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We show that a passive barrier separating two excitable chemical media can work as a transformer for a
frequency of a train of pulses. The results of calculations performed for the FitzHugh-Nagumo type model
and for the Rovinsky-Zhabotinsky model of the Belousov-Zhabotinsky reaction are discussed. Using the
Rovinsky-Zhabotinsky model, we estimate the range of barrier widths and the range of frequencies of incoming
pulses for which the transforming properties may be observed.

I. Introduction

Many theoretical and experimental studies on information
processing by purely chemical devices have been reported in
recent years. A popular class of chemical systems that process
information utilize pulses of reagent’s concentration, which can
be produced in excitable or oscillatory media. In the following
we call such pulse a “chemical signal”. Travelling pulses carry
information, because the area of a high concentration of a
particular reactant may be considered as corresponding to the
logical “true” state, whereas the area of a low concentration
corresponds to the logical “false”. This idea was used to
construct chemical reactors that perform the basic logical
functions (AND, OR, NOT).1,2

More complex operations may be carried out by a system
composed of “active” regions, in which reactions occur, and
“passive” areas, where some of the reagents are absent, and
consequently, only a part of reactions proceed there. In practice,
the active areas are filled with an immobilized catalyst, while
the passive areas do not contain it. A specially selected
asymmetric geometry of the junction of two active areas allowed
one to develop3 and construct4 a chemical diode, which transmits
pulses only in one direction. A circular excitable field with radial
input and output channels can be used as a memory cell.5 In
our recent works6,7 we have shown that a cross junction of active
and passive areas may work as a switch of direction of
propagation for a “chemical signal”.

The previous studies on signal processing in an excitable
medium were mainly concerned with the response of the studied
device to a single set of incoming pulses. Here we show that
an “answer” of a chemical signal processor may be more
complex if a train of incoming pulses is considered. We
demonstrate that a single barrier of a passive medium separating
two excitable areas works as a transformer of frequency of a
chemical signal. It means that by a careful choice of the barrier’s
width, one can obtain an output signal containing a certain
fraction of pulses from the input one.

The paper is organized as follows. In section II we introduce
our system and the numerical technique used to solve the
reaction-diffusion equations describing the active medium with

a barrier. We also explain how the results are analyzed. Section
III contains results obtained for the FitzHugh-Nagumo type
dynamics. The next section is concerned with models of the
Belousov-Zhabotinsky system in an excitable regime. We
estimate the width of a barrier and the frequencies of chemical
signals for which the transforming properties may be expected.
In the final section we summarize the results.

II. Numerical Technique and Data Analysis

Let us consider an infinite plane of excitable chemical
medium with a stripe of the passive medium, a barrier. In the
following we consider chemical pulses in the form of planar
waves, travelling perpendicularly to the stripe. Such a problem
is symmetric in the direction perpendicular to the stripe, so it
can be described as one-dimensional. Therefore, in our numer-
ical simulations we model the system’s evolution on a (one-
dimensional) interval. A scheme of the investigated system is
shown in Figure 1. The interval of lengthl is divided inton
equal parts byn + 1 points of a grid, including both ends. We
calculate the concentrations of reactants of interest at these
points. One set of reaction-diffusion equations describes the
time evolution in the active medium and another one in the
passive stripe. The black areas on the line drawn at the bottom
of Figure 1 correspond to the active areas, and the barrier is
located between grid pointsn1 and n2 (1 , n1 < n2 , n). It
means that the reaction term in the reaction-diffusion equations
at all the grid pointsi: i ∈ [0, n1] ∪ [n2, n] corresponds to the
active medium and for all the grid pointsi: i ∈ (n1, n2) the
reaction term describes reactions in the passive one. The barrier
width is estimated as

n is chosen in such a way that there are several grid points inside
the passive barrier. The boundary conditions between the passive
and active media correspond to a free flow of reagents between
them. There are no flux boundary conditions at both ends of
the interval. Initially, both active and passive areas are in their
stationary states. Pulses of excitation are initiated at the left
end of the interval and they travel to the right, coming across
the passive barrier on their way. The method of initiating the
pulses depends on the investigated model (it may be done by
decreasing the inhibitor’s concentration or by increasing the
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d = (n2 - n1 - 1)dl (1)
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concentration of activator) and we describe it in detail in the
following sections. We focus our attention on trains of pulses
that are initiated regularly at timesktp, wherek ) 1, 2, 3, ...,
kmax and tp > 0 is a constant.

To study the filtering properties of the barrier, we introduce
two “indicators” that measure the concentrations of reagents at
the grid pointi1 ) n1 - 2 (before the barrier) and at the grid
point i2 ) n2 + 2 (just behind the barrier). By comparing the
time evolution of concentrations at these points, we can see
whether every signal that arrives at the barrier is able to cross
it. Moreover, by counting the number of maxima of concentra-
tion within a certain time interval, we can measure the frequency
of the incoming and outgoing chemical signals. To observe the
further evolution of the outgoing signal, we introduce another
indicator i3, located far behind the barrier (cf. Figure 1).

The implicit method based on the Crank-Nicolson discreti-
zation of the Laplace operator8 has been applied to integrate
the reaction-diffusion equations numerically. The distance
between neighboring grid points (dl ) l/n) is the step of
numerical integration. In calculations we usually taken between
200 and 300, but computations for a larger number of grid points
have been also performed in order to check the numerical
stability of results.

If only a single pulse propagating in the excitable area toward
the barrier is considered, then nothing especially interesting can
happen in a one-dimensional system. If the barrier is narrow, it
is transparent to the pulse, which means that the pulse arriving
at one side of it excites the active area on the other side. If the
barrier is wide, the pulse does not get through it. The maximum
width of a transparent barrier is called the penetration depth.

The problem of penetration through the barrier becomes more
interesting if we consider a train of arriving pulses. Discussing
the properties of selected models we show that two scenarios
are possible. For one model, a passive barrier transparent to

the first pulse may be impenetrable for the next one. For another,
the first of arriving pulses which is stopped by a barrier wider
than the penetration depth, may “open” it to the subsequent
pulses. Both types of behavior are illustrated in Figure 2A-C,
which show the time evolution of activator’s concentration at
the grid pointi1 (the upper curve (1)) and at the grid pointi2
(curves 2-4). In addition, curve 5 in Figure 2A shows the
evolution at the grid pointi3, far behind the barrier. The
evolution at the initial stage of the process is given. The time
scale starts just before the first pulse of the train arrives at the
barrier. Parts A-C of Figure 2 correspond to the FitzHugh-
Nagumo model (FH-N), Rovinsky-Zhabotinsky model (R-
Z), and the Oregonator model discussed in the following
sections. Three lower curves show the evolution for the
following cases: (2) no barrier in the system, (3) a narrow
passive barrier, which is fully transparent, and (4) a barrier of
an appropriate width, for which the frequency of the outgoing
signal is different from the incoming one. Curve 5 in Figure
2A is presented to ensure that the small maxima of concentration
seen on curve 4 (Figure 2A) do not develop into pulses.

The results for the FH-N model (eqs 2-5) and the barrier
of width d ) 0.165 (Figure 2A, curves 4 and 5) show that the
first arriving pulse is stopped, the second pulse goes through
the barrier, and the next every odd pulse is stopped and every
even transmitted. Therefore the outgoing signal’s frequency is
half of the original one. We can say that an earlier pulse “opens”
the barrier for the next one.

The reverse behavior is observed for both R-Z and the
Oregonator models of the Belousov-Zhabotinsky (BZ) system.
For these models the first arriving signal is transmitted, but a
number of subsequent ones may be stopped, depending on the
barrier’s width, so in this case the earlier pulse passes through
and “closes” the barrier. Figure 2B, curve 4, shows the outgoing
signal with one-third of the original frequency (R-Z model,
eqs 6-9), whereas Figure 2C, curve 4, demonstrates the barrier,
which divides the original number of pulses for BZ system by
two (the Oregonator model, eqs 24-27).

To describe qualitatively the properties of a passive barrier,
we consider a train of many (usually about a hundred) pulses
with a constant time shifttp between them. We measure the
frequency of pulses in front of the barrier (f1) and behind it
(f2). Calculations have been performed for different values of
tp and different values of the barrier widthd. We have found
regimes for which the ratiof1/f2 is a small integer numberj,
which corresponds to a systematic transmission of everyjth
pulse from a train through the barrier. To avoid transient effects
in the signal analysis, we neglect a small number (around 10)
of initial pulses arriving at the first indicator (grid pointi1 in
Figure 1) when calculatingf1 andf2. The diagrams in the space
of parameters (d, tp) showing “phases” in which the barrier
transforms a chemical signal in a given way are shown in figures
describing results obtained for particular models.

We think thatd and tp (or f1) are the proper variables to
describe how a passive barrier works as a transformer of the
signal frequency. The interval oftp (or f1) is limited by the fact
that once the excitable medium has been excited it needs some
minimal amount of time (called the refractory period) in order
to relax, before it may be excited again. Thus, there exists a
minimal time pacetp,min at which the pulses can be successfully
initiated. The timetp,min depends on the strength of excitation
and it fixes the upper frequency of the signal. On the other hand
makingtp very long reduces the problem to the propagation of
a single pulse. The range ofd is also finite as there always

Figure 1. Scheme of the system studied. It is represented by a one-
dimensional interval, shown in the bottom part of the figure; the active
areas and the passive barrier are indicated. The barrier is located
between grid pointsn1 andn2. Concentrations of reagents are observed
at grid pointsi1 (before the barrier),i2 (just behind the barrier), andi3
(far behind the barrier). The upper part shows a snapshot of a train of
pulses propagating in the system (incoming signal, on the left-hand
side and outgoing signal, on the right-hand side). Let us notice that the
signals have different frequencies.
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exists a barrier of widthdmin narrow enough to be transparent
to all pulses in a train and another one impenetrable for any of
them (with a width ofdmax). Thus the nontrivial transforming
properties of the passive barrier may be observed only in some
finite range oftp andd, which depends on the selected model
and values of its parameters.

III. The FitzHugh -Nagumo Model

In this section we consider a system for which the dynamics
in the active areas is described by a simple FitzHugh-Nagumo
type model:3,9,10

with the parametersτ ) 0.03, γ ) 1, k ) 3.0, R ) 0.02 (as
given by Motoike and Yoshikawa in ref 3), andDu ) 0.00045.6

For these values of parameters the system has one stationary
solution (u, V) ) (0, 0), which is excitable. The variablesu and
V cannot be directly associated with concentrations of chemical
spices, but their behavior resembles the one of the activator (u)
and inhibitor (V).

We assume that in the passive area no reaction occurs and
only diffusion of activator is possible, thus it is natural to call
this region a “diffusion area”. The equations describing the time
evolution ofu andV in this area are3

with τ ) 0.03 andDu ) 0.00045, as in the excitable areas.
In calculations for this model the following parameters have

been used:n ) 251,n1 ) 150,n2 ) 160. To produce a pulse,
the value ofV has been decreased toVini ) -0.2 on the left end
of the interval. Using the time integration step dt1 ) 5 × 10-3,
we have found that a single pulse is able to cross the passive
barrier ford ) 0.1631, but ford ) 0.1635 the barrier becomes
impenetrable. This means that the penetration depth in the
FitzHugh-Nagumo system is aboutdmax,FH-N ≈ 0.163.

For the considered values of parameters, the minimum time
after which the second pulse may be re-excited istp,min,FH-N ≈
2.4. However, for such a short time of consecutive excitations
it is not possible to obtain a regular, stable train of pulses,
because it happens that the medium at the initiation point is
not well relaxed and an attempt to re-excite it by the assumed
Vini fails. For the FitzHugh-Nagumo system the value of
tp,min,FH-N strongly depends onVini (the strength of excitation)
and also ondl, which describes the spatial size of excitation. In
our calculations in order to create a stable train of pulses we
have usedtp∈ [2.90, 4.04].

The maximum time within which the evolution is studied
(tmax) is fixed in our calculations. The system is excited
approximatelyp ) tmax/tp times, so it is expected that such
number of pulses is produced. We can check it by counting the
number of pulsesp1 that reach the first indicator during that
time. The ratio: p1/p is called the initiation ratio. If it is
remarkably smaller than 1, we know that not all attempts of
initiating a pulse are successful. On the other hand, when it is
close to 1, we obtain nice regular trains of pulses and only such
cases are considered below. The time shift between individual

pulses within a regular train equalstp and f1 ) 1/tp gives the
frequency of incident pulses at the first indicator.

To investigate the effect of the barrier, we have usedtmax )
500 and the time integration step dt1 ) 5 × 10-3 to study a
range oftp from 2.98 to 4.04 with increments 0.02 (f1 ∈ [0.248,
0.336]) and the barrier widthsd ∈ [0.126, 0.172]. For the
selectedtmax and tp we have observed from 120 to 160 pulses
in the system for each combination oftp andd.

Figure 2A presents a sample signal (concentration ofu)
observed at the grid pointsi1 ) 148,i2 ) 162, andi3 ) 248 for
dl ) 0.0175,n ) 251, andf1 ) 0.294. For all the results shown
in Figure 2An1 ) 150, whilen2 is changed to obtain barriers
of a various widthd. The upper curve (1) corresponds to incident
pulses (reference signal at indicatori1). In case ofn2 ) 151 (no
passive barrier) the same signal is observed at indicatori2 with
only a small time shift, which the signal needs to cover the
distance between indicatorsi1 andi2 (signal ati2, curve 2). The
result is the same forn2 ) 155, which corresponds to a thin,
fully transparent passive barrier (curve 3 presents the signal at
i2). All incident pulses observed at indicatori1 get through the
barrier and are also observed at indicatori2. However, for a
properly chosen width the barrier becomes selective. Forn2 )
160 (the barrier’s width is thend ) 0.158) exactly every second
of the incident pulses is transmitted through the barrier and
observed at indicatori2 (curve 4) or indicatori3 (curve 5).

Figure 3 summarizes the signal transforming properties of a
passive barrier as a function of the barrier’s widthd and the
time shift between consecutive incident pulsestp. The regions
of the same color correspond to a given ratio of frequencies
(f2/f1) of the outgoing (f2) and incoming (f1) trains of pulses,
called a filtering ratio. The area labeled as “1” indicates the
ratio equal to 1, which means that every incident pulse is able
to get through the passive barrier (the barrier is transparent to
all pulses). Whentp decreases, we arrive at the area (labeled as
“1/2” in Figure 3) where only every second of the incident pulses
is transmitted. Increasingd, we observe that the filtering ratio
decreases, which means that the pulses are less and less
frequently transmitted (see area “1/3” in Figure 3, where only
one out of three of incident pulses gets through the barrier).
Finally, the barrier becomes too wide and no pulse can cross it
(thus f2 ) 0). This corresponds to the area labeled as “0” in
Figure 3. The hatched regions between the labeled areas in
Figure 3 correspond to more complex (periodic or nonperiodic)
transmission patterns (cf. Figure 5, described later in text).

The dark area below the region “1/2” corresponds to the cases
in which the excitation byVini ) -0.2 does not lead to a regular
train of pulses with the frequencyf1 ) 1/tp, because some
attempts at excitations fail. We have repeated the calculations
for different methods of pulse initiation (for example usingVini

) -0.4) and for a different number of grid points (n ) 300).
For stronger excitations we are able to obtain a regular train of
pulses with frequencyf1 ) 1/tp for the whole range oftp andd
shown in Figure 3. The calculations have shown that for a given
tp, for which every excitation is successful and for a selectedd
the observed type of behavior and the filtering ratio do not
depend on the method of excitation. ForVini ) -0.4 all points
that belong to the dark area in Figure 3 fall into the “1/2” region.
Nevertheless, in Figure 3 we marked them with a dark color,
just to indicate problems with periodic excitations.

We have studied more carefully the part of the parameter
space for which the filtering ratio is smaller than 1. We have
usedtmax ) 500 and dt2 ) 2 × 10-3 and investigated the range
of tp from 3.00 to 3.40 with increments of 0.01 and the range
of d from 0.168 to 0.173 with increments of 0.00018 (this is

τ∂u
∂t

) -γ[ku(u - R)(u - 1) + V] + Du∇2u (2)

∂V
∂t

) γu (3)

τ∂u
∂t

) Du∇2u (4)

V ) 0 ) const (5)
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the rectangular area marked with dashed line in the bottom right-
hand side corner of Figure 3). The results are presented in Figure
4, for which the meaning of the colors and labels is the same
as in Figure 3.

We have found that the filtering ratio equal to 1/2 is dominant
among the nontrivial filtering. In most cases it means that the
barrier eliminates every second pulse from the train. The
“scenario” of such elimination for the FitzHugh-Nagumo model
is shown in Figure 2A. It shows that the first incident pulse
“dies” at the barrier, but the next one is transmitted, another
one dies, etc. Similar observation is valid for lower values of
the filtering ratio. For example in the case of filtering ratio equal
to 1/3, the first and second incident pulses die and the third one
is transmitted. We think that a pulse stopped at the barrier

Figure 2. Time evolution of activator’s concentration at grid pointi1
(the upper curve 1), at grid pointi2 (curves 2-4), and at grid pointi3
far behind the barrier (curve 5). The evolutions ati2 correspond to no
barrier (curve 2), a narrow transparent barrier (curve 3), and to a barrier
for which frequency transformation occurs (curve 4). In the last case
the evolution ati3 is also shown (curve 5). (A) FitzHugh-Nagumo
model (eqs 2-5), tp ) 3.40 (f1 ) 0.294),d ) 0.070 (curve 3),d )
0.158 (curves 4 and 5). (B) Rovinsky-Zhabotinsky model (eqs 6-9),
τp ) 30 (f1 ) 0.033),d ) 1.628 (0.0150xDX/DX0

cm) (curve 3),d )
3.256 (0.0300xDX/DX0

cm) (curve 4).τp ) 30 corresponds to 255 s.
(C) Oregonator model (eqs 24-27), tp ) 10.4 (f1 ) 0.096),d ) 1.867
(curve 3),d ) 3.733 (curve 4).

Figure 3. Filtering ratio (f2/f1) for the FitzHugh-Nagumo model as a
function of the barrier’s width (d) and the time shift between consecutive
incident pulses (tp). The white, labeled areas correspond to the situation
when f2 is the given fraction off1. The dark area in the bottom left-
hand side corner indicates the region of parameters where not all
excitations lead to a pulse. The hatched area marks more complicated
transformations of frequency. The rectangular area in the bottom right-
hand side corner of the picture has been studied more carefully and is
illustrated in Figure 4.

Figure 4. Filtering ratio (f2/f1) for the FitzHugh-Nagumo model as a
function of the barrier’s width (d) and the time shift between consecutive
pulses (tp). The white, labeled areas correspond to the situation when
f2 is the given fraction off1. Hatched areas stand for more complicated
transformations of frequency. The dashed line indicatesd ) 0.1707.
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increases the value ofu inside the barrier for a short period of
time, so the “activator” is accumulated within the passive area.
This helps the next incident pulse to get through the barrier.

Let us also notice that there are hatched regions in Figures 3
and 4, which separate the areas labeled as “1”, “1/2”, “1/3”. In
these regions of the parameters’ space (d, tp) the transformation
of the frequency of incoming train of pulses is more complex.
An example is shown in Figure 5, which presents the filtering
ratio f2/f1 versus the frequency of incident pulsesf1 for a selected
barrier widthd ) 0.1707. This value ofd is indicated by a
thick black line in Figure 4. Iff1 is smaller than 0.303, no pulse
is transmitted and sof2 is zero. The selected barrier is wider
than a penetration depth, so if the time separation between pulses
tp is large, they behave like individual ones and they are not
able to cross the barrier.

For f1 > 0.303 the barrier opens to every second of the
arriving pulses. The evolution is the same as shown in Figure
2A (curves 1, 4, and 5) and every second pulse is transmitted
until the frequencyf1 reaches 0.313. At this point the filtering
ratio drops from 1/2 to 0.4. Such a ratio seems to be stable in
a narrow range off1 ∈ (0.316, 0.319). It corresponds to a more
complex behavior illustrated in Figure 6 (curves 1-3). Results
presented in Figure 6 have been obtained forn ) 251, dl )
0.01896,n1 ) 150, andn2 ) 160 (so the barrier’s width isd )
0.1707). Indicators are located at grid pointsi1 ) 148, i2 )
162, andi3 ) 248. Curves 1-3 show the signal at indicatorsi1,
i2, andi3 respectively, forf1 ) 0.318 (tp ) 3.14). Let us notice
that just after crossing the barrier the signal has the period of
5tp with two maxima of concentration per period (Figure 6, curve
2). The signal far behind the barrier is shown as the curve 3.
One can see that the small maxima have not developed into the
regular pulses and the signal is composed of peaks separated
by 2tp and 3tp. We believe that such form of a signal has a
transient character. The numerical experiments with pulses in
the FH-N system have indicated that a velocity of a pulse
increases with the distance separating it from the preceding

ones.11 Thus, a pulse that propagates 3tp after the preceding ones
is faster than that propagating 2‚tp after the preceding ones. In
the long time limit one obtains a periodic signal, the frequency
of which is 2/5 of the original one. The stability of the 2/5
filtering mode described here has been confirmed by calculations
carried out up totmax ) 10000. We observe that the increment
of f1 leads to more complex output (Figure 5), which requires
further studies. A further increase in frequency leads to the
output signal for whichf2 ) f1/3. The region “1/3” continues to
the highest frequencies for which a regular train of pulses may
be created. Such behavior is illustrated in Figure 6 by curves 4
(signal ati1) and 5 (signal ati2) for f1 ) 0.328.

IV. Models of Chemical Systems: The
Rovinsky-Zhabotinsky and the Oregonator Model

In this section we present the filtering properties of a passive
barrier in an excitable medium described by models that can
be associated to a real chemical reaction.

We have focused our attention on the Rovinsky-Zhabotinsky
model of the Belousov-Zhabotinsky reaction,12,13 which is
based on the Field-Körös-Noyes14,15 mechanism of the Be-
lousov-Zhabotinsky reaction13 completed by the hydrolysis of
bromomalonic acid to tartronic acid.12 The Rovinsky-Zhabot-
insky model uses two variables:x and z, corresponding to
dimensionless concentrations of the activator HBrO2 and of the
oxidized form of catalyst Fe(phen)3+

3. In the active regions,
which contain the catalyst, the time evolution of the concentra-
tions of x andz is described by

In the passive region, without catalyst, the concentrations ofx

Figure 5. Filtering ratio in the FitzHugh-Nagumo model for a selected
barrier’s width d ) 0.1707. f2/f1 is presented as a function of the
frequency of incident pulses (f1, bottom axis) or the (approximate) time
shift between consecutive incident pulses (tp, top axis). Labels describe
the filtering ratio (f2/f1).

Figure 6. Time evolution of activator’s concentration in the FitzHugh-
Nagumo model at indicator 1 (grid pointi1, before the barrier, curves
1 and 4), at indicator 2 (grid pointi2, just behind the barrier, curves 2
and 5), and at indicator 3, far behind the barrier (curve 3) ford )
0.1707. Curves 1-3 correspond tof1 ) 0.318 and illustrate the
frequency transforming ratio equal to 2/5. Curves 4 and 5 correspond
to f1 ) 0.328 and illustrate the frequency transforming ratio equal to
1/3.

∂x
∂τ

) 1
ε[x(1 - x) - (2qR z

1 - z
+ â)x - µ

x + µ] + ∇F
2x (6)

∂z
∂τ

) x - R z
1 - z

(7)
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andz evolve according to

Equations 6-9 correspond to a typical experimental situation
in which the catalyst is immobilized on a membrane, whereas
the activator is in the solution and it can diffuse (compare refs
4 and 16). Therefore, we assume free boundary conditions
between the active and passive areas.

All variables and coefficients in eqs 6-9 are dimensionless.
The real concentrations of HBrO2 and Fe(phen)3+

3 (X, Z) are
related to (x, z) in the following way:

The coefficients (R, â, µ, ε) are defined as

where k(i denote the rate constants of the corresponding
reactions in the Field-Körös-Noyes model12-15 and A )
[HBrO3], B ) [CHBr(COOH)2], C ) [Fe(phen)2+

3] + [Fe-
(phen)3+

3], R) [‚CBr(COOH)2], U ) [HBrO+
2], X ) [HBrO2],

Y) [Br-], Z ) [Fe(phen)3+
3], andq is the stoichiometric factor.

Parameterh0 denotes the Hammett acidity function, describing
the effective proton concentration17-19 and it is expressed in
mol/L.

In our numerical calculations for the BZ system we use the
same values of parameters as considered in refs 12, 13, and 20:
A ) 0.02 M,B ) 0.2 M, C ) 0.001 M,k1 ) 100 M-2/s, k4 )
1.7 × 104 M-2/s, k5 ) 107 M-2/s, k7 ) 15 M-2/s, K8 ) 2 ×
10-5 M/s, k13 ) 10-6 s-1, q ) 0.5. The corresponding values
of scaled parametersR, â, ε, µ are 0.017h0

-2, 0.0017h0
-1,

0.1176, and 0.00051, respectively. For these values of param-
eters the system becomes excitable ifh0 < 0.9899.20 As in ref
7 we have chosenh0 ) 0.5.

Equations 6-9 are written in the dimensionless units of time
τ and distanceF. The relationships between them and the real
time t and distancer are the following:

whereDX is the diffusion constant of the activator x. For the

parameters chosen

However, the diffusion constant strongly depends on the medium
in which the reactions proceed. In the aqueous solution it is of
the order of 10-5 cm2/s,4,12,17,19,20whereas for a reaction in a
gel it may be reduced by 2 orders of magnitude.4,21 To make
our results more general, we present all distances and velocities
in the double form: dimensionless and as the function of the
ratio of diffusion constantsDX/DX0, where the value ofDX0

corresponds to a particular choice of the diffusion constant:DX0

) 1 × 10-5 cm2/s.12,20 The second number allows to see more
clearly the real spatial and temporal scale of the considered
process.

For the values of parameters defined above the stationary
concentrations ofx andz in the active areas are

(which is the stationary solution of eqs 6 and 7) and the
stationary concentrations in the passive area (the stationary
solution of eqs 8 and 9) are given by

In our calculations for the Rovinsky-Zhabotinsky model we
have usedn ) 320,n1 ) 150,n2 ) 155 and the dimensionless
time integration step dτ ) 1 × 10-3. The pulses are initiated at
the left end of the interval by increasing the value ofx to 0.1.
We have found that the penetration depth for a single pulse is
about 3.295 (0.03037xDX/DX0

cm). This value is close to the
one given in ref 7, but we believe that the present estimation is
more accurate due to a better method of numerical integration
(in ref 7 the Euler explicit method was used).

Figure 2B presents a typical signal (value ofx) observed at
the first and second indicators (grid pointsi1 and i2) for dl )
0.814 (n ) 320) andτp ) 30.0 (255 s). For those values of
parameters the excitation at the boundary gives a regular and
stable train of pulses. In all calculations the results of which
are shown in Figure 2B,n1 ) 150 and the indicators are located
at grid pointsi1 ) 148 andi2 ) 157, whilen2 is changed to
obtain barriers of a different width. The upper curve (1)
corresponds to incident pulses (reference signal at indicator 1).
For n2 ) 151 (no passive barrier, curve 2) the same signal
(shifted in time) is observed at indicator 2. The same behavior
is observed for a thin, fully transparent passive barrier (n2 )
153, curve 3). All incident pulses observed at indicator 1 get
through the barrier and are also observed at indicator 2. Forn2

) 157 every third of the incident pulses is transmitted through
the barrier as it is observed at indicator 2 (curve 4). In this case
the width of the passive barrier is 3.256 (0.0300xDX/DX0

cm).
Let us also notice that unlike for the FH-N model, the passive
barrier in the R-Z (BZ) system is transparent to the first arriving
pulse and it may become closed for the subsequent ones.
Therefore the transformation of frequency occurs for barriers
which are narrower than the penetration depth.

For the parameters of R-Z model we observe that the
minimal time necessary to initiate a new pulse after the first
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pulse has been produced in the system isτp,min,RZ ≈ 5.8 (49 s)
but one has to use much higher values ofτp to obtain a stable,
regular train of pulses. We have studied the range ofτp from
30 (255 s) to 60 (510 s) with increments of 2 (17 s) and
consideredd changing from 3.188 (0.02939‚xDX/DX0

cm) to
3.295 (0.03037‚xDX/DX0

cm). τmax ) 2000 (17000 s) has
been used, so during the evolution from 33 up to 66 pulses
may appear in the system for each combination ofτp andd.

The results are shown in Figure 7. For all the examined values
of d andτp every excitation creates a pulse. The filtering ratio
f2/f1 presented in Figure 7 reveals areas of parameters’ values
for which every second or every third of the incident pulses is
transmitted (those regions are labeled as “1/2” and “1/3”,
respectively). We have noticed that the “scenario” here is
different than the one for the FitzHugh-Nagumo model,
although the overall effect is the same. In contrary to FitzHugh-
Nagumo, for the Rovinsky-Zhabotinsky model the stable
elimination of every second pulse from a train means that the
first incident pulse crosses the barrier, the next one “dies”, etc.
For division by 3, the first pulse gets through and then two
pulses “die”, etc. (cf. Figure 2B). This suggests that the
mechanisms of crossing the passive barrier are different in the
two discussed models. Label “0” in Figure 7 indicates the area
in which no pulse can cross the passive barrier. The hatched
regions between the white, labeled areas in Figure 7 correspond
to more complex transmission patterns.

Figure 8 presents the filtering ratiof2/f1 plotted versus the
frequency of incident pulsesf1 for a selected barrier widthd )
3.2375 (0.0298xDX/DX0

cm). This value ofd corresponds to
the thick dashed vertical line in Figure 7. Here the frequencies
f1 andf2 are dimensionless frequencies, calculated as the inverse
of dimensionless timeτ. For f1 ∈ [0.0167, 0.0278] every second
of incident pulses gets through the barrier. Forf1 g 0.0294 only
one out of three incident pulses gets through the barrier (thus
we have the filtering ratiof2/f1 ) 1/3).

To check if the frequency transforming is a typical feature
of a passive barrier in an excitable medium, we have performed
calculations for the Oregonator model22-24 in the form presented

in ref 23 with diffusion of the activator added. In the Oregonator
model the active field is described with the following reaction-
diffusion equations:

whereu corresponds to the scaled concentration of activator
(HBrO2) andV, to the scaled concentration of catalyst (Ce4+).23

In the passive regions, without catalyst, the concentrations ofu
andV evolve according to

In eqs 24-27 t stands for the scaled time andε (a time scale
parameter) is small.23 Another small parameterq is connected
to the rate constants of the reactions involved in the Oregonator
model. The stoichiometric parameterf is proportional to the
average number of bromide ions released per metal ion reduced
by organic matter. The details of scaling are described in ref
23.

In our calculations we have usedε ) 0.05,24 f ) 3,23 q )
0.0002,23 and D ) 1.0. For these values of parameters the
stationary state of the system within the active areas corresponds
to

and it is excitable. In the passive areas the stationary solution

Figure 7. Filtering ratio (f2/f1) for the Rovinsky-Zhabotinsky model
as a function of the barrier’s width (dimensionless,d) and the time
shift between consecutive pulses (dimensionless,τp). The white, labeled
areas correspond to the situation whenf2 is the given fraction off1.
Hatched areas stand for more complicated transformations of frequency.
The dashed line indicatesd ) 3.2375.

Figure 8. Filtering ratio in the Rovinsky-Zhabotinsky model for a
selected barrier’s widthd ) 3.2375 (0.0298xDX/DX0

cm). f2/f1 is
presented as a function of the dimensionless frequency of incident pulses
(f1, bottom axis) or the (approximate) physical time shift between
consecutive incident pulses (tp (s), top axis). Labels give the filtering
ratio (f2/f1).
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is given by

In our calculations for this model we have used the implicit
method described in section II withdl ) 0.3733 (n ) 400),n1

) 200, dt ) 1 × 10-4, and tp ) 10.4. The pulses have been
initiated on the left end of the interval by decreasingV to Vini )
0.0. The evolution of this system has been studied up totmax )
1000.0 (so that over 95 pulses is involved in each experiment).
We have observed that the filtering properties of a passive
barrier in the Oregonator model are similar to those for FH-N
and R-Z models. Figure 2C presents a sample signal (the value
of u) observed at the first and second indicators (grid pointsi1
) 198 andi2 ) 213, respectively). As mentioned above,n1 )
200 whilen2 is changed to obtain barriers of different width.
The upper curve (1) corresponds to incident pulses (reference
signal at indicator 1). Forn2 ) 201 (no passive barrier, curve
2) the same signal (shifted in time) is observed at indicator 2.
The same behavior is observed for a thin, fully transparent
passive barrier (n2 ) 206, curve 3). All incident pulses observed
at indicator 1 get through the barrier and are also observed at
indicator 2. For a wider barrier (n2 ) 211) every second of the
arriving pulses is transmitted through the barrier and may be
observed at indicator 2 (curve 4). For this curve the width of
the passive barrier is 3.733. In this case, as for R-Z (BZ)
system, the frequency is transformed for a barrier narrower than
the penetration depth, because the first transmitted pulse makes
the barrier impenetrable for the subsequent ones.

V. Conclusions

In the paper we discuss the properties of a barrier in the form
of a stripe of a passive area separating two regions of space in
which the system is in the excitable regime. We have studied
the evolution of a train of regularly created pulses of excitation,
which arrive at such a barrier. Our investigation is based on
numerical solution of the corresponding reaction-diffusion
equations with the free flow of mobile reagents between the
active and passive regions.

Two facts are obvious: if the barrier is narrow, it is
transparent to the pulses; if it is wide, it is impenetrable.
However, we have found that between these two limiting cases
there is a range of barrier widths for which it works as a
transformer of signal’s frequency. It means that every second,
third, etc. pulse from the incoming signal is transmitted and all
the others are stopped at the barrier. The number of transmitted
pulses decreases with the barrier’s width. We have also observed
more complex examples of signal transformation, like, e.g., a
selection of two pulses out of every five arriving, shown in
Figure 6. Unfortunately, such interesting, complex behavior
occurs in a narrow range of barrier widths and it is not as robust
as a simple division of the number of input pulses by two or
three. As shown in Figure 7 the division of the original
frequency by 2 within the R-Z model occurs in a wide range
of parameters’ values, so we believe the effect can be easily
studied experimentally.

The calculations have been performed for the FH-N model
of an excitable system as well as for the R-Z and Oregonator
models of the ferroin/cerium catalyzed BZ reaction. For all these
models we have found an interval of barrier’s width in which
the barrier works as a transformer of frequency of the input
signal. We have also found that the mechanisms of the signal
transformation for the FH-N model and for the models of BZ
reaction are different. In the former case the signal transforming

properties occur when the first of incident signals from the train
is stopped, but the subsequent ones may go through the barrier,
so the frequency transforming is observed for barriers wider
than the penetration depth. For the models of the BZ system
the first incident signal is transmitted, but the subsequent ones
may be stopped, so the barrier should be narrower than the
penetration depth in order to observe frequency transforming.

It is interesting that the frequency transforming for a train of
pulses has been already observed experimentally. Agota Toth,
Vilmos Gaspar, and Kenneth Showalter25 studied the excitation
of a BZ medium at the end of a capillary tube by a train of
pulses propagating inside the capillary. They found that,
depending on the capillary’s diameter, every arriving pulse may
excite the medium (if the capillary is wider) or the excitation
never happens (if the diameter is small). However, there is a
range of diameters in which the firing number (i.e., the ratio of
the excitations of the medium to the number of incoming pulses)
is fractional. The capillary’s diameter (in ref 25) and the barrier’s
width (in our case) controls the strength of excitation of the
active medium. The firing number in ref 25 has the same
meaning as the filtering ratio in our paper. Qualitatively, both
results of ref 25 and these presented here mean that there is a
range in periodic perturbations of an excitable system in which
the system answers in a resonant way. Similar phenomenon
observed in a homogeneous reactor was described in refs 26-
29.

The authors of ref 25 pointed out that the resonant patterns
of transmitted waves may be important in biological systems.
They postulated that narrow excitable gaps in an unexcitable
tissue may be responsible for transformation in the frequency
of a biological signal. Our results show that such gaps are not
necessary and the phenomenon may occur if some reagents
responsible for signal propagation can diffuse through the
unexcitable tissue.

Transformation of chemical signal frequency on a passive
barrier has been recently reported by Suzuki, Yoshinobu and
Iwasaki, ref 30. The diagram which relates the filtering ratio
seen in their experiments with the barrier width and the period
of excitations (Figure 10 in ref 30) is in qualitative agreement
with our results shown in Figure 7.
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