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The interplay between diffusive and convective mixing processes may have a strong impact upon apparent
reaction rates. This paper analyzes the interaction of convection and diffusion mechanisms by considering an
infinitely fast irreversible reaction A+ B f products, occurring in a two-dimensional chaotic flow. Attention
is focused on the geometric properties of mixing patterns and on the overall reactant consumption. We show
that the length of the reaction interface undergoes a transition from a kinematics-dominated exponential growth
to a persistent oscillatory regime. This regime results from two competing mechanisms, namely, recursive
stretching and folding of the interface caused by chaotic advection and merging of contiguous striations
patterns owed to diffusive transport. In the case of globally chaotic flows, a singular transition is observed in
the scaling of the dominant eigenvalue with the Peclet number. The geometric information arising from the
analysis of the reaction interface is also exploited for deriving a simple one-dimensional model that predicts
the apparent rates over a wide range of Peclet numbers.

1. Introduction

The possibility of obtaining high reaction yields in due time
in large scale volumes relies heavily upon the efficiency by
which the reacting species are brought into contact with one
another.1

A particularly critical case is represented by highly viscous
reactants that are mechanically stirred within industrial equip-
ment. In this case, the stirring process is designed to accomplish
a 2-fold task: (a) reduce the segregation length down to the
diffusive lengthscale and (b) generate interface between the
reactants by stretching and folding the reaction zone into a
foliated continuous lamellar structure.

If the characteristic time of reaction is short compared to those
of convection and diffusion (mixing-controlled reaction), then
the reaction zone is reduced to a two-dimensional interface that
acts as a boundary between the segregated reactants,2,3 (see
section 3). Besides its unquestionable practical relevance, this
physical setting deserves particular attention as it bridges the
notion of mixing structure from a purely kinematic (i.e.,
convective) frame to systems with molecular diffusion.

The nonlinear dependence of nearly all of the (bounded)
velocity fields W(x, t) of practical interest upon the spatial
coordinates makes closed-form solutions of the advection-
diffusion equation, with or without chemical reactions, generally
unattainable. For this reason, research efforts have been directed
toward the characterization of the mixing action due to
convection alone (i.e. in the absence of diffusion), assuming
that the effects owed to diffusion could be somehow superim-
posed a posteriori to the purely kinematic picture. (A conceptu-
ally analogous approach has also been applied to the advection-
diffusion of a vector quantity (i.e., the magnetic field) in the
so-called fast dynamo problem, by introducing the concept of
pulsed system.4)

In the diffusionless case, point tracers move according to the
kinematic equation

wherex is the tracer position. The solutions of eq 1 (i.e., the
point tracer trajectories) may exhibit remarkably complicated
features even when the flow field takes on very simple functional
forms. This phenomenon, generically referred to as Lagrangian
chaos, has been investigated in a wealth of systems, encompass-
ing prototypical models as well as industrially relevant flows,
to define what the essential features that make a flow field an
efficient mixer are. (see, e.g., refs 5-7 and references therein).

Motivated by the broader perspective of understanding the
interplay between convection-diffusion and chemical reactions,
more recent work has focused on the mechanisms of deforma-
tion of material interfaces as opposed to single particle
trajectories. It has been found that material interfaces, advected
by laminar chaotic flows, possess global invariant properties
that can be directly connected to the existence of invariant
manifolds within the chaotic region (a concise review of the
main results concerning chaotic advection is reported in section
3).

In parallel with this approach, several articles have focused
on the analysis of simplified premixed systems (lamellar
systems) undergoing finite-rate and infinitely fast reactions.8-10

These works are explicitly or implicitly based on a time-splitting
between the action of convection and that of diffusion, in the
meaning that mechanical agitation was accounted for only in
defining the initial conditions (i.e., the spatial distribution of a
one-dimensional array of lamellae of various thicknesses).
Starting from this “frozen” picture, the modification induced
by diffusion on the segregation patterns, within the otherwise
still medium, were theoretically and numerically investigated
in order to derive quantitative information on the overall reaction
rate and product formation. The results obtained in the above* To whom correspondence should be addressed.
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framework were extended to include the simultaneous action
of convection by using the concept of “warped time”,2,3 that is,
by assuming that the medium is subjected to a convective field
equivalent to the flow along the stable direction of a hyperbolic
stagnation point. This assumption is motivated by the fact that,
in a chaotic flow, lamellae are actually shrunk at an exponential
rate to maintain incompressibility, whereas they are locally
stretched along the unstable directions of the flow (see section
3).

In point of fact, the complexity of convective mixing
manifests itself through global features, namely, the folding of
lamellae, which brings into close contact portions of the fluid
that were not contiguous in the one-dimensional approximation
of the mixing space within the lamellar approach. This mech-
anisms contrasts the action of lamellar merging by molecular
diffusion, by introducing continuous generation of newborn
lamellae, which enter the one-dimensional space from the
“orthogonal direction”, i.e., from the dilating direction of the
flow.

A direct approach to simultaneously convecting-diffusing
systems (without chemical reaction) in the context of two-
dimensional periodically forced chaotic flows has been under-
taken in refs 11-13. In particular, Rom-Kedar and Poje11 focus
on the impact of the frequency of velocity oscillations upon
the maximum mass flux and find that a “Lagrangian steady
state” is established as a result of the combined action of
advection and diffusion. Tang and Bozer12 reformulate the
advection-diffusion equation in a Lagrangian framework.

Adrover et al.13 analyze the influence of chaotic advection
upon the diffusive transport of a tracer concentrated along a
one-dimensional subset of the mixing space. By tracking the
structure of the concentration contours, two global quantities
related to the structure of the concentration field are defined,
namely, the diffusional thickness and the area of diffusional
influence. It is shown that these quantities undergo nonmono-
tonic behavior with a transition from a kinematics-dominated
template to a complex oscillatory state.

Numerical simulations of advection-diffusion-reaction kinet-
ics in cellular and laminar chaotic flows have been performed
by Reidaga et al.,14,15,16by Liu and Muzzio,17 and by Zalc and
Muzzio,18 for finitely fast bimolecular reactions (parallel and
consecutive, respectively).

Reigada et al. focus mainly on the scaling of the reactant
quantities with time in order to determine the controlling regime
from characteristic scaling exponents, whereas Liu and Muzzio
and Zalc and Muzzio analyze the effects of the flow protocol
on the overall product formation and on the spatial heterogeneity
of the product distribution. By enforcing the analogy between
heat and mass transfer, it is worth mentioning the results by
Sawyers et al.,19,20 by Mokrani et al.,21 and by Raynal and
Gence22 on heat transfer in laminar chaotic flows, which focus
on the effects of chaotic stirring on the performances of heat
exchangers.

From this concise overview of the state of the art, three main
questions arise: (a) how does the presence of molecular
diffusion modify the geometry of partially mixed structures
caused by passive advection, (b) do invariant geometrical
patterns exist, arising from the interplay between chaotic
advection and diffusion, and finally (c) how can the geometrical
characterization derived from points a and b be applied for the
prediction of the overall conversion in the presence of chemical
reactions?

Throughout this article, we attempt to give an answer to these
fundamental issues by considering the dynamics of reaction

interfaces in the case of infinitely fast (instantaneous) reactions.
The application of Gale¨rkin (spectral) methods provides the most
convenient computational strategy for approaching the resulting
balance equations, in that they allow to bypass the spurious
numerical diffusion associated finite difference/volume/element
simulations.13

The main goals of this article can be summarized as
follows: (i) illustrate qualitatively and quantitatively the
geometric features of the partially mixed structures generated
by an infinitely fast reaction in two-dimensional chaotic flows,
(ii) show the occurrence of persistent/invariant patterns in the
dynamics of reaction interfaces, intrinsically controlled by the
presence of diffusion, the existence of which can be proved from
the analysis of the corresponding advection/diffusion equation
regarded as a dynamical system evolving in an abstract
functional space, (iii) provide numerical evidence that, however
small the diffusivity, the structure of invariant patterns in the
presence of diffusion differs from that associated with pure
advection (the existence of this singular behavior demands that
mixing indices, aimed at establishing the quality of the stirring
protocol in systems with molecular diffusion, be derived from
the analysis of the advection-diffusion equation), and (iv) use
the information arising form the geometric analysis to derive a
simple one-dimensional model for predicting overall reaction
rates and product formation.

The article is organized as follows. Section 2 formulates the
mathematical setting of the problem. Section 3 reviews suc-
cinctly the geometric properties of interface dynamics in chaotic
flows in the diffusionless setting. Section 4 defines the flow
systems and the numerical techniques used to approach instan-
taneous reactions and to track the reaction interface. Results
on the time evolution of the reaction interface lengthL(t) and
on the spatial interface structure are analyzed in section 5 for a
wide range of Peclet numbers and for different mixing protocols.
This section also exploits the functional setting of the advec-
tion-diffusion equation in order to explain the phenomenology
observed numerically. Section 6 discusses the singular limit of
the advection/diffusion equation for vanishing diffusivities in
the case of globally chaotic flows and addresses thoroughly the
asymptotic decay of reactant quantities. Finally, in section 7,
the knowledge of overall interface length is used for deriving a
one-dimensional model that predicts the overall reaction rate
over a wide range of the Peclet number.

2. Statement of the Problem

Throughout this article, we consider a bimolecular reaction
A + B f product that occurs in a incompressible medium
flowing with velocity v(x, t) in a bounded regionM. Flow
incompressibility dictates the velocity field be solenoidal, i.e.,
∇‚v ) 0.

We make the following assumptions about the system: (i)
the reaction is irreversible, i.e., it proceeds until complete
consumption of the limiting reactant, (ii) the physical properties
of the mixture (density, viscosity, etc.) do not depend on the
mixture composition, and (iii) reactants A and B are character-
ized by identical diffusivities within the mixture,DA ) DB )
D ) constant. Under these conditions, the mass balance
equations for the reactants read

∂CA

∂t
+ v‚∇CA ) D∆CA - kCACB (2)

∂CB

∂t
+ v‚∇CB ) D∆CB - kCACB (3)
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whereCA andCB are the molar concentrations of the reacting
species,∆ denotes the Laplacian operator, andk is the rate
constant of the reaction. Equations 2 and 3 are equipped with
the initial conditionsCA(x, t)|t)0 ) CA,0(x) andCB(x, t)|t)0 )
CB,0(x). Equations 2 and 3 can be made dimensionless by
rescaling concentration, length, and velocity with some reference
valuesCref, L, and Vref. This induces a rescaling of the time
scale by a factorL/Vref. Henceforth, we consider exclusively
the dimensionless formulation associated with eqs 2 and 3, and
we use the same symbolsCA, CB, x, v, and t to indicate the
corresponding dimensionless quantities.

By settingφ ) CA - CB, and by subtracting eq 3 from eq 2,
one obtains a linear advection-diffusion equation for the
concentration differenceφ:

where the Peclet number,Pe ) VrefL/D, is the dimensionless
group expressing the ratio of the characteristic time for diffusion
to that of advection. The diffusionless limit is hence given by
Pe f ∞.

When the characteristic time of reaction is much shorter than
those of convection and diffusion (infinitely fast reaction,k f
∞), the concentration productCACB vanishes within all of the
flow domain except on the interface between A and B, that is,
on the reaction interface.2 Thus, reactants remain segregated at
all times, and the evolution of the system expressed by eqs 2
and 3 is completely specified once the solutionφ(x, t) of eq 4
is known, because

The zero-level set of theφ function

identifies the reaction interface separating the species A and B
at time t.

The asymptotic persistence of the reaction interface depends
on the initial loading conditions, that is, on the global reactant
quantities

initially present in the system. IfΦ0 ) mA(0) - mB(0) * 0,
one of the two reactants (B ifΦ0 > 0, A otherwise) disappears
in finite time. Conversely, in the case whereΦ0 ) 0 (stoichio-
metric loading conditions), neither of the two reactants is
completely consumed in finite time, and the reaction interface
γ0(t) is a nonempty set of points for all positive values oft.
Unless otherwise specified, in the remainder of this paper, we
will focus exclusively on stoichiometric loading, to be able to
perform an asymptotic analysis of reaction interface and
segregation patterns.

In a broader context, the analysis of the level setγ<φ>(t),
where

wheremis(M ) denotes the measure (volume, area) of the mixing
space, provides an intrinsic geometric characterization of the

advection/diffusion equation eq 4, independently of the physical
meaning of eq 4 within the context of infinitely fast irreversible
reactions.

3. Diffusionless Setting: Chaotic Advection of Material
Interfaces

In the limit of vanishing diffusivity, eq 4 becomes

whereD/Dt denotes the material derivative, i.e., the derivative
taken along the trajectory of a fluid particle that moves with
velocity v(x, t). Assume the two reactants A and B are initially
segregated within the mixing spaceM into two disjoint regions
A, B with A ∪ B ) M. Let their concentration be uniform
within each region, i.e.,CA(x, 0) ) CA,0 if x ∈A, CA(x, 0) )
0 elsewhere, andCB(x, 0) ) CB,0 if x ∈B, CB(x, 0) ) 0
elsewhere. The differenceφ ) CA - CB takes valuesφ ) CA,0

if x ∈A andφ ) -CB,0 if x ∈B, and it is discontinuous with
a jumpCA,0 - CB,0 at the boundary∂A ) ∂B ) γ0(0) between
the two regions, withγ0(0) being a curve or a closed surface,
depending on whether the flow is two- or three-dimensional.
Because the solution of eq 9 is constant along the flow
determined byv(x, t), the knowledge of the interfaceγ0(t)
determined by advecting the pointsx ∈γ0(0) through eq 1
specifies completely the structure of the concentration field at
any given timet. (Clearly, beingD ) 0, the mass of both
reactants is conserved, as they cannot be transported to the
interface to react with one another.)

As pointed out in the Introduction, the qualitative and
statistical features of the solutions of eq 1 are nontrivial even
when the structural form of the velocity field is simple. The
intense research activity in the field of chaotic advection has
produced a wealth of results and observations, the majority of
which applies to laminar flows, that constitute the simplest
physical frame amenable to direct investigation. In particular,
theoretical,5,7,26computational,27,28and experimental6,29studies
focusing on two-dimensional time-periodic flows proved that,
in the limit of vanishing diffusivity, best mixing performance
is achieved when the stirring field is chaotic (i.e., when there
exists a subset of positive measure within the mixing space
characterized by a positive Lyapunov exponent). From the
geometric viewpoint, this condition ensures that a generic
segregated region be recursively stretched and folded by the
stirring flow toward a continuous yet recursively nested fila-
mented structure that invades densely all of the chaotic subregion
of the mixing space.23-25 The combined action of stretching
and folding causes a sustained exponential growth of the
intermaterial contact area, along with exponential shrinking of
lengths in the transverse direction, with the shrinking being a
consequence of flow incompressibility. Most importantly,
interface dynamics possesses invariant properties in the meaning
that the geometric structure attained by the interface at integer
multiples of the period of the flow becomes independent of both
time and initial condition, as the interface is progressively
transformed into one of the unstable leaves associated with the
Poincare` map of the flow. An example of these properties is
given in Figure 3 parts I and II and Figure 4 parts I and II for
the Sine Flow. Details about the flow system an the initial
interface structure are given in section 4. For the time being,
we only want to point out how the interface quickly develops
into a convoluted curve that fills densely the chaotic region of

∂φ

∂t
+ v‚∇φ ) 1

Pe
∆φ (4)

CA(x, t) )
φ(x, t) + |φ(x, t)|

2
,

CB(x, t) )
-φ(x, t) + |φ(x, t)|

2
(5)

γ0(t) ) {x| φ(x, t) ) 0} (6)

mR(0) ) ∫M
CR,0(x) dx, R ) A, B (7)

<φ> ) 1
mis(M)

∫M
φ(x, 0) (8)

∂φ

∂t
+ v‚∇φ ) Dφ

Dt
) 0 (9)
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the mixing space while maintaining the overall time-invariant
shape. As a macroscopic outcome of this growth template, the
overall length of the curve increases exponentially in time.

Another interesting aspect that emerges from the analysis of
chaotic advection is that all of the qualitative features described
above are generic in the meaning that they are shared by a large
class of nonlinear incompressible flows.

From the point of view of mixing efficiency, the enhancement
of the overall reaction rate caused by chaotic advection is
accomplished through two different mechanisms, namely, the
amplification of concentration gradients by the shrinking of
lengths in the stable direction of the chaotic region and the
stretching of the interface along the unstable directions. On the
other hand, to have a nonvanishing rate of reactants consump-
tion, a positive molecular diffusivity must be present in the
system, which modifies drastically the mixing patterns as it will
be discussed in section 5.

4. Flow Systems and Numerical Techniques

As a model system, we consider a well-know paradigm of
chaotic behavior, the Sine Flow system (SF), obtained by
blinking everyT/2 time units the two steady fieldsv1 ) (sin-
(2πy), 0) andv2 ) (0, sin(2πx)).30,24This model flow is defined

Figure 1. Poincare´ section of the Sine Flow system with (a)T ) 0.4,
(b) 0.8, and (c) 1.6. It can be observed how the size of quasiperiodic
islands is progressively shrunk as the flow period increases.

Figure 2. Poincare´ section for the Prototypical Cavity Flow atT )
0.6. The figure shows a segment of 103 iterates of a hundred particles
that were initially uniformly distributed along the liney ) 1/2. The
phase space landscape shows a main chaotic region intertwined with
quasiperiodic islands.

Figure 3. Comparison of the kinematic (Pe ) ∞) and reaction
interfaces atPe) 104 in the Sine-Flow atT ) 1.6 (the globally chaotic
protocol) (a-d) mixing patterns (white and gray) and reaction interface
(black line) at timesT, 2T, 3T, and 5T. (I and II) Kinematic interface
at the end of the first (I) and second (II) period.
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on the two-dimensional torus (i.e., on the unit squareM ) I2

equipped with periodic boundary conditions). While the geo-
metric and statistical properties of this type of flow have
been shown to be similar to those of physically realizable
systems, the absence of boundaries in the mixing space sim-
plifies remarkably the numerical solution of eq 4, allowing us
to perform accurate simulations at feasible computational ex-
penses. Figure 1 depicts the Poincare` section (i.e., the super-
imposed plot of the particle trajectories at multiple integers of
the flow period, starting from different initial positions) associ-
ated with the kinematic equation of motion eq 1 for three values
of the period. The caseT ) 0.4 (Figure 1a) is characterized by
two large islands of quasiperiodicity, which surround the chaotic
region, identified by theX-shaped random cloud of points. At
T ) 0.8 (Figure 1b), the spatial extension of quasiperiodic
islands is significantly reduced, and forT ) 1.6 (Figure 1c),
the chaotic region appears to invade the entire mixing space.

The most convenient approach for solving numerically eq 4
is the Gale¨rkin (spectral) expansion of the functionφ, because
it is intrinsically free of numerical diffusion, which is instead
unavoidably associated with finite differences (FD), finite
volume (FV), and even finite elements (FE) methods.31 The
spurious effects of numerical diffusion can be overcome by
using a spectral expansion, i.e., an integral approximation based
on a generalized Fourier series expansion with respect to the
complete system of eigenfunctions of the Laplacian operator.

Owing to the periodic structure of the torus and of the velocity
field defining the SF system, this representation coincides with
the classical Fourier series expansion:

where i ) (-1)1/2. By substituting this expression into eq 4,
the following infinite-dimensional linear tri-diagonal system of
ODEs for the coefficients during the first half-periodT/2 (motion
along thex-axis) is obtained:

where φ̇h,k ) dφh,k/dt. An analogous equation is obtained for
the second half-period by interchanging the indicesh andk.

Equation 11 was solved numerically for 102 e Pee 105 with
h, k ∈ - N, ...,N, whereN (the number of modes is (2N + 1)2)
varied from 80 (for the lowestPe) to 300 (forPe ) 105). The
number of modes was chosen so as to ensureN independence
of the solution in the normL2. For the time-integration, we used
both an implicit second-order scheme and a fourth-order
Runge-Kutta algorithm. The two methods yield basically
identical results.

To determine both the spatial patterns, and the overall
interface length, the values ofφ(x, t) on a square mesh of 512
× 512 nodes were computed by means of a standard fast-Fourier
transform (FFT) routine. The use of the FFT algorithm is
essential in that a direct computation the nodal values ofφ(x,
t) through eq 10 would result in exceedingly long CPU time.

Once the functionφ(x, t) was computed on a square grid of
points, its nodal values were linearly interpolated, and the
reaction interfaceγ0(t) was determined as the intersection of
the globally continuous piecewise triangular surface with the
planeφ(x, t) ) 0. The mesh utilized proved fine enough to
resolve the details of mixing patterns for all of the finitePe
values considered.

To verify the generality of the results derived, we also
consider the case of a wall-bounded two-dimensional flow, the
prototypical cavity flow (PCF). While the PCF closely mimics
the structure of the Stokes flow within a rectangular cavity with
moving walls (cavity flow), it allows us to avoid the interpola-
tion problems that are associated with the numerical solution
of the Stokes equation in a rectangular cavity. The PCF stems
from the following definition of the flow stream function:

The resulting velocity field is given by

The stream functionψ(x, y) defined by eq 12 satisfies the
boundary conditions for a cavity flow system in which the upper
wall parallel to thex axis is moving and the other walls are
static: The velocity field associated with the motion of the

bottom wall can be readily obtained from eq 12 by enforcing
the symmetriesVx

bw(x, y) ) -Vx
tw(x, Ly - y) andVy

bw(x, y) )
Vy

tw(x, Ly - y), where vtw and vbw are the velocity fields

Figure 4. Comparison of the kinematic (Pe ) ∞) and reaction
interfaces atPe ) 104 in the Sine-Flow for a mixing protocol with
large quasiperiodic islands (T ) 0.4). (a-d): mixing patterns (white
and gray) and reaction interface (black line) at times 20T, 30T, 50T,
and 60T. (I-II): Kinematic interface at time 20T (I) and 30T (II).

φ(x, t) ) ∑
h,k)-

∞

φh,k(t) exp[2πi(hx + ky)] (10)

φ̇h,k ) - 4π2

Pe
(h2 + k2)φh,k - πh(φh,k-1 - φh,k+1) (11)

ψ(x, y) ) ψo sin2(πx
Lx) sin(πy2

Ly
2) (12)

Vx ) - ∂ψ
∂y

) -
2πψoy

Ly
2

sin2(πx
Lx) cos(πy2

Ly
2)

Vy ) ∂ψ
∂x

)
2πψo

Lx
sin(πx

Lx) cos(πx
Lx) sin(πy2

Ly
2) (13)

Vy|x)0 ) Vy|x)Lx ) Vy|y)0 ) Vy|y)Ly ) 0

Vx|x)0 ) Vx|x)Lx ) Vx|y)0 ) 0, Vy)Ly )
2πψo

Ly
sin2(πx

Lx
) (14)
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associated with the motion of the top and bottom walls,
respectively.

We consider the caseψo ) 1, Lx ) Ly ) 1, so that the period
T is the parameter characterizing the stirring protocol. Figure 2
shows the Poincare` section of the PCF flow atT ) 0.6. This
value of the period shows the occurrence of a main central
chaotic region surrounded by smaller invariant chaotic sets,
intertwined with islands of quasiperiodic motion.

The difference field in the square cavity flow (Lx ) Ly ) 1)
satisfies the zero-flux boundary condition at the cavity walls

The system of eigenfunctions of the Laplacian operator equipped
with these boundary conditions{Rn,m(x, y)} is given by

Likewise for the SF system, the advection/diffusion equation
can be reduced to a system of ordinary differential equations
by enforcing a Gale¨rkin expansion with respect to the orthogonal
system{Rn,m(x,y)}. Details are not reported here, because the
resulting equations are lengthy and their derivation is redundant
for the main goals of this article.

5. Reaction Interface Dynamics

As an initial condition to investigate the evolution of interface
dynamics, we chose

whereη(x) is the unit step function (η(x) ) 1 for x > 0, and
η(x) ) 0 for x > 0), corresponding to a unit initial mass of the
reactants that are spatially organized into two vertical stripes
each of which occupies half of the unit squareI 2. For the Sine-
Flow system, the boundary between reactants is given by the
two segmentsx ) 0 andx ) 1/2 (0 < y < 1) as the two vertical
boundaries of the unit squarex ) 0 andx ) 1 are identified on
the torus. The kinematic interface in the limitPe) ∞ is obtained
by advecting the points of the segment through eq 1.

Figure 3a-d shows the segregation patterns (white and gray)
and the reaction interfaceγ (black line) in the SF for a mixing
protocol specified by a periodT ) 1.6 atPe) 104 at timesnT,
with n ) 1, 2, 3, and 5, respectively. In the same figure, the
structure of the kinematic interface (Pe ) ∞) is shown at the
end of the first (I) and second (II) periods. It is worth noting
that the valueT ) 1.6 of the switching period yields a nearly
globally chaotic protocol (compare with Figure 1). In this
situation, the stroboscopic evolution of the kinematic interface
undergoes invariant space-filling exponential growth, as can be
observed from Figure 3 parts I and II. Snapshots of the kinematic
interface at later times (not shown here for brevity) yield what
is essentially the same structure supplemented with increasingly
fine detail.

Comparison of Figure 3 parts a and I shows that at the end
of the first period the reaction interface is indistinguishable from
the corresponding kinematic (Pe ) ∞) interface. The situation
changes drastically at the end of the second period, as can be
observed by comparing Figure 3 parts b and II. Diffusion swiftly
merged and erased many of the fine scale structures, causing
an enormous reduction of the overall interface length. The
patterns corresponding to the third and fifth period (Figure 3
parts c and d) show the attainment of a persistent oscillatory
behavior in the geometry of the structures. These oscillatory

patterns can be seen qualitatively as the resultant of a dynamical
equilibrium between two competing mechanisms, namely
the convection-driven generation of interface and the merging
of neighboring patterns caused by molecular diffusion. Although
these mechanisms have been hypothesized since the early studies
focusing on the interaction between convection and diffusion,
direct quantitative investigation of this phenomenon with respect
to interface evolution in two-dimensional time-dependent flows
has never been undertaken, to the best of our knowledge.

An important question arises as to the role of chaos in
determining the dynamics of reaction interfaces. To explore this
issue, we analyzed the case of a stirring protocol that possesses
large islands, as can be obtained, for example, by setting the
periodicity of the sine flow system to the valueT ) 0.4 (Figure
1a). Figure 4 parts I and II shows the snapshots of the kinematic
(Pe) ∞) interface at timesnT, with n ) 20 and 30, respectively.
In this case, the material interface undergoes altogether different
stretching processes inside and outside the chaotic region, with
the overall rate of growth being exponential in the chaotic region
(X-shaped area in the figures), and linear within the islands.
The corresponding reaction interfaces atPe ) 104 (Figure 4
parts a and b) coincide with the kinematic template within the
islands, whereas the fine structure of the diffusionless limit
inside the chaotic region is evidently blurred into one large
lamella at the times considered.

Snapshots of the reactive patterns at later times (n ) 50,
Figure 4c, andn ) 60, Figure 4d) again point to a persistent
oscillatory evolution in the mixing patterns.

An overall quantitative description of interface dynamics can
be obtained by tracking the length of the reaction interfaceL(t)
vs time. We consider a wide range ofPe ) 102 ÷ 105 for the
two mixing protocols (T ) 0.4 and 1.6). Figure 5a shows the
results for the nearly globally chaotic caseT ) 1.6, atPe )
103, 104, and 105 (continuous lines), together with the growth
of the length of the kinematic interface (line with points). For
each of thePe considered, we can unambiguously identify
a crossover timet* ) t*(Pe) (and a corresponding breakup
length L*) beyond which the dynamics of reaction inter-
faces departs irreversibly from exponential kinematic growth
and settles into a bounded oscillating pattern around a charac-
teristic average length depending on bothPe and the mixing
protocol.

The caseT ) 0.4 (Figure 5b) displays more complex features.
Here it is possible to identify two separate crossover timestC

/

andtP
/ corresponding to the breakup of the kinematic interface

inside and outside the chaotic region, respectively. FortC
/ < t

< tP
/, the interface undergoes an oscillating restructuring

driven by repeated merging events inside the chaotic region,
whereas the overall trend of monotonic growth is driven by the
fraction of interface that falls within the islands. If we target
thePe) 104 case (second curve from below), the breakup time
tP
/ is of the order oftP

/ ) 11.6, which corresponds to ap-
proximatelyn ) 28 periods, whereastC

/ ) 2.1. Comparison of
the kinematic and reaction interfaces atn ) 30 (t ) 12; Figure
3 parts b II) supports the observation that significant merging
of structures within the islands begins only at times larger than
tP
/ ) 11.6. We note that the high-frequency fluctuations (in the

time-scale of a half-period) clearly detectable forT ) 0.4, and
especially at high Peclet numbers, are not spurious consequences
of numerics but rather derive from merging and restructuring
events between parts of the interface that lie “at the border”
between the quasiperiodic and chaotic regions.

∂φ

∂x
|x)0,Lx

) 0,
∂φ

∂y
|y)0,Ly ) 0 (15)

Rn,m(x, y) ) cos(nπx) cos(mπy), n,m ) 0, 1, ... (16)

φ(x, 0) ) 2 - 4η(x - 1/2) (17)
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Qualitatively analogous results are observed for the PCF
(Figure 6). Again, at short times, kinematic (Figure 6I) and
reaction (Figure 6a) interface are substantially identical, whereas
at later times, the fine-scale structure of the kinematic interface
(Figure 6 parts II and III) finds no correspondence in the reaction
interface (Figure 6 parts b and c), because molecular diffusion
cannot support the presence of such small length scales. Figure
7 depicts the behavior of the length of the reaction interface
for the PCF flow atT ) 0.6 andPe) 103. As already observed
for the SF system, the length of the reaction interface follows
initially the kinematic template and settles asymptotically onto
a regime of persistent oscillations.

With our attention turned back to the SF system, it is worth
noting that the breakup timet* does not correspond to the
extinction of the reaction. Indeed, by targeting theT ) 1.6 case,
one obtainsmA(t*) ) 0.40, 0.56, and 0.66 forPe ) 103, 104,
and 105, respectively. This implies that for high Peclet numbers
the major contribution to reactant consumption occurs in the
mixed regime (t > t*) rather than in the kinematics-controlled
regime (t < t*). Moreover, in the mixed regime, the partially
mixed structures attain an almost constant average thickness
approximately equal to 1/L*.

Figure 8 shows the scaling of the breakup lengthL* vs the
Peclet number for bothT ) 0.4 and 1.6. In the first case, both
L(tC

/ ) andL(tP
/) are shown. In all of the cases examined,L*(Pe)

∼ Peν over three decades, whereν ) 1/8 for L(tC
/ ), ν ) 1/3 for

L(tP
/), and ν ) 0.4 for L* at T ) 1.6. With our attention

focused on the nearly globally chaotic case (which is not further
complicated by the occurrence of merging events in the chaotic
and quasiperiodic regions), the behavior ofL* vs Pe can be
explained by means of elementary scaling arguments. The first

breakup of the reaction interface, which coincides with the
kinematic interface up to that time, occurs when the diffusional
lengthscaleldiff ) (2t/Pe)1/2 is of the same order of magnitude
as the average lamellar thickness 1/Lkin(t), i.e., ldiff(t*) )
RL-1

kin(t*). In the last relationship, the prefactorR ∼ O(1)
accounts for the heterogeneity in the spatial behavior of the
short-time Lyapunov exponents, which determines the fine
structure of the local striation thickness, and can be estimated
from a single simulation experiment at low Peclet number, e.g.,
Pe ) 102. The length of the kinematic interface is given by
Lkin(t) ) L0 exp(htopt/T), L0 ) 2, wherehtop is the topological
entropy of the system estimated from its Poincare` map (htop )
2.33 for T ) 1.6). t* is therefore implicitly expressed by the
equationPe ) 8R2t* exp(2θt*/T), with R ) 0.62 forT ) 1.6.
The agreement of this simple model (solid line in Figure 8)
with the simulations (triangular symbols) is satisfactory in view
of the fact that interface breakup is an extremely complex
process, in which the spatial heterogeneity of the local stretching
field plays a significant role.

All of these qualitative observations find a rigorous explana-
tion in the analysis of eq 4 within the context of the theory of
infinite dimensional dynamical systems32 and follow from
spectral theory of linear (albeit not self-adjoint) operators in
Hilbert spaces.33 Let us consider the case of the SF system
defined on the unit square with periodic boundary conditions.
Equation 4 is an evolution equation generated by the advection/
diffusion operator

in a subspace [this subspace is the Sobole¨v spaceḢ per
1 (I 2) of

square integrable functions onI 2 ) [0, 1] × [0, 1] possessing
zero mean square integrable first order partial derivatives
(gradient)] of the functional space of square summable functions
on the unit torusLper

2 (I 2), the norm of which is given by

In the case of piecewise-steady time-periodic flows (such as
the SF system), the operatorL [φ;t] reduces to two distinct
autonomous operators

wherei ) 1, 2 corresponds to the first and second half period
of motion.

Associated with eq 4 in the presence of time-periodic velocity
fields with instantaneous switching, a Poincare´ operator in the
space of square summable functionsP, Lper

2 (I 2) f Lper
2 (I 2),

can be defined as

where° indicates composition. The Poincare´ operator maps the
difference functionφ(x, t ) nT) into the functionφ(x, t ) (n +
1)T) after one period of motion.

The Poincare´ operator is linear, and therefore, its asymptotic
properties depend on its eigenvalue-eigenfunction structure.
A first property follows from the dissipative nature of the
advection-diffusion equation eq 4. After elementary manipula-
tions (by multiplying eq 4 withφ(x, t), and by integrating over

Figure 5. Length of the reaction interfaceL(t) vs time for the Sine
Flow atT ) 1.6 (a) and 0.4 (b). Continuous lines:Pe) 103, 104, and
105. Dotted line: kinematic interface.

L[φ;t] ) - v(x, t)‚∇φ + 1
Pe

∆φ (18)

||φ(t)|| ) [∫I 2φ
2(x, t) dx]1/2, φ ∈ Lper

2 (I 2) (19)

Li ) - vi(x)‚∇ + 1
Pe

∆, i ) 1, 2 (20)

P [φ] ) expL2T/2°expL1T/2
φ (21)
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I 2), it is straightforward to show that for anyt > 0

where

Consequently, all of the eigenvalues{µi} associated with the
Poincare´ operator possess a modulus strictly less than 1 for any
Pe > 0.

The asymptotic regime is controlled by the fundamental mode
(or modes) corresponding to the eigenfunction (or to the
eigenfunctions) associated with the eigenvalue possessing lowest
modulus, sayµ1. Two cases may arise, depending on whether
µ1 is real or complex.

If the dominant eigenvalueµ1 is real, the stroboscopic
sampling of the functionφ(x, t) behaves as

where ψ1(x) is the dominant eigenfunction of the Poincare´
operator associated withµ1, a0 is a constant related to the

Figure 6. Comparison of the kinematic (Pe ) ∞) and reaction interfaces atPe ) 103 for the prototypical cavity flow atT ) 0.6. (a-c) Mixing
patterns (white and gray), and reaction interface (black line) at the end of the first, second, and third period, respectively. (I-III) Structure of the
kinematic interface at the corresponding time instants.

d||φ||2
dt

) - 2
Pe

||∇φ||2 (22)

||∇φ||2 ) ∑
i
∫(∂φ∂xi

)2

dx (23)

φ(x, nT) = (-sign(µ1))
na0e

-nlog(1/|µ1|)ψ1(x) (24)

Analysis of Mixing Structures in Chaotic Flows J. Phys. Chem. A, Vol. 106, No. 23, 20025729



projection of the initial condition onto the subspace spanned
by ψ1(x), and sign(‚) is the sign function (sign(µ1) ) 1 if µ1 >
0 and sign(µ1) ) - 1 if µ1 < 0). In this case, the reaction
interface sampled att ) nT coincides with the zero level set of
the eigenfunctionψ1(x). The stroboscopic sampling of the length
of the reaction interface saturates toward a constant value (given
by the overall length of the zero level set of the real eigen-
functionψ1(x)), and the decay of theL2 norm of the difference
function is exponential. This is for example the case of the SF
system atT ) 1.6, i.e., in the globally chaotic case.

Conversely, if the dominant eigenvalue is complex,µ1 )
|µ1|eiω1, ω1 * 0,π (and consequently there exists also its complex
conjugate|µ1|e-iω1), the dominant eigenspace is two-dimensional
and is spanned by the real and imaginary parts of the complex
eigenfunctionψ1(x) ) ψ1

r (x) + iψ1
i (x) associated withµ1. In

this case,ψ(x, nT) scales asymptotically as

wherea0 and b0 are the coefficients of the projection of the
initial profile onto the subspace spanned byψ1

r (x) and ψ1
i (x).

The stroboscopic sampling of the length of the reaction interface
displays periodic or quasiperiodic oscillations depending on
whetherω1 is rational or irrational. An example of this behavior
is given by SF protocols that possess islands of quasiperiodic
motion, e.g.,T ) 0.4 and 0.8.

To conclude the analysis of the geometry of reaction interface,
let us briefly address the connection between finitely and
infinitely fast reactions. The understanding of reaction interface
dynamics for instantaneous reactions constitutes an important
preliminary step to approach the finite-rate reaction case, which
is further complicated by the presence of the nonlinear reaction
term, such as- kCACB in the bimolecular case. In this case,
the advection-diffusion-reaction equation is characterized by
two dimensionless parameters, namely, the Peclet numberPe
already introduced and a dimensionless rate constantκ ) kCrefL/
Vref ) (kCrefL2/D)/Pe. Intuitively, one expects that in cases where
the reaction is not too slow (i.e.,κ . 1) the structure of the
reaction zone, identified through the productkCACB, must
have a close connection with that of the infinitely fast case.
As a quantitative confirmation of this observation, Figure 9
shows the comparison between the infinitely fast reaction
interface (Figure 9a-c) at Pe ) 5 × 103, κ ) 10Pe in the
SF system, and the contour plot of the normalized product
CACB/maxx∈M(CACB). It can be noticed that the “hot spots” of
the reaction, i.e., the spatial locations where the rate of product
generation is the highest, are centered around the reaction
interface corresponding to the limit of infinitely fast reaction,
which acts as a sort of backbone around which the kinetic
process is organized. This geometric observation is further
supported by the analysis of overall reactant consumption
(Figure 10). Becauseκ ) 10Pecorresponds to a relatively fast
reaction, the overall reactant decay at short and intermediate
time scales follows the trend characterizing the instantaneous
case. Of course, at very larget, the decay of the finitely fast
bimolecular case follows the scalingmA(t) ∼ t-1, whereas
instantaneous reactions decay exponentiallymA(t) ∼ exp(-λt).
Nevertheless, at short/intermediate time scales, i.e., in the
convection controlled regime, the geometric information related
to the evolution of the reaction interface may prove useful as
qualitative and quantitative tool for the interpretation of the
dynamics of finitely fast chemical reactions. The scaling theory
of finitely fast reactions has been considered in detail by Sokolov
and Blumen.9

6. Asymptotic Scaling in Globally Chaotic Flows
This section addresses the scaling properties of reactant

consumption vs time in the asymptotic regime. The presence
of a diffusive contribution, no matter how largePe, can be
viewed as a singular perturbation of the advection equation,
which switches from a first order (hyperbolic) equation, the
solution of which is controlled by its characteristic lines, to a
second order (parabolic) equation, possessing dissipative be-
havior. This is a generic statement, valid for arbitrary velocity
fields, yet it tells us very little about the coupling between
diffusion and advection. In point of fact, the interplay between
molecular diffusion and convection in a globally chaotic time-
periodic flow seems to yield a new singular phenomenon which
has no counterpart for two-dimensional steady flows and, to
the best of our knowledge, has not yet been reported in the
literature. Specifically, we provide numerical evidence for a
singular behavior, analogous to a phase transition, of the
exponent controlling the asymptotic rate of reactant decay as a
function of the Peclet number. We support this observation by
means of scaling arguments.

Indeed, from the functional setting outlined at the end of
section 5, it follows that for square-integrable and bounded
velocity fields, and for any value of 1/Pe > 0, reactant decay
(or, equivalently, theL2 norm of φ) undergoes an asymptotic
exponential decay:

Figure 7. Length of the kinematic (line a) interface and of the reaction
interface (line b) vs time for the PCF flow atT ) 0.6 andPe ) 103.

Figure 8. Scaling of breakup lengthL*( tC
/ ) vs Pe for the SF. (4), T )

1.6; (°), T ) 0.4. The continuous line represents the prediction ofL*
) L*(Pe) derived from scaling arguments (see main text) for the case
T ) 1.6. The boxes (0) representL*( tP

/) at T ) 0.4.

φ(x, nT) = (-sign(µ1))
ne-nlog(1/|µ1|){[a0ψ1

r (x) - b0ψ1
i (x)]

cos(nω1) - [a0ψ1
i (x) + b0ψ1

r (x)]sin(nω1)} (25)

||φ(t)|| ∼ mA(t) ∼ e-λ(Pe)t (26)
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whereλ(Pe) ) log(1/|µ1|)/T is related to the absolute value (or
to the norm, depending on whetherµ1 is real or complex) of
the dominant eigenvalue of the Poincare` operator,P, defined
by eq 21. This result is in apparent contrast with the superex-
ponential (exponential of an exponential, EE) scaling law
determined by Tang and Boozer.12 The paradox arises as a direct

consequence of the fact that the authors consider a discrete
model (the Arnold’s cat map, ref 34) in place of the continuous
advection-diffusion equation. On the basis of this assumption,
they derive a purely diffusive equation characterized by tensor
diffusivity whose component along the stable direction increases
exponentially in time, while being independent of the spatial

Figure 9. Comparison between the reaction interface for an infinitely fast reaction, and the reaction zone atPe ) 5 × 103 andκ ) 10Pe (SF
system atT ) 1.6). (a-c): infinitely fast reaction interface at the end of the first- second- and third period. (d-f): contour plot of the product
CACB/maxx∈M(CACB) at the same time instants.
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position. An analogous assumption is discussed in ref 9 in the
context of one-dimensional approximate lamellar systems,
leading to the same (EE) law.

In the case 1/Pe) 0, from eq 22, it follows||φ(t)|| ) constant,
and therefore

We are interested in the scaling behavior of the decay exponent
λ(Pe) vs Pe at high Pe, because the decay exponent can be
viewed as the order parameter of the singular transition from
pure convection to convection-diffusion phenomena.

To this purpose, it is useful to compare the scaling behavior
of λ(Pe) for several typical situations. In the case of pure
diffusion on the torus, it results

(The meaning of the Peclet number in the absence of convection
might seem ambiguous becauseVref is undefined. However, the
torus topology allows us to bypass this ambiguity by considering
a constant vector field of constant orientation and magnitude
Vref. Independently of the orientation andVref, the advection-
diffusion equation is transformed into a diffusion equation with
constant diffusivity when written in the convected coordinates.
Therefore, the physical meaning of eq 28 is that the decay
exponent is proportional to the diffusion coefficient. We prefer
to keep thePenotation even for this case, as we are interested
in comparing the diffusional scaling eq 28 with the dependence
of λ(Pe) vs Pe in other regimes.) According to eq 28, the order
parameter in pure diffusion converges smoothly toλ(∞) ) 0
with a Pe-1 behavior.

Figure 11 shows the decay ofmA(t) in a two-dimensional
autonomous flow, over a broad range ofPe. The velocity field
is given byv(x) ) v1(x), i.e., the velocity field in the first half
period of the time-periodic SF system. We refer to this case as
the autonomous SF system. The initial conditions are given by
eq 17 as in section 5. The autonomous SF system possesses
intrinsic symmetries, because the velocity field has solely a
nonvanishing component directed along thex direction. For any
initial distribution of the reactants that does not depend on the
x coordinate, the advective contribution vanishes, and the
balance equation reduces to a purely diffusive motion. For
generic initial conditions violating this elementary symmetry
of the system, an effective interplay between advection and

diffusion occurs. The asymptotic slopes depicted in Figure 13
line b indicate thatλ(Pe) converges to zero as

whereA is a positive constant. (The numerical results for the
dominant eigenvalue obtained from the asymptotic exponential
decay of reactant are confirmed by the direct estimate of the
eigenvalue spectrum. For the Autonomous SF, the coefficient
matrix reduces to a block structure, in which each block is
tridiagonal, see eq 11. In point of fact, the use of exponential
mass-loss scaling with time is a classical, robust, and widely
applied method to estimate the dominant eigenvalue in linear
transport theory.37) The exponent1/2 in the scaling of the decay
exponent withPe is the signature of the convection-enhanced
regime typical of two-dimensional autonomous flows. Equation
29 can be viewed as the consequence of the scaling properties
of the effective diffusion coefficient, justified by Childress and
Soward35 by means of boundary-layer arguments and proved
mathematically by Fannjiang and Papanicolau36 through varia-
tional methods.

Let us now consider the case of a globally chaotic flow, such
as the SF system atT ) 1.6. Figure 12 shows the reactant decay
in the range [102, 105]. As can be observed, the slope of these
curves in a normal-log plot saturates toward a constant value
as depicted in Figure 13 curve c. This means that

Figure 10. Reactant concentration decay for a finitely fast reaction (κ

) 10Pe, Pe ) 5 × 103) for the SF system atT ) 1.6 (line a). Line b
is the decay for the corresponding infinitely fast reaction under the
same conditions.

λ(∞) ) λ(Pe)|1/Pe)0 ) 0 (27)

λ(Pe) ) 4π2

Pe
(28)

Figure 11. Reactant concentration decay for the autonomous SF system
v(x) ) v1(x). The arrow indicates increasing values ofPe ) 102, 103,
and 104.

Figure 12. Reactant concentration decay for the SF system atT )
1.6 for Pe ) 103, 2 × 103, 5 × 103, 104, 4 × 104.

λ(Pe) ∼ A

xPe
, Pef ∞ (29)

λ(Pe) = λ∞ ) constant* 0, Pef ∞ (30)
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The scaling exponent of the order parameter withPeis therefore
equal to 0, and eq 30 implies the occurrence of a discontinuity
for Pe f ∞

This discontinuity can be viewed as a kind of a phase transition,
which finds no correspondence in the case of two-dimensional
autonomous velocity fields. The comparison of the scaling laws
expressed by eqs 30 and 29 points to a definitely more
pronounced interplay between advection and diffusion in the
globally chaotic case than in a regular (non chaotic) flow.
Intuitively, this can be explained as the balancing between
competing mechanisms, namely, of the tendency of chaotic
advection to increase exponentially the length of material
interfaces and the action of diffusion that levels concentration
gradients out. Next, we justify eq 30 through scaling arguments.

Because d||φ(t)||2/dt ∼ -2λ(Pe)||φ(t)||2, asymptotically, from
eq 22 it follows for larget

where we definedg ) ∇φ. To provide an example confirming
eq 32, Figure 14 shows the time behavior of the quantity||g||2/
||φ||2, for several values of the Peclet number, compared with

the quantityPeλ(Pe). Therefore, the ratio

becomes asymptotically a function of the Peclet number, and
the quantitys(Pe) can be physically interpreted as the width of
the boundary layer on which the concentration gradients are
localized. Equation 33 can be viewed as a definition ofs-1(Pe)
in terms ofλ(Pe), s-1(Pe) ) [Pe λ(Pe)]1/2.

The issue is therefore reduced to obtaining an expression for
the L2 norm of the gradient||g||. This can be achieved by
manipulating eq 4 (essentially by taking the gradient, performing
the dot product of the resulting equation with∇φ, and finally
integrating over the space) so as to obtain the evolution equation
for ||g||2:

where||∇gi|| is the norm of gradient of theith component of
the vectorg and

The latter term is the rate of stretching of the square norm of a
vector field, which for a globally chaotic flow, is proportional
to ||g||2

whereK is a positive constant that does not depend onPe.
The conjecture eq 36 stems from the properties of globally

chaotic flows. Equation 36 implies that the rate of stretching of
the norm of a vector because of the effects of advection

is independent of the Peclet number. Indeed, in the diffusionless
setting (1/Pe ) 0), the square norm of a vector field grows
exponentially as a function of time,||g(t)||2 = ||g(0)||2e2θt, where
θ is the topological entropy of the flow.38,39 Consequently,∆-
(t) is a function of time, the mean value of which

converges to the topological entropyθ for t f ∞. Thus, the
estimate eq 36 implies that the quantity∆(t), where the vector
field g is just the gradient ofφ, would behave as in the
diffusionless limit for largePe in the presence of a globally
chaotic flow. To support this conjecture, Figure 15A shows the
behavior (Within the numerical approach based on Gale¨rkin
expansion, the integral quantities entering eq 37 associated with
field gradients can be directly expressed in terms of the spectral
coefficientsφnm of the field φ, thus avoiding discretization in
performing the derivatives.) of∆(t) in the case of the SF atT
) 1.6 for two values ofPe spanning two decades, and Figure
15B shows the averaged quantity∆I(t). As conjectured,∆(t) is
on average independent ofPe, and∆I(t) converges for anyPe
large enough toward a constant value independent ofPe, close
to the topological entropy of the flow. Because d||g||2/dt = -
2λ(Pe)||g||2, it results||∇gi||2 = As2-(Pe)||gi||2 ∼ As2-(Pe)||g||2/

Figure 13. λ(Pe) vs Pe. Squares: SF atT ) 1.6. Circles: SF atT )
0.8. The continuous lines represent the scaling lawsλ(Pe) ) R/Pe
(whereR is a constant), and the scalingλ(Pe) ) 4π2/Pethat corresponds
to a purely diffusive process.

Figure 14. Time behavior of||g(t)||2/||φ(t)||2 for the SF system atT
) 1.6 for several values of the Peclet number. (a)Pe) 100, (b) 1000,
(c) 10000. The straight lines parallel to thex axis are the corresponding
values of the quantityPeλ(Pe).

lim
Pef∞

λ(Pe) ) λ∞ * λ(∞) ) 0 (31)

λ(Pe) =
1
Pe

||g||2
||φ||2

(32)

||∇φ||
||φ|| ) ||g||

||φ|| = s-1(Pe) (33)

d||g||2

dt
) -2∫I2 (∇v): g gdx -

2

Pe
∑

i

||∇gi||2 (34)

- ∫I2(∇v): g gdx ) - ∑
i,j
∫I2

∂Vi

∂xj

gigj dx (35)

-∫I2(∇v): g gdx = K||g||2 (36)

∆(t) ) - 1
||g||∫I2(∇v): g gdx (37)

∆I(t) ) 1
t∫0

t
∆(τ) dτ (38)
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2, whereA is a positive constant independent ofPe. This scaling
expression follows straightforwardly from eq 33 applied toφ

) gi, i ) 1, 2, and from the fact that||g1|| ∼ ||g2|| ∼ ||g||,
because the two components of the vectorg scale with timet
in the same way. By combining this result with eq 32, it follows

From eq 33,λ(Pe) ) s-2(Pe)/Pe, and therefore

which corresponds to the scaling observed in the numerical
simulations. (To sum up, the scaling argument proposed is
derived through simple algebraic steps starting from the exact
eq 34 and on the basis of the scaling assumption eq 36 for the
rate of growth of the norm of a generic vector in a globally
chaotic flow. In the development of this scaling analysis, the
hypothesis of global chaos flow is explicitly used in writing eq
36. For a flow possessing large islands of quasiperiodicity, eq
36 is no longer true, because the reaction interface (around which
the highest concentration gradients are localized) may be located
with the islands of quasiperiodic motion.)

To sum up, the order parameterλ(Pe) in advection-diffusion
phenomena scales withPeas a power lawλ(Pe) ) Pe-ú for Pe
f ∞, and the value of the scaling exponentú is indicative of
the transport conditions, i.e., of the interplay between advection
and diffusion:

The nonchaotic case gives rise to a typical convection-enhanced
diffusion characterized by a modified dependence (ú ) 1/2) of
the dominant eigenvalue on the Peclet number, when compared
to a purely diffusive case. For a globally chaotic flow, the
competition between advection and diffusion provides a further
improvement (which indeed is the essence of mixing): the decay
exponentλ(Pe) is asymptotically independent ofPe. From eqs
32 and 33 this further implies that

i.e., the width of the boundary layer scales as the reciprocal of
the square root of the Peclet number. A similar scaling result
was obtained by Klapper40 by using shadowing techniques on
Wiener trajectories simulating the advection-diffusion of a
scalar. The asymptotic properties of flow systems giving rise
to the occurrence of regions of chaotic and quasiperiodic motion
(e.g., the SF system atT ) 0.4 or 0.8) deserve particular
attention and will be treated in full detail elsewhere.

7. Prediction of Overall Reactant Decay

This section provides an illustration of how the knowledge
of reaction interface dynamics in chaotic flows can be used to
predict in an approximate way the overall reaction rate and
reactant decay of infinitely fast reactions. To this end, in line
with the well-established lamellar approach, we model the
interplay between advection and diffusion through a one-
dimensional system composed by twolamellae of the same
thicknessxj(t)/2:

equipped with periodic boundary conditions and initial condition
ψ(x, 0) ) 2 - 4η(x - 1/2). The periodic boundary conditions
are in this case straightforwardly inherited by the spatial
periodicity of the flow domain. The linear velocity profile
appearing in the convective term models the flow along the
stable direction of a hyperbolic stagnation point within a one-
dimensional space (0,xj(t)) that is globally shrinking at a rate of
dxj(t)/dt. The implementation of this approach rests upon the
knowledge of the time-behavior of dxj(t)/dt. Explicit expressions
for reactant decay were previously obtained by assuming a
constant rate of shrinkingR, i.e., d logxj(t)/dt ) R ) constant.9

With this assumption, in particular conditions of symmetry for
the initial condition (e.g., with alternatedlamellaeall of the
same thickness), it is possible to obtain a superexponential EE
decay.

Geometric information about reaction interface enters directly
the definition ofxj(t): we assume the simplest condition that is
consistent with flow incompressibility, i.e.

whereL0 and L(t) are respectively the initial and the current
overall length of the reaction interface. We observe that the
geometric counterpart of a EE decay is represented by a
monotonic unbounded exponential growth of the reaction
interface, which is in contrast with what obtained in section 5.

It is important to stress that this is a classical “engineering”
model, and the aim of this section is just to show that the
geometric information deriving from the knowlegde of the
reaction interface length with time can be fruitfully used to

ú ) {1 pure diffusion
1/2 two-dimensional autonomous flows
0 two-dimensional globally chaotic flows} (41)

Figure 15. (A) Time behavior of∆(t) defined by eq 37 for the SF at
T ) 1.6 for two values of the Peclet numberPe) 102 (solid line) and
104 (dashed line). (B) time behavior of∆I(t) defined by eq 38:Pe )
102 (solid line) and 104 (dashed line). The dotted line represents the
topological entropyθ ) 1.425( 0.03 for the SF atT ) 1.6.

λ(Pe) ∼ -K +
As-2(Pe)

2Pe
(39)

λ(Pe) ) 2K
A - 2

) constant (40)

s(Pe) ∼ Pe-1/2 (42)

∂ψ(x, t)
∂t

+ x
xj(t)

dxj(t)
dt

∂ψ(x, t)
∂x

) 1
Pe

∂
2ψ(x, t)

∂x2
,

x ∈ (0,xj(t)) (43)

xj(t) )
L0

L(t)
(44)
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predict the order of magnitude of reactant decay. This approach
is essentially valid for short/intermediate time scales and should
not be confused with the asymptotic scaling analysis for the
dominant eigenvalue developed in section 6.

By enforcing the symmetries, the total amount of reactant A
can be expressed asmA(t) ) ∫0

1/2ψ(xj(t) ê, t) dê, and the
solution of eq 43 yields

Figure 16 shows the comparison of eq 45 with simulations
for Pe) 104 atT ) 0.4 and 1.6. Analogous results are obtained
for values ofPe in the range considered above. The level of
agreement is satisfactory and, in some cases (e.g.,T ) 0.4),
extremely good.

This indicates that the dynamics of the reaction interface
provides the fundamental information required for the prediction
of the evolution of infinitely fast reactions in chaotic flows, at
least for short/intermediate time scales. This observation applies
in a broader sense to finite rate reactions, where the reaction
interface associated with an infinitely fast reaction provides the
backbone around which the kinetic process is organized. Indeed,
the extension of eqs 43 and 45 to finitely fast reactions is not
particularly difficult.

8. Conclusions

The main goal of this work was to extend the geometric
approach to mixing from a purely kinematic context to systems
subjected to molecular diffusion. As a natural physical frame-
work for pursuing this extension, we considered a two-
dimensional stirred system in the presence of two segregated
reactants undergoing infinitely fast reaction. The fact that the
characteristic time of reaction is arbitrarily smaller (for instan-
taneous reactions the characteristic reaction time is zero) than
those of convection and diffusion, implies that the species
remain segregated at all times, thus allowing us to extend the
notion of partially mixed structures and intermaterial contact
area even in the presence of diffusion. The intermaterial contact
surface coincides, in this case, with the reaction interface.

The main goals of this paper are (i) to provide a qualitative
understanding of the geometry of reaction interfaces, (ii) to
provide a simple functional analytic background on the time
behavior of the reaction interface supporting the numerical
findings, and (iii) to show the occurrence of a new phenomenol-

ogy characterizing the interplay between diffusion and advection
in globally chaotic flows, expressed by the scaling of the
dominant eigenvalue controlling reactant decay as a function
of the Peclet number.

The evolution of the geometric structures generated by the
stirring protocol are characterized by the occurrence of two
regimes, namely, a kinematics-dominated growth, during which
the reaction interface behaves like a material line passively
advected by the flow, and a mixed regime resulting in persistent
oscillations. The latter regime results from the intertwined action
of stretching and folding of the mixing patterns because of
chaotic advection and the merging of contiguous lamellae by
the action of diffusion.

To analyze the specific role of chaos in determining the fate
of segregation patterns, we considered mixing protocols char-
acterized by large, medium-sized, and negligible islands. In the
case of large islands, the different time scales associated with
convective mixing resulted into two growth regimes of the
reaction interface.

These phenomenological observations were made quantitative
by analyzing eq 4 as a dynamical system evolving in an infinite
dimensional functional space. In particular, the establishment
of a persistent oscillatory regime for the geometry of partially
mixed structures is a consequence of the dissipative nature of
the evolution equation.

By exploiting flow incompressibility, the information about
the time behavior of the length of the reaction interface allowed
us to derive a simple one-dimensional model that predicts the
overall reaction rate and product generation over a wide range
of Penumbers with acceptable accuracy, at least for short and
intermediate time scales.

The asymptotic properties of the solution of the advection-
diffusion equation are particularly interesting. We provided
numerical evidence of, and scaling arguments on, the occurrence
of a scaling regime typical of globally chaotic flows, character-
ized by a constant value of the decay exponent independent of
the Peclet number for highPe. The convergence of the dominant
eigenvalueλ(Pe) toward a constant value for highPe should
not be confused with the behavior of the conversion-time curves.
The conversion-time curves do not collapse onto each other,
but rather shif parallel to each other maintaining for largePe
the same asymptotic slope (as can be observed from Figure 12).
Indeed. in the singular limit 1/Pe) 0, no reaction occurs, and
mA(t) ) mA(0) (see eq 31). In other words, the asymptotic
behavior is reached after a transient that lasts longer and longer
asPe increases. AtPe) ∞, the transient is infinitely long, and
the conversion-time curve is just a constant corresponding to
the initial reactant mass.

The analysis of the asymptotic properties for flows which
are not globally chaotic, and are characterized (in the diffu-
sionless limit) by the simultaneous presence of invariant regions
of quasiperiodic and chaotic motion, is more subtle. Chaotic
and quasiperiodic regions behave as two different “phases”, with
the mass transfer that occurs across the separatrices being
controlled by diffusion. As a consequence, multiple crossovers
in the scaling of the order parameterλ(Pe) as a function ofPe
may occur. The phenomenology is further complicated by its
significant dependence on the initial conditions. The specific
treatment of this case will be developed in detail elsewhere.

As a final remark, it is important to stress that the results
obtained for two-dimensional flows can be directly extended
to three-dimensional systems. The equation for the evolution
of the norms ofφ and g ) ∇φ, eqs 22 and 34, hold in any
dimensions and so do the results deduced from these equations.

Figure 16. Overall reactant decay for the protocolsT ) 1.6 (circles)
and 0.4 (boxes). The continuous lines represent the predictions obtained
through eq 45.

mA(t) )
4

π2
∑
n)1

∞ 1 - (-1)n

n2
exp(-4π2n2

Pe
∫0

t dτ

xj2(τ)) (45)
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When moving from two to three dimensions, the main difference
is that three-dimensional autonomous velocity fields may give
rise to chaotic behavior.
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