from the complex scaled
Pg _ Z|dji |2 % 100% (13b) resonance wave function in thg diabatic representation (renor-
« &t malized according to eq 12) via
Furthermore, we can also determine the percent contributions Fres, 06 ¥) = UT(X, V) We (%, V) (20)

to the resonance states frondividual vibrational states of the

uncoupled diabatic PES. In particula,® supports vibrational and consists of a compondﬁi(x, y) on the dissociative lower
stategny, my, > which make a percent contribution to resonance 4qigpatic PES and a componeﬁﬁt(x, y) on the bound upper
statea of adiabatic PES. By computing the overlaps Eﬁ with the

(complex scaled) bound statefg, we can determine the

Moy — 2 9
Pbu |Cnmu| x 100% (14) percent population of the resonance stateon the upper



4324 J. Phys. Chem. A, Vol. 106, No. 17, 2002 Friedman et al.

TABLE 3: Values of Numerical Parameters Used for TABLE 4: Resonance Positions and Widths and Their
Convergence of Resonance Energies Uncertainties®
parameter production run convergence run resonancegroup absolute relative (%)
- 500 450, 550 no. no. Eq (En) uncertainty I'o/2 (En) uncertainty
Vhox 20 18 1 1 1.162303¢2)° 1.(-8) 19y c
Xonax 14 13,145 2 1 1.9443¢2) 2.(-6) 2.45 (-4) 0.5
Xonin -8 -7 3 2 2.609(2) 1. (-5) 6.28 (-4) 1.0
Eeut 0.15 0.16 4 1 2.75758¢2) 6.(-7)  9.075) 1.0
% 0 05 5 3 3.402¢2) 1.(=5) 1.30 (-3) 2.0
g2 0.20 0.15, 0.30 6 1 361355¢2) 7.(-7) 1.664(4) 05
aF 8 3 4.204¢2) 6. (-5) 1.64 (3) 2.0
or Groups 1 and 2 resonance&or Group 3 resonances. 9 2 44758(2) 5.(-6) 5.37 (-4) 15
. . g 10 3 4.978¢2) 7.(5) 1.6 3) 6.5
adiabatic coné/;, 11 2 5.121¢2) 3.(-5) 6.35 (4) 6.5
121 o7ty 2(9 7y 13
ad __ 0. 0y 2 . .= 6
Py, = Z |(Fy, 1" > 100% (21) 14 3 5752¢2)  3.(-5) 1.7(3) 6.0
15 2 6.016¢2) 2.(-5) 6.09 (-4) 2.0
. ) . 16 3 6.57¢2) 5.(-4) 1.6 3) 12
The c-produce?® a generalized inner product, is used for the 17 2 6.585(2) 4.(-5) 5.9 (-4) 55
overlap (i.e., we daot complex conjugate the functidﬁﬁu). 18 2 6.873¢2) 3.(-5) 6.6 -4) 15

In determining Pﬁuq it is necessary to use in the complex 2 The uncertainties reflect tolerated changes in the resonance energies
scaling computation ojg the same rotation angie that was as numerical parameters are varie&ead, for example, as 1.162 303

used in computing the resonance state eigenfuneﬂﬁ ) x 1072, ¢Only an order of magnitude estim_ate for the _Width of this

The percent population of resonance staten the lower extremely narrow resonance could be obtained numerically.
dissociative adiabat can be determined by computing the
overlaps ofFli with all of the eigenfunctions o¥/*. Since
overlaps withboth continuum and resonance eigenfunctions of
V,ad would be needed, it is much simpler to deduce this percent
population from the value de}S

Not listed in Table 4 is an apparent1gesonance at 6.3
1072 — 2.6 x 1073%; this resonance is broader than all those
listed in Table 4, and it was not particularly well-converged
even with rotation angles ranging from 0.30 to 0.50 rads. We
mention it here because we will allude to it in section IV. C.

The 18 resonance energies are clearly shown in the plot of
the complex energy plane in Figure 2. The differing widths of

A. Resonance EnergiesWe focus on those resonances the 3 groups are apparent in the Figure and sandwiched between
having position&E, < 0.07 au. We have successfully converged Groups 2 and 3 are rotated continuum states. The two horizontal
a total of 18 resonance energies; the resonances are equallylines” of continua eigenvalues are separatedkyynd “within”

I1l. Resonance Results and Discussion

divided into 3 groups based on their resonance widih(in a line, the eigenvalues are separated:y

atomic units) It is strikingly apparent that there is no one-to-one cor-
Group 1: To/2 < 25 x 1074 respondence between the positions and widths of the resonances;
Group 2: 5.0x 104 <Ty/2 <7.0x 1074 when the resonances are placed in increasing ordgég,dheir
Group 3: /2 > 1.0 x 1073 corresponding widths (and therefore lifetimes) fluctuate ir-

The values of the numerical parameters used for the conver-regularly. This is one of the dramatic effects of the presence of
gence of the resonance energies are listed in Table 3. Thethe conical intersection.
“production run” refers to those values used for calculating the ~ There is a close correspondence between the number of
resonance energies to be reported. The “convergence run” valuegesonance states and the number of vibrational spaesy, >
were those used to check for convergence of the resonancedelow an energy of 0.07 au (see Table 2). This relationship
energies. Notice that for convergence of the broad Group 3 will be fully analyzed in later discussions.
resonances it is necessary to use a larger value for the rotation B. Resonance State Wave Functions: Diabatic Properties.
angle (0.35 rads) than is used (0.20 rads) for the narrower The percent populatior of the resonance states on the bound
Groups 1 and 2 resonances. The value of the cutoff erfeygy ~ diabatic potential surfacé,? are shown in Figure 3. In general,
is approximately twice the value of 0.07 au used as the upperwe see that the narrower the resonance, the more it is “localized”
limit for resonance positions. Table 4 presents the resonanceon the bound diabatic PES. The narrow Group 1 resonances
energies themselves in increasing orderEgf we also give have at least 80% population on the bound diabat, as do the
absolute uncertainties B, and percent uncertaintiesliy based two lower energy resonances of Group 2. Even the higher energy
on variations of the values of the numerical parameters. The Group 2 resonances have over 58% population on the bound
lowest energy resonance, number 1, has a position lying belowdiabat. This is in stark contrast to the higher energy broad Group
the conical intersectioBcy; it is extremely narrow and we can 3 resonances; the last three-members of this group have less
only obtain an order of magnitude estimate for its width than 38% population ol
numerically. The widths of the second narrowest resonance, The contributions from individual vibrational statgg, m, >
number 13, and the broad resonance 16, also have relatively ~ of the bound diabat to the resonance states are very informative.
large percent uncertainties. The positi@sof the resonances  Figure 4a-c displaysPy™ for Groups 1, 2, and 3 resonances
are indicated in Figure 1 by solid lines, thicker dashed lines, separately. We have only included states contributing at least
and thickest long-dashed lines for Groups 1, 2, and 3, 2% to the total diabatic resonance state wave function. Several
respectively. (Note that the placement of the horizontal lines trends are apparent. First, for Group 1 resonances, states with
representing the resonance positions is chosen only for con-n,= 0 orm, = 0 make dominant contributions; this is in contrast
venience and that the resonances are not localized within theto Group 3 where, for five of the six resonances, states with
upper adiabatic potential.) = 1 dominate. Second, for a given resonaacall vibrational
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statesiny, m, > that contribute haveithereven values or odd w0 | .
values ofm,. This parity selection rule will be explained using °
symmetry considerations in section IV. A. Third, for resonances & 13
. . . 1 ¥
with close values ofg,, we often see a “switching” of the <. o
vibrational state making the dominant contribution. For example, ~ 2° | 04 05 o4
consider the two resonances with positions near 0.027; for both 00:3 S °©
resonance numbers 3 and 4, ofly 2 > and |1, 0 > make 28" 3
significant contributions. For number @, 0> contributes 67% 10 20 0,5 06 5 |
and |0, 2 > contributes 13% whereas, for number|4, 0 > © o O 22 €31
contributes 20% an{D, 2 > contributes 69%. We should also f 21 30 007
. o . : ‘ .
note that the bound state energiegf0 > and|0, 2 > (see 0 53 504 005 0.06 507

Table 2) are close td, of 0.027 au. This “switching” of

Resonance position E,, (E,)

dominant contributors becomes even more apparent if We gjgyre 4. Contributions from individual vibrational levelsy, m, >

consider the percent contribution from jgg, m, > state relative
to the total percent contribution from the bound diatgt that
is we define a relative percent contributiﬁ@:”‘y via

PR

d
Pba

x 100%

(22)

Rgx’rn/ =

In Table 5, we list clusters for the first 12 resonances

of the bound diabat to the resonances. The points are labeleg by
my. (a) Group 1; (b) Group 2; (c) Group 3.

which have similar values d&, and for which the same set of
In,, my, > vibrational states contribute. The relative percent
contributionsRy*™ are tabulated. It is quite evident that this
“switching” of dominant contributors is a recurring theme for
the resonances; this “switching” behavior is not unique to the
present study and is invariably observed when diagonalization
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TABLE 5: Symmetry Groupings of Resonance States: Accurate Resonance Results (from complex scaling) versus Model
Calculations (from Hgr Diagonalization)

res. sym. E.? Tu/2 R-™ (9%)
no. label acc mod. ace mod. [Ny, my > acc® mod¢
1 A 1.162303 1.164 1+9) o' 0,0 99.9 100
2 B 1.9443 1.931 2.45+4) 3.12 (-4) 0,1 99.4 100
3 A 2.609 2.636 6.28+4) 8.52 (-4) 1,0 82.0 73.8
0,2 16.3 26.2
4 A 2.75758 2.788 9.07-4(5) 8.14 (-5) 1,0 22.5 26.2
0,2 76.6 73.8
5 B 3.402 3.421 1.3043) 1.75 (3) 1,1 69.7 62.3
0,3 255 37.7
6 B 3.61355 3.645 1.664-4) 7.94 (-5) 1,1 32.1 37.7
0,3 66.5 62.3
7 A 4.1951 4.192 1.2644) 2.42 (5) 2,0 90.1 99.8
12 6.6
0,4 2.6 0.2
8 A 4.204 3.699 1.6443) 2.13 (3) 2,0 12.0 0.1
1,2 51.7 67.3
0,4 28.7 32.6
9 A 4.4758 4.477 5.37<4) 1.94 4) 2,0 3.3 0.1
12 33.4 32.7
0,4 60.7 67.2
10 B 4.978 4.318 1.643) 2.86 (3) 2,1 23.7 0.1
13 44.7 67.1
0,5 22.2 32.8
11 B 5.121 5.219 6.35(4) 3.73¢4) 2,1 70.6 96.8
1,3 0.6
0,5 24.7 2.6
12 B 5.355 5.319 1.3143) 2.65 (-4) 2,1 17.6 3.1
1,3 30.6 32.0
0,5 451 64.8

2 Reported resonance positions have been multiplied by %108ken from Table 4¢ Contributions less than 2.5% not reporté@ontributions
less than 0.1% not reportetiRead, for example, as t 107°. f The Hg matrix of dimension 1 has no imaginary componértx is of dimension
1.

of the Hamiltonian matrix mixes members of the basis sets. In
section 1V, we introduce an effective Hamiltonian whose
analysis, using a simple model, will help us to understand
(qualitatively and quantitatively) the results of Table 5.

We focused above on the contributions to the resonance state (a
wave function from the vibrational states of the bound diabat
Vi, Table 6 lists the percent contributions from a given
vibrational statgiy > (in the y-dimension) of the dissociative
diabat V¢ where we have summed over the discrete set of
continuum states (in thedimension); we only include contri-
butions of 0.5% or greater. (We also show in Table 6 the total
percent populationPd of the resonance state on the dis- x10°
sociative diabat.) The most obvious result is the opposite parity o
of |[my, > and|iy >; for example, ifin,, m, > states from the
bound diabat that contribute to the resonance all have even (b)
values ofmy, then the vibrational statgs, > of the dissocia-
tive diabat that contribute must be odd. This is easily under-
stood; the diabatic coupling‘b‘c, being linear iny, is anodd
function ofy. Therefore, by symmetry, the matrix elements of
the off-diagonal block of the complex scaled Hamiltonian
< n, my| Vil B, iy > are nonvanishing only ifm, > and|iy > Figure 5. Surface plots of the amplitude-squared of the diabatic
are of opposite parity. resonance state wave functions for resonance number 1%{#&) (b)

The states of the diabatic potential surfavgbandV,® that w2,
are the dominant contributors to the diabatic resonance state
wave functions are strikingly apparent in many of the surface number 7, the nodal pattern of the2, 0 > state appears in
plots of the amplitude-squared (51’9 and 1P9 In Figures |‘P | and that of theé, = 1 andiy = 3 states appear ||hI’9| the
5-9, we show surface plots for the dlabatlc resonance wave latter has a small magnitude since most of the population of
function components for selected resonances; the resonancehis resonance resides on the bound diabatic surface. For

wave functions shown have been normalized according to eqresonance number 183, 0 > domlnates|‘I’9| andliy=1 >
11. For resonance number|]I,Ib| is remarkably similar to the dommatesﬂpﬂ.
Inc = 0, m, = 0 > wave function and|1PZ| shows nodal As more and more states d¢ and V¢ make significant

structure in they-direction of theiy = 1 state. For resonance contributions to the diabatic resonance state wave function, the
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(a)

(b)

Figure 6. Surface plots of the amplitude-squared of the diabatic Figure 8. Surface plots of the amplitude-squared of the diabatic
resonance state wave functions for resonance number T¥{#) (b) resonance state wave functions for resonance number 13Wf
RHE (b) Wl

Figure 7. Surface plots of the amplitude-squared of the diabatic Figure 9. Surface plots of the amplitude-squared of the diabatic
resonance state wave functions for resonance number 13 resonance state wave functions for resonance number 17%{#

(b) WP (b) [WPP2.
surface plots become more and more complicated. For resonance
number 12, it is hard to interpret the nodal structure in either
component of the diabatic resonance wave function. For
resonance number 17, although the nodal structut8,of >

is apparent ifW}), it is difficult to ascertain whichi, > states IF% ~ 1w’ (23b)
are contributing tdpg. However, the judicious choice of basis ! ¢

functions as described in section Il allows us to immediately whereas beyond the conical intersection, (ixe>; xci)

(and quantitatively) determine which vibrational states of both

IF)| ~ Wy (23a)

and

Vud and Ve contribute and we are not faced with the daunting IF) ~ WY (23c)
task of trying to abstract this type of information from surface
plots of the resonance wave functions. and
C. Resonance State Wave Functions: Adiabatic Proper-
ties. Using the transformation described in section IL.E, we |F3| ~ |1p§| (23d)

computed adiabatic resonance state wave functions from the

diabatic wave functions. In general, the adiabatic wave functions A number of the resonance states display significant amplitudes
closely resemble the diabatic wave functions and therefore wefor F{, indicating that there is significant population residing
do not show adiabatic wave function plots. At pointsy( prior on the upper adiabavfjd. Since the upper adiabatic PES is
to the conical intersection, (i.ex, < Xc|) cone- or funnel-shaped and itself can support bound vibrational
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TABLE 6: Populations of the Resonance State on the
Dissociative Diabat and Contributions from Individual
Vibrational States |iy > (summed over continuum states); for
Example, Five Vibrational States|iy > of the Dissociative
Diabat (with numbers i Given in Parentheses) Contribute
Significantly to the 18" Resonance

res.no. PJ (%) (y)  PY (%)

1 1.9 (1) 1.9

2 101 (0) 69 (2 3.2

3 177 (1) 169 (3) 0.7

4 104 (1) 67 (3) 3.7

5 446 (0) 129 (2) 299 (4 18

6 125  (0) 41 (2 42 (4 41

7 120 (1) 80 (3 3.7

8 457 (1) 122 (3) 312 (5) 23

9 188 (1) 109 (3) 39 (5) 41

10 51.4  (0) 137 (2 42 (4 314
6 20

11 327 (0 87 (2 144 (4 79
6 17

12 641 (0) 112 (2 432 (4 6.0
6) 36

13 209 (1) 191 (3) 08 (5) 1.0

14 620 (1) 235 (3) 56 (5) 31.2
7 15

15 374 (1) 126 (3 148 (5) 6.7
(7 33

16 799 (0) 242 (2) 352 (4 22
6) 171 (8) 0.8

17 422 (©0) 130 (2 198 (4 18
6 7.3

18 399 (0) 08 (2 165 (4 115
6) 68 (8 4.3

states, resonances with dominaﬁﬁ| may display behavior
characteristic of “cone states”.

For resonance number 1, the majority of the amplitude of
the resonance state wave function is confined to a region of
coordinate space prior to the conical intersection; it is not
surprising thatF,”| and|1Pg| are extremely similar. In addition,
as evidenced by the small magnitude Fﬁ there is little

Friedman et al.

TABLE 7: Populations of the Resonance State on the Upper

Adiabatic Surface V3 and the Eigenstatey; of V3! of
Maximum Contribution

resonance |[Energy(yx) — Edl contribution
no.a PY%) Kk (cmY) from y (%)
1 2 2 6974 1
2 5 1 2951 2
3 12 5 7578 5
4 5 2 3473 2
5 27 1 248 7
6 13 1 712 9
7 28 2 318 13
8 28 2 298 7
9 21 2 298 16
10 28 3 187 7
11 30 4 505 13
12 40 4 9 16
13 26 5 786 14
14 15 19 919 3
15 21 6 733 10
16 33 26 10221 8
17 26 8 1003 6
18 20 8 371 7

ergies. Similarly, for computing overlaps with the Group 3
adiabatic resonance state wave functions, wefused.35 rads

for determiningxﬁ; the latter have real parts of their eigenen-
ergies converged to within 7%. (The imaginary parts of the
eigenenergies are nonzero due to the use of complex scaling
but they are in general several orders of magnitude smaller than
the real parts.) The overlaps betweghand i needed in eq

21 are computed using a two-dimensional Simpson’s rule
integrator. Results foPﬁd are presented in Table 7; as the
eigenfunctionsxﬁ are more convergence-sensitive than their
corresponding eigenenergies, it is difficult to provide uncertain-
ties in these results. (We anticipate uncertaintie®3hto be
within a couple percent for Groups 1 and 2 but to be larger for
Group 3.) The broad resonances of Group 3 tend to have
relatively larger percent contributions from the upper adiabatic
surface but numerous Group 1 and 2 resonances also have

pOpU|a'[I0n of the adiabatic resonance state on the upper ad'abat|%|gn|f|cant contributions. However, for none of the resonances

PES; this is also to be expected since the= 1 resonance
position falls below the conical intersection energy. For the other
resonance states depicted in Figures 6 to 9, @(Les,7, 12, 13,
17), based on the magnitude Ef,, we expect a significant
contribution to the adiabatic resonance state wave function from
the bound states of thvf}d adiabatic PES, with the largest

12.
The contributions from the states of the adiabatic PES to the

is Pf}d greater than 40% and, therefore, for none of the
resonances iﬂ:§| dominant.

We also report in Table 7 which eigenstajeprovides the
largest contribution tcPf}d. For all 18 resonances analyzed, the
percent contribution from a specific adiabatic eigenstate to the
resonance state never exceeds 20%; therefore, we can conclude

contribution being made to the broad Group 3 resonance NUMbelh 4t none of the resonances emanate from a specific adiabatic

bound (“cone”) state. Of all 18 resonances, number 12 has the
largest contribution from bound states of the upper adiabatic

adiabatic resonance state wave function can be quantified usingpgs:; this is consistent with the close energy match (about 9
eq 21. First, the bound states supported by the (uncoupled)cm-1) betweenE;, and theys eigenenergy. In fact, as seen in
adiabatic PES/” are computed without complex scaling (.., Table 7, one of the largest contributions from any one particular
zero rotation angle) and the bound state energies are found toy, eigenstate is the 16% contribution to the adiabatic wave
be converged to within 0.2% for various particle-in-a-box basis function of resonance number 12 frgmm However, for 10 of

set parameters. The first 40 eigenstates are considered and, sinage 18 resonances, the largest contribution comes from an
their maximum eigenenergy is 0.132 au, these 40 states areeigenstatey, whose bound state energyrst the closest one
expected to be sufficient for convergence of the sum needed into the resonance position. Furthermore, as seen in Table 7, for

eq 21. (We also checked for convergence by considering only
the first 32 of these eigenstates for the summation in eq 21.)

all resonancest except number 12 the eigenstate which
makes the largest contribution IRjd has an energy at least 180

With the exception of resonance number 12, there are no ClOSECm*l away from the resonance positi@f.

matches (within 5< 10~* au or about 100 crt) between the
bound state eigenenergies and the resonance positions.

In computing the contributions from thﬁd bound states to
resonances of Groups 1 and 2, we calcuﬁtesinge =0.20
rads. Thexﬁ have eigenenergies whose real parts are con-
verged to within 0.5% when compared to the= O eigenen-

The lower dissociative adiabatic PE:$" can itself support
resonance states and we have computed resonance energies
using numerical parameters similar to those used for the 18
resonance states in Table 3. There is no apparent correlation
between the resonance energie&/dtind those of/%; two of

the resonance positiorts, of Table 4 are within 100 cri of
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Figure 10. Variation of the resonance energies (including widths) with the nonadiabatic coupling strength. Shown are trajectories in the complex
energy plane connecting the resonances for growing values of this coupling. The blackened circles (for odd-numbered resonances) and open circles

(for even-numbered resonances) locate the computed resonance energies on the trajectories at values of the coupling strength of 0, 0.0005, 0.001,
0.0025, 0.005, 0.0075, and 0.01.

two of the positions of\/;"‘d resonances but in both cases, the trajectory. Each of the trajectories starflat 0, i.e., a diabatic
widths of the Table 4 resonance states are a factor of 5 largervibrational energy level of Table 2. The doubly degenerate
than the widths of the resonances on the uncoupled lower vibrational levels each split into two trajectories.
adiabatic PES. The lowest energy resonance/f(?fhas an The first resonance changes little in energy and in particular
energy of 0.01092 x 1074; its resonance position is below in lifetime relative to changes for all other resonances. It appears
the conical intersection ener@y, but its width is much broader ~ that the diabatic approximation is a good zero order description
than resonance number 1 of Table 4. Therefore, the narrownesdn this case. The trajectory of resonance number 2 moves
of resonance number 1 camot be attributed to the tunneling ~ smoothly into the complex energy plane until the resonance
width on the lower adiabatic surface; the discussion presentedposition (0.015 02) is finally just slightly below the energy of
in section IV.C gives an explanation for the narrowness of this the conical intersection; in fact, the resonance for the largest
resonance. even overlaps the conical intersection if we consider its
On the basis of the correspondence between the positions offésonance width of 8.8& 10~“. For all the other resonances,
the resonances in Table 4 and the vibrational states of the boundhe trajectories look more complicated. Up to abbet 0.0025,
diabatic surface (see Figure 1 and discussion in section IV the diabatic vibrational level is a reasonably good approximation
below) and the lack of correspondence between the former andfor the resonance position. However, at largethere are strong
the states of the (uncouplediliabatic potential surfaces, it  interactions between the modes; a single diabatic level (and, at
appears that the diabatic representation gives a better zerotHeast forA = 0.005, a single adiabatic level) does not give a
order picture than does the adiabatic representation of thegood zero order description for the resonance position. An
resonances arising from the conically intersecting electronic analysis of the trajectories as a functioniaé not obvious and
states. This zeroth order picture will prove useful in section IV Will be considered in future work. Increasingresults in a
where we show that numerous characteristics of the resonancelecrease in the resonance positin and, in general, in a
states can be reproduced in at least a semiquantitative way usinglecrease in the resonance lifetime but there are numerous
an effective Hamiltonian and a small subset of states of the exceptions to the latter (see for example the third resonance).
diabatic potential surfaces. Many of the trajectories have a nonmonotonic behavior and the
D. Effect of Nonadiabatic Coupling Strength on Reso- variation of the resonance energies witltan be very abrupt
nances.The results presented here thus far as well as thoseand irregular for coupling strengths not close to zero. At large
analyzed below in section IV are for a given set of potential 4, the resonances might be thought of as resulting from a strong
parameters, in particular, a single value for the nonadiabatic Mixing of the resonances at smallerThe irregular behavior
coupling strengthl. We can also study the effects of the Of the resonance energies (including lifetimes) as a function of
variation of4 on the resonance energies; the results of such athe nonadiabatic coupling strength is a fingerprint of the conical
study are shown in Figure 10 for which we consider six different Intersection.
values of4 (0.0005, 0.001, 0.0025, 0.005, 0.0075, and 0.01).
We have drawn “trajectories” connecting the resonance energie
according to their numbering using filled circles (oddx) and A. Symmetry Considerations. We have used symmetry
open circles (evem) to identify computed values along the arguments above in section Ill.B to explain why vibrational

JV. Analysis of Resonance States
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stategm, > and|iy > associated witi,? andV, respectively, equation, we obtain
that contribute to a resonance state must be of opposite parity.
Furthermore, we can easily show that if two vibrational states Hr ¥, = Eyy, (25)
Ind, my > and|n,, m, > of the bound diabatic surface contribute
to a resonance state thgn, > and|m, > must be of the same
parity. In fact, the resonances studied here can be classified b
their vibronic symmetry; two symmetry classes are found and ©
each class can be considered separately.

The Hamiltonian matrid (x, y) of eq 4 is constructed within
a basis of two diabatic electronic statds and ®., whose
nuclear Hamiltonians atd, andHc, respectively. The electronic
states are of differing electronic symmetries; without loss of
generality, we letb, belong to the irreducible representatian
and ®. belong to the irreducible representatiBn Since the
coupling\/ﬂc betweend, and ®. only depends on the mode
it follows that (asymmetric mods)transforms a8; (symmetric
mode) x transforms asA. (For a thorough discussion of E= <1, |H |y, > +
symmetry considerations, see ref 2.) -1

The statesn,, m, > of Hp and|E;, iy > of H havevibrational < Wl VEC(E ~H+107) Vidy, > =B, + Fy(B) (27)
symmetriesA or B according to whether the number of quanta
in the y-vibrational mode is even or odd, respectively; the
symmetries of the bound vibrational states are indicated in
Figure 1. Therefore, the resonances themselves can be classifie
according to theibronic symmetriesA andB. For exampleA
resonances can only have contributions frdwibrational states
of electronic stat&;, and Bvibrational states of electronic state

where Hg is the effective, energy-dependent Hamiltonian
ydescrlblng the resonances in the vibrationally bound subspace

Hg = Hy + Voo (E — Ho +i01) Ve, (26)

Solutions of eq 25 give the resonancés;is the complex
resonance energy.

SinceHr is an effective Hamiltonian in the bound space of
Hp, ¥p is a square-integrable function. In the expressions that
follow, we assumepy, is normalized, i.e.< yplyp > = 1. The
complex resonance ener@yis given as< yp| Hrlyp, > or

Ep is a real number; sincgy, is a component of the resonance
state wave function and is an eigenfunctioot of H, but of
Hr, Ep differs fromEpnq 0f eq 3 and Table Zy(E) is a complex
unction of energyE; it may be decomposed into its real and
imaginary parts as

i
®.. The resonances are thus divided into two symmetry groups Fo(E) = Ay(E) — 5 T'(E) (28)
and each group can be considered separately.
From above, we immediately conclude thiad, > from Hp where Ay(E) and I'n(E) are called shift and width functions,

and |iy > from Hc must be of opposite parity; this result has respectively.
been observed in section Ill. B. In addition, we see that all The termF,(E) of eq 27 can be further expressed by using
vibrational states oHy that contribute to a given resonanee the completeness relation of the set of eigenfunctionslof
must be of the same vibrational symmetry; this is precisely what whose eigenvalues we dendgg In section Il.A, these eigen-
was also observed in section Ill. B. In Table 5, as well as in functions were denotef;, iy >; here we simply call therjc>
Figure 1, we have labeled the resonances by their symmetry.
We see that the positions 8fandB symmetry resonances are
well separated energetically for the present set of potential Fo(B) = f
parameters (of Table 1). The first resonance i&\gymmetry,
the second oB, then a pair oA resonances followed by a pair
of B resonances; from then on, resonances appear in triples of f ’/’b| c| c~> |
alternating symmetry. It is clear that symmetry is decisive for
a detailed understanding of the resonance results. .

Closer inspection of Figure 1 reveals that whereas four m f'
vibrational state$n,, m, > make important contributions to the
set of highest-energy resonancesfoymmetry, only three
resonances from the conical intersection study are listed. In the
subsection below, we not only address this issue but we
quantitatively interpret the results of Table 5 by invoking a dc= pg dE, (30)
simple model using an effective energy-dependent Hamiltonian. ¢

B. An Effective, Energy-Dependent Hamiltonian. We so that
reconsider the Hamiltonian of eq 4. We are interested in solving
the matrix equation |< pVEJc >|?

y Fb(E)=PprECdEC—
Ho Vic|(v ¥ °
(V‘Ec . )(w: )= E(wi ) &4 i 1< pyVedo(E, = B) > p. (31)

Equating the imaginary parts of eqs 28 and 31, we obtain

|< pyVade >
E—E.+i0"

< pplVejc > 2 6(E — E) dc (29)

whereP stands for the principal part of the integral. The latter
expression can be simplified by introducing the dengityof
continuum stategc > defined via

wherey, andy. are the (nhoncomplex scaled) components of

the nuclear wave function on the two diabatic surfaces. The I, (E) = 27|< ’/)b|Vgc|C(Ec =E) >|2 Pe (32)
states ofH. provide the continuum for the bound vibrational

states ofHp which become resonances through the coupling where the continuum state > and its density of states are

\/"gc. evaluated at the resonance enekgyEquation (32) is reminis-
Upon expanding eq 24 into two equations, solvingifrin cent of Fermi’'s golden rule but here the width function is
the second equation in terms ¢f, while addingiO™ to the energy-dependent ang, is not a bound state eigenfunction of

resolvent, and substituting the expression+grinto the first Hp.
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The above discussion is general and provides a tool for which are related to the expansion functiond=fE) alongx
analyzing resonances induced by conical intersections. In thealone. Each of thélg matrix elements in eq 35 contains two

following, we now show in the context of the present model
how analysis of a simple matrix representatiorHgfhelps us

elements of which depend solely on the moaeexcept that
the energy is shifted by themode

interpret the resonance states. First, we denote Hamiltonians

for harmonic oscillators irx andy asHy andHy, respectively,
and the Hamiltonian for the dissociative exponential function
in X asHy

_ do o 1 1,
H =T + V, (x, y=0)=— zwx§ + wa X (33a)
H, = T0) + Vdx = 0,y) = — Lo, & 41 33b
y (y)+ b(X_ 1y)__§wy8y2+§wy ( )

Hy=T(X) + V(x y=0)=

_L, B e 4 A (330)
2790

Using the above definitions and eq 2, we can write the effective

Hamiltonian as

He=H, + Hy—l—/ﬁ/(E— H, — H, + 0Nty (34)

Equation 34 sheds considerable light on the conclusion drawn
at the end of section I1I.C that the diabatic representation gives
a better zeroth order picture in this study of the resonances thal

does the adiabatic representation. SiHge- Hy equalsHy, the

nuclear Hamiltonian for the bound diabatic state acts as a zeroth

order Hamiltonian foHg and the term in eq 34 proportional to

A2 acts as a perturbation Hamiltonian. Therefore, the smaller is
the magnitude of the perturbation, the closer is the cor-
respondence between the positions of the resonances and th%

vibrational energy levels of the diabatic potentaf: we also

expect that smaller magnitudes of the perturbation Hamiltonian
give rise to narrower (longer-lived) resonances since the Pe;
imaginary part of the complex resonance energy arises from

this 22 term.

Hr gives rise to a secular matrix in the harmonic basislpf
andHy which exhibits a relatively simple structure. The matrix
elements oHg within the basign,, m, > take the form

<n, m/[Hgin, m, > = (E, + Errg)‘srrw\/énxnx’ +

2
%[(m, + 1mmy + (M + 1)y + 2)0 0 12] X

<I(E — Eqsy — H, +107) Fn, > +
;{2
2t MOy VMUY = L0y m,-2] >
<1/|(E — Eyy — H,+i07) "n, > (35)

whereE,, andEn, are given in eq 3. We see immediately that
the only nonvanishing matrix elements are those wigh= m,
orm, =m, & 2, in accordance with the conclusion drawn above
that all vibrational states oMy that contribute to a given
resonance must be of the same vibrational symmetry.

In analogy toF,(E) defined above for the general Hamiltonian
Hrin eq 27, we introduce

Fon(E) = < n/|(E— H+i07) 7, > (36)

<n, my[Hgln, m, > = (B, + E;)0mmOnn +

2
20, + Dy + 0+ D, F 200012l %
an’nx(E - Erq,+1) +

2
2 M+ VI, ~ Dy o~ En ) (37)

Equation 37 is critical to using the effective Hamiltonidg to
understand the structure of the resonances described in our
system of conically intersecting states. The first term on the
right-hand side of eq 37 gives rise to a diagonal matrix
composed of the vibrational energy levels of the bound diabatic
PES. The real parts of the second and third terms are responsible
for the energy shifts of the resonance positions from the bound
vibrational levels. The imaginary parts Bfn(E — Em+1) are
responsible for the widths or lifetimes of the resonance states.
We also reiterate that thie,, functions are not evaluated at
the resonance ener@but rather aE — En.1; this is important
because, as we shall show below, when the argumeRt qf

has a negative real energy, then the imaginary paf,ef will

NVanish. A given resonance may emanate primarily frasimgle

Ink, m, > state or frommultiple vibrational states; in the latter
case, only vibrational states with even (odd) valuesiptan
couple to each other and diagonalization of Hhe matrix is
necessary to find resonance energies.

TheFnn(E) terms are relatively straightforward to determine.
aking advantage of the completeness relation of the set of
eigenfunctiongE; > of H,, whose density of states is denoted

%, we obtain

< nX'|EJ. > < Ej|nx> «
E-E pe 0§ —

7i <0,/ [EE) > < EE)In, > ok (38)

an'nx(E) =P f

where|Ej(E) > is a continuum eigenfunction ¢f, at energyE
with density of stategg.

To describe a resonance correctly, we need to decide how
many |ny, m, > states are needed for the secular determinant
for Hr. We use the results in Table 5 as a guide; for examples,
for the lowest energy resonancesfodndB symmetry, theHg
matrix is of dimension one but for the highest energy resonances
of both symmetries considered in Table 5, thg matrix is of
dimension three. The effective Hamiltonidfr is energy-
dependent, but in our simple model we will diagonalizelthe
matrix at a single energy for each cluster of resonances shown
in Table 5. When only ongn,, m, > state contributes to a
resonance, we simply talte= EyngwhereEpngis the vibrational
energy given by eq 3. However, when two or more states
contribute, we tak& to be the average vibrational energy; for
example, for the highest enerdyresonances of Table 5, we
setE = 0.045 (the average of the 0.042, 0.045, and 0.048 bound
state energies) in evaluatifg,n(E — Em1).

To evaluate the terms in eq 38, we need to compute overlaps
between vibrational staté¢s, > and continuum statg&; > as
well as the density of continuum states. First, we obtain a
discrete set of (real) continuum states and continuum energies
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by diagonalizingHy of eq 33c in a finite-size box using particle-
in-a-box basis functions. (The continuum wave functions are
the ng functions of section II.C but witl® = 0.) A set of 17
continuum states with an energyup to 0.08 au is considered.
(We also considered a set of 15 continuum states obtained from
the use of a different particle-in-a-box basis. Similar results for
diagonalization oHg are obtained.) Second, we compute the
density of states at each discrete enefgyia*

(39)

To evaluate the imaginary part &, (E) in eq 38, we need
the density of continuum states at a specified energy, which is
not in general one of the discretized energies. This density is
obtained at an energlfj < E < Ej4+1 using a simple linear
interpolation betweemE and pE
Next, we compute the (real) harmonlc oscillator statgs>
by diagonalizingHy of eq 33a; these bound state wave functions
are theX{_ functions of section 1I.C and are obtained using
the same partlcle in-a-box basis functlonsxés The overlap
<nd § > = < X, OX5° > is then computed numerically
from the products of the expansion coefficients in the particle-
in-a-box basis. The FranelCondon factors fon, = 0 and 1
are shown in Figure 11(a) and those figr= 2 and 3 in Figure
11b; the plots exhibit nodal structure analogous to |the>
wave functions themselves. For the imaginary paff,(E),
we again use a simple linear interpolation, this time, Epr<
E < E+1, between thg < nyE > |2 Franck-Condon factor
and the| < nyEj+1 > |? Franck-Condon factor; then we use
the square root of the resulting FrareRondon factor for the
off-diagonal elements of . (E).
In eq 38 above, the real part Bf,(E) involves the principal
part of an integral which is evaluated by replacing the integral
by a sum over the discrete continuum states and removing the
density of states factor. (A similar type of procedure for the
evaluation of an integral over continuum states is performed in
ref 42.) In no cases afe andE; very close to one another; the
real part ofFnn, reduces to

an’ nx( E) = z

J

< nx'|Ej > < Ej|nx >

= (40)

For each cluster of resonances, diagonalization oHghmatrix

at a single energ¥ yields (approximate) resonance eigenpa-
rameters; from the amplitude-squared of the complex eigen-
vectors, we obtain the percent contributions to the resonance
state from the individualn,, m, > bound states. Since the
secularHgr matrix is restricted to the subspace of the bound
diabaticHy, these percent contributions should be compared with
the relative percent contrlbutloﬁg ™ of eq 22 from the full
(complex scaling) conical intersection study.

The crudeness of this model of analysis of the effective
Hamiltonian Hg should be apparent. Nonetheless, for lower
energy resonances, it works remarkably well. Since the effective
Hamiltonian model begins to deteriorate for higher energy
resonances, we only include in Table 5 results from the first 12
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Figure 11. Franck-Condon factors between vibrational staig> of
the bound diaba¥,%(x, y = 0) and the continuum stat&; > of the
dissociative diabaV(x, y = 0) at discrete continuum energies. A
vertical line marks the conical intersection eneigy. (a) solid line
(and circles) fomy = 0; dotted line (and squares) fog = 1; (b) sol|d
line (and diamonds) fon, = 2; dotted line (and triangles) fay =

0.08

C. Analysis of the Effective Hamiltonian: Results.Table
5 presents results from diagonalization of tHg matrix in a
basis of a limited number ¢fi, m, > states. We briefly describe
key results. An underlying theme for all the resonances is that
they can be characterized by a small number of vibrational states
of the bound diabatic surface coupling to each other via the
continuum of the dissociative diabatic surface.

1. Singlets of A and B SymmetrieBhe lowest energy
resonance stems from th@ 0 > vibrational level ofH, and is
of A symmetry. Since the next lowest vibrational statefof
symmetry (thgl, 0> state) is far away energetically, only the
element< 0, OHg 0, 0 > has been considered,; it is evaluated
at the|0, 0> vibrational energyE,ng = 0.012 au. The real part
of this matrix element is in excellent agreement vidth.1. Since,

of the 18 resonances. For the higher energy resonances, it isn eq 37,E — Em+1 < 0 and no continuum staté¢f; > exist at

likely that contributions from continuum states above 0.08 au
would be necessary for more quantitative agreement. In light
of the approximate nature of interpolated densities and Franck
Condon factors as well as the choice of a single value of energy
for the energy-dependehtr, we did not pursue the inclusion

of higher energy continuum states.

negative energies, the widihof the resonance is predicted to
be zero. This explains why the lowest energy resonance of Table
4 and Figure 2 is very long-lived, i.e., very narrow. Numerically,
the finite (but very small) width oft = 1 comes from the weak
coupling to higher vibrational levels dfl,. We also reiterate
(see section III.C) that in the adiabatic picture it might be
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tempting to associate this resonance width with regular tunneling sought converged resonances with< 0.07; it is possible that
through the lower adiabatic PES; however, the resonancethe position of the fourth resonance of the quartet exceeds this
lifetime is much longer(by about 5 orders of magnitude) than limit.

the tunneling lifetime.

The lowest energy resonanceB§ymmetry results from the V. Concluding Remarks

|0, 1 > vibrational level ofH,. We only consider the element We have presented an analysis of the resonance states that
<0, IHRI0, 1 > and its evaluation yields a resonance energy "esult from a conical intersection between a bound and a
in good agreement with that of = 2. dissociative electronic state. Because this is the first such study

of its kind to provide a detailed characterization of resonance

energies (including lifetimes) and wave functions, we have

focused on a two-coordinate system. The system under study
f models the simplest type of conical intersection, that which
arises from two nondegenerate electronic states of different
symmetries coupled via a nontotally symmetric normal-mode
i:oordinate. This type of study is important for understanding
he role of conical intersections in nonadiabatic effects, such
as those accompanying the photodissociation of polyatomic
molecules.

The complex resonance energies and eigenfunctions are
computed using the complex coordinate method and a diabatic
potential energy representation. The resonances arise from the
vibrational states of the bound diabatic PES being predissociated
via the nonadiabatic coupling to the dissociative diabatic PES.
In fact, for calculational purposes, the bound and continuum
states of the (uncoupled) diabatic potential energy surfaces are
used as basis set functions for the resonance state wave function.
This choice for the basis sets makes it very easy to compute
. . the populations of the resonances on the diabatic surfaces as
observations _made above concermg the doublatsymmetry well as the percent contributions to the resonance eigenfunctions
are alsp applicable to the double_t Bsymmetry. from individual vibrational levels of the diabatic surfaces.

3. Triplets of A and B SymmetrigBesonance numbers 7, 8, A total of 18 resonances has been critically analyzed; they
and 9 ofA symmetry stem primarily from thg, 0>, | 1, 2> are equally divided into 3 groups on the basis of their resonance
and |0, 4 > vibrational levels ofHy and, as the next lowest  yigth. When the resonances are placed in increasing order of
vibrational level (thef3, 0 > level) is energetically far away,  theijr resonance positions (i.e., the real parts of their complex
we tookHg to be of dimension 3 evaluated at the average bound esonance energies), we see that their widths fluctuate ir-
state energf = 0.045. We see from Table 5 that there is good  reqylarly; there is no correspondence between the positions and
agreement for two of the three resonance positions and thejifetimes of the resonances. This is one of the dramatic effects
percent contributions to the resonance states fronrghen, > of the presence of the conical intersection.
levels are consistent. Diagonalization log yiglds one broad_ We have found that, in general, the narrower the resonance,
and two narrower resonances as found in the full conical {he more it is localized on the bound diabatic PES. The very
intersection study but the two narrower resonances have W'dthsbroad, high energy resonances have over 50% population on
from Hr diagonalization that are factors of 3 to 5 too small.  he gissociative diabatic PES. Upon calculating the contributions

Resonance numbers 10, 11, and 12Bosymmetry have  from individual vibrational levels of the bound diabatic PES,
contributions mainly from the2, 1 >, |1, 3 > and |0, 5 > we observe, for resonances positioned close to each other, a
vibrational states. As above for thesymmetry triplet, there is  “switching” of the vibrational state making the dominant
relatively good agreement for two of the three resonance contribution to the resonance. The states of the diabatic surfaces
positions, and we successfully predict whiek, m, > vibra- that are the dominant contributors are very apparent in many
tional state is the dominant contributor to a given resonance. of the surface plots of the resonance eigenfunctions. However,
However, diagonalization oHg yields one broad and two  as more and more diabatic surface vibrational states make
narrower resonances, inconsistent with the (observed) two broadsignificant contributions, the surface plots become more and
and one narrow resonances; the approximate nature diighe  more complicated.
analysis is becoming apparent at higher energies. The vibrational states of the bound diabat contributing to a

4. “Quartets” of A and B SymmetrieShe highest energy  given resonance state must have either even or odd values of
clusters of resonances Afsymmetry and oB symmetry appear  the number of quanta in the unsymmetric normal mode.
in Figure 1 as triplets although four vibrational staes m, > Furthermore, the states of the dissociative diabat that contribute
in general make contributions to the resonance states (see fotto a given resonance must have opposite parity to the vibrational
examples resonances 14 and 18 of Figure 4), and therefore, westates of the bound diabat. These observations are easily
would expect to observe two quartets of resonances in theexplained in terms of the vibronic symmetries of the resonances
complex scaling conical intersection study. As mentioned in themselves and we are able to divide the resonances into two
section IIl.A, we did find an apparent #9esonance at 6.% symmetry classificationgy andB. The positions of thé\ and
1072 — 2.6 x 1073i that was not very well-converged even with B symmetry resonances are well separated energetically. The
a variety of complex scaling rotation angles. It is likely that first resonance is oA symmetry, followed by one d8, then a
this very broad resonance is the fourth “missing” member of pair of A followed by a pair ofB; thereafter, resonances appear
the quartet ofA symmetry. As for the “missing” member of in triples of alternating symmetry. It is clear that symmetry is
the B symmetry quartet, it should be kept in mind that we only critical for a detailed understanding of the resonances.

2. Doublets of A and B Symmetridgesonance numbers 3
and 4 of A symmetry arise primarily from th¢l, 0 > and
|0, 2 > vibrational levels ofH,, which are close together
energetically. Since all other levels with an even number o
y-quanta are far away energetically, we may restrict ourselves
to anHg matrix of dimension 2; we take enerdgy= 0.0285,
the average of the two bound state energies. Table 5 shows tha
the results are in reasonable agreement. We successfull
reproduce the “switching” of the dominant contributor described
in section Ill. B. We also are able to explain the order of
magnitude difference in the widths of the two resonances: that
is, why one resonance is relatively short-lived and its partner
relatively long-lived. This is the result of the two vibrational
levels coupling to each other via the continuum; it is not due to
one level coupling strongly to the continuum and the other level
coupling weakly.

Resonance numbers 5 and 6B§ymmetry emanate mainly
from the |1, 1 > and |0, 3 > vibrational levels ofH, and we
diagonalized the 2x 2 Hg matrix at E = 0.0375 au. The
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Although the resonance wave functions have been computedintersection between a bound and a dissociative electronic state.
using the diabatic representation, we are also able to discussThe potential energy matrix used in the present study is
the resonances in connection with adiabatic PES; this is doneapplicable to realistic systems and can be generalized to more
by projecting the computed resonance eigenfunctions in the than two dimensions.
diabatic representation on the adiabatic electronic states. We
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