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Passive Barrier as a Transformer of “Chemical Signal” Frequency
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We show that a passive barrier separating two excitable chemical media can work as a transformer for a
frequency of a train of pulses. The results of calculations performed for the FitzHNagdumo type model

and for the RovinskyZhabotinsky model of the BelousexZhabotinsky reaction are discussed. Using the
Rovinsky—-Zhabotinsky model, we estimate the range of barrier widths and the range of frequencies of incoming
pulses for which the transforming properties may be observed.

I. Introduction a barrier. We also explain how the results are analyzed. Section

. . . . . Il contains results obtained for the FitzHugNagumo type
Many theoretical and experimental studies on information gynamics. The next section is concerned with models of the

processing by purely chemical device_s have been reported inBeIousov—Zhabotinsky system in an excitable regime. We
recent years. A popular class of chemical systems that procesggiimate the width of a barrier and the frequencies of chemical

information utlilize pylses of reagent’s conceptration, which €an gjgnals for which the transforming properties may be expected.
be produced in excitable or oscillatory media. In the following |, the final section we summarize the results.

we call such pulse a “chemical signal”. Travelling pulses carry

information, because the area of a high concentration of a | Numerical Technique and Data Analysis

particular reactant may be considered as corresponding to the ) o ) ]
logical “true” state, whereas the area of a low concentration L€t us consider an infinite plane of excitable chemical
corresponds to the logical “false”. This idea was used to Medium with a stripe of the passive medium, a barrier. In the

construct chemical reactors that perform the basic logical following we consider chemical pulses in the form of planar
functions (AND, OR, NOT):2 waves, travelling perpendicularly to the stripe. Such a problem

More complex operations may be carried out by a system is symmetric in the direction perpendicular to the stripe, so it
can be described as one-dimensional. Therefore, in our numer-

composed of “active” regions, in which reactions occur, and . . X , .
“passive” areas, where some of the reagents are absent, anbc_al S'm_“'a“Of_‘S we model the system's evolqtlon on a (one_-
consequently, only a part of reactions proceed there. In practice,d'hmens'.ongl) |nterlva_lr.hA §cthem<la off Ithe ;r;]yeztllgzte(;j .Si/Stem IS
the active areas are filled with an immobilized catalyst, while S ovvln mt 'guril' .etln ?rva % 'enlg dl's It\)” tﬁ n:jor:N
the passive areas do not contain it. A specially selected equal parts by paints of a grid, Inciuding boh €nds. Yve
asymmetric geometry of the junction of two active areas allowed calculate the concentrations of reactants of interest at these
one to developand construéta chemical diode, which transmits points. Ong set of reactu_afmffuspn equations descrlbeg the
pulses only in one direction. A circular excitable field with radial time .evolut'|on in the active medium af.‘d another one in the
input and output channels can be used as a memory tell passive stripe. The black areas on the line drawn at the bottom
our recent work&” we have shown that a cross junction of active of Figure 1 correspond to the active areas, and the barrier is

and passive areas may work as a switch of direction of Iocatedtrllaett\;\r/]een gr;gl p?lnm.ar:ﬁ nz (1 ;;?fl S~ n)t: I
propagation for a “chemical signaf”. means that the reaction term in the reactidiffusion equations

The previous studies on signal processing in an excitable at all the grid points: i € [0, ] U [nz, ] corresponds to the

medium were mainly concerned with the response of the studiedamive medium and for all the grid points i € (m, np) the

. . y : . P reaction term describes reactions in the passive one. The barrier
device to a single set of incoming pulses. Here we show that . .. :

" h . . width is estimated as
an “answer” of a chemical signal processor may be more
complex if a train of incoming pulses is considered. We
demonstrate that a single barrier of a passive medium separating
two excitable areas works as a transformer of frequency of a

chemical signal. It means that by a careful choice of the barrier's N'is chosen in such a way that there are several grid points inside
width, one can obtain an output signal containing a certain the passive barrier. The boundary conditions between the passive

fraction of pulses from the input one. and active media correspond to a free flow of reagents between
The paper is organized as follows. In section Il we introduce them. There are no flux boundary conditions at both ends of
our system and the numerical technique used to solve thethe interval. Initially, both active and passive areas are in their

reaction-diffusion equations describing the active medium with  Stationary states. Pulses of excitation are initiated at the left
end of the interval and they travel to the right, coming across

. o — the passive barrier on their way. The method of initiating the
* Corresponding author. E-mail: gorecki@ichf.edu.pl. . . .
t Polish Academy of Sciences. pulses depends on the investigated model (it may be done by
*ICM UW. decreasing the inhibitor's concentration or by increasing the
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Figure 1. Scheme of the system studied. It is represented by a one-
dimensional interval, shown in the bottom part of the figure; the active
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the first pulse may be impenetrable for the next one. For another,
the first of arriving pulses which is stopped by a barrier wider
than the penetration depth, may “open” it to the subsequent
pulses. Both types of behavior are illustrated in Figure-ZA
which show the time evolution of activator’'s concentration at
the grid pointi; (the upper curve (1)) and at the grid poigat
(curves 2-4). In addition, curve 5 in Figure 2A shows the
evolution at the grid pointis, far behind the barrier. The
evolution at the initial stage of the process is given. The time
scale starts just before the first pulse of the train arrives at the
barrier. Parts A-C of Figure 2 correspond to the FitzHugh
Nagumo model (FHN), Rovinsky-Zhabotinsky model (R
Z), and the Oregonator model discussed in the following
sections. Three lower curves show the evolution for the
following cases: (2) no barrier in the system, (3) a narrow
passive barrier, which is fully transparent, and (4) a barrier of
an appropriate width, for which the frequency of the outgoing
signal is different from the incoming one. Curve 5 in Figure
2A is presented to ensure that the small maxima of concentration
seen on curve 4 (Figure 2A) do not develop into pulses.

The results for the FHN model (eqs 25) and the barrier
of width d = 0.165 (Figure 2A, curves 4 and 5) show that the
first arriving pulse is stopped, the second pulse goes through

areas and the passive barrier are indicated. The barrier is locatedthe barrier, and the next every odd pulse is stopped and every

between grid points; andn,. Concentrations of reagents are observed
at grid pointsi; (before the barrier)i; (just behind the barrier), and

even transmitted. Therefore the outgoing signal’s frequency is
half of the original one. We can say that an earlier pulse “opens”

(far behind the barrier). The upper part shows a snapshot of a train of tna harrier for the next one.

pulses propagating in the system (incoming signal, on the left-hand

side and outgoing signal, on the right-hand side). Let us notice that the

signals have different frequencies.

concentration of activator) and we describe it in detail in the
following sections. We focus our attention on trains of pulses
that are initiated regularly at timdd,, wherek =1, 2, 3, ...,
kmax andt, > 0 is a constant.

To study the filtering properties of the barrier, we introduce

The reverse behavior is observed for both-kRand the
Oregonator models of the Belouse¥habotinsky (BZ) system.
For these models the first arriving signal is transmitted, but a
number of subsequent ones may be stopped, depending on the
barrier's width, so in this case the earlier pulse passes through
and “closes” the barrier. Figure 2B, curve 4, shows the outgoing
signal with one-third of the original frequency & model,
egs 6-9), whereas Figure 2C, curve 4, demonstrates the barrier,

two “indicators” that measure the concentrations of reagents atwhich divides the original number of pulses for BZ system by

the grid pointi; = n; — 2 (before the barrier) and at the grid
pointi; = n, + 2 (just behind the barrier). By comparing the

time evolution of concentrations at these points, we can see
whether every signal that arrives at the barrier is able to cross

it. Moreover, by counting the number of maxima of concentra-
tion within a certain time interval, we can measure the frequency
of the incoming and outgoing chemical signals. To observe the
further evolution of the outgoing signal, we introduce another
indicatoris, located far behind the barrier (cf. Figure 1).

The implicit method based on the CranMicolson discreti-
zation of the Laplace operafohas been applied to integrate
the reaction-diffusion equations numerically. The distance
between neighboring grid pointgdl(= I/n) is the step of
numerical integration. In calculations we usually taksetween
200 and 300, but computations for a larger number of grid points
have been also performed in order to check the numerical
stability of results.

If only a single pulse propagating in the excitable area toward

two (the Oregonator model, eqs-227).

To describe qualitatively the properties of a passive barrier,
we consider a train of many (usually about a hundred) pulses
with a constant time shift, between them. We measure the
frequency of pulses in front of the barrief)(and behind it
(f2). Calculations have been performed for different values of
tp and different values of the barrier width We have found
regimes for which the ratid,/f, is a small integer numbgr
which corresponds to a systematic transmission of ejytry
pulse from a train through the barrier. To avoid transient effects
in the signal analysis, we neglect a small number (around 10)
of initial pulses arriving at the first indicator (grid point in
Figure 1) when calculatinfy andf,. The diagrams in the space
of parametersd, tp) showing “phases” in which the barrier
transforms a chemical signal in a given way are shown in figures
describing results obtained for particular models.

We think thatd andt, (or f;) are the proper variables to

the barrier is considered, then nothing especially interesting candescribe how a passive barrier works as a transformer of the

happen in a one-dimensional system. If the barrier is narrow, it

signal frequency. The interval &f (or f1) is limited by the fact

is transparent to the pulse, which means that the pulse arrivingthat once the excitable medium has been excited it needs some

at one side of it excites the active area on the other side. If the
barrier is wide, the pulse does not get through it. The maximum
width of a transparent barrier is called the penetration depth.

minimal amount of time (called the refractory period) in order
to relax, before it may be excited again. Thus, there exists a
minimal time pace, min at which the pulses can be successfully

The problem of penetration through the barrier becomes moreinitiated. The timety min depends on the strength of excitation

interesting if we consider a train of arriving pulses. Discussing

and it fixes the upper frequency of the signal. On the other hand

the properties of selected models we show that two scenariosmakingt, very long reduces the problem to the propagation of
are possible. For one model, a passive barrier transparent toa single pulse. The range dfis also finite as there always
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exists a barrier of widttdy,i, narrow enough to be transparent
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pulses within a regular train equaisandf, = 1/, gives the

to all pulses in a train and another one impenetrable for any of frequency of incident pulses at the first indicator.

them (with a width ofdnay). Thus the nontrivial transforming

To investigate the effect of the barrier, we have used=

properties of the passive barrier may be observed only in somes00 and the time integration stend= 5 x 1073 to study a

finite range oft, andd, which depends on the selected model
and values of its parameters.

lll. The FitzHugh —Nagumo Model

In this section we consider a system for which the dynamics
in the active areas is described by a simple FitzHtigagumo
type modep-9.10

% = ylkuu—)u-1)++D VU (2)
= ®)

with the parameters = 0.03,y = 1, k = 3.0,a0 = 0.02 (as
given by Motoike and Yoshikawa in ref 3), aimgj, = 0.00045°

range oft, from 2.98 to 4.04 with increments 0.08 € [0.248,
0.336]) and the barrier widthd € [0.126, 0.172]. For the
selectedmax andt, we have observed from 120 to 160 pulses
in the system for each combination gfandd.

Figure 2A presents a sample signal (concentratioru)of
observed at the grid pointg= 148,i, = 162, and3 = 248 for
dl =0.0175n = 251, and; = 0.294. For all the results shown
in Figure 2An; = 150, whilen, is changed to obtain barriers
of a various widthd. The upper curve (1) corresponds to incident
pulses (reference signal at indicatgr In case oh, = 151 (no
passive barrier) the same signal is observed at indi¢ateith
only a small time shift, which the signal needs to cover the
distance between indicatarsandi; (signal ati,, curve 2). The
result is the same fan, = 155, which corresponds to a thin,
fully transparent passive barrier (curve 3 presents the signal at
i2). All incident pulses observed at indicatarget through the

For these values of parameters the system has one stationarparrier and are also observed at indicatorHowever, for a

solution {, ) = (0, 0), which is excitable. The variablesand

properly chosen width the barrier becomes selective.nyet

v cannot be directly associated with concentrations of chemical 160 (the barrier's width is thesi= 0.158) exactly every second

spices, but their behavior resembles the one of the activayor (
and inhibitor ¢).

of the incident pulses is transmitted through the barrier and
observed at indicatap (curve 4) or indicatois (curve 5).

We assume that in the passive area no reaction occurs and g re 3 summarizes the signal transforming properties of a

only diffusion of activator is possible, thus it is natural to call
this region a “diffusion area”. The equations describing the time
evolution ofu andv in this area are

(4)
(5)

with 7 = 0.03 andD, = 0.00045, as in the excitable areas.

In calculations for this model the following parameters have
been usedn = 251,n; = 150,n, = 160. To produce a pulse,
the value ofv has been decreaseduig = —0.2 on the left end
of the interval. Using the time integration stefg & 5 x 1073,

v=0=const

we have found that a single pulse is able to cross the passive

barrier ford = 0.1631, but ford = 0.1635 the barrier becomes

impenetrable. This means that the penetration depth in the

FitzHugh—Nagumo system is abodtyax rr-n ~ 0.163.

For the considered values of parameters, the minimum time

after which the second pulse may be re-excite] ign Fr-n ~
2.4. However, for such a short time of consecutive excitations
it is not possible to obtain a regular, stable train of pulses,

passive barrier as a function of the barrier's widtland the
time shift between consecutive incident pulggsThe regions
of the same color correspond to a given ratio of frequencies
(fo/f1) of the outgoing ) and incoming f;) trains of pulses,
called a filtering ratio. The area labeled as “1” indicates the
ratio equal to 1, which means that every incident pulse is able
to get through the passive barrier (the barrier is transparent to
all pulses). Wher, decreases, we arrive at the area (labeled as
“1/2” in Figure 3) where only every second of the incident pulses
is transmitted. Increasind, we observe that the filtering ratio
decreases, which means that the pulses are less and less
frequently transmitted (see area “1/3” in Figure 3, where only
one out of three of incident pulses gets through the barrier).
Finally, the barrier becomes too wide and no pulse can cross it
(thusf, = 0). This corresponds to the area labeled as “0” in
Figure 3. The hatched regions between the labeled areas in
Figure 3 correspond to more complex (periodic or nonperiodic)
transmission patterns (cf. Figure 5, described later in text).
The dark area below the region “1/2” corresponds to the cases
in which the excitation by, = —0.2 does not lead to a regular
train of pulses with the frequencly = 1/, because some

because it happens that the medium at the initiation point is attempts at excitations fail. We have repeated the calculations
not well relaxed and an attempt to re-excite it by the assumed for different methods of pulse initiation (for example using

vini fails. For the FitzHugh-Nagumo system the value of
tp,min,FH-n Strongly depends omi,; (the strength of excitation)
and also ordl, which describes the spatial size of excitation. In

—0.4) and for a different number of grid points € 300).
For stronger excitations we are able to obtain a regular train of
pulses with frequencf; = 1/, for the whole range of, andd

our calculations in order to create a stable train of pulses we shown in Figure 3. The calculations have shown that for a given

have usedpe [2.90, 4.04].

The maximum time within which the evolution is studied
(tmay is fixed in our calculations. The system is excited
approximatelyp = tmadtp times, so it is expected that such

tp, for which every excitation is successful and for a selected
the observed type of behavior and the filtering ratio do not
depend on the method of excitation. Rgf = —0.4 all points
that belong to the dark area in Figure 3 fall into the “1/2” region.

number of pulses is produced. We can check it by counting the Nevertheless, in Figure 3 we marked them with a dark color,

number of pulseg; that reach the first indicator during that
time. The ratio: py/p is called the initiation ratio. If it is
remarkably smaller than 1, we know that not all attempts of

just to indicate problems with periodic excitations.

We have studied more carefully the part of the parameter
space for which the filtering ratio is smaller than 1. We have

initiating a pulse are successful. On the other hand, when it is usedtmax = 500 and ¢ = 2 x 1072 and investigated the range
close to 1, we obtain nice regular trains of pulses and only suchof t, from 3.00 to 3.40 with increments of 0.01 and the range
cases are considered below. The time shift between individual of d from 0.168 to 0.173 with increments of 0.00018 (this is



Passive Barrier as a Transformer of “Chemical Signal’ Frequency J. Phys. Chem. A, Vol. 106, No. 16, 2002071

a ! I ! I !

Signal - concentration of u
1
Il
w

Time st befeen consecuive pules (v
®
0
¢

0.00 10.00 20.00
Time (a. u.)
Time [sec]
0.0 400.0 800.0 1200.0 1600.0
1 l ] f ] | 1 | 1

b

| « 14
< |
5
) - —
k=)
s n 2
c
[0
o
e
o
o
=
K=y
w

T T T l i l T l
0.00 50.00 100.00 150.00 200.00
Time (dimensionless)
c T I T | T
= 4 |
5
=
2 12
o
=
<o
o
[y - .
o
(&)
R g
H .
w
T | T ‘ T

0.00 20.00 40.00 60.00
Time (a. u.)
Figure 2. Time evolution of activator’'s concentration at grid point
(the upper curve 1), at grid poiit (curves 2-4), and at grid points
far behind the barrier (curve 5). The evolutionszatorrespond to no
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Figure 3. Filtering ratio §./f1) for the FitzHugh-Nagumo model as a
function of the barrier's widthd) and the time shift between consecutive
incident pulsestf). The white, labeled areas correspond to the situation
whenf; is the given fraction of,. The dark area in the bottom left-
hand side corner indicates the region of parameters where not all
excitations lead to a pulse. The hatched area marks more complicated
transformations of frequency. The rectangular area in the bottom right-
hand side corner of the picture has been studied more carefully and is
illustrated in Figure 4.
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Figure 4. Filtering ratio §./f,) for the FitzHugh-Nagumo model as a
function of the barrier’s widthd) and the time shift between consecutive
pulses ;). The white, labeled areas correspond to the situation when

f, is the given fraction of;. Hatched areas stand for more complicated
transformations of frequency. The dashed line indicates 0.1707.

the rectangular area marked with dashed line in the bottom right-
hand side corner of Figure 3). The results are presented in Figure
4, for which the meaning of the colors and labels is the same
as in Figure 3.

We have found that the filtering ratio equal to 1/2 is dominant
among the nontrivial filtering. In most cases it means that the

barrier (curve 2), a narrow transparent barrier (curve 3), and to a barrier harrier eliminates every second pulse from the train. The

for which frequency transformation occurs (curve 4). In the last case «

the evolution atiz is also shown (curve 5). (A) FitzHugiNagumo
model (egs 25), t, = 3.40 f;, = 0.294),d = 0.070 (curve 3)d =
0.158 (curves 4 and 5). (B) Rovinskyhabotinsky model (eqs-69),
7, = 30 (f; = 0.033),d = 1.628 (0-015§3/Dx/Dx0 cm) (curve 3)d =
3.256 (0.03OQ/ Dy/Dx, cm) (curve 4).r, = 30 corresponds to 255 s.
(C) Oregonator model (egs 227),t, = 10.4 f, = 0.096),d = 1.867
(curve 3),d = 3.733 (curve 4).

scenario” of such elimination for the FitzHugiiNagumo model

is shown in Figure 2A. It shows that the first incident pulse

“dies” at the barrier, but the next one is transmitted, another
one dies, etc. Similar observation is valid for lower values of

the filtering ratio. For example in the case of filtering ratio equal

to Y3, the first and second incident pulses die and the third one
is transmitted. We think that a pulse stopped at the barrier
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0.29 0.30 031 0.32 0.33 1 and 4), at indicator 2 (grid poiri, just behind the barrier, curves 2
Frequency of incident pulses (f4) and 5), and at indicator 3, far behind the barrier (curve 3)der

. I - . 0.1707. Curves 43 correspond tof; = 0.318 and illustrate the
Figure 5. Filtering ratio in the FitzHugk Nagumo model for a selected frequency transforming ratic?equal té 2/5. Curves 4 and 5 correspond

barrier's widthd = 0.1707.f,/f; is presented as a function of the _ ; ; ;
frequency of incident pulse$; ( bottom axis) or the (approximate) time t1(;3f1 0.328 and illustrate the frequency transforming ratio equal to

shift between consecutive incident pulsgstop axis). Labels describe

the filtering ratio €/f1).
9 Wt ones!! Thus, a pulse that propagates &fter the preceding ones

is faster than that propagatingt2after the preceding ones. In
the long time limit one obtains a periodic signal, the frequency
of which is 2/5 of the original one. The stability of the 2/5
filtering mode described here has been confirmed by calculations
carried out up tdmax = 10000. We observe that the increment
of f; leads to more complex output (Figure 5), which requires
further studies. A further increase in frequency leads to the

increases the value ofinside the barrier for a short period of

time, so the “activator” is accumulated within the passive area.

This helps the next incident pulse to get through the barrier.
Let us also notice that there are hatched regions in Figures 3

and 4, which separate the areas labeled as “1”, “1/2”, “1/3". In

these regions of the parameters’ spatéj the transformation

of the frequency of incoming train of pulses is more complex. > ; AR <

An example is shown in Figure 5, which presents the filtering OUtPUt signal for whiclf, = f1/3. The region “1/3” continues to

ratiof,/f; versus the frequency of incident puldefor a selected ~ the highest frequencies for which a regular train of pulses may

barrier widthd = 0.1707. This value ofl is indicated by a bg create_d. Such behawor is illustrated in Figure 6 by curves 4

thick black line in Figure 4. If; is smaller than 0.303, no pulse ~ (Signal atiz) and 5 (signal aty) for f; = 0.328.

is transmitted and s& is zero. The selected barrier is wider

than a penetration depth, so if the time separation between pulse$V. Models of Chemical Systems: The

ty is large, they behave like individual ones and they are not Rovinsky—Zhabotinsky and the Oregonator Model

able to cross the barrier. ) ) o ) )
For f, > 0.303 the barrier opens to every second of the In_thls section we present_the fllterlng properties of a passive

arriving pulses. The evolution is the same as shown in Figure Parrier in an excitable medium described by models that can

2A (curves 1, 4, and 5) and every second pulse is transmitted P& associated to a real chemical reaction.

until the frequencyfy reaches 0.313. At this point the filtering We have focused our attention on the Rovinsk§rabotinsky

ratio drops from 1/2 to 0.4. Such a ratio seems to be stable in model of the BelousovZhabotinsky reactiof?® which is

a narrow range of, € (0.316, 0.319). It corresponds to a more based on the FieldKéros—Noyes#1® mechanism of the Be-

complex behavior illustrated in Figure 6 (curves3d). Results lousov—Zhabotinsky reactiort completed by the hydrolysis of

presented in Figure 6 have been obtainedrfor 251, dl = bromomalonic acid to tartronic acid.The Rovinsky-Zhabot-
0.01896 ,n; = 150, andn, = 160 (so the barrier's width id = insky model uses two variablesx and z, corresponding to
0.1707). Indicators are located at grid points= 148, i, = dimensionless concentrations of the activator HBa@d of the

162, and; = 248. Curves +3 show the signal at indicatorg oxidized form of catalyst Fe(phet). In the active regions,
i2, andis respectively, foff; = 0.318 (, = 3.14). Let us notice  which contain the catalyst, the time evolution of the concentra-
that just after crossing the barrier the signal has the period of tions of x andz is described by

5t, with two maxima of concentration per period (Figure 6, curve

2). The signal far behind the barrier is shown as the curve 3. ox _ 1 z X— W 2

One can see that the small maxima have not developed into the ar Z’X(l =X - (zqasz + ﬁ)x ¥ ﬂ] TV, x (6)
regular pulses and the signal is composed of peaks separated

by 2t, and 3,. We believe that such form of a signal has a 0z =y — ai @)
transient character. The numerical experiments with pulses in at 1-2z

the FH-N system have indicated that a velocity of a pulse

increases with the distance separating it from the precedingIn the passive region, without catalyst, the concentrations of
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andz evolve according to

S | R ey
= e’XZJrﬁeru + VX (8)
z= 0= const (9)

Equations 6-9 correspond to a typical experimental situation

in which the catalyst is immobilized on a membrane, whereas
the activator is in the solution and it can diffuse (compare refs
4 and 16). Therefore, we assume free boundary conditions

between the active and passive areas.

All variables and coefficients in eqs-® are dimensionless.
The real concentrations of HBsGnd Fe(pher)s (X, Z) are
related to , 2) in the following way:

x = A 10
=2k, X (10)
Z=Cz (12)
The coefficients &, 3, u, €) are defined as
k,KsB
= 12
k,“A%h (12
2k k,.B
= oy (13
k,“A’h,
2k k,
= (14)
“7 ks
kA 15
€=1C (15)

where ki; denote the rate constants of the corresponding

reactions in the FieldKoros—Noyes modéf—15 and A =
[HBrOz], B = [CHBr(COOHY], C = [Fe(phenj*3] + [Fe-
(phen§*3], R=['CBr(COOHY})], U = [HBrO*;], X = [HBrO],

Y = [Br~], Z= [Fe(phenj*3], andq s the stoichiometric factor.
Parametehy denotes the Hammett acidity function, describing
the effective proton concentratibn!® and it is expressed in
mol/L.
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parameters chosen

t(s)= 8.5t (18)
r (cm)=2.915/D, (cm¥/s)Ap (19)

However, the diffusion constant strongly depends on the medium
in which the reactions proceed. In the aqueous solution it is of

the order of 10° cn?/s#12.17.19.20yhereas for a reaction in a

gel it may be reduced by 2 orders of magnitddéTo make
our results more general, we present all distances and velocities
in the double form: dimensionless and as the function of the
ratio of diffusion constant®x/Dx, where the value oD,
corresponds to a particular choice of the diffusion constaxt;
=1 x 1075 cn?/s1220The second number allows to see more
clearly the real spatial and temporal scale of the considered
process.

For the values of parameters defined above the stationary
concentrations ok andz in the active areas are

X = 7.283x 107* (20)

z,=1.060x 10°? (21)
(which is the stationary solution of eqs 6 and 7) and the
stationary concentrations in the passive area (the stationary
solution of egs 8 and 9) are given by

Xs=5.100x 10" * (22)

z,=0 (23)

In our calculations for the RovinskyZhabotinsky model we
have usedh = 320,n; = 150,n, = 155 and the dimensionless
time integration stepd= 1 x 1073. The pulses are initiated at
the left end of the interval by increasing the valuexab 0.1.

We have found that the penetration depth for a single pulse is

about 3.295 (0.0303 7‘DX/DX0 cm). This value is close to the
one given in ref 7, but we believe that the present estimation is
more accurate due to a better method of numerical integration
(in ref 7 the Euler explicit method was used).

Figure 2B presents a typical signal (valuexpfobserved at
the first and second indicators (grid pointsandiy) for dl =
0.814 @ = 320) andz, = 30.0 (255 s). For those values of

In our numerical calculations for the BZ system we use the Parameters the excitation at the boundary gives a regular and
same values of parameters as considered in refs 12, 13’ and Zﬁtable train of pulses. In all calculations the results of which

A=0.02M,B=0.2M,C=0.001 M,k; = 100 M?s, ks =
1.7 x 10* M~%s, ks = 10’ M~?s, k; = 15 M¥s, Kg = 2 x
1075 M/s, ki3 = 1075 s71, g = 0.5. The corresponding values
of scaled parameters, 3, €, u are 0.01%"2, 0.001hy 4,

are shown in Figure 2By, = 150 and the indicators are located
at grid pointsi; = 148 andi, = 157, whilen, is changed to
obtain barriers of a different width. The upper curve (1)
corresponds to incident pulses (reference signal at indicator 1).

0.1176, and 0.00051, respectively. For these values of param-For nz = 151 (no passive barrier, curve 2) the same signal

eters the system becomes excitablbpif< 0.9899%° As in ref
7 we have chosehy = 0.5.

Equations 6-9 are written in the dimensionless units of time
7 and distance. The relationships between them and the real
time t and distance are the following:

_ ke 7 (16)
k,*A%h,
kC 1

A/ kA Dy:p (17)

whereDy is the diffusion constant of the activator x. For the

(shifted in time) is observed at indicator 2. The same behavior
is observed for a thin, fully transparent passive barnigr=
153, curve 3). All incident pulses observed at indicator 1 get
through the barrier and are also observed at indicator 2ng-or
= 157 every third of the incident pulses is transmitted through
the barrier as it is observed at indicator 2 (curve 4). In this case
the width of the passive barrier is 3.256 (0.0 /on cm).
Let us also notice that unlike for the FHN model, the passive
barrier in the R-Z (BZ) system is transparent to the first arriving
pulse and it may become closed for the subsequent ones.
Therefore the transformation of frequency occurs for barriers
which are narrower than the penetration depth.

For the parameters of RZ model we observe that the
minimal time necessary to initiate a new pulse after the first
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Figure 7. Filtering ratio €./f1) for the Rovinsky-Zhabotinsky model 08 ' ' ' ' ' ' !

as a function of the barrier's width (dimensionles,and the time 0.020 0.024 0.028  0.032
shift between consecutive pulses (dimensiontg$sThe white, labeled Frequency of incident pulses (dimensionless - f1)
areas correspond to the situation WH@"S the given fr_actlon ofs. Figure 8. Filtering ratio in the RovinskyZhabotinsky model for a
Hatched areas stand for more complicated transformations of frequency. . . .
The dashed line indicatat= 3.2375 selected barrier's widtld = 3.2375 (O.OZQgDX/oncm). foffy is
' ' presented as a function of the dimensionless frequency of incident pulses
. . N (f1, bottom axis) or the (approximate) physical time shift between
pulse has been produced in the systempsinrz~ 5.8 (49 s) consecutive incident pulses, (s), top axis). Labels give the filtering
but one has to use much higher valuespfo obtain a stable, ratio (fa/fy).

regular train of pulses. We have studied the range,dfom

30 (255 s) to 60 (510 s) with increments of 2 (17 s) and in ref 23 with diffusion of the activator added. In the Oregonator
consideredd changing from 3.188 (O.OZQ&Q/DX/DXO cm) to model the active field is described with the following reaction
3.295 (0.03037 /DX/DX0 cm). Tmax = 2000 (17000 s) has diffusion equations:

been used, so during the evolution from 33 up to 66 pulses

may appear in the system for each combination,cdndd. ou_ 1 oy U—g 2

The results are shown in Figure 7. For all the examined values at € u —u —f u+g bV (24)
of d andzp every excitation creates a pulse. The filtering ratio
fo/f; presented in Figure 7 reveals areas of parameters’ values W _ u—uv (25)
for which every second or every third of the incident pulses is ot

transmitted (those regions are labeled as “1/2” and “1/3", _ _
respectively). We have noticed that the “scenario” here is Whereu corresponds to the scaled concentration of activator

different than the one for the FitzHugiNagumo model,  (HBrO) andv, to the scaled concentration of catalyst {Qe?
although the overall effect is the same. In contrary to FitzHugh  In the passive regions, without catalyst, the concentrations of
Nagumo, for the RovinskyZhabotinsky model the stable andv evolve according to

elimination of every second pulse from a train means that the

first incident pulse crosses the barrier, the next one “dies”, etc. u_ }uz + DV (26)
For division by 3, the first pulse gets through and then two ot €

pulses “die”, etc. (cf. Figure 2B). This suggests that the

mechanisms of crossing the passive barrier are different in the v=0= const (27)
two discussed models. Label “0” in Figure 7 indicates the area ) )
in which no pulse can cross the passive barrier. The hatched!n €ds 24-27 t stands for the scaled time amda time scale

regions between the white, labeled areas in Figure 7 correspondP@rameter) is smatf: Another small parametey is connected
to more complex transmission patterns. to the rate constants of the reactions involved in the Oregonator

Figure 8 presents the filtering ratfg/f; plotted versus the model. The stoichiometr_ic parametbis proportional_to the
frequency of incident pulss for a selected barrier widtt = average number of bromide ions released per metal ion reduced

3.2375 (0.0298/D, /D, cm). This value ofd corresponds to by organic matter. The details of scaling are described in ref

the thick dashed vertical line in Figure 7. Here the frequencies = .
f; andf, are dimensionless frequencies, calculated as the inverse0 (I)r(l)(;)zuzrs calgutl)atfnls(\)/velzha\;ﬁ usedzl 0'05'2: f=32 ? - th
of dimensionless time. Forf;, € [0.0167, 0.0278] every second H00Z" an — LU ror hese values of parameters the
of incident pulses gets through the barrier. far 0.0294 only stationary state of the system within the active areas corresponds
one out of three incident pulses gets through the barrier (thus
we have the filtering ratid,/f; = 1/3).

To check if the frequency transforming is a typical feature
of a passive barrier in an excitable medium, we have performed
calculations for the Oregonator mo#feP* in the form presented  and it is excitable. In the passive areas the stationary solution

U= g, = 3.9988x 10°* (28)
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is given by properties occur when the first of incident signals from the train
is stopped, but the subsequent ones may go through the barrier,
U,= v, =0 (29) so the frequency transforming is observed for barriers wider
than the penetration depth. For the models of the BZ system
In our calculations for this model we have used the implicit the first incident signal is transmitted, but the subsequent ones
method described in section Il with = 0.3733 o = 400), may be .stopped, so the barrier should be narrower than.the
=200, d¢ = 1 x 1074 andt, = 10.4. The pulses have been penetration dgpth in order to observe frequer_lcy transformmg.
initiated on the left end of the interval by decreasing vin = It is interesting that the frequency transformlng for a train of
0.0. The evolution of this system has been studied Updo= pl_JIses has been already observed expenr_nentally. A_got_a Toth,
1000.0 (so that over 95 pulses is involved in each experiment). Vilmos Gaspar, and Kenneth Showatfestudied the excitation
We have observed that the filtering properties of a passive ©f @ BZ medium at the end of a capillary tube by a train of
barrier in the Oregonator model are similar to those forfH pulses propagating inside the capillary. They found that,
and R-Z models. Figure 2C presents a sample signal (the value déPending on the capillary’s diameter, every arriving pulse may
of u) observed at the first and second indicators (grid pdints ~ €Xcite the medium (if the capillary is wider) or the excitation
= 198 andi, = 213, respectively). As mentioned above,= never hap.pens (if t_he dlgmeter is small). However, therg is a
200 whilen; is changed to obtain barriers of different width. 'ange of diameters in which the firing number (i.e., the ratio of
The upper curve (1) corresponds to incident pulses (referenceth€ excitations of the medium to the number of incoming pulses)
signal at indicator 1). Fon, = 201 (no passive barrier, curve IS fractional. The capillary's diameter (in ref 25) and the barrier's
2) the same signal (shifted in time) is observed at indicator 2. Width (in our case) controls the strength of excitation of the
The same behavior is observed for a thin, fully transparent ctive medium. The firing number in ref 25 has the same
passive barrier = 206, curve 3). All incident pulses observed Meaning as the filtering ratio in our paper. Qualitatively, both
at indicator 1 get through the barrier and are also observed at'€Sults of ref 25 and these presented here mean that there is a
indicator 2. For a wider barrieng = 211) every second of the ~ 'ange in periodic pertqrbatlons of an eXC|tab.Ie.system in which
arriving pulses is transmitted through the barrier and may be the System answers in a resonant way. Similar phenomenon
observed at indicator 2 (curve 4). For this curve the width of observed in a homogeneous reactor was described in refs 26

the passive barrier is 3.733. In this case, as ferZR(BZ) .
system, the frequency is transformed for a barrier narrower than _The authors of ref 25 pointed out that the resonant patterns

the penetration depth, because the first transmitted pulse make&f transmitted waves may be important in biological systems.
the barrier impenetrable for the subsequent ones. They postulated that narrow excitable gaps in an unexcitable
tissue may be responsible for transformation in the frequency

V. Conclusions of a biological signal. Our results show that such gaps are not
) ) o necessary and the phenomenon may occur if some reagents
In the paper we discuss the properties of a barrier in the form responsible for signal propagation can diffuse through the
of a stripe of a passive area separating two regions of space inynexcitable tissue.
which the_system is in the excitable regime. We have _stugjled Transformation of chemical signal frequency on a passive
the evolution of a train of regularly created pulses of excitation, parrier has been recently reported by Suzuki, Yoshinobu and
which arrive at such a barrier. Our investigation is based on jyasaki, ref 30. The diagram which relates the filtering ratio

numerical solution of the corresponding reactiatiffusion seen in their experiments with the barrier width and the period
equations with the free flow of mobile reagents between the of excitations (Figure 10 in ref 30) is in qualitative agreement
active and passive regions. with our results shown in Figure 7.

Two facts are obvious: if the barrier is narrow, it is
transparent to the pulses; if it is wide, it is impenetrable.  Acknowledgment. We are very grateful to Dr. Bartlomiej
However, we have found that between these two limiting cases | egawiec for his advice in the numerical method of solving
there is a range of barrier widths for which it works as a reaction-diffusion equations used in this study.
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