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We provide here a quantum mechanical investigation of the resonance states found in a study of conically
intersecting electronic surfaces. The dynamical system under investigation consists of a bound electronic
state having a conical intersection with a dissociative electronic state. Quantum mechanical resonances arise
from the predissociation of vibrational states of the bound potential surface via the nonadiabatic coupling to
the dissociative potential surface. Resonance energies and wave functions are computed using the complex
coordinate method, and the resonances are characterized in terms of contributions from states of the uncoupled
potential surfaces. Key results found in this study include the following: (i) there is no correlation between
resonance positions and widths in that when the resonances are ordered by their positions, the corresponding
widths (and lifetimes) fluctuate irregularly; (ii) the resonance energetically below the conical intersection
cannot be identified as a tunneling resonance of the lowest adiabatic potential surface since its resonance
lifetime is orders of magnitude larger than the tunneling lifetime; (iii) the resonance states (even those whose
positions are energetically much higher than the conical intersection) are found to arise from a small number
of vibrational states of the bound diabat coupling to each other via the continuum of the dissociative diabat;
and (iv) none of the resonance states emanate from a bound state of the upper adiabatic cone-shaped potential
surface. We also briefly investigate the resonance energies as a function of the nonadiabatic coupling strength;
the irregular behavior of the resonance lifetimes with the coupling strength is a fingerprint of the conical
intersection. Furthermore, we have performed a symmetry analysis of the resonances and introduced an effective
Hamiltonian which, with the aid of a simple model, yields results in agreement with numerically exact results.

I. Introduction

The Born-Oppenheimer approximation1 is of fundamental
importance in the study of many dynamical processes. Within
this approximation, the electronic problem is first solved at fixed
nuclear geometries, yielding a potential energy surface (PES);
the motion of the nuclei on the PES is then treated. For many
dynamical systems, nuclear motion is confined to a single
potential surface, often the surface associated with the electronic
ground state of the system. However, “nonadiabatic” processes
for which nuclear motion “evolves” on or is influenced by
several coupled potential surfaces are in fact ubiquitous (see,
for examples, refs 2-6 and refs therein.)

Considerable research has been undertaken to understand
nonadiabatic effects in model one-dimensional systems in which
two adiabatic potential energy curves can undergo an avoided
crossing. Notable is the work of Nakamura and collaborators,7

who have made tremendous strides in extending the pioneering
work of Landau and Zener.8 The role of quasibound states, i.e.
quantum mechanical resonances, in model one-dimensional
electronically nonadiabatic reactions has also been investigated.9

In systems with only one internal degree of freedom, Born-
Oppenheimer (adiabatic) potential energy surfaces of the same
spatial symmetry cannot intersect. However, in dynamical
systems possessingN internal degrees of freedom, it is possible
that adiabatic PES intersect along a generalized line of dimen-
sionN - 2.2-6 Thus, two-dimensional potential surfaces, which
can intersect at a point, present the lowest dimensionality
necessary for a so-called conical intersection.

The simplest system that is a generalization of the one-
dimensional, two-state Landau-Zener model and that involves
a conical intersection is the motion of a point-mass particle
across a pair of coupled two-dimensional PES with particle
motion constrained to a plane generating the hyperbolic conical
section. Such a system displays metastable states (resonances)
that are supported by a conical potential well that is coupled to
a conical peak; a semiclassical analysis of the resonance cone
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states has resulted in explicit analytical expressions for resonance
positions and widths.10

The effects of conical intersections betweenboundelectronic
states have undergone numerous theoretical investigations.2,11,12

The studies range from investigations on small molecules such
as NO2,12 for which the ground state conically intersects an
excited state resulting in a very complex experimental absorption
spectrum,13 to larger systems such as pyrazine where the effect
of all 24 modes have been computed via wave packet propaga-
tion.14 Since resonance states, i.e. decaying states, are the subject
of the present work, we would like to mention for completeness
that conical intersections can have a dramatic impact on the
radiative lifetimes of vibronic states.15

Conical intersections involvingdissociatiVe or continuum
electronic states are also critically important, for example in
the nonadiabatic effects accompanying the photodissociation of
polyatomic molecules.2-6 Numerous experimental and theoreti-
cal studies have been undertaken that provide strong evidence
for the critical role of nonadiabaticity in photodissociation
dynamics, including studies of ammonia and its methyl-
substituted derivatives;16 acetyl, bromoacetyl and bromopro-
pionyl chloride;17 nitric oxide;18 nitrous oxide;19 dinitrogen
tetraoxide;20 monohalogen and multihalogen alkyl halides;21 tert-
butyl nitrite;22 metal carbonyls;23 H2O and its deuterated
analogues;24 OClO;25 ICN;26 HCO;27 OH-H2

28 and Ar-H2O29

van der Waals complexes; the CH2OH radical30 and NO dimer;31

HNCO;32 and O3.33

One important nonadiabatic mechanism for photodissociation
in polyatomics involves photoabsorption from the ground
electronic state to a bound electronically excited state which
conically intersects a dissociative excited state. Time-dependent
wave packet calculations have been utilized for CH2

34 and H2S35

using the ground and two excited potential surfaces to compute
photodissociation cross-sections and product branching ratios;
theoretical and experimental results for both molecular systems
are in good agreement. The computed cross-sections provide
strong evidence for the existence of resonances; the latter arise
from levels of the bound excited PES which are predissociated
via the nonadiabatic coupling to the dissociative PES. A time-
dependent wave packet study was also undertaken for the
photoionization of HCN36 in which the resultant HCN+ mo-
lecular ion dissociates due to a conical intersection between a
bound and repulsive electronic state; time-dependent populations
of diabatic and adiabatic electronic states were computed.

Although the effects of resonances were observed in the above
wave packet investigations, detailed analyses of the resonances
(e.g., calculations of positions, widths and wave functions of
resonance states) were not undertaken. To provide such an
analysis of the resonances resulting from a conical intersection
between a bound and dissociative PES, we present below a
quantum mechanical investigation of conically intersecting
electronic states, analyzing the resonances arising in such a
system using the complex coordinate method. Since at least two
degrees of freedom are required to have a conical intersection
and because this investigation of resonances arising from a
conical intersection is the first such study of its kind, we focus
on a two-coordinate system.

We would like to mention that the complex coordinate method
has been previously used37 in connection with a conical
intersection, in particular a linear Jahn-Teller system in which
two adiabatic surfaces occur one inside the other and are
connected by a point of conical intersection. In a bound linear
Jahn-Teller system the vibrational states in the upper adiabatic
potential surface (cone states) couple to those of the lower

surface. By appropriately using the complex coordinate method
the authors of ref 37 computed decay rates of the cone states
mediated by this coupling.

In section II, we provide the theoretical formalism for the
analysis of resonance states; results are presented in section III.
In section IV, we discuss the symmetry of the resonance states
which is decisive for a detailed description of the resonances.
Also in this section, a method of analysis is provided by the
introduction of an effective Hamiltonian; with the aid of this
Hamiltonian a simple model can be derived to help provide
valuable insight into understanding the resonance results. Section
V gives concluding remarks.

II. Resonance States: Complex Scaling Characterization

A. Electronic States and the Potential Matrix.The simplest
type of conical intersection arises from two nondegenerate
electronic states of different symmetries interacting through a
nontotally symmetric mode, whereas, in addition, a totally
symmetric mode regulates the separation in energy of the
interacting states.2 In accord with this form for the conical
intersection, we undertake here a reduced-dimensionality quantal
study of two conically intersecting diabatic electronic states
whose potential energy surfaces depend on two dimensionless
normal-mode coordinates,x (a symmetric coordinate) andy (an
asymmetric coordinate). One diabatic electronic state, denoted
Φb, is bound in both coordinates and is associated with the
potentialVb

d. The other diabatic electronic state, denotedΦc,
is bound iny and dissociative inx; it is associated with the
potentialVc

d. The electronic states are coupled via the potential
Vbc

d . The quantum dynamics is solved in the diabatic represen-
tation; however, in section III.C below, we will also use the
adiabatic potential energy surfaces to help interpret the resonance
results.

The diabatic potential energy matrix is therefore given by

The vibrational states ofVb
d are predissociated via the nona-

diabatic couplingVbc
d to the dissociativeVc

d resulting in the
appearance of resonance states. The diabatic potential matrix
gives rise to conically intersecting electronic states; if we
imagine that bothΦb andΦc representexcitedelectronic states,
then the dynamical system is a model for molecular photodis-
sociation in which photon absorption from a ground electronic
state results in predissociation from excited states undergoing
a conical intersection.

A potential energy matrix as in eq 1 is applicable to realistic
cases and can easily be generalized to more dimensions. In this
first study we consider here a simple form forVd given by

The couplingVbc
d is chosen for clarity and simplicity to be a

linear function of the coupling modey as in previous models
of electronic coupling.2,38 The potential parameters are given
in Table 1; we use atomic units unless otherwise indicated. The
parameters have been chosen by comparison to model systems

Vd(x, y) ) (Vb
d Vbc

d

Vbc
d Vc

d) (1)

Vb
d(x, y) ) 1

2
ωx x2 + 1

2
ωy y2 (2a)

Vc
d(x, y) ) ε e-â(x+δ) + 1

2
ωy y2 + ∆ (2b)

Vbc
d (y) ) λ y (2c)
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in the literature.36 The choice for the potential energy matrix
(1) provides us with a model simple enough that we can clearly
study the effects of conical intersections on resonances.

Cuts of the diabatic potentialsVb
d andVc

d aty ) 0 are shown
in Figure 1. For the potential parameters given, the conical
intersection occurs at the point (xCI ) 1.427,yCI ) 0) with an
energy ECI ) 0.01526 au. The bound surfaceVb

d supports
harmonic vibrational states which we denote|nx, my > and
although the vibrational energies are given simply by

we list the first 22 vibrational levels in Table 2 for future
reference. The energies of the vibrational states up to 0.07 au
are indicated in Figure 1. The dissociative surfaceVc

d “supports”
states|Ej, iy > where | Ej > is a continuum state in the
x-coordinate and|iy > is a harmonic vibrational state in the
y-coordinate.

B. Complex Scaled Hamiltonian.Within the basis of the
two diabatic electronic states, the Hamiltonian for nuclear
motion takes the form

whereHb is the nuclear Hamiltonian for the bound diabatic state
Φb andHc for the continuum diabatic stateΦc. The complex

scaled HamiltonianHθ is obtained39 by scaling the dissociative
coordinatex via x f x̃ where

The complex scaled square-integrable (diabatic) resonance wave
functions are associated with the eigenfunctions ofHθ

whereER andΓR are, respectively, the resonance position and
width for the resonance labeledR. The width is inversely related
to the lifetime of the resonance state. The complex scaled
Hamiltonian can be further written as

where

The diabatic resonance wave function is a column vector given
by

whereΨbR

θ is the component associated with the bound surface

Vb
d and ΨcR

θ is the component associated with the continuum
surfaceVc

d.
C. Computational Considerations: Basis Sets.We describe

details for the computation of resonance energies and wave
functions. The basis sets chosen for the solution of eq 6 are
particularly well-suited for determining the percent contributions
from individual vibrational levels of the (uncoupled) PESVb

d

andVc
d to the resonance state.

In the first step, we consider the bound coordinatey. A set
of particle-in-a-box basis set functions (centered aty ) 0) are
used to compute eigenfunctions for they-dependent part ofHb

[i.e., for T(y) + Vb
d(x ) 0, y)] and then for they-dependent

part ofHc [i.e., for T(y) + Vc
d(x ) 0, y)]. These (real harmonic

oscillator) eigenfunctions are denotedY1m(y) andY2i(y), respec-
tively; they correspond to the states|my > and|iy > respectively.
Values for the numerical parametersnbas(the number of basis-
set functions) andybox (the box size iny) must be specified.

In the second step, we consider the dissociative coordinatex
and choose values ofx0 and the rotation angleθ to specifyx̃ in
eq 5. We then use thenbas particle-in-a-box basis functions to
find the eigenfunctions for thex-dependent part of the complex

Figure 1. Bound diabaticVb
d and dissociative diabaticVc

d potentials
at y ) 0 as functions ofx. The energies of the vibrational levels (nx,
my) of Vb

d(x, y) are indicated by horizontal dotted lines; some of the
unperturbed levels are doubly degenerate. The positionsER of the
resonances are indicated by horizontal solid lines (Group 1), thicker
dashed lines (Group 2) and thickest long-dashed lines (Group 3). The
placement of the horizontal lines representing the resonance positions
is chosen only for convenience; i.e., the resonances are not localized
inside the upper adiabatic cone and do not result from cone states. The
symmetry (A or B) of the vibrational states and the resonances is shown
as well as the number [R] of the resonance state.

TABLE 1: Values of Potential Energy Parameters

ωx ) 0.015
ωy ) 0.009
ε ) 0.04
â ) 0.5
δ ) 0.5
∆ ) 0
λ ) 0.005a

a Other values are considered in section III. D.

Ebnd ) Enx
+ Emy

) (nx + 1
2) ωx + (my + 1

2) ωy (3)

H(x, y) ) (Hb Vbc
d

Vbc
d Hc

) (4)

TABLE 2: Vibrational Energy Levels for States |nx, my > of
Vb

d

nx my Ebnd (Eh) nx my Ebnd (Eh)

0 0 0.012 0 5 0.057
0 1 0.021 3 0 0.057
1 0 0.027 2 2 0.060
0 2 0.030 1 4 0.063
1 1 0.036 0 6 0.066
0 3 0.039 3 1 0.066
2 0 0.042 2 3 0.069
1 2 0.045 1 5 0.072
0 4 0.048 4 0 0.072
2 1 0.051 0 7 0.075
1 3 0.054 3 2 0.075

x̃ ) (x - x0) exp(iθ) + x0 (5)

Hθ ΨresR

θ (x, y) ) (ER - i
2

ΓR)ΨresR

θ (x, y) (6)

Hθ ) T1 + Vd(x̃, y) (7)

T ) T(x̃) + T(y) ) - 1
2

ωx exp (-2iθ)
∂

2

∂x2
- 1

2
ωy

∂
2

∂y2
(8)

ΨresR

θ ) (ΨbR

θ

ΨcR

θ ) (9)
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scaledHb
θ [i.e., for T(x̃) + Vb

d(x̃, y ) 0)] and then for the
x-dependent part of the complex scaledHc

θ [i.e., for T(x̃) +
Vc

d(x̃, y ) 0)]. We denote the eigenfunctionsX1n
θ (x̃) andX2j

θ (x̃),
respectively; the former represents a (complex scaled) harmonic
oscillator state|nx

θ > and the latter a rotated continuum state
|Ej

θ >. The box sizexbox ) xmax - xmin must be specified; the
basis functions are centered in the middle of the box.

We then form the set of eigenfunctions of the complex scaled
Hb

θ, which is given by the products (X1n
θ Y1m); these are the

eigenfunctions associated with the (uncoupled) PESVb
d(x̃, y).

Similarly, the set (X2j
θ Y2i) is a set of the eigenfunctions of the

complex scaledHc
θ associated with the (uncoupled) PESVc

d(x̃,
y).

A basis for the full complex scaled HamiltonianHθ is then
taken to be a subset of the (X1n

θ Y1m) and (X2j
θ Y2i) functions. This

subset is chosen using an energy cutoff criterion; all eigenfunc-
tions ofHb

θ andHc
θ whose eigenvalues have real parts which do

not exceedEcut are included in the basis forHθ.
Upon evaluating its matrix elements, we diagonalize the

complex scaled Hamiltonian matrix using the routine described
in ref 40, yielding resonance eigenvalues and eigenfunctions.
We then ensure that resonance results are converged with respect
to the numerical parameters described above.

D. Contributions to Resonance Eigenfunctions in the
Diabatic Representation. In the diabatic representation the
resonance state wave function has two components which are
linear combinations of the eigenfunctions of the two uncoupled
diabatic PES

where the coefficientscnmR anddjiR are obtained via the matrix
diagonalization and the resonance state wave function is initially
normalized such that

With ΨresR

θ re-normalized such that

we now define the percent populations of resonance stateR on
the two diabatic PES

and

Furthermore, we can also determine the percent contributions
to the resonance states fromindiVidual vibrational states of the
uncoupled diabatic PES. In particular,Vb

d supports vibrational
states|nx, my > which make a percent contribution to resonance
stateR of

The dissociativeVc
d PES supports states|Ej, iy >; the total

percent contribution to resonanceR from a given vibrational
state|iy > in the boundy dimension is obtained by summing
over the discrete set of rotated continuum states|Ej

θ >

This latter probability is experimentally significant because it
is related to the probability that the molecular photodissociation
process results in a particular vibrational level of one of the
resulting fragments.

E. Contributions to Resonance Eigenfunctions in the
Adiabatic Representation.The resonance wave function was
computed above using the diabatic representation. We would
also like to discuss the resonances in connection with the
commmon adiabatic potential energy surfaces as obtained from
the ab initio calculations of electronic energies. The adiabatic
potential energy matrixVad is obtained by diagonalizing the
diabatic potential matrix of eq 1

where

and

with

The lower adiabatic PESVl
ad resemblesVb

d at points (x, y) with
x < xCI and it resemblesVc

d at points (x, y) with x > xCI. It is
a dissociative PES which itself can support continuum states
and, perhaps, resonance states. The upper adiabatic PESVu

ad

resemblesVc
d at points (x, y) with x < xCI and it resemblesVb

d

at points (x, y) with x > xCI. It is a cone-shaped PES which,
ignoring potential coupling, supports bound states which will
be denotedøk(x, y).

We do not intend to recompute the resonance energies and
eigenfunctions via complex rotation of the Hamiltonian in the
adiabatic representation into the complex energy plane. We are
rather interested in projecting the computed resonance eigen-
functions in the diabatic representation on the adiabatic elec-
tronic states. In this way, we can interpret the results we have
obtained above in the common context of adiabatic potential
surfaces. The resulting square-integrable projected resonance
state wave function is obtained from the complex scaled
resonance wave function in the diabatic representation (renor-
malized according to eq 12) via

and consists of a componentFlR

θ (x, y) on the dissociative lower

adiabatic PES and a componentFuR

θ (x, y) on the bound upper
adiabatic PES. By computing the overlaps ofFuR

θ with the
(complex scaled) bound statesøk

θ, we can determine the
percent population of the resonance stateR on the upper

ΨbR

θ ) ∑
nm

cnmR
X1n

θ Y1m (10a)

ΨcR

θ ) ∑
ji

djiR
X2j

θ Y2i (10b)

∑
nm

cnmR

2 + ∑
ji

djiR

2 ) 1 (11)

∑
nm

|cnmR
|2 + ∑

ji

|djiR
|2 ) 1 (12)

PbR

d ) ∑
nm

|cnmR
|2× 100% (13a)

PcR

d ) ∑
ji

|djiR
|2× 100% (13b)

PbR

nx,my ) |cnmR
|2× 100% (14)

PcR

iy ) ∑
j

|djiR
|2× 100% (15)

Vad(x, y) ) UT(x, y) Vd(x, y) U(x, y) (16)

Vad(x, y) ) (Vl
ad 0

0 Vu
ad) (17)

U(x, y) ) (cosφ -sinφ

sinφ cosφ ) (18)

φ(x, y) ) - 1
2

arctan( 2Vbc
d

Vc
d - Vb

d) (19)

FresR

θ (x, y) ) UT(x, y)ΨresR

θ (x, y) (20)
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adiabatic coneVu
ad

The c-product,39 a generalized inner product, is used for the
overlap (i.e., we donot complex conjugate the functionFuR

θ ).
In determining PuR

ad, it is necessary to use in the complex
scaling computation oføk

θ the same rotation angleθ that was
used in computing the resonance state eigenfunctionΨresR

θ .
The percent population of resonance stateR on the lower

dissociative adiabat can be determined by computing the
overlaps ofFlR

θ with all of the eigenfunctions ofVl
ad. Since

overlaps withbothcontinuum and resonance eigenfunctions of
Vl

ad would be needed, it is much simpler to deduce this percent
population from the value ofPuR

ad.

III. Resonance Results and Discussion

A. Resonance Energies.We focus on those resonances
having positionsER < 0.07 au. We have successfully converged
a total of 18 resonance energies; the resonances are equally
divided into 3 groups based on their resonance widthΓR (in
atomic units)

Group 1: ΓR/2 < 2.5 × 10-4

Group 2: 5.0× 10-4 < ΓR/2 < 7.0 × 10-4

Group 3: ΓR/2 > 1.0 × 10-3

The values of the numerical parameters used for the conver-
gence of the resonance energies are listed in Table 3. The
“production run” refers to those values used for calculating the
resonance energies to be reported. The “convergence run” values
were those used to check for convergence of the resonance
energies. Notice that for convergence of the broad Group 3
resonances it is necessary to use a larger value for the rotation
angle (0.35 rads) than is used (0.20 rads) for the narrower
Groups 1 and 2 resonances. The value of the cutoff energyEcut

is approximately twice the value of 0.07 au used as the upper
limit for resonance positions. Table 4 presents the resonance
energies themselves in increasing order ofER; we also give
absolute uncertainties inER and percent uncertainties inΓR based
on variations of the values of the numerical parameters. The
lowest energy resonance, number 1, has a position lying below
the conical intersectionECI; it is extremely narrow and we can
only obtain an order of magnitude estimate for its width
numerically. The widths of the second narrowest resonance,
number 13, and the broad resonanceR ) 16, also have relatively
large percent uncertainties. The positionsER of the resonances
are indicated in Figure 1 by solid lines, thicker dashed lines,
and thickest long-dashed lines for Groups 1, 2, and 3,
respectively. (Note that the placement of the horizontal lines
representing the resonance positions is chosen only for con-
venience and that the resonances are not localized within the
upper adiabatic potential.)

Not listed in Table 4 is an apparent 19th resonance at 6.3×
10-2 - 2.6 × 10-3i; this resonance is broader than all those
listed in Table 4, and it was not particularly well-converged
even with rotation angles ranging from 0.30 to 0.50 rads. We
mention it here because we will allude to it in section IV. C.

The 18 resonance energies are clearly shown in the plot of
the complex energy plane in Figure 2. The differing widths of
the 3 groups are apparent in the Figure and sandwiched between
Groups 2 and 3 are rotated continuum states. The two horizontal
“lines” of continua eigenvalues are separated byωx and “within”
a line, the eigenvalues are separated byωy.

It is strikingly apparent that there is no one-to-one cor-
respondence between the positions and widths of the resonances;
when the resonances are placed in increasing order ofER, their
corresponding widths (and therefore lifetimes) fluctuate ir-
regularly. This is one of the dramatic effects of the presence of
the conical intersection.

There is a close correspondence between the number of
resonance states and the number of vibrational states|nx, my >
below an energy of 0.07 au (see Table 2). This relationship
will be fully analyzed in later discussions.

B. Resonance State Wave Functions: Diabatic Properties.
The percent populationsPb

d of the resonance states on the bound
diabatic potential surfaceVb

d are shown in Figure 3. In general,
we see that the narrower the resonance, the more it is “localized”
on the bound diabatic PES. The narrow Group 1 resonances
have at least 80% population on the bound diabat, as do the
two lower energy resonances of Group 2. Even the higher energy
Group 2 resonances have over 58% population on the bound
diabat. This is in stark contrast to the higher energy broad Group
3 resonances; the last three-members of this group have less
than 38% population onVb

d.
The contributions from individual vibrational states|nx, my >

of the bound diabat to the resonance states are very informative.
Figure 4a-c displaysPb

nx,my for Groups 1, 2, and 3 resonances
separately. We have only included states contributing at least
2% to the total diabatic resonance state wave function. Several
trends are apparent. First, for Group 1 resonances, states with
nx ) 0 ormy ) 0 make dominant contributions; this is in contrast
to Group 3 where, for five of the six resonances, states withnx

) 1 dominate. Second, for a given resonanceR, all vibrational

TABLE 3: Values of Numerical Parameters Used for
Convergence of Resonance Energies

parameter production run convergence run

nbas 500 450, 550
ybox 20 18
xmax 14 13, 14.5
xmin -8 -7
Ecut 0.15 0.16
x0 0 0.5
θa 0.20 0.15, 0.30
θb 0.35 0.30, 0.40

a For Groups 1 and 2 resonances.b For Group 3 resonances.

PuR

ad ) ∑
k

|(FuR

θ |øk
θ)|2× 100% (21)

TABLE 4: Resonance Positions and Widths and Their
Uncertaintiesa

resonance
no.

group
no. ER (Eh)

absolute
uncertainty ΓR/2 (Eh)

relative (%)
uncertainty

1 1 1.162303 (-2)b 1. (-8) 1 (-9)c c
2 1 1.9443 (-2) 2. (-6) 2.45 (-4) 0.5
3 2 2.609 (-2) 1. (-5) 6.28 (-4) 1.0
4 1 2.75758 (-2) 6. (-7) 9.07 (-5) 1.0
5 3 3.402 (-2) 1. (-5) 1.30 (-3) 2.0
6 1 3.61355 (-2) 7. (-7) 1.664 (-4) 0.5
7 1 4.1951 (-2) 4. (-6) 1.26 (-4) 2.5
8 3 4.204 (-2) 6. (-5) 1.64 (-3) 2.0
9 2 4.4758 (-2) 5. (-6) 5.37 (-4) 1.5

10 3 4.978 (-2) 7. (-5) 1.6 (-3) 6.5
11 2 5.121 (-2) 3. (-5) 6.35 (-4) 6.5
12 3 5.355 (-2) 2. (-5) 1.31 (-3) 2.5
13 1 5.704 (-2) 2. (-5) 7.6 (-5) 13
14 3 5.752 (-2) 3. (-5) 1.7 (-3) 6.0
15 2 6.016 (-2) 2. (-5) 6.09 (-4) 2.0
16 3 6.57 (-2) 5. (-4) 1.6 (-3) 12
17 2 6.585 (-2) 4. (-5) 5.9 (-4) 5.5
18 2 6.873 (-2) 3. (-5) 6.6 (-4) 1.5

a The uncertainties reflect tolerated changes in the resonance energies
as numerical parameters are varied.b Read, for example, as 1.162 303
× 10-2. c Only an order of magnitude estimate for the width of this
extremely narrow resonance could be obtained numerically.
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states|nx, my > that contribute haveeithereven values or odd
values ofmy. This parity selection rule will be explained using
symmetry considerations in section IV. A. Third, for resonances
with close values ofER, we often see a “switching” of the
vibrational state making the dominant contribution. For example,
consider the two resonances with positions near 0.027; for both
resonance numbers 3 and 4, only|0, 2 > and |1, 0 > make
significant contributions. For number 3,|1, 0> contributes 67%
and |0, 2 > contributes 13% whereas, for number 4,|1, 0 >
contributes 20% and|0, 2 > contributes 69%. We should also
note that the bound state energies of|1, 0 > and |0, 2 > (see
Table 2) are close toER of 0.027 au. This “switching” of
dominant contributors becomes even more apparent if we
consider the percent contribution from an|nx, my > state relative
to the total percent contribution from the bound diabatVb

d; that
is we define a relative percent contributionRbR

nx,my via

In Table 5, we list clusters for the first 12 resonances

which have similar values ofER and for which the same set of
|nx, my > vibrational states contribute. The relative percent
contributionsRbR

nx,my are tabulated. It is quite evident that this
“switching” of dominant contributors is a recurring theme for
the resonances; this “switching” behavior is not unique to the
present study and is invariably observed when diagonalization

Figure 2. Real and imaginary parts of the complex eigenvalues for
the conical intersection problem. The resonances of Groups 1, 2, and
3 are represented by darkened circles, squares, and open circles,
respectively. The sets of rotated continua eigenvalues are indicated by
plus signs.

Figure 3. PopulationsPb
d of the resonances on the bound diabatic

PES Vb
d. The resonances of Groups 1, 2, and 3 are represented by

darkened circles, squares, and open circles, respectively.

RbR

nx,my )
PbR

nx,my

PbR

d
× 100% (22)

Figure 4. Contributions from individual vibrational levels|nx, my >
of the bound diabat to the resonances. The points are labeled bynx,
my. (a) Group 1; (b) Group 2; (c) Group 3.
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of the Hamiltonian matrix mixes members of the basis sets. In
section IV, we introduce an effective Hamiltonian whose
analysis, using a simple model, will help us to understand
(qualitatively and quantitatively) the results of Table 5.

We focused above on the contributions to the resonance state
wave function from the vibrational states of the bound diabat
Vb

d. Table 6 lists the percent contributions from a given
vibrational state|iy > (in the y-dimension) of the dissociative
diabat Vc

d where we have summed over the discrete set of
continuum states (in thex-dimension); we only include contri-
butions of 0.5% or greater. (We also show in Table 6 the total
percent populationPc

d of the resonance state on the dis-
sociative diabat.) The most obvious result is the opposite parity
of |my > and |iy >; for example, if|nx, my > states from the
bound diabat that contribute to the resonance all have even
values ofmy, then the vibrational states|iy > of the dissocia-
tive diabat that contribute must be odd. This is easily under-
stood; the diabatic couplingVbc

d , being linear iny, is an odd
function ofy. Therefore, by symmetry, the matrix elements of
the off-diagonal block of the complex scaled Hamiltonian
< nx, my| Vbc

d | Ej, iy > are nonvanishing only if|my > and|iy >
are of opposite parity.

The states of the diabatic potential surfacesVb
d andVc

d that
are the dominant contributors to the diabatic resonance state
wave functions are strikingly apparent in many of the surface
plots of the amplitude-squared ofΨbR

θ and ΨcR

θ . In Figures
5-9, we show surface plots for the diabatic resonance wave
function components for selected resonances; the resonance
wave functions shown have been normalized according to eq
11. For resonance number 1,|Ψb

θ| is remarkably similar to the
|nx ) 0, my ) 0 > wave function and|Ψc

θ| shows nodal
structure in they-direction of theiy ) 1 state. For resonance

number 7, the nodal pattern of the| 2, 0 > state appears in
|Ψb

θ| and that of theiy ) 1 andiy ) 3 states appear in|Ψc
θ|; the

latter has a small magnitude since most of the population of
this resonance resides on the bound diabatic surface. For
resonance number 13,|3, 0 > dominates|Ψb

θ| and |iy ) 1 >
dominates|Ψc

θ|.
As more and more states ofVb

d and Vc
d make significant

contributions to the diabatic resonance state wave function, the

TABLE 5: Symmetry Groupings of Resonance States: Accurate Resonance Results (from complex scaling) versus Model
Calculations (from HR Diagonalization)

ER
a ΓR/2 Rb

nx,mt (%)res.
no.

sym.
label acc.b mod. acc.b mod. |nx, my > acc.c mod.d

1 A 1.162303 1.164 1 (-9)e 0f 0,0 99.9 100g

2 B 1.9443 1.931 2.45 (-4) 3.12 (-4) 0,1 99.4 100g

3 A 2.609 2.636 6.28 (-4) 8.52 (-4) 1,0 82.0 73.8
0,2 16.3 26.2

4 A 2.75758 2.788 9.07 (-5) 8.14 (-5) 1,0 22.5 26.2
0,2 76.6 73.8

5 B 3.402 3.421 1.30 (-3) 1.75 (-3) 1,1 69.7 62.3
0,3 25.5 37.7

6 B 3.61355 3.645 1.664 (-4) 7.94 (-5) 1,1 32.1 37.7
0,3 66.5 62.3

7 A 4.1951 4.192 1.26 (-4) 2.42 (-5) 2,0 90.1 99.8
1,2 6.6
0,4 2.6 0.2

8 A 4.204 3.699 1.64 (-3) 2.13 (-3) 2,0 12.0 0.1
1,2 51.7 67.3
0,4 28.7 32.6

9 A 4.4758 4.477 5.37 (-4) 1.94 (-4) 2,0 3.3 0.1
1,2 33.4 32.7
0,4 60.7 67.2

10 B 4.978 4.318 1.6 (-3) 2.86 (-3) 2,1 23.7 0.1
1,3 44.7 67.1
0,5 22.2 32.8

11 B 5.121 5.219 6.35 (-4) 3.73 (-4) 2,1 70.6 96.8
1,3 0.6
0,5 24.7 2.6

12 B 5.355 5.319 1.31 (-3) 2.65 (-4) 2,1 17.6 3.1
1,3 30.6 32.0
0,5 45.1 64.8

a Reported resonance positions have been multiplied by 100.b Taken from Table 4.c Contributions less than 2.5% not reported.d Contributions
less than 0.1% not reported.e Read, for example, as 1× 10-9. f TheHR matrix of dimension 1 has no imaginary component.g HR is of dimension
1.

Figure 5. Surface plots of the amplitude-squared of the diabatic
resonance state wave functions for resonance number 1: (a)|Ψb

θ|2; (b)
|Ψc

θ|2.
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surface plots become more and more complicated. For resonance
number 12, it is hard to interpret the nodal structure in either
component of the diabatic resonance wave function. For
resonance number 17, although the nodal structure of|3, 1 >
is apparent in|Ψb

θ|, it is difficult to ascertain which|iy > states
are contributing toΨc

θ. However, the judicious choice of basis
functions as described in section II allows us to immediately
(and quantitatively) determine which vibrational states of both
Vb

d andVc
d contribute and we are not faced with the daunting

task of trying to abstract this type of information from surface
plots of the resonance wave functions.

C. Resonance State Wave Functions: Adiabatic Proper-
ties. Using the transformation described in section II.E, we
computed adiabatic resonance state wave functions from the
diabatic wave functions. In general, the adiabatic wave functions
closely resemble the diabatic wave functions and therefore we
do not show adiabatic wave function plots. At points (x, y) prior
to the conical intersection, (i.e.,x < xCI)

and

whereas beyond the conical intersection, (i.e.,x > xCI)

and

A number of the resonance states display significant amplitudes
for Fu

θ, indicating that there is significant population residing
on the upper adiabatVu

ad. Since the upper adiabatic PES is
cone- or funnel-shaped and itself can support bound vibrational

Figure 6. Surface plots of the amplitude-squared of the diabatic
resonance state wave functions for resonance number 7: (a)|Ψb

θ|2; (b)
|Ψc

θ|2.

Figure 7. Surface plots of the amplitude-squared of the diabatic
resonance state wave functions for resonance number 12: (a)|Ψb

θ|2;
(b) |Ψc

θ|2.

Figure 8. Surface plots of the amplitude-squared of the diabatic
resonance state wave functions for resonance number 13: (a)|Ψb

θ|2;
(b) |Ψc

θ|2.

Figure 9. Surface plots of the amplitude-squared of the diabatic
resonance state wave functions for resonance number 17: (a)|Ψb

θ|2;
(b) |Ψc

θ|2.

|Fl
θ| ≈ |Ψb

θ| (23a)

|Fu
θ| ≈ |Ψc

θ| (23b)

|Fl
θ| ≈ |Ψc

θ| (23c)

|Fu
θ| ≈ |Ψb

θ| (23d)
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states, resonances with dominant|Fu
θ| may display behavior

characteristic of “cone states”.
For resonance number 1, the majority of the amplitude of

the resonance state wave function is confined to a region of
coordinate space prior to the conical intersection; it is not
surprising that|Fl

θ| and|Ψb
θ| are extremely similar. In addition,

as evidenced by the small magnitude ofFu
θ, there is little

population of the adiabatic resonance state on the upper adiabatic
PES; this is also to be expected since theR ) 1 resonance
position falls below the conical intersection energy. For the other
resonance states depicted in Figures 6 to 9, (i.e.,R ) 7, 12, 13,
17), based on the magnitude ofFu

θ, we expect a significant
contribution to the adiabatic resonance state wave function from
the bound states of theVu

ad adiabatic PES, with the largest
contribution being made to the broad Group 3 resonance number
12.

The contributions from the states of the adiabatic PES to the
adiabatic resonance state wave function can be quantified using
eq 21. First, the bound states supported by the (uncoupled)
adiabatic PESVu

ad are computed without complex scaling (i.e.,
zero rotation angle) and the bound state energies are found to
be converged to within 0.2% for various particle-in-a-box basis
set parameters. The first 40 eigenstates are considered and, since
their maximum eigenenergy is 0.132 au, these 40 states are
expected to be sufficient for convergence of the sum needed in
eq 21. (We also checked for convergence by considering only
the first 32 of these eigenstates for the summation in eq 21.)
With the exception of resonance number 12, there are no close
matches (within 5× 10-4 au or about 100 cm-1) between the
bound state eigenenergies and the resonance positions.

In computing the contributions from theVu
ad bound states to

resonances of Groups 1 and 2, we calculateøk
θ usingθ ) 0.20

rads. Theøk
θ have eigenenergies whose real parts are con-

verged to within 0.5% when compared to theθ ) 0 eigenen-

ergies. Similarly, for computing overlaps with the Group 3
adiabatic resonance state wave functions, we useθ ) 0.35 rads
for determiningøk

θ; the latter have real parts of their eigenen-
ergies converged to within 7%. (The imaginary parts of the
eigenenergies are nonzero due to the use of complex scaling
but they are in general several orders of magnitude smaller than
the real parts.) The overlaps betweenFu

θ andøk
θ needed in eq

21 are computed using a two-dimensional Simpson’s rule
integrator. Results forPu

ad are presented in Table 7; as the
eigenfunctionsøk

θ are more convergence-sensitive than their
corresponding eigenenergies, it is difficult to provide uncertain-
ties in these results. (We anticipate uncertainties inPu

ad to be
within a couple percent for Groups 1 and 2 but to be larger for
Group 3.) The broad resonances of Group 3 tend to have
relatively larger percent contributions from the upper adiabatic
surface but numerous Group 1 and 2 resonances also have
significant contributions. However, for none of the resonances
is Pu

ad greater than 40% and, therefore, for none of the
resonances is|Fu

θ| dominant.
We also report in Table 7 which eigenstateøk provides the

largest contribution toPu
ad. For all 18 resonances analyzed, the

percent contribution from a specific adiabatic eigenstate to the
resonance state never exceeds 20%; therefore, we can conclude
that none of the resonances emanate from a specific adiabatic
bound (“cone”) state. Of all 18 resonances, number 12 has the
largest contribution from bound states of the upper adiabatic
PES; this is consistent with the close energy match (about 9
cm-1) betweenE12 and theø4 eigenenergy. In fact, as seen in
Table 7, one of the largest contributions from any one particular
øk eigenstate is the 16% contribution to the adiabatic wave
function of resonance number 12 fromø4. However, for 10 of
the 18 resonances, the largest contribution comes from an
eigenstateøk whose bound state energy isnot the closest one
to the resonance position. Furthermore, as seen in Table 7, for
all resonancesR except number 12 the eigenstateøk which
makes the largest contribution toPu

ad has an energy at least 180
cm-1 away from the resonance positionER.

The lower dissociative adiabatic PESVl
ad can itself support

resonance states and we have computed resonance energies
using numerical parameters similar to those used for the 18
resonance states in Table 3. There is no apparent correlation
between the resonance energies ofVd and those ofVl

ad; two of
the resonance positionsER of Table 4 are within 100 cm-1 of

TABLE 6: Populations of the Resonance State on the
Dissociative Diabat and Contributions from Individual
Vibrational States |iy > (summed over continuum states); for
Example, Five Vibrational States|iy > of the Dissociative
Diabat (with numbers i Given in Parentheses) Contribute
Significantly to the 18th Resonance

res. no. Pc
d (%) (iy) Pc

iy (%)

1 1.9 (1) 1.9
2 10.1 (0) 6.9 (2) 3.2
3 17.7 (1) 16.9 (3) 0.7
4 10.4 (1) 6.7 (3) 3.7
5 44.6 (0) 12.9 (2) 29.9 (4) 1.8
6 12.5 (0) 4.1 (2) 4.2 (4) 4.1
7 12.0 (1) 8.0 (3) 3.7
8 45.7 (1) 12.2 (3) 31.2 (5) 2.3
9 18.8 (1) 10.9 (3) 3.9 (5) 4.1

10 51.4 (0) 13.7 (2) 4.2 (4) 31.4
(6) 2.0

11 32.7 (0) 8.7 (2) 14.4 (4) 7.9
(6) 1.7

12 64.1 (0) 11.2 (2) 43.2 (4) 6.0
(6) 3.6

13 20.9 (1) 19.1 (3) 0.8 (5) 1.0
14 62.0 (1) 23.5 (3) 5.6 (5) 31.2

(7) 1.5
15 37.4 (1) 12.6 (3) 14.8 (5) 6.7

(7) 3.3
16 79.9 (0) 24.2 (2) 35.2 (4) 2.2

(6) 17.1 (8) 0.8
17 42.2 (0) 13.0 (2) 19.8 (4) 1.8

(6) 7.3
18 39.9 (0) 0.8 (2) 16.5 (4) 11.5

(6) 6.8 (8) 4.3

TABLE 7: Populations of the Resonance State on the Upper
Adiabatic Surface Vu

ad and the Eigenstateøk of Vu
ad of

Maximum Contribution

resonance
no.R Pu

ad (%) k
|Energy(øk) - ER|

(cm-1)
contribution
from øk (%)

1 2 2 6974 1
2 5 1 2951 2
3 12 5 7578 5
4 5 2 3473 2
5 27 1 248 7
6 13 1 712 9
7 28 2 318 13
8 28 2 298 7
9 21 2 298 16

10 28 3 187 7
11 30 4 505 13
12 40 4 9 16
13 26 5 786 14
14 15 19 919 3
15 21 6 733 10
16 33 26 10221 8
17 26 8 1003 6
18 20 8 371 7
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two of the positions ofVl
ad resonances but in both cases, the

widths of the Table 4 resonance states are a factor of 5 larger
than the widths of the resonances on the uncoupled lower
adiabatic PES. The lowest energy resonance ofVl

ad has an
energy of 0.0109-2 × 10-4i; its resonance position is below
the conical intersection energyECI but its width is much broader
than resonance number 1 of Table 4. Therefore, the narrowness
of resonance number 1 cannot be attributed to the tunneling
width on the lower adiabatic surface; the discussion presented
in section IV.C gives an explanation for the narrowness of this
resonance.

On the basis of the correspondence between the positions of
the resonances in Table 4 and the vibrational states of the bound
diabatic surface (see Figure 1 and discussion in section IV
below) and the lack of correspondence between the former and
the states of the (uncoupled)adiabatic potential surfaces, it
appears that the diabatic representation gives a better zeroth
order picture than does the adiabatic representation of the
resonances arising from the conically intersecting electronic
states. This zeroth order picture will prove useful in section IV
where we show that numerous characteristics of the resonance
states can be reproduced in at least a semiquantitative way using
an effective Hamiltonian and a small subset of states of the
diabatic potential surfaces.

D. Effect of Nonadiabatic Coupling Strength on Reso-
nances.The results presented here thus far as well as those
analyzed below in section IV are for a given set of potential
parameters, in particular, a single value for the nonadiabatic
coupling strengthλ. We can also study the effects of the
variation ofλ on the resonance energies; the results of such a
study are shown in Figure 10 for which we consider six different
values ofλ (0.0005, 0.001, 0.0025, 0.005, 0.0075, and 0.01).
We have drawn “trajectories” connecting the resonance energies
according to their numberingR using filled circles (oddR) and
open circles (evenR) to identify computed values along the

trajectory. Each of the trajectories start atλ ) 0, i.e., a diabatic
vibrational energy level of Table 2. The doubly degenerate
vibrational levels each split into two trajectories.

The first resonance changes little in energy and in particular
in lifetime relative to changes for all other resonances. It appears
that the diabatic approximation is a good zero order description
in this case. The trajectory of resonance number 2 moves
smoothly into the complex energy plane until the resonance
position (0.015 02) is finally just slightly below the energy of
the conical intersection; in fact, the resonance for the largestλ
even overlaps the conical intersection if we consider its
resonance width of 8.8× 10-4. For all the other resonances,
the trajectories look more complicated. Up to aboutλ ) 0.0025,
the diabatic vibrational level is a reasonably good approximation
for the resonance position. However, at largerλ, there are strong
interactions between the modes; a single diabatic level (and, at
least forλ ) 0.005, a single adiabatic level) does not give a
good zero order description for the resonance position. An
analysis of the trajectories as a function ofλ is not obvious and
will be considered in future work. Increasingλ results in a
decrease in the resonance positionER and, in general, in a
decrease in the resonance lifetime but there are numerous
exceptions to the latter (see for example the third resonance).
Many of the trajectories have a nonmonotonic behavior and the
variation of the resonance energies withλ can be very abrupt
and irregular for coupling strengths not close to zero. At large
λ, the resonances might be thought of as resulting from a strong
mixing of the resonances at smallerλ. The irregular behavior
of the resonance energies (including lifetimes) as a function of
the nonadiabatic coupling strength is a fingerprint of the conical
intersection.

IV. Analysis of Resonance States

A. Symmetry Considerations. We have used symmetry
arguments above in section III.B to explain why vibrational

Figure 10. Variation of the resonance energies (including widths) with the nonadiabatic coupling strength. Shown are trajectories in the complex
energy plane connecting the resonances for growing values of this coupling. The blackened circles (for odd-numbered resonances) and open circles
(for even-numbered resonances) locate the computed resonance energies on the trajectories at values of the coupling strength of 0, 0.0005, 0.001,
0.0025, 0.005, 0.0075, and 0.01.
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states|my > and|iy > associated withVb
d andVc

d, respectively,
that contribute to a resonance state must be of opposite parity.
Furthermore, we can easily show that if two vibrational states
|nx′, my′ > and|nx, my > of the bound diabatic surface contribute
to a resonance state then|my > and|my′ > must be of the same
parity. In fact, the resonances studied here can be classified by
their vibronic symmetry; two symmetry classes are found and
each class can be considered separately.

The Hamiltonian matrixH(x, y) of eq 4 is constructed within
a basis of two diabatic electronic statesΦb and Φc, whose
nuclear Hamiltonians areHb andHc, respectively. The electronic
states are of differing electronic symmetries; without loss of
generality, we letΦb belong to the irreducible representationA
and Φc belong to the irreducible representationB. Since the
couplingVbc

d betweenΦb andΦc only depends on the modey,
it follows that (asymmetric mode)y transforms asB; (symmetric
mode) x transforms asA. (For a thorough discussion of
symmetry considerations, see ref 2.)

The states|nx, my > of Hb and|Ej, iy > of Hc haveVibrational
symmetriesA or B according to whether the number of quanta
in the y-vibrational mode is even or odd, respectively; the
symmetries of the bound vibrational states are indicated in
Figure 1. Therefore, the resonances themselves can be classified
according to theVibronic symmetriesA andB. For example,A
resonances can only have contributions fromA vibrational states
of electronic stateΦb and Bvibrational states of electronic state
Φc. The resonances are thus divided into two symmetry groups
and each group can be considered separately.

From above, we immediately conclude that|my > from Hb

and |iy > from Hc must be of opposite parity; this result has
been observed in section III. B. In addition, we see that all
vibrational states ofHb that contribute to a given resonanceR
must be of the same vibrational symmetry; this is precisely what
was also observed in section III. B. In Table 5, as well as in
Figure 1, we have labeled the resonances by their symmetry.
We see that the positions ofA andB symmetry resonances are
well separated energetically for the present set of potential
parameters (of Table 1). The first resonance is ofA symmetry,
the second ofB, then a pair ofA resonances followed by a pair
of B resonances; from then on, resonances appear in triples of
alternating symmetry. It is clear that symmetry is decisive for
a detailed understanding of the resonance results.

Closer inspection of Figure 1 reveals that whereas four
vibrational states|nx, my > make important contributions to the
set of highest-energy resonances ofA symmetry, only three
resonances from the conical intersection study are listed. In the
subsection below, we not only address this issue but we
quantitatively interpret the results of Table 5 by invoking a
simple model using an effective energy-dependent Hamiltonian.

B. An Effective, Energy-Dependent Hamiltonian. We
reconsider the Hamiltonian of eq 4. We are interested in solving
the matrix equation

whereψb andψc are the (noncomplex scaled) components of
the nuclear wave function on the two diabatic surfaces. The
states ofHc provide the continuum for the bound vibrational
states ofHb which become resonances through the coupling
Vbc

d .
Upon expanding eq 24 into two equations, solving forψc in

the second equation in terms ofψb, while addingi0+ to the
resolvent, and substituting the expression forψc into the first

equation, we obtain

where HR is the effective, energy-dependent Hamiltonian
describing the resonances in the vibrationally bound subspace
of Hb

Solutions of eq 25 give the resonances;E is the complex
resonance energy.

SinceHR is an effective Hamiltonian in the bound space of
Hb, ψb is a square-integrable function. In the expressions that
follow, we assumeψb is normalized, i.e.,< ψb|ψb > ) 1. The
complex resonance energyE is given as< ψb| HR|ψb > or

Eb is a real number; sinceψb is a component of the resonance
state wave function and is an eigenfunctionnot of Hb but of
HR, Eb differs fromEbnd of eq 3 and Table 2.Fb(E) is a complex
function of energyE; it may be decomposed into its real and
imaginary parts as

where ∆b(E) and Γb(E) are called shift and width functions,
respectively.

The termFb(E) of eq 27 can be further expressed by using
the completeness relation of the set of eigenfunctions ofHc,
whose eigenvalues we denoteEc. In section II.A, these eigen-
functions were denoted|Ej, iy >; here we simply call them|c>

whereP stands for the principal part of the integral. The latter
expression can be simplified by introducing the densityFEc of
continuum states|c > defined via

so that

Equating the imaginary parts of eqs 28 and 31, we obtain

where the continuum state|c > and its density of states are
evaluated at the resonance energyE. Equation (32) is reminis-
cent of Fermi’s golden rule but here the width function is
energy-dependent andψb is not a bound state eigenfunction of
Hb.

(Hb Vbc
d

Vbc
d Hc

)(ψb

ψc )) E(ψb

ψc ) (24)

HR ψb ) Eψb (25)

HR ) Hb + Vbc
d (E - Hc + i0+)-1 Vbc

d (26)

E ) < ψb| Hb|ψb > +

< ψb| Vbc
d (E - Hc + i0+)-1Vbc

d |ψb > ≡ Eb + Fb(E) (27)

Fb(E) ) ∆b(E) - i
2

Γb(E) (28)

Fb(E) ) ∫|< ψb|Vbc
d |c >|2

E - Ec + i0+ dc )

P∫ |< ψb| Vbc
d | c >|2

E - Ec
dc -

πi ∫|< ψb|Vbc
d |c >|2 δ(E - Ec) dc (29)

dc ) FEc
dEc (30)

Fb(E) ) P∫|< ψb|Vbc
d |c >|2

E - Ec
FEc

dEc -

πi |< ψb|Vbc
d |c(Ec ) E) >|2 FE (31)

Γb(E) ) 2π|< ψb|Vbc
d |c(Ec ) E) >|2 FE (32)
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The above discussion is general and provides a tool for
analyzing resonances induced by conical intersections. In the
following, we now show in the context of the present model
how analysis of a simple matrix representation ofHR helps us
interpret the resonance states. First, we denote Hamiltonians
for harmonic oscillators inx andy asHx andHy, respectively,
and the Hamiltonian for the dissociative exponential function
in x asHh x

Using the above definitions and eq 2, we can write the effective
Hamiltonian as

Equation 34 sheds considerable light on the conclusion drawn
at the end of section III.C that the diabatic representation gives
a better zeroth order picture in this study of the resonances than
does the adiabatic representation. SinceHx + Hy equalsHb, the
nuclear Hamiltonian for the bound diabatic state acts as a zeroth
order Hamiltonian forHR and the term in eq 34 proportional to
λ2 acts as a perturbation Hamiltonian. Therefore, the smaller is
the magnitude of the perturbation, the closer is the cor-
respondence between the positions of the resonances and the
vibrational energy levels of the diabatic potentialVb

d; we also
expect that smaller magnitudes of the perturbation Hamiltonian
give rise to narrower (longer-lived) resonances since the
imaginary part of the complex resonance energy arises from
this λ2 term.

HR gives rise to a secular matrix in the harmonic basis ofHx

andHy which exhibits a relatively simple structure. The matrix
elements ofHR within the basis|nx, my > take the form

whereEnx andEmy are given in eq 3. We see immediately that
the only nonvanishing matrix elements are those withmy′ ) my

or my′ ) my ( 2, in accordance with the conclusion drawn above
that all vibrational states ofHb that contribute to a given
resonance must be of the same vibrational symmetry.

In analogy toFb(E) defined above for the general Hamiltonian
HR in eq 27, we introduce

which are related to the expansion functions ofFb(E) alongx
alone. Each of theHR matrix elements in eq 35 contains two
elements ofF which depend solely on the modex except that
the energy is shifted by they-mode

Equation 37 is critical to using the effective HamiltonianHR to
understand the structure of the resonances described in our
system of conically intersecting states. The first term on the
right-hand side of eq 37 gives rise to a diagonal matrix
composed of the vibrational energy levels of the bound diabatic
PES. The real parts of the second and third terms are responsible
for the energy shifts of the resonance positions from the bound
vibrational levels. The imaginary parts ofFnx′nx(E - Emy(1) are
responsible for the widths or lifetimes of the resonance states.
We also reiterate that theFnx′nx functions are not evaluated at
the resonance energyE but rather atE - Emy(1; this is important
because, as we shall show below, when the argument ofFnx′nx

has a negative real energy, then the imaginary part ofFnx′nx will
vanish. A given resonance may emanate primarily from asingle
|nx, my > state or frommultiplevibrational states; in the latter
case, only vibrational states with even (odd) values ofmy can
couple to each other and diagonalization of theHR matrix is
necessary to find resonance energies.

TheFnx′nx(E) terms are relatively straightforward to determine.
Taking advantage of the completeness relation of the set of
eigenfunctions|Ej > of Hh x, whose density of states is denoted
FEj

x , we obtain

where|Ej(E) > is a continuum eigenfunction ofHh x at energyE
with density of statesFE

x.
To describe a resonance correctly, we need to decide how

many |nx, my > states are needed for the secular determinant
for HR. We use the results in Table 5 as a guide; for examples,
for the lowest energy resonances ofA andB symmetry, theHR

matrix is of dimension one but for the highest energy resonances
of both symmetries considered in Table 5, theHR matrix is of
dimension three. The effective HamiltonianHR is energy-
dependent, but in our simple model we will diagonalize theHR

matrix at a single energy for each cluster of resonances shown
in Table 5. When only one|nx, my > state contributes to a
resonance, we simply takeE ) EbndwhereEbnd is the vibrational
energy given by eq 3. However, when two or more states
contribute, we takeE to be the average vibrational energy; for
example, for the highest energyA resonances of Table 5, we
setE ) 0.045 (the average of the 0.042, 0.045, and 0.048 bound
state energies) in evaluatingFnx′nx(E - Emy(1).

To evaluate the terms in eq 38, we need to compute overlaps
between vibrational states|nx > and continuum states|Ej > as
well as the density of continuum states. First, we obtain a
discrete set of (real) continuum states and continuum energies

< nx′, my′|HR|nx, my > ) (Enx
+ Emy

)δmymy′
δnxnx′

+

λ2

2
[(my + 1)δmymy′

+ x(my + 1)(my + 2)δmy′my+2] ×
Fnx′nx

(E - Emy+1) +

λ2

2
[myδmymy′

+ xmy(my - 1)δmy′my-2]Fnx′nx
(E - Emy-1) (37)

Fnx′nx
(E) ) P∫< nx′|Ej > < Ej|nx >

E - Ej
FEj

x dEj -

πi < nx′|Ej(E) > < Ej(E)|nx > FE
x (38)

Hx ) T(x) + Vb
d(x, y ) 0) ) - 1

2
ωx

∂
2

∂x2
+ 1

2
ωx x2 (33a)

Hy ) T(y) + Vb
d(x ) 0, y) ) - 1

2
ωy

∂
2

∂y2
+ 1

2
ωy y2 (33b)

Hh x ) T(x) + Vc
d(x, y ) 0) )

- 1
2
ωx

∂
2

∂x2
+ ε e-â(x+δ) + ∆ (33c)

HR ) Hx + Hy + λ2y (E - Hy - Hh x + i0+)-1 y (34)

< nx′, my′|HR|nx, my > ) (Enx
+ Emy

)δmymy′
δnxnx′

+

λ2

2
[(my + 1)δmymy′

+ x(my + 1)(my + 2)δmy′my+2] ×
< nx′|(E - Emy+1 - Hh x + i0+)-1|nx > +

λ2

2
[myδmymy′

+ xmy(my - 1)δmy′my-2] ×
< nx′|(E - Emy-1 - Hh x + i0+)-1|nx > (35)

Fnx′nx
(E) ) < nx′|(E - Hh x + i0+)-1|nx > (36)
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by diagonalizingHh x of eq 33c in a finite-size box using particle-
in-a-box basis functions. (The continuum wave functions are
the X2j

θ functions of section II.C but withθ ) 0.) A set of 17
continuum states with an energyEj up to 0.08 au is considered.
(We also considered a set of 15 continuum states obtained from
the use of a different particle-in-a-box basis. Similar results for
diagonalization ofHR are obtained.) Second, we compute the
density of states at each discrete energyEj via41

To evaluate the imaginary part ofFnx′nx(E) in eq 38, we need
the density of continuum states at a specified energy, which is
not in general one of the discretized energies. This density is
obtained at an energyEj < E < Ej+1 using a simple linear
interpolation betweenFEj

x andFEj+1

x .
Next, we compute the (real) harmonic oscillator states|nx >

by diagonalizingHx of eq 33a; these bound state wave functions
are theX1n

θ)0 functions of section II.C and are obtained using
the same particle-in-a-box basis functions asX2j

θ)0. The overlap
< nx| Ej > ) < X1n

θ)0|X2j
θ)0 > is then computed numerically

from the products of the expansion coefficients in the particle-
in-a-box basis. The Franck-Condon factors fornx ) 0 and 1
are shown in Figure 11(a) and those fornx ) 2 and 3 in Figure
11b; the plots exhibit nodal structure analogous to the|nx >
wave functions themselves. For the imaginary part ofFnx′nx(E),
we again use a simple linear interpolation, this time, forEj <
E < Ej+1, between the| < nx|Ej > |2 Franck-Condon factor
and the| < nx|Ej+1 > |2 Franck-Condon factor; then we use
the square root of the resulting Franck-Condon factor for the
off-diagonal elements ofFnx′nx(E).

In eq 38 above, the real part ofFnx′nx(E) involves the principal
part of an integral which is evaluated by replacing the integral
by a sum over the discrete continuum states and removing the
density of states factor. (A similar type of procedure for the
evaluation of an integral over continuum states is performed in
ref 42.) In no cases areE andEj very close to one another; the
real part ofFnx′nx reduces to

For each cluster of resonances, diagonalization of theHR matrix
at a single energyE yields (approximate) resonance eigenpa-
rameters; from the amplitude-squared of the complex eigen-
vectors, we obtain the percent contributions to the resonance
state from the individual|nx, my > bound states. Since the
secularHR matrix is restricted to the subspace of the bound
diabaticHb, these percent contributions should be compared with
the relative percent contributionsRbR

nx,my of eq 22 from the full
(complex scaling) conical intersection study.

The crudeness of this model of analysis of the effective
Hamiltonian HR should be apparent. Nonetheless, for lower
energy resonances, it works remarkably well. Since the effective
Hamiltonian model begins to deteriorate for higher energy
resonances, we only include in Table 5 results from the first 12
of the 18 resonances. For the higher energy resonances, it is
likely that contributions from continuum states above 0.08 au
would be necessary for more quantitative agreement. In light
of the approximate nature of interpolated densities and Franck-
Condon factors as well as the choice of a single value of energy
for the energy-dependentHR, we did not pursue the inclusion
of higher energy continuum states.

C. Analysis of the Effective Hamiltonian: Results.Table
5 presents results from diagonalization of theHR matrix in a
basis of a limited number of|nx, my > states. We briefly describe
key results. An underlying theme for all the resonances is that
they can be characterized by a small number of vibrational states
of the bound diabatic surface coupling to each other via the
continuum of the dissociative diabatic surface.

1. Singlets of A and B Symmetries.The lowest energy
resonance stems from the|0, 0> vibrational level ofHb and is
of A symmetry. Since the next lowest vibrational state ofA
symmetry (the|1, 0> state) is far away energetically, only the
element< 0, 0|HR| 0, 0 > has been considered; it is evaluated
at the|0, 0> vibrational energyEbnd ) 0.012 au. The real part
of this matrix element is in excellent agreement withER)1. Since,
in eq 37,E - Emy+1 < 0 and no continuum states|Ej > exist at
negative energies, the widthΓ of the resonance is predicted to
be zero. This explains why the lowest energy resonance of Table
4 and Figure 2 is very long-lived, i.e., very narrow. Numerically,
the finite (but very small) width ofR ) 1 comes from the weak
coupling to higher vibrational levels ofHb. We also reiterate
(see section III.C) that in the adiabatic picture it might be

FEj

x ) 1
Ej+1 - Ej

(39)

Re Fnx′nx
(E) ) ∑

j

< nx′|Ej > < Ej|nx >

E - Ej

(40)

Figure 11. Franck-Condon factors between vibrational state|nx> of
the bound diabatVb

d(x, y ) 0) and the continuum state|Ej > of the
dissociative diabatVc

d(x, y ) 0) at discrete continuum energies. A
vertical line marks the conical intersection energyECI. (a) solid line
(and circles) fornx ) 0; dotted line (and squares) fornx ) 1; (b) solid
line (and diamonds) fornx ) 2; dotted line (and triangles) fornx ) 3.
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tempting to associate this resonance width with regular tunneling
through the lower adiabatic PES; however, the resonance
lifetime is much longer(by about 5 orders of magnitude) than
the tunneling lifetime.

The lowest energy resonance ofB symmetry results from the
|0, 1 > vibrational level ofHb. We only consider the element
< 0, 1|HR|0, 1 > and its evaluation yields a resonance energy
in good agreement with that ofR ) 2.

2. Doublets of A and B Symmetries.Resonance numbers 3
and 4 of A symmetry arise primarily from the|1, 0 > and
|0, 2 > vibrational levels ofHb, which are close together
energetically. Since all other levels with an even number of
y-quanta are far away energetically, we may restrict ourselves
to anHR matrix of dimension 2; we take energyE ) 0.0285,
the average of the two bound state energies. Table 5 shows that
the results are in reasonable agreement. We successfully
reproduce the “switching” of the dominant contributor described
in section III. B. We also are able to explain the order of
magnitude difference in the widths of the two resonances: that
is, why one resonance is relatively short-lived and its partner
relatively long-lived. This is the result of the two vibrational
levels coupling to each other via the continuum; it is not due to
one level coupling strongly to the continuum and the other level
coupling weakly.

Resonance numbers 5 and 6 ofB symmetry emanate mainly
from the |1, 1 > and |0, 3 > vibrational levels ofHb and we
diagonalized the 2× 2 HR matrix at E ) 0.0375 au. The
observations made above concerning the doublet ofA symmetry
are also applicable to the doublet ofB symmetry.

3. Triplets of A and B Symmetries.Resonance numbers 7, 8,
and 9 ofA symmetry stem primarily from the|2, 0 >, | 1, 2 >
and |0, 4 > vibrational levels ofHb and, as the next lowest
vibrational level (the|3, 0 > level) is energetically far away,
we tookHR to be of dimension 3 evaluated at the average bound
state energyE ) 0.045. We see from Table 5 that there is good
agreement for two of the three resonance positions and the
percent contributions to the resonance states from the|nx, my >
levels are consistent. Diagonalization ofHR yields one broad
and two narrower resonances as found in the full conical
intersection study but the two narrower resonances have widths
from HR diagonalization that are factors of 3 to 5 too small.

Resonance numbers 10, 11, and 12 ofB symmetry have
contributions mainly from the|2, 1 >, |1, 3 > and |0, 5 >
vibrational states. As above for theA symmetry triplet, there is
relatively good agreement for two of the three resonance
positions, and we successfully predict which|nx, my > vibra-
tional state is the dominant contributor to a given resonance.
However, diagonalization ofHR yields one broad and two
narrower resonances, inconsistent with the (observed) two broad
and one narrow resonances; the approximate nature of theHR

analysis is becoming apparent at higher energies.
4. “Quartets” of A and B Symmetries.The highest energy

clusters of resonances ofA symmetry and ofB symmetry appear
in Figure 1 as triplets although four vibrational states|nx, my >
in general make contributions to the resonance states (see for
examples resonances 14 and 18 of Figure 4), and therefore, we
would expect to observe two quartets of resonances in the
complex scaling conical intersection study. As mentioned in
section III.A, we did find an apparent 19th resonance at 6.3×
10-2 - 2.6× 10-3i that was not very well-converged even with
a variety of complex scaling rotation angles. It is likely that
this very broad resonance is the fourth “missing” member of
the quartet ofA symmetry. As for the “missing” member of
theB symmetry quartet, it should be kept in mind that we only

sought converged resonances withER < 0.07; it is possible that
the position of the fourth resonance of the quartet exceeds this
limit.

V. Concluding Remarks

We have presented an analysis of the resonance states that
result from a conical intersection between a bound and a
dissociative electronic state. Because this is the first such study
of its kind to provide a detailed characterization of resonance
energies (including lifetimes) and wave functions, we have
focused on a two-coordinate system. The system under study
models the simplest type of conical intersection, that which
arises from two nondegenerate electronic states of different
symmetries coupled via a nontotally symmetric normal-mode
coordinate. This type of study is important for understanding
the role of conical intersections in nonadiabatic effects, such
as those accompanying the photodissociation of polyatomic
molecules.

The complex resonance energies and eigenfunctions are
computed using the complex coordinate method and a diabatic
potential energy representation. The resonances arise from the
vibrational states of the bound diabatic PES being predissociated
via the nonadiabatic coupling to the dissociative diabatic PES.
In fact, for calculational purposes, the bound and continuum
states of the (uncoupled) diabatic potential energy surfaces are
used as basis set functions for the resonance state wave function.
This choice for the basis sets makes it very easy to compute
the populations of the resonances on the diabatic surfaces as
well as the percent contributions to the resonance eigenfunctions
from individual vibrational levels of the diabatic surfaces.

A total of 18 resonances has been critically analyzed; they
are equally divided into 3 groups on the basis of their resonance
width. When the resonances are placed in increasing order of
their resonance positions (i.e., the real parts of their complex
resonance energies), we see that their widths fluctuate ir-
regularly; there is no correspondence between the positions and
lifetimes of the resonances. This is one of the dramatic effects
of the presence of the conical intersection.

We have found that, in general, the narrower the resonance,
the more it is localized on the bound diabatic PES. The very
broad, high energy resonances have over 50% population on
the dissociative diabatic PES. Upon calculating the contributions
from individual vibrational levels of the bound diabatic PES,
we observe, for resonances positioned close to each other, a
“switching” of the vibrational state making the dominant
contribution to the resonance. The states of the diabatic surfaces
that are the dominant contributors are very apparent in many
of the surface plots of the resonance eigenfunctions. However,
as more and more diabatic surface vibrational states make
significant contributions, the surface plots become more and
more complicated.

The vibrational states of the bound diabat contributing to a
given resonance state must have either even or odd values of
the number of quanta in the unsymmetric normal mode.
Furthermore, the states of the dissociative diabat that contribute
to a given resonance must have opposite parity to the vibrational
states of the bound diabat. These observations are easily
explained in terms of the vibronic symmetries of the resonances
themselves and we are able to divide the resonances into two
symmetry classifications,A andB. The positions of theA and
B symmetry resonances are well separated energetically. The
first resonance is ofA symmetry, followed by one ofB, then a
pair of A followed by a pair ofB; thereafter, resonances appear
in triples of alternating symmetry. It is clear that symmetry is
critical for a detailed understanding of the resonances.
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Although the resonance wave functions have been computed
using the diabatic representation, we are also able to discuss
the resonances in connection with adiabatic PES; this is done
by projecting the computed resonance eigenfunctions in the
diabatic representation on the adiabatic electronic states. We
have computed the population of the resonance state on the
upper adiabatic (cone) PES as well as the percent contributions
from individual bound states of the upper adiabatic surface. The
lowest energy resonance, whose position falls below the conical
intersection, has very little population on the upper adiabatic
PES, as is expected. The broad resonances tend to have a
significant population on the upper adiabatic cone but a number
of the narrower resonances do as well. However, none of the
resonances analyzed emanate from a specific adiabatic bound
(cone) state.

The lower dissociative adiabatic potential surface can itself
(i.e., in the absence of potential coupling) support resonance
states but we have found no apparent correlation between the
resonance energies of the dissociative adiabatic PES and the
resonance energies of the conically intersecting system. In
particular, the lowest energy resonance of the dissociative
adiabat has a width that is many orders of magnitude larger
than the lowest energy resonance in the conical intersection
study. Thus, the long lifetime of the latter resonance is not
attributed to a tunneling lifetime on the lower adiabatic surface
but rather is observed to be another dramatic effect of the
presence of the conical intersection. This phenomenon is generic
to conical intersections and deserves a special study.

We successfully have explained the long lifetime of this
lowest energy resonance, as well as many other features of the
resonance results, by introducing an effective HamiltonianHR

which describes the resonances in the vibrationally bound
subspace of the bound diabatic PES. The introduction ofHR

sheds light on the observation that the diabatic representation
provides a better zeroth order picture than the adiabatic
representation for the resonances characterized in detail in this
conical intersection study.

We have shown how, with the aid ofHR, a simple model
can be derived which provides an effective tool for analyzing
resonances induced by conical intersections. The analysis
utilizing HR shows that the resonances can be characterized by
a small number of vibrational states of the bound diabat which
couple to each other via the continuum of the dissociative diabat.
For example, for the doublet ofA (B) symmetry, that one
resonance is long-lived and its partner short-lived is seen to be
the result of the two vibrational levels coupling to each other
via the continuum; it is not due to one level coupling strongly
to the continuum and the other level weakly. We have provided
explanations why, for the highest energyA and B symmetry
resonances, only triplets of resonances have been identified,
rather than a pair of quartets. For theA symmetry cluster, the
missing member is likely to be a very broad resonance which
we tentatively have identified in the conical intersection study
as a 19th resonance. For theB symmetry cluster, the missing
member quite possibly has a resonance position outside of the
energy range of interest of this study.

Although we have concentrated here on a given set of
potential parameters and a particular value for the nonadiabatic
coupling strengthλ, we also briefly investigated the effects of
the variation ofλ on the resonance energies. The irregular
variation of the resonance energies with the coupling strength
is a result of the conical intersection.

This is the first study of its kind to provide a detailed
characterization of the resonance states induced by a conical

intersection between a bound and a dissociative electronic state.
The potential energy matrix used in the present study is
applicable to realistic systems and can be generalized to more
than two dimensions.
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