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In this paper, we present the results of quantum dynamical simulations of the S (1D) + H2 insertion reaction
on a newly developed potential energy surface (J. Chem. Phys.2001, 114, 320). State-to-state reaction
probabilities, product state distributions, and initial-state resolved cumulative reaction probabilities from a
given incoming reactant channel are obtained from a time-independent wave packet analysis, performed within
a single Lanczos subspace. Integral reaction cross sections are then estimated byJ-shifting method and compared
with the results from molecular beam experiment and QCT calculations.

1. Introduction

The dynamics of an insertion reaction are more complicated
than a direct abstraction or exchange reaction because insertion
reactions usually involve the formation of relatively long-lived
complexes characterized by the existence of a deep potential
well. Such complexes, considered in isolation, support an
intricate resonance structure in the unbound part of their
spectrum. This resonance structure dominates the scattering state
space of the insertion reaction and makes the quantum simula-
tion of the dynamics very challenging. The H2 + O (1D) reaction
has often been regarded as a benchmark system for studying
insertion reactions. Molecular beam and bulk experiments1-12

have yielded detailed scattering information for a variety of
initial states, isotopes, and final state observables. Dynamics
calculations employing quasi-classical trajectory (QCT),13-17

trajectory surface hopping,18-21 and quantum scattering theory22-27

have been applied to analyze the detailed reaction dynamics on
several high quality ab initio potential energy surfaces (PES).28-31

Although the insertion mechanism clearly plays a major role in
the dynamics, an additional abstraction pathway above about 2
kcal/mol has complicated this reaction. Multiple potential surface
effects might be important in accurate simulation of such a
reaction, especially for higher collision energies. This has also
restricted one from further detailed studies of insertion dynamics
in general, e. g., how the dynamics changes as the initial
collision energy increases.

Recently, both experiment32,33 and theory34-36 indicate that
an analogue reaction H2 + S (1D) may provide a desirable
prototype for the insertion mechanism over a wider energy
range. Experimentally, Lee and Liu32,33 have carried out
molecular beam experiments over the collision energy range
from 0.6 to about 4.1 kcal/mol. The excitation function
measurements strongly suggest that the reaction cross section
can be entirely attributed to the insertion mechanism in this
energy range. Theoretically, a new potential energy surface for
H2 + S (1D) is developed,35 which is based upon extensive ab
initio calculations. The calculations have been performed at a
sufficient range of geometries in the entrance and exit channels

to enable simulation of the scattering dynamics. A global
representation of the lowest PES for H2 + S (1D) was presented
employing both the reproducing kernel Hilbert space (RKHS)
method30,37 and the Murrell-Carter fitting scheme.29 On the
new potential energy surface, Chao and Skodje34 have performed
quasi-classical trajectory (QCT) calculations. Some aspects of
the results were clearly consistent with the simple statistical
capture/decay model for insertion reaction. However, the more
highly resolved quantities (i.e., differential cross sections)
displayed features indicative of some nonstatistical reaction
dynamics. Comparison of QCT calculations to the molecular
beam experiments showed agreements in the broad pattern of
the results, but at the same time exhibits significant differences
in the more finely resolved quantities. At this point, further
quantum mechanical calculations are needed to investigate the
reaction mechanism in more detail.

For large molecular systems with a deep potential well,
iterative matrix methods such as Chebyshev or Lanczos
propagations are suitable choices because they do not require
explicit storage of the Hamiltonian matrix, rather only the
multiplication of the Hamiltonian onto a vector. When combined
with a sparse representation of the Hamiltonian such as a discrete
variable representation (DVR),38 both memory and CPU time
can be reduced dramatically. The concept of wave packet
scattering was first extended to time-independent iterative
methods by Kouri and co-workers.39-41 They derived a time-
independent (TI) wave packet-Lippmann-Schwinger equation
and presented a Chebyshev expansion expression of the causal
Green operator. Mandelshtam and Taylor42-44 later introduced
a very efficient scheme to implement dissipative boundary
conditions with a real damped Chebychev recursion, which has
enabled very significant computational advances. Guo and
Chen,45,46Neuhauser et al.,47-49 and Gray and Balint-Kurti50,51

have developed related efficient real Chebyshev approaches.
Very recently, Zhang and Smith52 recast the time-independent
wave packet-Lippmann-Schwinger equation of Kouri et al. into
a Lanczos representation and implemented an efficient Lanczos
subspace time-independent wave packet method. In this Lanczos
subspace method, we transform the primary Hamiltonian into
a tridiagonal representation. Under this representation, we
implement the action of the Green operator by solving a
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tridiagonal linear system with aQRalgorithm to extract all state
to state scattering information. This method is an extension of
Lanczos subspace filter diagonalization methods53-57 which we
have developed in recent years.

In this paper, we will apply the Lanczos subspace time-
independent wave packet method to the bimolecular reactive
scattering of H2 + S (1D). The article is organized as follows:
we present the outline of the Lanczos TI wave packet method
in section 2, and then in section 3, we present the results of the
three-dimensional quantum mechanical calculations of S (1D)
+ H2 reactive scattering forJ ) 0. By using J-shifting
method58,59 the integral reaction cross sections are estimated
and compared with the crossed beam experimental data and
quasiclassical trajectory results. Section 4 concludes.

2. Methodology

As discussed by Tannor, Kouri, Zhang, and others,S matrix
elements can be expressed in terms of the causal Green’s
function (see60-64)

Three specific equations forS matrix elements exist, among
which we use the scattering amplitude expression since it is
the simplest one to use when combined with the product Jacobi
coordinates

Here, the scattering wave function can be written as

wherekâ
2 ) 2µâ(E - εâ)/p2 with εâ being the internal energy of

SH product (expressions forkR andk0 are similar), and

with µR(â) being theR(â) arrangement channel translational
reduced mass. Equation 3 is the TI wave packet-Lippmann-
Schwinger equation of Kouri et al.,39 and is the central equation
in our Lanczos method. One can computeψR(E) either via a
TD wave packet method (time propagation followed by partial
Fourier transformation) or through a TI wave packet method
such as expansion of the Green operator using Chebyshev
polynomials.

Equation 3 can be rearranged as a linear system

For a large molecular system, it is nontrivial to solve this linear
system. Our approach involves transforming this linear system
from the primary representation to a tridiagonal (Lanczos)
representation. Inside the subspace, the linear system takes the
form

which is easily solved by aQR algorithm. In eq 5,TM is the
Lanczos representation of the primary complex Hamiltonian,

Ĥ′ ) Ĥ - iγ̂, |e1〉 is the first column of theM × M identity
matrix, and|φ(E)〉 is the subspace scattering wave function.

We employ the Lanczos algorithm65 for complex-symmetric
matrixes66 to set up the Lanczos subspace. Starting with a
normalized initial vector|ν1〉 ) |øR〉 and settingâ1)0, we use
the three-term vector recursion

to generateTM with diagonal elements,Rk ) (Vk|Ĥ′|Vk), and
subdiagonal elements,âk ) (Vk-1|Ĥ′|Vk). Note that the elements
are computed with a complex-symmetric inner product (i.e., the
bra states are not complex conjugated).

The initial wave packet,|øR〉, is chosen to be the product of
a localized translational wave packet in the scattering coordinate,
R′ say, and a specific rovibrational eigenfunction in the
remaining reactant coordinates (r′ andθ′ for our purposes)

with g(R′) ) ((1/πσ2))1/4 exp[(- (R′ - R′0)2/2σ2)] exp(-ik0R′).
The momentum representation of the translational component
is analytical, and given by

Note that at this point one must transform between product
Jacobi coordinates (R, r, θ) and reactant coordinates (R′, r′, θ′)
to calculate|øR〉 properly.

After establishing the Lanczos subspace, we calculate the
quasi-minimal residual solution of the linear system in eq 5 by
performing theQR factorization67

where QM+1 is a unitary matrix (+ indicates the Hermitian
adjoint). Only the elements of the upper-triangular matrixRM

with bandwidth 3 and the vector|t̃M+1〉 ) QM+1|e1〉 need to be
stored. The subspace scattering wave function is obtained via

The Lanczos subspace is independent of a constant energy shift,
E. Hence, from asingleLanczos subspace we are able to solve
the linear system in eq 5 and obtain the representations of the
scattering wave functions for any desired energy within the
spectral range of the initial wave packet.

Having obtained|φ(E)〉, it is straightforward to compute state-
to-stateS matrix elements from eq 2 since wave functions in
the primary and Lanczos representations are related through

where the orthonormal Lanczos matrix,VM, tridiagonalizes the
primary Hamiltonian. The state-to-state reaction probabilities
are now given by

SâR(E) ) i

2πaR(E)aâ
/(E)

〈øâ|Ĝ+ (E)|øR〉 (1)

SâR(E) ) 1
aR(E)x2πpkâ

µâ
e-ikâR∞〈æâ(r,θ)|ψR(E; R∞, r, θ)〉 (2)

ψR(E) ) i
2π

Ĝ+ (E)|øR〉 ) i
2π

1
E - Ĥ + iγ̂

|øR〉 (3)

aR(E) ) x µR

2πpkR
∫eikR′g(R′)dR′ ) x µR

2πpkR
gj(-kR)

(E - Ĥ + iγ̂)|ψR(E)〉 ) i
2π

|øR〉 (4)

(E - TM)||φ(E)〉 ) |e1〉 (5)

âk+1|Vk+1〉 ) Ĥ′|Vk〉 - Rk|Vk〉 - âk|Vk-1〉 (6)

|øR〉 ) g(R′)φνφν0(r′)Pj0(θ′) (7)

gj(-k) ) ∫0

∞
exp(ikR′)g(R′)dR′ )

(4πσ2)1/4{exp[i(k - k0)R′0] exp[- σ2

2
(k - k0)

2]} (8)

(E - Th M) ) QM+1
+ [RM

0 ] (9)

|φ(E)〉 ) RM
-1| t̃M〉 (10)

|ψ(E)〉 ) VM|φ(E)〉 ) ∑
i)1

M

φi(E)Vi (11)

PRâ(E) ) |SRâ(E)|2 )
4π2p2kRkâ

|gj(-kR)|2µRµâ

|DRâ(E)|2 (12)
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where the overlap integral is

The vectors{|câ〉} are the subspace versions of the primary
internal SH states|æâ〉 ) φν(r)Pj(θ), which can be easily
accumulated as the Lanczos recursion proceeds. Thus, by a
single Lanczos run one can calculateall the state-to-state
reaction probabilities from the target incoming reactant state
for energies within the spectral range of the initial wave packet.

3. Results

3.1 Hamiltonian. The triatomic H2S Hamiltonian with total
angular momentumJ ) 0 is written in terms of product Jacobi
coordinates

whereR is the separation of H from the center of mass of HS,
r is the H-S separation,θ is the bend angle, andµH,HS andµHS

are reduced masses. ForV(R,r,θ) we utilize the newly developed
ground-state H2S PES by Zyubin et al.35 The PES has an
equilibrium geometry ofRe ) 2.53 a0, re ) 2.54 a0, andθe )
1.43 rad, and has a dissociation energy of 3.9 eV to the H+
SH limit and a dissociation energy of 4.19 eV to the H2 + S.

The Hamiltonian was then represented in a potential-
optimized discrete variable representation68 (PODVR). For the
R coordinate, we usedNR ) 158 PODVR points, which were
contracted from 450 evenly spaced primitive Sinc DVR points69

spanning the range from 0.5 a0 to 15.5 a0 with the one-
dimensional reference potentialV(R,re,θe). Similarly, for ther
coordinate,Nr ) 142 PODVR points were obtained from 426
primary DVR points spanning the range from 1.3 a0 to 15.50
a0 using the reference potentialV(Re,r,θe). For θ variable, we
usedNθ ) 43 G-Legendre quadrature DVR points. The resulting
direct product basis set was further contracted by discarding
those points whose potential energies were higher than the cutoff
energyVcutoff ) 2.4 eV (relative to the S (1D) + H2 limit),
resulting in the final basis size of 342 103.

The Hamiltonian has been augmented in theR and r
coordinates with a complex absorbing potential to incorporate
the necessary dissipative boundary conditions. The absorbing
potential takes the following form (z ) R, r)

Wherezmax is the maxima inR or r coordinate, andγ0 andλ
are two adjusting parameters. In this calculationzmax ) 15.5
a0, γ0 ) 2.0 eV, andλ ) 0.5 a0 in both R and r coordinate.

3.2 Analysis forJ ) 0 Case.Using the method described in
section 2, first we set up a Lanczos subspace ofM ) 40 000.
Then we perform final state to state analysis within the subspace
at thousands of scattering energies from 0.26 to 0.60 eV. The
convergence of the method has been checked in respect to both

the size of the Lanczos subspace and the basis size.M ) 40 000
Lanczos iterations provide good converge of most of the state-
to-state reaction probabilities at this energy range, and even at
M ) 20 000, the basic profile of the reaction probabilities has
appeared. Further iterations can only resolve some narrow
individual resonances better. During the calculations, we can
monitor the error norms for the subspace representations of the
scattering waves (i.e., at energyE the error normF is given by
F ) ||(TM - E)|φ(E)〉 - |e1〉||) as a further check of
convergence. ForM ) 40 000 the error norms for most
scattering energies have dropped to below 10-5. We have also
run the calculations with a larger angular basis sizeNθ ) 86.
The calculations are much more time-consuming and the
resulting energy profiles of the reaction probabilities are similar
to those for theNθ ) 43 calculations, indicating that the smaller
angular basis is adequate. Thus, we believeM ) 40 000 and
Nθ ) 43 are quite sufficient for converging most of the state-
to-state reactive probabilities and total reaction probabilities and
the results presented below are for these values of the
parameters. All state-to-state reactive probabilities associated
with the ground H2 reactant state (ν0 ) 0, j0 ) 0) and ground
SH product states (ν ) 0, j) with j ) 0-23 as well as
vibrationally excited product SH states (ν ) 1, j) with j ) 0-16
have been calculated and are selectively presented in Figure 1.
It is apparent that the reaction probabilities are dominated by
resonances, most of them are overlapping ones. This is a clear
manifestation of the complex forming and decaying process.
Analysis of some resonance widths indicates the lifetime of the
resonances is in the order of picosecond.

Figure 2 shows two selected rotational state distributions of
the product SH (ν ) 0) at scattering energyE ) 0.3656 eV (a),
and at E ) 0.4403 eV (b). The general feature is that the
distributions show a very complicated oscillatory behavior, with
the number of oscillations generally increasing with energy. The
fluctuations in the distributions seem to be random and
unpredictable from energy to energy. (We have calculated the
rotational state distributions for allν ) 0 and ν ) 1 open
channels for 2000 scattering energies lying between 0.26 eV to
0.6 eV. For brevity, only two of them have been reported.) This
fluctuation behavior indicates that statistical theory may be

DRâ(E) ) 〈æâ(r,θ)|ψR(E; R∞, r, θ)〉 ) ∑
i)1

M

φi(E)〈æâ(r,θ)|Vi

(R∞,r,θ)〉 ) ∑
i)1

M

φi(E)ci
â (13)

Ĥ ) - p2

2µH,HS

1
R

∂
2

∂R2
R - p2

2µHS

1
r

∂
2

∂r2
r

+ p2

2 ( 1

µH,HSR
2

+ 1

µHSr
2)ĵ2 + V(R,r,θ) (14)

γ̂(z) )
γ0

cosh2[((zmax - z))/λ]
(15)

Figure 1. (a) Calculated state-to-state reactive probabilities from the
ground state of H2 (ν0 ) 0, j0 ) 0) to product SH states (ν ) 0, j) with
j ) 0. Here, the energyE is defined as the internal energy of the diatom
plus the translational energy. (b) Same as (a), but for product SH states
(ν ) 1, j) with j ) 0. (c) Same as (a), but for product SH states
(ν ) 0, j) with j ) 15. (d) Same as (a), but for product SH states
(ν ) 1, j) with j ) 15.
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employed to interpret the more averaged quantities such as rate
constant, but not the detailed product state distributions.
Although the features are sensitive to the specific scattering
energy, it is evident that the reaction tends to favor the
production of rotationally excited SH.

In Figure 3 we plot the branching ratio of rotation-summed
reaction probabilities for the product SHν ) 1 and ν ) 0
vibrational levels. At this energy range only two vibrational
channels have opened. From this figure, we can see that this
reaction only produces a small fraction of vibrationally excited
SH product. The vibrational distributions fluctuate between

energies, but the general trend is that the ratio increases with
energy at low energies, then oscillates severely around an
average value.

After acquiring all the state-to-state reaction probabilities from
H2 (ν0 ) 0, j0 ) 0) to all the energetically accessible SH product
states, it is straightforward to calculate total reaction probabilities
from a given reactant state. In Figure 4, we plot the total reaction
probabilities from the ground rovibrational H2 state in the energy
range from 0.26 to 0.6 eV. As can be expected, the total reaction
probabilities are dominated by overlapping resonances, similar
to state to state reaction probabilities.

3.3 Estimation of Reaction Cross Sections.The calculation
of an integral reactive cross section requires knowledge of
reaction probabilities for a large range of total angular momenta.
Because it is very expensive to calculate such reaction prob-
abilities for differentJ > 0 cases, we will employ aJ-shifting
method58,59 for higherJ valuesP(E,J) ) ∑K)-J

J P(E - εrot
JK,0).

Here εrot
JK ) [J(J + 1) - 2K2](p2/2µR′′2). To determine the

transitional state geometry more reasonably for a potential
without a barrier, we calculate theJK dependent centrifugal
barriers in the entrance channelVJK(R) ) 〈ν0,j0|V|ν0,j0〉 +
[J(J + 1) - 2K2](p2/2µR′′2), which was taken as the geometry
of the transitional state. In our calculations, we take the
approximationR′′ ) 2.14a0. After computing differentP(E,J),
we can calculate the integral reaction cross section as

wherektr ) x2µEtr/{p}, and the electronic degeneracyg is 5
for H2S. In this calculation, we only consider the reaction
probabilities from the ground-state H2 (ν0 ) 0, j0 ) 0). This
approximation is generally consistent with the molecular beam
experiment conditions,32 in which the average rotational energy
of the target molecules is about 0.3 kcal/mol. The calculated
excitation functions below 4.1 kcal/mol are presented in Figure
5, where the experimental data is also available. The general
agreement among the quantum mechanical results, the QCT
calculations34 and the experimental data is clearly apparent. The
excitation functions decrease with increasing collision energy,
which is typical of an insertion mechanism. However, embedded
on the curve of the excitation functions are thousands of small
resonance structures, which did not show up in experimental
data and QCT results. This is most likely because we use the
J-shifting to estimate theJ > 0 reaction probabilities, thus all

Figure 2. (a) Rotational state distributions of the product SH (ν ) 0)
for E ) 0.3656 eV. (b) Similar to (a), but forE ) 0.4403 eV.

Figure 3. Vibrational branching ratio between SHν ) 1 andν ) 0
vibrational levels.

Figure 4. Total reaction probabilities as a function of energy for the
ground rovibrational H2 state.

σ(Etr; ν0, j0) )
1

g

π

ktr
2
∑
J)0

∞

(2J + 1)P(Etr,J; ν0, j0) (16)
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resonances inJ ) 0 reaction probabilities appear inJ > 0
reaction probabilities. Evidence from rigorous calculations at
nonzero values of totalJ in the H + O2 reaction70,71 indicates
that the sharp resonance structure of theJ ) 0 reaction
probability profiles tends to wash out atJ > 0.

4. Conclusion

In this paper, we have applied a Lanczos subspace time-
independent wave packet method to the S(1D) + H2 reactive
scattering process. In our method, the TI wave packet-Lipp-
mann-Schwinger equation is first transformed from the primary
representation into a Lanczos subspace, within which we solve
the tridiagonal linear system for the action of the Green operator
by a QR algorithm. From a single Lanczos run, all the state-
to-stateS matrix elements, product state distributions and total
reaction probabilities from a given reactant channel wave packet
can be obtained at any desired energy in the spectral range of
the initial wave packet.

The results indicate that S (1D) + H2 scattering is dominated
by resonances (most of them are overlapping). Analysis of some
resonance widths indicates the complex lifetime of the reso-
nances is in the order of picosecond. The interferences among
the resonances lead to very complicated reaction dynamics,
which is manifested in the fluctuations of both product rotational
state distributions and vibrational branching ratios. The reaction
mainly produces rotationally excited SH products with only a
small fraction in vibrationally excited states.

Integral reaction cross sections of this reaction are estimated
by J-shifting method. Comparison with QCT calculations and
experimental data indicates general agreement. However, the
fine resonance structures exhibited in the quantum results, which
are not seen experimentally, illustrate the limitations ofJ-shifting
method. Further rigorous quantum calculations forJ > 0 are
presently under investigation in our lab.
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