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In this paper, we present the results of quantum dynamical simulations of #¥ $ H, insertion reaction

on a newly developed potential energy surfade Ghem. Phys2001, 114, 320). State-to-state reaction
probabilities, product state distributions, and initial-state resolved cumulative reaction probabilities from a
given incoming reactant channel are obtained from a time-independent wave packet analysis, performed within
a single Lanczos subspace. Integral reaction cross sections are then estindegbdting method and compared

with the results from molecular beam experiment and QCT calculations.

1. Introduction to enable simulation of the scattering dynamics. A global
representation of the lowest PES fof # S ({D) was presented

The dynamics of an insertion reaction are more complicated employing both the reproducing kernel Hilbert space (RKHS)

than a direct abstraction or exchange reaction because insertioq,nemoéfm7 and the Murrel-Carter fitting schemé? On the
reactions usually involve the formation of relatively long-lived :

complexes characterized by the existence of a deep potentialneW potential energy surface, Chao and SKédjave performed
well. Such complexes, considered in isolation, support an guasi-classical trajectory (QCT) calculations. Some aspects of
intriéate resonance st;ucture in the unbound ’part of their the results were clearly consistent with the simple statistical

- : . capture/decay model for insertion reaction. However, the more
spectrum. This resonance structure dominates the scattering Statﬁighly resolved quantities (i.e., differential cross sections)
space of the insertion reaction and makes the quantum simula- Y

tion of the dynamics very challenging. The H O (D) reaction displayed features indicative of some nonstatistical reaction

has often been regarded as a benchmark svstem for studvin dynamics. Comparison of QCT calculations to the molecular
. : n reg Y . Y% eam experiments showed agreements in the broad pattern of
insertion reactions. Molecular beam and bulk experiniefts

have yielded detailed scattering information for a variety of f[he results, but at the same time exhibits significant differences

initial states, isotopes, and final state observables. DynamicsIn the more fmely resolved quantities. At this point, f_urther
calculations employing quasi-classical trajectory (QESTY quantum mechar_ucal _calculatlons are needed to investigate the
trajectory surface hoppini§,; 2! and quantum scattering the&ty?’ reaction mechanism in more deta|I: .
have been applied to analyze the detailed reaction dynamics on FOr large molecular systems with a deep potential well,
several high quality ab initio potential energy surfaces (P&g). ~ iterative matrix methods such as Chebyshev or Lanczos
Although the insertion mechanism clearly plays a major role in Propagations are suitable choices because they do not require
the dynamics, an additional abstraction pathway above about 28Xplicit storage of the Hamiltonian matrix, rather only the
kcal/mol has complicated this reaction. Multiple potential surface Multiplication of the Hamiltonian onto a vector. When combined
effects might be important in accurate simulation of such a Wlth a sparse representation of the Hamiltonian such as a_dlscrete
reaction, especially for higher collision energies. This has also Variable representation (DVRj},both memory and CPU time
restricted one from further detailed studies of insertion dynamics ¢an be reduced dramatically. The concept of wave packet
in general, e. g., how the dynamics changes as the initial Scattering was first extended to time-independent iterative
collision energy increases. methods by Kouri and co-workei_"%‘.41 They derived a time-
Recently, both experimeR33 and theory*-3¢ indicate that independent (TI) wave packet-Llppr_nann-Schwmger equation
an analogue reaction H+ S (D) may provide a desirable and presented a Chebyshev expansion expression of the causal
prototype for the insertion mechanism over a wider energy Green operatoiMandelshtam and Taylét** later introduced
range. Experimentally, Lee and B33 have carried out @ Very eff|C|_ent scheme to implement d|$$|pat|_ve bou_ndary
molecular beam experiments over the collision energy range conditions with a real damped Chebychev recursion, which has
from 0.6 to about 4.1 kcal/mol. The excitation function €nabled very significant computational advances. Guo and
measurements strongly suggest that the reaction cross sectiofphen’>*°Neuhauser et aﬁ_‘_lg_a”d Gray and Balint-Kur@>*
can be entirely attributed to the insertion mechanism in this have developed related efficient real Chebyshev approaches.
energy range. Theoretically, a new potential energy surface for Very recently, Zhang and Smithrecast the time-independent
H, + S (D) is developed® which is based upon extensive ab Wave packet-Lippmann-Schwinger equation of Kouri et al. into
initio calculations. The calculations have been performed at a & Lanczos representation and implemented an efficient Lanczos
sufficient range of geometries in the entrance and exit channelsSubspace time-independent wave packet method. In this Lanczos
subspace method, we transform the primary Hamiltonian into

* To whom correspondence should be addressed. Fax: 61-7-3365-7562.8 tridiagonal representation. Under this representation, we
E-mail: s.smith@chemistry.ug.edu.au. implement the action of the Green operator by solving a
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tridiagonal linear system with@Ralgorithm to extract all state  H' = H — iy, |eldis the first column of theM x M identity

to state scattering information. This method is an extension of matrix, and|¢(E)Cis the subspace scattering wave function.

Lanczos subspace filter diagonalization metf&d< which we We employ the Lanczos algorittfffor complex-symmetric

have developed in recent years. matrixe$® to set up the Lanczos subspace. Starting with a
In this paper, we will apply the Lanczos subspace time- normalized initial vectotvi[= |y,Cand setting3:=0, we use

independent wave packet method to the bimolecular reactivethe three-term vector recursion

scattering of H 4+ S (D). The article is organized as follows: R

we present the outline of the Lanczos Tl wave packet method Briilvee 0= H' v 0= oyl 0= Byl v, O (6)

in section 2, and then in section 3, we present the results of the .

three-dimensional quantum mechanical calculations dfD§ ( to generateTy with diagonal elementsy = (vi/H'[vk), and

+ H reactive scattering ford = 0. By using J-shifting subdiagonal element8y = (v—1|H'|v). Note that the elements

method83° the integral reaction cross sections are estimated are computed with a complex-symmetric inner product (i.e., the

and compared with the crossed beam experimental data andora states are not complex conjugated).

quasiclassical trajectory results. Section 4 concludes. The initial wave packet,y,[]is chosen to be the product of
a localized translational wave packet in the scattering coordinate,
2. Methodology R say, and a specific rovibrational eigenfunction in the

As discussed by Tannor, Kouri, Zhang, and othmsjatrix remaining reactant coordinates &nd @' for our purposes)

elements can be expressed in terms of the causal Green's

function (se6%) 1Xa5= 9(R)$,0,0(r")Pjo(6) (1)
i R with g(R) = ((1/mo?))V* exp[(— (R — Ro)%20?)] exp(—ikoR).
Sﬁa(E) = o (E)a*(E)@JMGJr B)lx ) The momentum representation of the translational component
a\E)a; is analytical, and given by

Three specific equations fd matrix elements exist, among -
which we use the scattering amplitude expression since it is 9(—K) = j; exp(kR)g(R)dR =
the simplest one to use when combined with the product Jacobi

coordinates (47102)1’4{ expli(k — k)R g exp[— %Z(k - ko)z]} (8)

_ 1 Z”hkﬁ —iksRe . Note that at this point one must transform between product
Sa(B) = aa(E)/V Ug © PO (E R, 1, )0 (2) Jacobi coordinatesX( r, ) and reactant coordinateR (r’, ")

to calculate|y,Oproperly.

Here, the scattering wave function can be written as After establishing the Lanczos subspace, we calculate the
) . 1 quasi-minimal residual solution of the linear system in eq 5 by
—_lat L forming theQR factorizatio”
= S performing
Vo(B) =5-C" Bl =5 -1 leaD 3
- R
Wherekfzi = 2ug(E — ep)/h? with €4 being the internal energy of E-Ty= QQH[O M] 9)

SH product (expressions fég, andky are similar), and
where Qu+1 is a unitary matrix { indicates the Hermitian
. U KR B Uy adjoint). Only the elements of the upper-triangular maRijx
a,(E) = VZnh—ka fe' g(R)dR = A/ 2nhkug(_k‘1) with bandwidth 3 and the vectdtiy+10= Qu-1/e:Cneed to be
stored. The subspace scattering wave function is obtained via
with uq) being thea(f) arrangement channel translational 1
reduced mass. Equation 3 is the Tl wave packet-Lippmann lp(E)I= Ry 1ty (10)
Schwinger equation of Kouri et &% and is the central equation
in our Lanczos method. One can computg(E) either via a The Lanczos subspace is independent of a constant energy shift,
TD wave packet method (time propagation followed by partial E. Hence, from &ingleLanczos subspace we are able to solve

Fourier transformation) or through a Tl wave packet method the linear system in eq 5 and obtain the representations of the
such as expansion of the Green operator using Chebyshevscattering wave functions for any desired energy within the

polynomials. spectral range of the initial wave packet.
Equation 3 can be rearranged as a linear system Having obtained¢(E)Llit is straightforward to compute state-
] to-stateS matrix elements from eq 2 since wave functions in
(E — A+ i9)y,(E) = LZHUCO(D 4) the primary and Lanczos representations are related through
M
For a large molecular system, it is nontrivial to solve this linear [W(E)O= Vyle(E)T= ) ¢(E)y, (11)

system. Our approach involves transforming this linear system =
from the primary representation to a tridiagonal (Lanczos)
representation. Inside the subspace, the linear system takes thwhere the orthonormal Lanczos matriky, tridiagonalizes the
form primary Hamiltonian. The state-to-state reaction probabilities
are now given by

(E=Twle¢(E)T= |0 (5)
. . . . . 2 Mzhzkakﬁ 2
which is easily solved by &R algorithm. In eq 5,Ty is the Pus(E) = IS4(B)I" = — > IDes(B)I”  (12)
Lanczos representation of the primary complex Hamiltonian, 19(—ky)| Uolhp
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where the overlap integral is 0.004

0.002

M
Dos(E) = [@y(r0) 9o (E; R, 1, O) = Zfﬁi(E)@Dﬁ(fﬂ)lvi

M
(Ro.r,0) = Z@(E)c? (13)

The vectors{|c’[} are the subspace versions of the primary
internal SH state§ggd= ¢,(r)P;j(#), which can be easily
accumulated as the Lanczos recursion proceeds. Thus, by a
single Lanczos run one can calculaa#l the state-to-state
reaction probabilities from the target incoming reactant state
for energies within the spectral range of the initial wave packet.

3. Results 0.28 0.36 0.44 0.52 0.6
E(eV
3.1 Hamiltonian. The triatomic HS Hamiltonian with total )

—0; ; ; i Figure 1. (a) Calculated state-to-state reactive probabilities from the
ggg;](;?;arpeosmenturﬂ 0 is written in terms of product Jacobi ground state of bi(vo = 0. jo = 0) o product SH states:& 0. ) with

j = 0. Here, the energl is defined as the internal energy of the diatom
plus the translational energy. (b) Same as (a), but for product SH states

b= h? 18_2 B h? 18_2r (v = 1, j) with j = 0. (c) Same as (a), but for product SH states
ZL‘H,HSRBRZ 2ups T or? v f 0,_j) V\_/ith_j_= 15. (d) Same as (@), but for product SH states
(v = 1,j) with j = 15.
Ty S N RV 14 i isdi
2 R 2| (Rr,0) (14) the size of the Lanczos subspace and the basisMize40 000
H,HS Hns'

Lanczos iterations provide good converge of most of the state-
to-state reaction probabilities at this energy range, and even at
M = 20 000, the basic profile of the reaction probabilities has
appeared. Further iterations can only resolve some narrow
individual resonances better. During the calculations, we can
monitor the error norms for the subspace representations of the
scattering waves (i.e., at enerBythe error nornp is given by

p = ||(Tm — BE)¢(E)T — |el]) as a further check of
convergence. FoM = 40000 the error norms for most
scattering energies have dropped to below®18e have also

run the calculations with a larger angular basis $ige= 86.

The calculations are much more time-consuming and the
resulting energy profiles of the reaction probabilities are similar
to those for theNy = 43 calculations, indicating that the smaller
angular basis is adequate. Thus, we belibe= 40 000 and

Ny = 43 are quite sufficient for converging most of the state-

. . . to-state reactive probabilities and total reaction probabilities and
% using the reference potenti(R.r,0¢). For 6 variable, we the results presented below are for these values of the

usedN, = 43 G-Legendre quadrature DVR points. The resulting parameters. All state-to-state reactive probabilities associated

direct product basis set was further contracted by discarding . —n i —
those points whose potential energies were higher than the cutoffwIth the ground H reactant statevp = 0, jo = 0) and ground

. - SH product statesv(= 0, j) with j = 0—-23 as well as
energyVeuot = 2.4 eV (relative to the SD) + Hy limit), . . . Nt
resulting in the final basis size of 342 103, vibrationally excited product SH states=< 1, j) with j = 0—16

S . hav n calcul nd are selectively presented in Figure 1.
The Hamiltonian has been augmented in tReand r ave been calculated and are selectively presented gure

. . : . i It is apparent that the reaction probabilities are dominated b
coordinates with a complex absorbing potential to incorporate PP P y

the necessary dissipative boundary conditions. The absorbin resonances, most of them are overlapping ones. This is a clear
. Y P . y ) Ymanifestation of the complex forming and decaying process.
potential takes the following fornz(= R, r)

Analysis of some resonance widths indicates the lifetime of the
resonances is in the order of picosecond.

whereR is the separation of H from the center of mass of HS,
r is the H-S separatiory is the bend angle, ang 4s anduns
are reduced masses. R4Rr,0) we utilize the newly developed
ground-state b5 PES by Zyubin et & The PES has an
equilibrium geometry oR. = 2.53 @, re = 2.54 @, andf, =
1.43 rad, and has a dissociation energy of 3.9 eV to the H
SH limit and a dissociation energy of 4.19 eV to the H S.
The Hamiltonian was then represented in a potential-
optimized discrete variable representaffoiODVR). For the
R coordinate, we usellr = 158 PODVR points, which were
contracted from 450 evenly spaced primitive Sinc DVR péfts
spanning the range from 0.5 4o 15.5 @ with the one-
dimensional reference potenti{Rre,0¢). Similarly, for ther
coordinateN; = 142 PODVR points were obtained from 426
primary DVR points spanning the range from 1gta 15.50

(2 = Yo (15) Figure 2 shows two selected rotational state distributions of
cosﬁ[((zmax —2)IA] the product SHi = 0) at scattering energy = 0.3656 eV (a),
and atE = 0.4403 eV (b). The general feature is that the
Where znax is the maxima inR or r coordinate, ango and 4 distributions show a very complicated oscillatory behavior, with
are two adjusting parameters. In this calculatigng = 15.5 the number of oscillations generally increasing with energy. The
a0, Yo = 2.0 eV, andl = 0.5 @ in bothR andr coordinate. fluctuations in the distributions seem to be random and
3.2 Analysis forJ = 0 Case.Using the method described in  unpredictable from energy to energy. (We have calculated the
section 2, first we set up a Lanczos subspac®icf 40 000. rotational state distributions for alt = 0 andv = 1 open

Then we perform final state to state analysis within the subspacechannels for 2000 scattering energies lying between 0.26 eV to
at thousands of scattering energies from 0.26 to 0.60 eV. The0.6 eV. For brevity, only two of them have been reported.) This
convergence of the method has been checked in respect to botfiluctuation behavior indicates that statistical theory may be
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Figure 2. (a) Rotational state distributions of the product SHH 0)
for E = 0.3656 eV. (b) Similar to (a), but fdE = 0.4403 eV.
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Figure 3. Vibrational branching ratio between SH= 1 andv = 0
vibrational levels.
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Figure 4. Total reaction probabilities as a function of energy for the
ground rovibrational ki state.

energies, but the general trend is that the ratio increases with
energy at low energies, then oscillates severely around an
average value.

After acquiring all the state-to-state reaction probabilities from
H2 (vo=0,jo = 0) to all the energetically accessible SH product
states, it is straightforward to calculate total reaction probabilities
from a given reactant state. In Figure 4, we plot the total reaction
probabilities from the ground rovibrationabdtate in the energy
range from 0.26 to 0.6 eV. As can be expected, the total reaction
probabilities are dominated by overlapping resonances, similar
to state to state reaction probabilities.

3.3 Estimation of Reaction Cross Sectiong he calculation
of an integral reactive cross section requires knowledge of
reaction probabilities for a large range of total angular momenta.
Because it is very expensive to calculate such reaction prob-
abilities for different] > 0 cases, we will employ &shifting
method859 for higherJ valuesP(EJ) = Y3__,P(E — e,0).
Here epx = [J + 1) — 2K2(h2/2uR'?). To determine the
transitional state geometry more reasonably for a potential
without a barrier, we calculate th#K dependent centrifugal
barriers in the entrance chann€lk(R) = [o,jo|V|vo,jod +
[J(J + 1) — 2K?(h¥2uR'?), which was taken as the geometry
of the transitional state. In our calculations, we take the
approximationR" = 2.14a,. After computing differen®(E,J),
we can calculate the integral reaction cross section as

1wl ,
o(Ey: vorJo) = éégo(m T DP(EJ; v, Jo) - (16)

whereky = /2uE,/{h}, and the electronic degeneragys 5

for H,S. In this calculation, we only consider the reaction
probabilities from the ground-state;Hvg = 0, jo = 0). This
approximation is generally consistent with the molecular beam
experiment condition% in which the average rotational energy

employed to interpret the more averaged quantities such as ratef the target molecules is about 0.3 kcal/mol. The calculated
constant, but not the detailed product state distributions. excitation functions below 4.1 kcal/mol are presented in Figure
Although the features are sensitive to the specific scattering 5, where the experimental data is also available. The general

energy, it is evident that the reaction tends to favor the

production of rotationally excited SH.

In Figure 3 we plot the branching ratio of rotation-summed

reaction probabilities for the product SHH= 1 andv = 0

vibrational levels. At this energy range only two vibrational

agreement among the quantum mechanical results, the QCT
calculationd*and the experimental data is clearly apparent. The
excitation functions decrease with increasing collision energy,
which is typical of an insertion mechanism. However, embedded
on the curve of the excitation functions are thousands of small

channels have opened. From this figure, we can see that thisresonance structures, which did not show up in experimental
reaction only produces a small fraction of vibrationally excited data and QCT results. This is most likely because we use the
SH product. The vibrational distributions fluctuate between J-shifting to estimate thé > 0 reaction probabilities, thus all
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