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To answer the question, “Can a quartet be the ground state of heteroatom analogues of trimethylenemethane
(TMM)?”, B3LYP, CASSCF, and CASPT2 calculations have been performed on the lowest doublet and
quartet states of the positive and negative radical ions of TMM and of several heteroatom-substituted analogues.
Of the molecules on which calculations were performed, all those containing threeπ electrons, including
AlO3

•, were found to have doublet ground states. However, a quartet ground state was computed for O(SiH2)3
•+,

a radical ion containing fiveπ electrons. Calculations on H3
• and HeH3

• models revealed a similar difference
between the three- and five-electron cases. A doublet was computed to be the ground state of H3

• at all D3h

geometries, but at some He-H distances the quartet was computed to be the ground state ofD3h HeH3
•. The

model calculations lead to an explanation of why radicals containing threeπ electrons are all predicted to
have doublet ground states; whereas, the quartet is computed to be the ground state of at least one radical
containing fiveπ electrons.

Since its conception by Moffitt1 in 1948 and its synthesis
and spectroscopic observation by Dowd2 in 1966, trimethylen-
emethane (TMM) and its derivatives have become the most
thoroughly studied non-Kekule´ hydrocarbon diradicals.3 The
ground state of TMM has long been known to be a triplet,2,4 as
expected from both qualitative molecular orbital (MO)5 and
valence-bond (VB)6 theories. The size of the singlet-triplet
energy splitting has been measured7 and found to be in good
agreement with the results of high-level ab initio calculations.8

Much less is known about the radical ions of TMM than about
the neutral diradical. The parent radical cation (TMM•+) has
been generated by Shiotani and co-workers and studied by EPR.9

As predicted computationally, 10 years before the EPR study
was performed,10 the doublet ground state was found to
pseudorotate from one Jahn-Teller-distorted geometry to
another with little or no barrier. Derivatives of TMM•+ have
been formed as reactive intermediates by one-electron oxidation
of methylenecyclopropanes.11

Even less is known about the TMM radical anion (TMM•-)
than about the radical cation. TMM•- was generated in the gas-
phase by Hu and Squires and used to obtain the negative ion
photoelectron spectrum of TMM.7 In the same study, the results
of CASSCF and UB3LYP calculations on the two, Jahn-Teller
distorted,C2V states of TMM•- were reported. The2A2 state
was computed to be 0.1-0.6 kcal/mol lower in energy than the
2B1 state.7

Recently, Iwamura and co-workers have prepared derivatives
of TMM radical ions in which the three methylene groups were

replaced byp-(tert-butylnitroxyl)phenyl groups and the central
carbon was replaced by boron or by nitrogen.12 B(CH2)3

• is
isoelectronic with TMM•+, and N(CH2)3

• is isoelectronic with
TMM •-.

EPR magnetic susceptibility studies showed that the B(CH2)3
•

and N(CH2)3
• derivatives prepared by Iwamura and co-workers

had doublet ground states. However, the presence of a thermally
populated, excited quartet state was detected in both compounds.
UB3LYP calculations on a model for the aza compound, in
which the tert-butyl substituents on the nitroxyl groups were
replaced by methyls, gave a doublet-quartet energy separation
that was in good agreement with that measured.12

Iwamura’s study raises the question of whether it might be
possible to prepare heteroatom analogues of TMM radical ions
in which the ground state is a quartet, rather than a doublet. In
this paper we address this question and report the results of ab
initio and density functional theory (DFT) calculations on the
doublet-quartet energy differences (∆EDQ) in planar X(CH2)3

radicals with threeπ electrons (X) Al, B, and C+) and fiveπ
electrons (X ) C-, N, and O+). We also describe how
replacement of the three methylene groups in Al(CH2)3

• by
oxygen atoms and in O(CH2)3

•+ by SiH2 groups affects the
calculated values of∆EDQ.

We have found that our computational results on molecules
containing three and fiveπ electrons are mirrored by the results
of calculations on H3• and HeH3

• models. These models provide
an explanation for why the quartet can fall below the doublet
in properly designed heteroatom derivatives of TMM•- but not
in heteroatom derivatives of TMM•+.

Computational Methodology

We were interested in comparing the relative energies of the
doublet and quartet states of the X(CH2)3 radicals with fully
conjugatedπ systems, since at such geometries the quartet has
the best chance of being competitive in energy with the lowest† Email address: borden@chem.washington.edu.
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doublet state. Therefore, most of our calculations were per-
formed on molecules that were constrained to be planar. The
geometries of the doublet and quartet states of molecules, thus
constrained, were optimized in theC2V andD3h point groups,
respectively.

Especially for the X(CH2)3 radicals containing fiveπ
electrons, pyramidalization of X and/or the peripheral CH2

groups was computed to be energetically favorable. Conse-
quently, for such molecules, the optimizedC2V and D3h

geometries are not energy minima but are, instead, stationary
points of higher order, usually with several imaginary vibrational
frequencies. Therefore, the relative energies of the doublet and
quartet states of such molecules were not corrected for differ-
ences between their zero-point vibrational energies.

Unless otherwise specified, all calculations were performed
with the 6-31+G(d) basis set.13 Unrestricted (U)DFT calcula-
tions were carried out utilizing Becke’s three-parameter, hybrid
functional14 and the nonlocal correlation functional of Lee,
Yang, and Parr15 (B3LYP). TheGaussian 98suite of programs16

was used to perform the UB3LYP calculations.
CASSCF calculations were carried out with theGAMESS

package of ab initio programs.17 The active space for the
CASSCF calculations consisted of the number ofπ electrons
in each species [e.g. three for B(CH2)3

• and five N(CH2)3
•],

distributed among the fourπ MOs of TMM. To include the
effects of dynamic electron correlation18 in the (3/4)CASSCF
and (5/4)CASSCF calculations, CASPT219 single point calcula-
tions were performed at the CASSCF optimized geometries,
using theMOLCAS suite of programs.20Absolute UB3LYP,
CASSCF, and CASPT2 electronic energies and the optimized
UB3LYP and CASSCF geometries for each of the low-lying
electronic states of all the molecules discussed in this paper are
available as Supporting Information.

Results and Discussion

Corrections for Artifactual Symmetry Breaking. In the
lowest doublet state of a planar X(CH2)3 radical that contains
either three or fiveπ electrons, an odd number of electrons must
be placed in the pair of nonbondingπ MOs. At D3h geometries
these MOs belong to the degenerate e′′ representation of the
D3h point group. Since the ex′′ and ey′′ NBMOs are degenerate
at D3h geometries, at such geometries the energies of the2Ex′′
and 2Ey′′ states that result from singly occupying one or the
other of these two NBMOs should be exactly the same.

However, in practice, the computed energies of the two states
that result from singly occupying one or the other of the two
NBMOs usually do not have exactly the same energy. As
discussed in detail elsewhere,10,21 approximate wave functions
usually show artifactual symmetry breaking, because atD3h

geometries the two lowest doublet wave functions for X(CH2)3

radicals do not really have pure Ex′′ and Ey′′ symmetry. Instead
the wave functions belong to, respectively the A2 and B1

representations of theC2V subgroup ofD3h. Since A2 and B1

are not degenerate representations (theC2V point group has
none), atD3h geometries the two lowest doublet wave functions
generally do not have the same energy.

Like the pure2Ex′′ and 2Ey′′ wave functions to which they
correspond, the2A2 and 2B1 states each undergo a first-order
Jahn-Teller distortion22 to aC2V geometry of lower symmetry.
One of these states is expected to represent the maxima and
the other the minima along the lowest energy pathway for
pseudorotation of the lowest doublet state of an X(CH2)3 radical
around aD3h geometry.21 However, if the energies of these two
states are spuriously computed to be different atD3h geometries,

there is every reason to believe that this energetic advantage of
one state over another will also be manifested in the relative
energies of the states at the optimizedC2V geometry of each.

The simplest way to correct for this effect of artifactual
symmetry breaking, due to the approximate nature of the
electronic wave functions, is to subtract the energy difference
between2A2 and2B1 at aD3h geometry (e.g., at the optimized
geometry of the quartet,4A1′′) from the energy difference
between these two doublet states at the optimizedC2V geometry
of each. For example, our calculations almost invariably found
that, at theD3h geometry of4A1′′, 2B1 was higher in energy than
2A2. The energy that has to be subtracted from the energy of
2B1, to make it degenerate with2A2 at the optimizedD3h

geometry of4A1′′ is shown in the first column of Tables 1 and
2. The second column shows the energy of2B1, relative to2A2,
at the optimizedC2V geometry of each state, after this correction
for artifactual symmetry breaking has been applied.

The results in Tables 1 and 2 show that artifactual symmetry
breaking in2A2 and2B1 has a much larger effect on the relative
UB3LYP energies of these two states than on their relative
CASSCF or CASPT2 energies. The effect of artifactual sym-
metry breaking on theUB3LYP relative energies increases with

TABLE 1: Relative Energies (kcal/mol), Calculated for the
Electronic States in XY3 Radicals Containing Threeπ
Electrons

molecule method
E(2B1) -
E(2A2)a

E(2B1)corr -
E(2A2)b

E(4A1′′) -
E(2A2)c

CASSCF 0.3 0.2 56.1
C(CH2)3

•+ CASPT2 0.1 -0.2 62.7
B3LYP 2.0 -0.3 63.0
CASSCF 0.0 0.0 17.2

B(CH2)3 CASPT2 0.0 -0.1 23.3
B3LYP 6.9 -2.3 23.7
CASSCF 0.1 -0.2 2.7

Al(CH2)3 CASPT2 0.0 0.0 4.4
B3LYP 18.7 0.4 4.5
CASSCF 0.0 0.0 0.4

AlO3 CASPT2 0.0 0.0 1.0
B3LYP 48.5 -1.8 0.9

a Energy, which, when subtracted from that of2B1, would make the
energy of2B1 the same as that of2A2 at theD3h equilibrium geometry
of 4A1′′. b Relative energies of2B1 and 2A2 at their equilibrium
geometries, after correction of the energy of2B1 for the effect of
artifactual symmetry breaking at theD3h geometry of4A1′′. c ∆EDQ.

TABLE 2: Relative Energies (kcal/mol), Calculated for the
Electronic States in XY3 Radicals Containing Fiveπ
Electrons

molecule method
E(2B1) -
E(2A2)a

E(2B1)corr -
E(2A2)b

E(4A1′′) -
E(2A2)c

CASSCF 1.2 -1.1 49.2
C(CH2)3

•- CASPT2 -0.9 0.6 42.9
B3LYP 0.2 0.2 40.5
CASSCF -0.2 -0.6 32.5

N(CH2)3 CASPT2 0.1 0.3 38.0
B3LYP 2.3 -0.7 38.0
CASSCF 0.0 -0.1 5.1

O(CH2)3
•+ CASPT2 0.0 -0.1 8.9

B3LYP 17.7 -4.1 8.0
CASSCF 0.0 0.0 -0.9

O(SiH2)3
•+ CASPT2 0.0 0.0 -0.8

B3LYP 22.1 0.0 -0.1

a Energy, which, when subtracted from that of2B1, would make the
energy of2B1 the same as that of2A2 at theD3h equilibrium geometry
of 4A1′′. b Relative energies of2B1 and 2A2 at their equilibrium
geometries, after correction of the energy of2B1 for the effect of
artifactual symmetry breaking at theD3h geometry of4A1′′. c ∆EDQ.
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the difference between the electronegativities of the central and
terminal atoms.

As the difference between the electronegativities of the central
and terminal atoms in XY3 increases, configurations, other than
the one of lowest energy, become increasingly important for
both doublet states (vide infra). Since the UB3LYP calculations
are based on wave functions that consist of a single configu-
ration, it is not at all surprising that, as the difference between
the electronegativities of the central and terminal atoms in XY3

increases, UB3LYP does a poorer job than CASSCF or CASPT2
of computing the relative energies of the two lowest doublet
states.

Apparently,2B1, in which the unpaired electron occupies an
orbital of the same symmetry (b1) as the doubly occupiedπ
orbital(s), is less well-described by a single configuration at the
UB3LYP level than is2A2, in which the unpaired electron
occupies an orbital of different symmetry (a2) than the doubly
occupiedπ orbital(s). The poorer quality of the UB3LYP wave
functions for2B1, compared to those for2A2, is reflected, not
only in the higher UB3LYP energies of2B1, relative to2A2,
but also in the larger deviations of the values of〈S2〉 for 2B1

from the value of〈S2〉 ) 3/4 for a pure doublet wave function.
Therefore, in discussing the UB3LYP results in Tables 1 and
2, we will use the2A2, rather than the2B1 energies.

As the quality of the wave functions for the components of
a degenerate state improves, the amount of artifactual symmetry
breaking decreases; and the energies of the components become
more nearly the same at the geometry of highest symmetry.
This can be clearly seen by comparing the sizes of the CASSCF
and CASPT2 corrections for artifactual symmetry breaking in
Tables 1 and 2 with the UB3LYP corrections. Except in
C(CH2)3

•-, the largest CASSCF correction is 0.3 kcal/mol, and
the largest CASPT2 correction is 0.1 kcal/mol.

Effect of Including Dynamic Electron Correlation. Our
(3/4)- and (5/4)CASSCF calculations do not include the effects
of dynamic electron correlation between theσ and the π
electrons,18 but our CASPT2 calculations do. Therefore, there
is every reason to expect the CASPT2 results forE(4A1′′) -
E(2A2) )∆EDQ in Tables 1 and 2 to be more accurate than the
CASSCF results.

UB3LYP does not explicitly include any correlation between
theσ and theπ electrons in the Kohn-Sham orbitals from which
the densities are computed. However, the effects of both
dynamic and nondynamic electron correlation are included in
the B3LYP functional, from which the energy is calculated.

Thus, perhaps it is not surprising that inspection of Tables 1
and 2 shows the energy differences between4A1′′ and 2A2,
obtained by the CASPT2 and UB3LYP calculations, are
generally in much better agreement with each other than with
the CASSCF results. Consequently the following discussions
of ∆EDQ for the molecules in Tables 1 and 2 is based on the
CASPT2 and UB3LYP results for the energy differences
between4A1′′ and 2A2 in Tables 1 and 2, rather than on the
CASSCF results.

Effect of Heteroatom Substitution on∆EDQ in C(CH2)•+.
The values of∆EDQ in Table 1 for the X(CH2)3 radicals with
threeπ electrons decrease in the order, X) C+ > X ) B > X
) Al. The reasons for this decrease are easy to understand from
the X(CH2)3 π MOs and how they are occupied in the lowest
doublet and quartet states. The MOs and their occupancies in
2A2 and4A1′′ are depicted schematically in Figure 1.

The formation of4A1′′ from either of the lowest doublet states
requires the excitation of an electron from the bonding 1a2′′
MO to thee′′ NBMO that is empty. Therefore, the difference
between the e′′ and 1a2′′ orbital energies plays a crucial role in
determining the size of∆EDQ for the radicals in Table 1. Since
1a2′′ is a bonding MO and e′′ is nonbonding,∆EDQ should
decrease with a decrease in the strength of theπ bonds between
the central atom, X, and CH2. Thus, sinceπ bond strengths
decrease in the orderπ(C-C) > π(B-C) > π (Al-C),23 the
fact that∆EDQ decreases in the same order is easily understand-
able.

However, this is not the only manner in which the identity
of X in X(CH2)3 affects the difference between the e′′ and 1a2′′
orbital energies and, hence, the size of∆EDQ. As shown in
Figure 1, the e′′ MOs have a node at the central atom, whereas
1a2′′ does not. Consequently, a 1a2′′ f e′′ excitation transfers
electron density from X to the peripheral carbons. Thus, the
less electronegative X is, relative to C, the smaller the e′′ -
1a2′′ orbital energy difference and the lower the calculated size
of the ∆EDQ energy difference in Table 1.

Replacing Y) CH2 in XY3 with a more electronegative
group or atom should also decrease the size of the e′′ - 1a2′′
orbital energy difference and, hence, the size of∆EDQ. As shown
in Table 1, going from Al(CH2)3 to AlO3 is computed to lower
the CASPT2 value of∆EDQ from 4.4 kcal/mol to only 1.0 kcal/
mol. Since an Al-O π bond is stronger than an Al-C π bond,23

this decrease in∆EDQ is clearly not due to a decrease inπ bond
strengths but to the greater electronegativity of O, relative to
CH2.

Figure 1. Schematic depiction of (a) theπ MOs for TMM and how they are occupied in the (b)2Ey′′ and (c)4A1′′ states of an XY3 radical
containing threeπ electrons. Only the top lobe of each 2p AO is shown.
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A Simple Model for XY 3 Radicals with Threeπ Electrons
and Y Much More Electronegative than X. In a hypothetical
XY3 radical that is isoelectronic with C(CH2)3

•+, if Y were
infinitely more electronegative than X, all threeπ electrons
would be localized in p-π AOs on the electronegative Y atoms.
If there really were no delocalization of electrons into the empty
p-π AO on X, this would be equivalent to not having a p-π
AO on the central atom or to not having a central atom at all.
Therefore, H3• with equal separations between all three hydro-
gens should provide an adequate model for theπ system of
such an XY3 radical atD3h geometries.24

Correlation between the three electrons in the three 1s orbitals
of H3

• can be handled by (3/3)CASSCF calculations. The results
of (3/3)CASSCF/6-311G(p) calculations on H3

• at D3h geom-
etries are given in Table 3. The Table shows that, as the distance,
R, between the three hydrogen atoms and their collective center
of mass decreases, the energy of the4A2′ state rises monotoni-
cally, while that of the2E′ state decreases by 20.9 kcal/mol
betweenR ) 4.00 Å and theD3h minimum atR ) 0.65 Å.
Consequently, although the energies of4A2′ and 2E′ are
essentially the same atR ) 4.0 Å, the energy of4A2′ never
falls below that of2E′. Jahn-Teller distortions of2E′ from D3h

geometries would, of course, further stabilize the doublet state.24

The results in Table 3 of the CASSCF calculations on the
H3

• model indicate that a doublet should also be the ground
state of an XY3 radical, containing threeπ electrons, even if Y
were infinitely more electronegative than X. To understand why
a doublet is expected to be the ground state, even under those
circumstances most likely to provide the smallest values of
∆EDQ, it is instructive to continue to exploit the simple H3

•

model.
Placing one electron in each 1s AO (φ) of H3

• minimizes the
Coulombic repulsion energy between electrons. For the4A2′ state
this distribution of the three electrons is, of course, the only
one allowed by the Pauli exclusion principle. Equation 1 gives
the wave function for the component of the quartet in which
the electron in each AO has spinR.

However, the quartet is not the only state in which one electron
can be localized in each 1s AO of H3

•. There is a2E′ state in
which this is also possible. The wave functions for its two
components,2Ex′ and 2Ey′ (respectively,2A1 and 2B1 in C2V
symmetry), are given in eqs 2 and 3.

It is possible to rewrite the valence-bond wave functions in
eqs 1-3 in terms of MOs. The normalized MOs,ψ, of D3h H3

•

can be expressed as linear combinations of the 1s AOs. Equation
4 gives the wave function for thea1 MO (ψ1); and eqs 5 and 6
give, respectively, the wave functions for the degenerate pair
of ex (ψ2) and ey (ψ3) MOs. The normalizations assume that
the overlap between AOs is either negligible or is small enough
to be neglected.

Using eqs 4-6, each of the AOs can each be written as a
linear combination of the MOs. Solving eqs 4-6 for each of
the AOs affords

Substituting eqs 7-9 into eq 1 gives the4A2′ wave function,
expressed in terms of MOs. Not surprisingly, it reduces to the
wave function in eq 10, which places oneR electron in each
MO.

Using eqs 7-9, the2E′ wave functions in eqs 2 and 3 can
also be expressed in terms of the MOs in eqs 4-6. However,
unlike the4A2′ wave function in eq 10, the2E′ wave functions
turn out to be linear combinations of configurations, each of
which assigns the three electrons to a different set of MOs. The
2Ex′ wave function is given in eq 11, and the2Ey′ wave function
is given in eq 12.

At sufficiently large H-H distances, the quartet wave function
in eq 10 has exactly the same energy as the degenerate doublet
wave functions in eqs 11 and 12. However, as the hydrogen 1s
AOs begin to overlap, two effects alter the relative energies of
4A2′ and 2E′. One involves electron repulsion in the overlap
regions between the hydrogen atoms, which selectively stabilizes
the quartet. The other involves bonding between the hydrogens,
which selectively stabilizes the doublet.

TABLE 3: (3/3)CASSCF/6-311G(p) Energies (kcal/mol) and
Coefficients of the Configurations in the Wave Function
(Equation 13) for the 2E′ State of D3h H3

• as a Function of
the Distance,R, from the Center of Mass (Energies Relative
to the D3h Minimum for 2E′ at R ) 0.65 Å)

R (Å) c1 c2 c3 E(2E′) E(4A2′) ∆EDQ

0.65 0.975 0.134 0.181 0a 158.24 158.24
1.0 0.859 0.286 0.427 12.47 52.74 40.27
1.5 0.683 0.471 0.559 20.06 24.26 4.2
2.0 0.608 0.546 0.576 20.86 21.18 0.32
2.5 0.585 0.569 0.577 20.91 20.91 0.0
3.0 0.579 0.575 0.577 20.92 20.92 0.0

a E ) -1.532765 hartrees.
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The quartet wave function not only keeps the electrons from
appearing in the same AO, but4Ψ also prevents the electrons
from appearing simultaneously in the regions where two of the
1s AOs overlap. The doublet wave functions,2Ψx and 2Ψy,
contain one electron that has opposite spin from the other two,
and there is no prohibition against having a pair of electrons of
opposite spin simultaneously in the same overlap region.25

Consequently, the doublet wave functions each have a slightly
higher Coulombic repulsion energy than the quartet, when the
hydrogen 1s AOs begin to overlap.

On the other hand, in the quartet the interactions between
the hydrogen atoms are all antibonding; but in the doublets some
are bonding and some are antibonding. For example, using eq
2, it is easy to show that in2Ψx the interactions betweenφ1

and bothφ2 and φ3 are weakly bonding, but the interaction
betweenφ2 andφ3 is antibonding. Similarly, using eq 3 it can
be shown that just the reverse is true in2Ψy; the interactions
betweenφ1 and bothφ2 andφ3 are weakly antibonding, but the
interaction betweenφ2 andφ3 is bonding. Overall, the doublet
wave functions are each nonbonding. However, the quartet wave
function is antibonding between all the hydrogens, and this
confers an energetic advantage on the doublet.

Our CASSCF calculations find that, as the AOs of H3
• begin

to overlap, if the weights of the three types of configurations
in each of the doublet wave functions in eqs 11 and 12 are kept
equal, the quartet falls below the doublets in energy.26 However,
as the AOs begin to overlap, andψ1 is stabilized, relative toψ2

andψ3, the coefficients of the three types of configurations in
eqs 11 and 12 do not remain equal. For example, in eq 13 for
the 2Ex′ wave function,c1, the coefficient of the configuration
in whichψ1 is doubly occupied, increases; andc2, the coefficient
of the configuration in whichψ1 is empty decreases, as does
the coefficient of the pair of configurations in whichψ1 is singly
occupied. The resulting increase in bonding between the
hydrogens is what causes the doublets to be stabilized as the 1s
AOs of the hydrogens begin to overlap.

Table 3 gives the coefficients of the three configurations in
the 2Ψx wave function for H3

• at several distances,R, between
each of the hydrogens and their center of mass. The degeneracy
of 2Ex′ and2Ey′ atD3h geometries ensures that, as the hydrogens

begin to overlap, the changes in the coefficients of the
configurations in2Ψy are the same as those in the coefficients
of the corresponding configurations in eq 13 for2Ψx. Table 3
shows the changes in the coefficients of the configurations in
the2E′ wave functions are accompanied by a decrease in energy
of this state by 20.9 kcal/mol on going fromR ) 4.00 Å to the
D3h geometry of minimum energy atR ) 0.65 Å.

Bonding between the hydrogen 1s AOs favors the doublet
state over the quartet in our H3

• model for an XY3 radical that
contains threeπ electrons and in which Y is much more
electronegative than X. Similarly, even ifπ bonding between
X and Y does not provide any stabilization for the doublet state
in such an XY3 radical, bonding between the 2p-π AOs on Y
will result in a doublet ground state. Consequently, we predict
it is highly unlikely that an XY3 radical, containing threeπ
electrons, will ever be found in which the quartet is the ground
state.

Effect of Heteroatom Substitution on∆EDQ in C(CH2)3
•-.

For X(CH2)3 molecules with fiveπ electrons,∆EDQ in Table 2
shows exactly the opposite trend from∆EDQ in Table 1 for
X(CH2)3 molecules with threeπ electrons. The value of∆EDQ

in Table 2 decreases with increasing electronegativity of X in
the order X) C- > X ) N > X ) O+. Figure 2 shows that
this decrease cannot be due to the fact thatπ bond strengths
increase in the orderπ(CdC) < π(NdC) < π (OdC),23 since
formation of 4A1′′ from either of the lowest doublet states
requires the excitation of an electron from the doubly occupied
e′′ NBMOs to the antibonding 2a2′′ MO. This excitation energy,
and, hence, the size of∆EDQ, should increase with the strength
of a π bond between X and CH2; but the trend in Table 2 is
just the opposite.

Instead, the decrease in∆EDQ with the electronegativity of
X is due the fact that an e′′ f 2a2′′ excitation transfers electron
density from CH2 to X. As already noted, e′′ has a node at the
central atom, X; whereas 2a2′′, like 1a2′′, does not. Therefore,
the e′′ f 2a2′′ excitation energy behaves exactly opposite to
the 1a2′′ f e′′ excitation energy and decreases with increasing
electronegativity of X, relative to CH2.

On going from X) C- to X ) N in X(CH2)3, the decrease
in ∆EDQ is rather small. The decrease is calculated to be only
4.9 kcal/mol by CASPT2 and 1.8 kcal/mol by UB3LYP. We
note, however, that the extra electron in2A2 C(CH2)3

•- is
computed to be unbound (EA) -6.7 kcal/mol) by CASPT2
and barely bound (EA) 5.3 kcal/mol) by UB3LYP.27 Since
∆EDQ > 40 kcal/mol at both levels of theory, in the4A1′′ state

Figure 2. Schematic depiction of (a) theπ MOs for TMM and how they are occupied in the (b)2Ey′′ and (c)4A1′′ states of an XY3 radical
containing fiveπ electrons. Only the top lobe of each 2p AO is shown.
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of the radical anion the electron in the 2a2′′ MO is unbound, by
ca. 50 kcal/mol at the CASPT2 level and by ca. 35 kcal/mol at
UB3LYP.

Hence, in the4A1′′ state of C(CH2)3
•- the electron in the 2a2′′

MO occupies a very diffuse, Rydberg-like, orbital, rather than
a valence orbital, as in N(CH2)3‚. Therefore, the difference
between the values of∆EDQ in C(CH2)3

•- and N(CH2)3
. does

not really reflect the difference between the energies of the 2a2′′
valence orbitals in these two radicals.

In the4A1′′ states of both N(CH2)3
• and O(CH2)3

•+, 2a2′′ is a
valence orbital. As a result, comparison of the∆EDQ, values in
N(CH2)3

• and O(CH2)3
•+ does reflect the effect of the difference

between the electronegativities of N and O on the relative
energies of the 2a2′′ MOs. It is for this reason that∆EDQ

decreases by ca. 30 kcal/mol on going from N(CH2)3
• to

O(CH2)3
•+.

Replacing X by a more electronegative atom is one way to
decrease the e′′ f 2a2′′ excitation energy and, hence, the size
of ∆EDQ. Another way is to replace carbon in CH2 by a more
electropositive element, such as Si. The substitution of SiH2

for CH2 lowers the e′′ f 2a2′′ excitation energy not only because
Si is less electronegative than C, but also by virtue of the fact
that aπ bond to Si is weaker than aπ bond to C.23

As shown in Table 2, the CASPT2 value of∆EDQ ) 9.0 kcal/
mol for O(CH2)3

•+ decreases to-0.8 kcal/mol for O(SiH2)3
•+.

Thus, in planar O(SiH2)3
•+ the quartet is actually predicted to

fall slightly below the doublet in energy.28

A Simple Model for XY 3 Radicals with Five π Electrons
and X Much More Electronegative than Y.Why is it possible
to find a planar XY3 radical with a quartet ground state when
there are fiveπ electrons, but not when there are threeπ
electrons? As already discussed, an H3

• model predicts that the
doublet will always remain the ground state of XY3

• when there
are threeπ electrons, no matter how much more electronegative
Y is than X. Therefore, it is reasonable to ask if a similarly
simple model predicts that the quartet can become the ground
state of XY3

• when there are fiveπ electrons and X is much
more electronegative than Y.

In the model for the five-electron case we again used three
hydrogen atoms, arranged in the geometry of an equilateral
triangle, as Y in XY3

•. As a very electronegative central atom
with two valence electrons we chose He. We then carried out
(5/4)CASSCF/6-311G(p) calculations on HeH3

• at D3h geom-
etries with different values of the He-H distance,R. The results
are summarized in Table 4.

As shown in this Table, asR is decreased, the energies of
both the2E′ and 4A2′ states of HeH3• increase monotonically.
At small R 2E′ is the ground state. However, at intermediate
values ofR, the quartet falls below the doublet. Thus, at these
values ofR, the HeH3

• model successfully reproduces what our
CASSCF and CASPT2 calculations predict to occur in planar
O(SiH2)3

•+: the quartet becomes the ground state.

In understanding why the quartet falls below the doublet in
both O(SiH2)3

•+ and in our HeH3• model for it, eq 14 is useful.
It gives the wave function for the2Ex′ component of2E′ in
HeH3

•. Equation 14 differs from eq 13 by the fact that each
configuration in eq 14 contains a term, He2, for the two electrons
that occupy the 1s AO on helium. However, as in eq 13,ψ1,
ψ2, andψ3 are the combinations of hydrogen defined by eqs
4-6.

In HeH3
•, ψ2 andψ3 each have a node at the He atom, butψ1

has the correct symmetry to interact with the He 1s AO. Since
ψ1 interacts with this doubly occupied orbital of much lower
energy,ψ1 is destabilized by this interaction.

Table 4 shows how the coefficients of the configurations in
the 2E′ wave functions change as the He-H distance,R,
decreases and the interaction betweenψ1 and the He 1s AO
increases. Sinceψ1 is destabilized by its interaction with the
He 1s AO, at values ofR < 2.5 Å the coefficient,c2, of the
configuration in whichψ1 is empty increases at the expense of
c1, the coefficient of the configuration in whichψ1 is doubly
occupied. AsR decreases,c3, the coefficient of the configura-
tions in whichψ1 is singly occupied also decreases, but to a
much lesser extent than doesc1.

Nevertheless, at He-H distances, where the increases in the
energies of both2E′ and4A2′ show that there is a nonnegligible
interaction between the 1s orbitals of these atoms (e.g., atR )
2.0 Å), the coefficientsc1, c2, andc3 remain nearly equal. The
reason is that, as the He-H distance decreases, the H-H
distances also decrease. Although the He-H interactions inψ1

are antibonding in HeH3•, the H-H interactions inψ1 are
bonding in HeH3

•, as they are in H3•. These two opposing effects
on the energy ofψ1 are what tend to keep the coefficientsc1,
c2, andc3 nearly equal, until values ofR are reached at which
He-H antibonding dominates H-H bonding (e.g., atR ) 1.0
Å).

As already discussed, when these coefficients are equal or
nearly so, the quartet has the advantage of having a slightly
lower Coulombic repulsion energy than the doublet, because
the Pauli principle prevents electrons of the same spin from
simultaneously appearing in the overlap regions between atoms.
Thus, at geometries of HeH3

• where an appreciable fraction of
the He-H antibonding interactions in the doublet are canceled
by H-H bonding interactions, the lower Coulombic repulsion
in the quartet can become the dominant energetic effect and
cause4A2′ to fall below 2E′.

Comparison of the CASSCF coefficients for the configura-
tions in the2E′ wave functions in Tables 3 and 4 shows that, at
the same values ofR (e.g., R ) 1.5 Å), c1 and c2 are more
nearly equal in HeH3• than in H3

•. Similarly, one would expect
the CASSCF coefficients for the configurations in the2A2 wave
functions that correspond to the first two configurations in eqs
13 and 14 to be more nearly equal in O(SiH2)3

•+ than in AlO3‚.
In fact, at the equilibrium geometries of the doublet states of
these two radicals, (c2/c1)2 ) 1.12 in O(SiH2)3

•+, but (c1/c2)2 )
1.23 in AlO3

•. 29

Conclusions

Our CASSCF, CASPT2, and UB3LYP calculations all predict
AlO3

• to have a doublet ground state; whereas, the same types
of calculations all predict the ground state of O(SiH2)3

•+ to be

TABLE 4: (3/3)CASSCF/6-311G(p) Energies (kcal/mol) and
Coefficients of the Configurations in the Wave Function (eq
14) for the 2E′ state of D3h HeH3

• as a Function of the He-H
Distance,R (Energies Relative to That of2E′ at R ) 4.0 Å

R (Å) c1 c2 c3 E(2E′) E(4A2′) ∆EDQ

1.0 0.355 0.794 0.489 148.55 158.83-10.27
1.5 0.538 0.615 0.575 37.35 37.19 0.16a

2.0 0.575 0.580 0.577 7.92 7.85 0.07
2.5 0.579 0.576 0.577 1.48 1.47 0.01
3.0 0.578 0.577 0.577 0.24 0.24 0.00
4.0 0.577 0.577 0.577 0b 0.00 0.00

a The maximum value of∆EDQ ) 0.23 kcal/mol was found to occur
aroundR ) 1.6 Å. b E ) -4.359325 hartrees.
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a quartet. Model calculations on H3
• and HeH3

• support the
following explanation for this difference between AlO3

• and
O(SiH2)3

•+.
In AlO3

• the Al-O and the O-O π interactions both
selectively stabilize the 1a2′′ bonding MO and, hence, favor
the doublet state over the quartet. In contrast, in O(SiH2)3

•+

destabilization by O-Si π antibonding of the 2a2′′ MO that is
largely localized on the silicons is partially offset by Si-Si π
bonding. As a result, occupancy of thisπ MO is not strongly
disfavored, relative to occupancy of an e′ nonbonding MO.
Consequently, in O(SiH2)3

•+ the lower electron repulsion in the
quartet can overcome the only slightly larger amount ofπ
bonding in the doublet.

More generally, the results described in this paper predict
that the ground state of an XY3 radical with threeπ electrons
will always be a doublet, even if Y is much more electronegative
than X. In contrast, in an XY3 radical with fiveπ electrons, if
X is much more electronegative than Y, there is at least a
possibility that the ground state will be a quartet.

We hope that our predictions of how∆EDQ depends on the
electronegativities of X and Y in XY3 radicals with three and
with five π electrons will be useful in designing XY3 radicals
with very low-lying excited quartet states. We also hope our
predictionssthat the doublet will be the ground state of every
XY3 radical with threeπ electrons, but that the quartet can
become the ground state of a planar XY3 radical with five π
electrons, when X is much more electronegative than Yswill
stimulate experimental tests.
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