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Resonance phenomena associated with the unimolecular dissociation of H2Sf SH+ H have been investigated
quantum mechanically by the Lanczos homogeneous filter diagonalization method using a newly developed
potential energy surface (J. Chem. Phys.2001, 114, 320). Resonance energies, widths (rates), and product
state distributions have been obtained. Both dissociation rates and product state distributions of SH show
strong fluctuations, indicating that the dissociation of H2S is essentially irregular. Statistical analysis of
neighboring level spacing and width distributions also confirms this behavior. The dissociation rates and
product state distributions are compared to the predictions of quantum phase space theory.

1. Introduction

The study of unimolecular dissociation reactions is funda-
mentally important to many areas of pure and applied chem-
istry.1,2 The quantum mechanical characterization of unimolec-
ular dissociation involves the calculation of resonance states,
which are quasi-bound, so-called compound states that are
embedded in the continuum. These are eigenfunctions of the
Schrödinger equation with outgoing wave boundary conditions.
Because of the complex boundary conditions, the eigenvalues
are necessarily complex,{ER-iΓ/2}. The real part of the
eigenvalue,ER, is the energy of the metastable state of the
molecule, whereas its unimolecular decay rate,k, is given in
terms of the imaginary part,{Γ}/{p} (The latter relationship is
only true if the resonance states are nonoverlapping.)3 Unlike
bound states, resonance states have a finite width in the energy
domain and their wave functions extend to infinity. Because
they are scattering states, resonances are generally more
complicated to calculate than bound states. At present, it is
possible to perform exact quantum mechanical calculations to
obtain the energies and widths of the resonant states for only
small molecules with a low density of states. Product state
distributions reflect scattering from resonances into product
states through a transition state, and thus contain additional clues
about the intra- and intermolecular dynamics of the system. Each
resonance has a unique width and is associated with a unique
product state distribution. To fully understand unimolecular
dissociation dynamics, therefore, it is useful to consider all three
observables (energy, width, and product state distribution) for
as many resonances as possible.

For large molecular systems, it is generally not possible to
calculate resonances using exact quantum methods. Instead
statistical theories such as Rice-Ramsperger-Kassel-Marcus
(RRKM) theory4,5 or phase space theory (PST)6-8 are often used
to estimate rate constant as well as product state distributions.

Some statistical theories, which are based upon random matrix
theory (RMT), can be used to describe the fluctuating behavior
in the observables about the mean values.9-12 It is interesting
and informative to compare the results of exact quantum
mechanical calculations with those of statistical theories for
small molecules, and some very useful work has been done in
this direction, mostly focusing on unimolecular dissociation of
H2CO, NO2, and H2O, using RMT and RRKM theory.3,11-18

For example, Schinke et al.18 have recently compared exact
quantum dissociation rates in NO2 with statistical theories and
with experimental results. The multiexponential decay curves
calculated by using quantum mechanical rates are in good
agreement with the experimental curves, especially at longer
times. The statistical adiabatic channel model can adequately
describe the initial short time decay, but fails to predict the slow
long time dissociation.

Recently, a new potential energy surface for H2S has been
developed,19 which is based upon extensive ab initio calcula-
tions. The calculations have been performed for geometries
sufficiently extended along the dissociative coordinates to allow
the simulation of the dynamics in both entrance and exit
channels accurately. A global representation of the lowest PES
has been obtained by employing both the reproducing kernel
Hilbert space (RKHS) method20,21 and Murrell-Carter fitting
scheme.22 The RKHS method has proven successful in fitting
the similar H2 + O (1D) reaction. QCT calculations23 have been
performed on the new potential energy surface, and comparison
of QCT results to the molecular beam experiments24,25 shows
general agreement. This potential energy surface has a deep well
of about 3.9 eV and, therefore, a relatively high density of states.
It is expected that the dissociation of H2S will show statistical
behavior; hence, the molecule is a good candidate for compari-
sons between exact quantum mechanical calculations (although
these are difficult and challenging) and statistical approaches.

In this paper we will apply our recently developed Lanczos
homogeneous filter diagonalization (LHFD) method26 to the
unimolecular dissociation of H2S system. LHFD is a further
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simplified version of our previous Lanczos subspace filter
diagonalization method.27-30 In this Lanczos subspace method,
we first transform the primary Hamiltonian into a Lanczos
tridiagonal representation. We then perform filter diagonalization
within the Lanczos representation to extract resonance energies
and widths. Corresponding resonant eigenstates can be obtained
within the Lanczos representation by an efficient three-term
recursion, and then be utilized to obtain final state distributions
in a manner described recently.31 The paper is organized as
follows. We describe the LHFD method in section 2. Then in
section 3 we shall give the results of the quantum three-
dimensional calculations performed on the unimolecular H2S
dissociation, alongside the statistical analysis and the comparison
with PST results. Section 4 concludes this work.

2. Theoretical Methods

2.1 Resonance Energies and Widths.Quantum-mechani-
cally, resonances can be treated in the time-independent domain
by solving the homogeneous Schro¨dinger equation

Here Ĥ′ ) Ĥ - iV̂abs, i.e., a complex absorbing potential
augments the Hamiltonian (Ĥ) to invoke the appropriate
boundary conditions at “infinite” product separation, andΨE

is the resonance wave function. Briefly, in the LHFD method26

we first project the augmented Hamiltonian into a Krylov
subspace using the Lanczos method.32 Inside the subspace, the
Hamiltonian (represented as a tridiagonal matrix,TM) can be
used to perform FD calculations for various energy windows.
Most FD approaches require the solution of inhomogeneous
systems of linear equations,Ax ) b, to converge filtered states.
In contrast, our LHFD method, as its name suggests, relies upon
solving Ax ) 0. The advantage associated with this choice is
that the linear system can be solved exactly by a simple scalar
three-term recursion.26

In more detail, the LHFD algorithm for characterizing
resonances can be summarized as follows:

(i) Choose a normalized, randomly generated initial vector
V1 * 0 and setâ1, V0 ) 0. Then use the 3-term Lanczos
algorithm for complex-symmetric matrixes33

to project the non-Hermitian augmented Hamiltonian into a
Krylov subspace. TheM × M tridiagonal representation of the
Hamiltonian, TM, has diagonal elementsRk ) (Vk|Ĥ|Vk) and
subdiagonal elementsâk ) (Vk-1|Ĥ|Vk). Note that a complex-
symmetric inner product is used (i.e., bra vectors are not
complex conjugated).

(ii) For all j )1, 2, ...,jmax, generate filtered statesφ(Ej) by
solving the homogeneous linear system

Here, a backward substitution recursion is employed:
(a) ChooseφM, theMth element ofφ(Ej), to be arbitrary (but

nonzero; usually setφM ) 1), and calculate

(b) For k ) M-1, M-2, ..., 2, update scalarφk-1

(iii) Construct the overlap matrix with elementsSjj ′ )
(φ(Ej)|φ(Ej′)) and subspace Hamiltonian matrix with elements
Wjj ′ ) (φ(Ej)|TM|φ(Ej′)). Note thatWjj ′ can be calculated using
a three-term summation

(iv) Solve the generalized complex-symmetric eigenvalue
problemWB ) SBε to obtain the complex energies,{ε}.

(v) Span the energy domain by repeating (ii)-(iv) window
by window.

Due to the tridiagonal structure of the subspace Hamiltonian,
one can generateall the elements of a filtered state by specifying
practically any value for the scalarφM. Because the choice is
arbitrary, the solution must be normalized after step (ii) to yield
the true filtered state,φ(Ej) r ηj × φ(Ej). To check the
convergence of the eigenvalues as well as the quality of the
eigenpairs generated by the above iterative methods, one can
typically compute the error norm about the eigenenergyE

where the Lanczos eigenvectorú(E) is cheaply regenerated for
each complex eigenenergy using eq 3. Clearly, true eigenvalues
should have small error norms and can thus be distinguished
from any unconverged/spurious eigenvalues.

2.2 Product State Distributions.The basic idea of asymp-
totic state analysis in unimolecular fragmentation has been
proposed by Balint-Kurti et al. in the context of photodisso-
ciation,34,35and here we use it in the somewhat different context
of resonance decay. The complex resonance wave functions in
eq 1 obey the Siegert-type boundary conditions asymptotically,
i.e., they are products of outgoing radial waves in the scattering
coordinate,R, say, and internal eigenfunctions in the remaining
coordinates. For our target system H2S, the resonance wave
function in terms of Jacobi coordinates (R, r, θ) has the
following asymptotic form

where

and n ) (ν, j) is product vibrational and rotational quantum

number, andkn ) x2µH,SHp-2(ER-εn).
Within the subspace, we can use eq 8 to perform the

asymptotic scattering analysis. The product rotational state
distribution,Pn ) |an(ER)|2, may be acquired by computing

The analysis is done in the region where the interaction potential
is small, but before the region where the absorbing potential is
nonzero (where the resonance wave function is exponentially
decreasing).

(E - Ĥ′)ΨE ) 0 (1)

âk+1Vk+1 ) Ĥ′Vk - RkVk - âkVk-1 (2)

(Ej - TM)|φ(Ej)〉 ) 0 (3)

φM-1 ) 1
âM

(EjφM - RMφM) (4)

âkφk-1 ) Ejφk - Rkφk - âk+1φk+1 (5)

Wjj ′ ) ∑
k)1

M

[φk(Ej)âkφk-1(Ej′) + φk(Ej)Rkφk(Ej′) +

φk(Ej)âk+1φk+1(Ej′)] (6)

σ(E) ) ||(TM - E)ú(E)|| (7)

ΨER
(R∞,r,θ) ) ∑

n

an(ER)xµH,SH

pkn

eiknR∞æn(r,θ) (8)

an(ER) ) x pkn

µH,SH
e-iknR∞〈æn(r,θ)|ΨER

(R∞,r,θ)〉 (9)

Pn )
pkn

µH,SH
|〈æn(r,θ)|ΨER(R∞,r,θ)〉|2 (10)
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One can transform wave functions between the primary
representation and the Lanczos subspace through

whereV ) [V1, V2,...,VM] is the column-orthonormal Lanczos
vector matrix. So, using eq 12, the inner product appearing in
eq 10 can be re-expressed31

Thus, from a single Lanczos iteration sequence, one can
calculate the complex resonance energiesand the product state
distributions for different resonances. This does not require that
one construct the resonance wave functions explicitly in the
primary representation because eqs 10 and 13 show that one
need only compute and store the overlap coefficientsøi

(n) as the
iteration proceeds.

3. Calculations

3.1 Hamiltonian. The triatomic H2S Hamiltonian with total
angular momentumJ ) 0 is written in terms of product Jacobi
coordinates

whereR is the separation of H from the center of mass of HS,
r is the H-S separation,θ is the bend angle, andµH,HS andµHS

are reduced masses. This choice of product Jacobi coordinates
facilitates the final state analysis for product state distributions
via eqs 10 and 13. ForV(R,r,θ) we utilize the newly developed
ground-state H2S PES by Zyubin et al.19 The PES has an
equilibrium geometry ofRe ) 2.53 a0, re ) 2.54 a0, andθe )
1.43 rad and has a dissociation energy of 3.9 eV to the H+
SH limit.

The Hamiltonian was then represented in a potential-
optimized discrete variable representation36 (PODVR). For the
R coordinate, we usedNR ) 158 PODVR points, which were
contracted from 450 evenly spaced primitive Sinc DVR points37

spanning the range from 0.5 a0 to 15.5 a0 with the one-
dimensional reference potentialV(R,re,θe). Similarly, for ther
coordinate,Nr ) 142 PODVR points were obtained from 426
primary DVR points spanning the range from 1.3 a0 to 15.50
a0 using the reference potentialV(Re,r,θe). For θ variable, we
usedNθ ) 43 G-Legendre quadrature DVR points. The resulting
direct product basis set was further contracted by discarding
those points whose potential energies were higher than the cutoff
energyVcutoff ) 1.2 eV, resulting in the final basis size of
219030. Similar to our recent work,38 we adopt the following

empirical form for the absorbing potential in bothR and r
coordinates

where Zmax ) 15.5 a0, and V0 and Zmax are two adjusting
parameters. For our purposes, we takeV0 ) 5.0 eV andZmax )
11.5 a0. One then hasĤabs ) Ĥ - iV̂abs.

The ro-vibrational eigenfunctions of HS are direct products

wherePj is a Legendre polynomial of degreej. Thej-dependent
radial vibrational components satisfy the radial Schro¨dinger
equation

We take a slice of H2S PESV(R∞,r,θe) as HS potential and use
r PODVRs described above to solve eq 17 to get|ν〉andεn.

3.2 Resonance Energies and Widths (Rates).Employing
the method described above, we have computed resonance
energies and widths window by window in the energy range
from -0.02 eV to 0.28 eV. Here, the zero energy is referred to
the second reaction threshold H2 + S (1D), but below about
0.28 eV the H2 + S (1D) channel is still not open due to zero-
point vibrational energy, and in this paper we only consider
the dissociation channel H2Sf SH+ H. In the LHFD approach,
we set up a Lanczos subspace of orderM ) 40 000, and stored
the two sets of matrix elements{ak}1

M and {âk}2
M for subse-

quent construction of the subspace matrixes. Six energy
windows of width 0.06 eV have been used, each with 200 basis
functions, to perform the FD calculations. In Table 1 we present
the calculated resonance energies and widths, together with
corresponding error norms, just below the second reaction
threshold. In this energy range, there are a total of 86 calculated
narrow resonances, with their error norms less than 10-6.
Broader resonances cannot be extracted from the spectrum,
simply because they are hidden in the background. In what
follows, we will present some statistical analysis of the
resonance energy level spacing and resonance width distribution,
and compare the quantum rates with the results from statistical
PST model.

In Figure 1, we present the nearest neighbor spacing distribu-
tion P(s) of resonances after the spectrum was unfolded, i.e.,
rescaled to make the poles uniformly distributed with unit mean
level spacing. Here, the spacings is the distance of two complex
eigenvalues in the complex plane. Also shown in this figure
are the analogous Poisson distribution (long dashed line) and
Ginibre distribution (short dashed line) for comparison. As
pointed out elsewhere17 (also see the references therein), the
statistical analysis of bound states is different from that of
resonances. For bound states, Wigner distribution corresponding
to the eigenvalues of the random Gaussian ensemble of the
orthogonal matrixes can be viewed as an evidence of the chaotic
nature of the bound state spectrum, whereas the Poisson
distribution corresponds to a regular bound state spectrum. On
the other hand, for resonances, Ginibre distribution corresponds
to the eigenvalues of the random Gaussian ensemble of the
complex symmetric matrixes, thus can be used as an evidence
of the chaotic nature of the spectrum, whereas the analogue

ú(ER) ) VTΨER (11)

ΨER ) Vú(ER) ) ∑
i)1

M

úi(ER)Vi (12)

〈æn(r,θ)|ΨER
(R∞,r,θ)〉 ) ∑

i)1

M

úi(ER)〈æn(r,θ)|Vi(R∞,r,θ)〉 )

∑
i)1

M

úi(ER)øi
(n) (13)

Ĥ ) - p2

2µH,HS

1
R

∂
2

∂R2
R - p2

2µHS

1
r

∂
2

∂r2
r

+ p2

2 ( 1

µH,HSR
2

+ 1

µHSr
2)ĵ2 + V(R,r,θ) (14)

V̂abs(Z) ) V0{ Z - Z0

Zmax - Z0
}2

(15)

æn ) 1
r
|ν〉|j〉 (16)

[- p2

2µHS

d2

dr2
+

j(j + 1)p2

2µHSr
2

+ VHS(r)]|ν〉 ) εn|ν〉 (17)
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Poisson distribution, which is in fact identical to the Wigner
distribution for bound states, corresponds to a regular quantum

spectrum.11,12,39A superficial inspection reveals that the level
spacing distribution obtained from our computations is closer
to the Ginibre distribution than to the Poisson limit, particularly
at lower level spacings. This would seem to imply largely
irregular behavior in unimolecular dissociation of H2S. The
comparison is clearly not definitive, however. This may be due
to the fact that the number of resonances in the energy range
below the opening of the second channel SH+ H is not large
(see Table 1) which makes the statistics subject to fluctuation.
It may also be due to the presence of some traces of regular
dynamics.

Figure 2 presents the resonance width distributionP(Γ)
obtained from our computations together with aø2 distribution
with 1 degree of freedom (dashed line), i.e., Porter-Thomas
distribution. Here, resonance widthΓ is rescaled so that the
average value is one. This kind of distribution was first found
in the classic work of Porter and Thomas40 when studying
neutron emission widths of heavy nuclei. Porter and Thomas
pointed out that compound nucleus states are so complex that
the nuclear decay matrix elements have a Gaussian distribution
with zero mean, and thus, the decay rates exhibit this distribu-
tion. This distribution is in fact a member of the family of chi-
squared distributions withν degrees of freedom,12 and the

TABLE 1: Calculated Resonance EnergiesEn and Widths Γn below the Second Reaction Threshold (H2 + S (1D))a

n En Γn σn n En Γn σn

1 -0.0174 .67× 10-03 .36× 10-11 44 .1279 .76× 10-02 .31× 10-10

2 -0.0150 .15× 10-01 .49× 10-09 45 .1307 .13× 10-02 .61× 10-11

3 -0.0142 .20× 10-02 .15× 10-10 46 .1351 .35× 10-03 .39× 10-11

4 -0.0086 .46× 10-03 .44× 10-11 47 .1410 .36× 10-03 .48× 10-11

5 -0.0069 .32× 10-02 .59× 10-10 48 .1444 .21× 10-02 .15× 10-11

6 -0.0042 .95× 10-03 .42× 10-10 49 .1459 .11× 10-01 .78× 10-10

7 .0041 .36× 10-02 .21× 10-11 50 .1516 .79× 10-02 .11× 10-09

8 .0071 .24× 10-02 .13× 10-11 51 .1522 .69× 10-03 .90× 10-11

9 .0124 .12× 10-03 .29× 10-10 52 .1567 .16× 10-02 .22× 10-10

10 .0147 .48× 10-02 .11× 10-09 53 .1590 .37× 10-02 .18× 10-10

11 .0152 .19× 10-02 .17× 10-10 54 .1619 .11× 10-02 .15× 10-10

12 .0201 .69× 10-03 .35× 10-10 55 .1659 .14× 10-02 .88× 10-11

13 .0215 .10× 10-01 .15× 10-08 56 .1693 .13× 10-02 .90× 10-11

14 .0238 .23× 10-03 .17× 10-10 57 .1758 .69× 10-03 .95× 10-11

15 .0270 .22× 10-02 .11× 10-09 58 .1780 .50× 10-02 .41× 10-11

16 .0277 .24× 10-03 .11× 10-10 59 .1820 .15× 10-02 .38× 10-11

17 .0311 .17× 10-03 .55× 10-11 60 .1830 .14× 10-01 .19× 10-10

18 .0350 .34× 10-02 .86× 10-10 61 .1867 .14× 10-02 .64× 10-11

19 .0359 .22× 10-03 .90× 10-11 62 .1907 .31× 10-02 .20× 10-10

20 .0408 .62× 10-02 .67× 10-10 63 .1973 .15× 10-02 .34× 10-11

21 .0445 .29× 10-03 .14× 10-10 64 .1999 .15× 10-02 .33× 10-11

22 .0497 .98× 10-03 .38× 10-09 65 .2013 .49× 10-02 .74× 10-11

23 .0509 .41× 10-02 .21× 10-09 66 .2046 .20× 10-03 .67× 10-11

24 .0577 .24× 10-02 .19× 10-09 67 .2060 .97× 10-02 .31× 10-10

25 .0593 .25× 10-01 .11× 10-07 68 .2064 .15× 10-03 .57× 10-11

26 .0641 .68× 10-02 .64× 10-10 69 .2086 .87× 10-03 .25× 10-11

27 .0654 .62× 10-02 .51× 10-10 70 .2122 .31× 10-03 .76× 10-11

28 .0704 .94× 10-03 .30× 10-11 71 .2146 .36× 10-01 .97× 10-08

29 .0771 .67× 10-03 .90× 10-11 72 .2168 .39× 10-02 .32× 10-10

30 .0801 .91× 10-02 .54× 10-08 73 .2225 .45× 10-03 .16× 10-11

31 .0828 .18× 10-02 .28× 10-09 74 .2295 .35× 10-02 .67× 10-11

32 .0871 .20× 10-02 .13× 10-10 75 .2359 .34× 10-02 .91× 10-11

33 .0907 .12× 10-02 .12× 10-10 76 .2395 .54× 10-02 .75× 10-11

34 .0950 .22× 10-03 .73× 10-11 77 .2445 .97× 10-03 .11× 10-10

35 .1014 .61× 10-03 .14× 10-10 78 .2472 .12× 10-02 .22× 10-11

36 .1054 .33× 10-02 .61× 10-11 79 .2525 .14× 10-01 .25× 10-08

37 .1056 .13× 10-01 .63× 10-10 80 .2563 .18× 10-02 .30× 10-10

38 .1113 .79× 10-03 .34× 10-11 81 .2652 .39× 10-02 .46× 10-10

39 .1148 .36× 10-03 .49× 10-11 82 .2687 .67× 10-04 .13× 10-10

40 .1176 .23× 10-01 .42× 10-09 83 .2695 .12× 10-02 .50× 10-11

41 .1198 .47× 10-03 .48× 10-11 84 .2715 .58× 10-02 .46× 10-10

42 .1222 .60× 10-03 .22× 10-11 85 .2788 .29× 10-02 .38× 10-10

43 .1269 .90× 10-03 .45× 10-11 86 .2794 .35× 10-02 .48× 10-10

a Also shown are the corresponding error normsσn. The zero energy is referred to the second reaction threshold. All energy units are in EV.

Figure 1. Plot of the nearest neighbor spacing distributionP(s) of the
unfolded spectrum for resonant states (solid line). The bin length is
0.37. Also shown in this figure are Poisson distribution (long dashed
line) and Ginibre distribution (short dashed line) for comparison.
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numberν has been interpreted as the number of “effective” open
decay channels. The fact that the Porter-Thomas distribution
(ν ) 1) gives a reasonable fit is in some sense puzzling because
the number of open channels in the SH+ H arrangement is
clearly greater than one over the energy range incorporated for
the analysis (i.e., all resonances below the opening of the second
arrangement channel). However, it should be borne in mind that
the resonance density in this system is not so great that one
can do a statistical analysis of resonances within a narrow energy
range that has a well-defined number of open channels associ-
ated with it. Hence, although the comparison of Figure 2 is
suggestive it cannot meaningfully be pushed too far.

For isolated resonances, the dissociation rates are widths
divided by p. In our considered energy range, most of the
resonances are isolated since〈ΓF〉 ) 0.906< 1, whereF(E) is
the density of resonance states (see below). Only in several small
regions are the resonances overlapping. Nevertheless, for
simplicity, we will use the rates as defined above as quantum
rates independent of the energy regime, following the work of
Schinke et al.15 In Figure 3 we present the quantum rates
calculated from Table 1 (solid square), together the statistical

rates from quantum phase space theory (dashed line). The
quantum phase space theory6-8 rate constant is given by

Here,W(E) is the number of open product channels at energy
E, F(E) is the density of resonance states, andh is Planck’s
constant. Having obtained the resonance poles, the density of
states F(E) can be constructed quantum mechanically by
summing over these poles17

Using the data in Table 1 the density of states in our considered
energy range is easily calculated and then used to compute
quantum PST rates. As can be seen from Figure 3, the
dissociation rates acquired via LHFD and quantum PST are in
good agreement. The dissociation rates show a large fluctuation,
varied over 3 orders of magnitude. This fluctuating behavior
has also been obtained by other theoretical calculations on HO2

dissociation,14,15,17 and observed experimentally for several
dissociation systems including H2CO, CH3O, and NO2.41-43

The close correspondence in the fluctuations of the quantum
rate constants and the PST rate constants in this case should
not be too surprising because we are utilizing the quantum
density of states obtained directly from our computed resonances
in the denominator of the PST expression, eq 18. If we had
used energy-grain-averaged densities of states based on some
zero-order Hamiltonian, as is commonly done for statistical
calculations,44 then, of course, the PST rate constants would
not display the same fluctuations and would appear as a much
smoother curve. Inspection of eq 19 reveals that the quantum
density of states carries the signature of the quantum rate
constants of the individual resonances. Indeed, when evaluated
at the resonance energyEn, F(En) is precisely inversely
proportional toΓn. Thus, in the present implementation it is
thedenominatorof eq 18 which effectively guarantees the good
agreement in Figure 3 between the fluctuating quantum rates
and the PST rates. Because the characteristic which distinguishes
PST from other statistical rate theories is the particular ap-
proximation which it invokes for the numerator of eq 18, Figure
3 should not be interpreted as a justification of the specific
assumptions of PST for this molecular system. The appropriate-
ness of PST in comparison with other more sophisticated
statistical rate theories as approximations to the reaction flux
(which relates to the numerator of eq 18, e.g., refs 14,15,45-
49) becomes more relevant in the context of averages over
resonances in the overlapping resonance regime of energies.
This issue has been addressed in detail previously and so we
do not pursue it further at this point.

3.3 Rotational State Distributions.As is evident from the
form of eq 13, it proves to be relatively straightforward to
calculate final rotational distributions for various resonant
energies. Figure 4, parts a-d, shows the SH rotational distribu-
tions at four almost evenly spaced resonant energies. By
inspecting Figure 4, we can identify some general features and
trends. First, the number of occupied rotational channels
increases steadily with energy, which is simply the result of
energy conservation. Second, the distributions show a very
complicated oscillatory behavior, with the number of oscillations
generally increasing with energy. Third, the fluctuations in the
distributions seem to be random and unpredictable from

Figure 2. Resonance width distributionP(Γ), with Γ rescaled such
that 〈Γ〉 ) 1. The dashed line is aø2 distribution with 1 degree of
freedom, i.e., Porter-Thomas distribution.

Figure 3. Plot of the logarithmic resonance rates, log (k), versus
resonance energy in the energy range-0.02 eV to 0.28 eV. Solid
squares represent the results from quantum LHFD calculations and
dashed line denotes the statistical rates from quantum phase space
theory. The unit of decay rate is s-1.

kPST(E) )
W(E)

hF(E)
(18)

F(E) ) ∑
n

Γn/2π

(E - En)
2 + Γn

2/4
(19)
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resonance to resonance. (We have calculatedall the rotational
state distributions forν ) 0 for the resonances lying between
-0.02 eV to 0.28 eV. For brevity, only four of them have been
reported.) Fluctuations of this sort have been observed experi-
mentally for NO rotational state distributions in the unimolecular
dissociation of NO2.50,51

The rotational state distributions of the fragments reflect the
angular dependence of wave function at the translational state
and the anisotropy of the PES in the exit channel. These
distributions for the H2S dissociation are complicated mainly
due to the complicated translational-rotational coupling in the
exit channel. In what follows, we will use a simple phase space
statistical model to predict the product state distributions, and
compare them with the quantum results. Phase Space Theory
(PST) predicts that the amount of products formed in a particular
ro-vibrational state is simply proportional to the ratio of the
degeneracy of the particular ro-vibrational state to the total
number of states which are accessible, while still conserving
total energy and total angular momentum. At a particular energy,
all product states with energies equal to or below it will be
populated with equal probability. For the case of H2S dissocia-
tion with total momentumJ ) 0, it predicts a constant
distribution, i.e., all energy accessible rotational states will be
equally populated. The PST product state distributions are also
shown in Figure 4 (see dashed lines) for comparison. It is
apparent that the fluctuations in the quantum distributions are
not reproduced in the PST model. This in itself is not surprising
since the simple assumptions of PST are not necessarily true in
real molecular systems. What is of interest is whether the

average rotational distributions are in general agreement.
Therefore, in Figure 5 we present the average rotational quantum
number of the SH fragment for both quantum and PST methods
at the eight selected resonance energies. At low energies, the
general agreement between the two methods is satisfactory.
However, with increasing energy the agreement becomes worse
and worse, with PST apparently predicting hotter rotational
distributions that are not born out by the quantum dynamical

Figure 4. (a) SH (ν ) 0) rotational distributions atE ) 0.0311 eV. Solid squares represent the results from quantum LHFD calculations, whereas
dashed line denotes the statistical PST results. All distributions are normalized. (b) Same as previous figure, exceptE ) 0.113 eV. Figure 4 (c).
Same as previous figure, exceptE ) 0.1907 eV. Figure 4 (d). Same as previous figure, exceptE ) 0.2687 eV.

Figure 5. Average rotational excitation for both quantum (solid
squares) and PST (solid circles) methods at the eight resonant energies
E ) 0.0124, 0.0147, 0.0152, 0.0201, 0.0311, 0.113, 0.1907, and 0.2687
eV.
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calculations. This is partly because at low energies, the transition
state is relatively loose, approximating that of PST. At higher
energies, however, the variational transition state moves to
shorter bond lengths such that the product state distributions
depend more sensitively on dynamical interactions and the
anisotropy of the potential surface in the exit channel past the
transition state.14,15,45,52

4. Conclusion

In this paper, we have reported quantum mechanical calcula-
tions of the resonance states of H2S dissociation using a Lanczos
subspace filter diagonalization method. From a single set of
Lanczos iterations, all the resonancesandproduct state distribu-
tions have been efficiently obtained. In our considered energy
range, most of the resonances are isolated ones. The resonance
rate constants for dissociation show strong fluctuations, varied
over 3 orders of magnitude. The rotational state distributions
of SH show a complicated oscillatory behavior, with the number
of oscillations generally increasing with energy. The oscillations
vary from resonance to resonance in an unpredictable and
random way. These results indicate there is an intricate coupling
between the internal degrees of freedom in dissociation, and
that the H2S dissociation is largely irregular. Heuristic indicators
of statistical behavior, such as statistical level-spacing and width
distribution analyses, indicate that the H2S dissociation appears
to resemble statistical dissociation more than it does regular
dissociation. Statistical quantum phase space theory has also
been employed to estimate the dissociation rates and product
state distributions. The comparison between quantum and
statistical rates indicates quite good agreement at lower energies,
including the dramatic fluctuations in the quantum rate constant.
However, on closer inspection this agreement is seen to be due
to the inclusion of the quantum density of states, eq 19, in the
denominator of the microcanonical rate expression, eq 18, since
the quantum density of states carries the signature of the
fluctuating quantum resonance lifetimes. Because for this
molecular system our energy range is essentially in the isolated
resonance regime, further comparison with energy-grain-aver-
aged PST is unlikely to yield additional information as the
correctness or otherwise of the statistical decay postulate. Hence,
we have not further pursued this line of comparison in this paper.
The PST product state distributions do not agree well with the
quantum results. The possible reasons for this failure are the
PST assumption of an infinitely loose transition state and the
neglect of the dynamical interactions within the exit channel.

Schinke et al.1,53,54have systematically investigated several
triatomic systems such as HCO, HNO, and HO2. The three
systems typically represent the regular dissociation, mixed
regular and irregular case, and the irregular one. From above
analysis, the H2S dissociation behaves between HNO and HO2

systems, i.e., it is basically irregular, but there are discrepancies
with statistical theories. Comprehensive experimental data which
probe the resonances in the H2S dissociation are still not
available. The most likely approach would be photodissociation
of the H2S molecule in a supersonic jet which allows precise
control of the total excitation energy and ensures that the total
angular momentum is close to zero. The success of such an
approach with single wavelength pumping would depend on
the existence of an accessible electronically excited state which
displays rapid internal conversion to the ground state. Other
approaches involving stimulated emission pumping schemes
may also possible; hence, one anticipates that such experimental
data may well become available in the future for comparison
with these and future calculations.

Acknowledgment. We are grateful to the University of
Queensland, the Institute of Atomic and Molecular Sciences
(Academia Sinica, Taipei, Taiwan), and the Australian Research
Council for supporting this work. We would like to thank
Professor Rex T. Skodje and Dr. Sheng Der Chao for provision
of the H2S PES code. We thank Professor Herschel Rabitz and
Dr. Tak-San Ho for sending the RKHS fitting code. We also
thank Dr. Anthony Rasmussen for assistance with the manuscript
and Dr. Hua-Gen Yu for helpful discussions.

References and Notes

(1) Schinke, R.; Keller, H.-M.; Flothmann, H.; Stumpf, M.; Beck, C.;
Mordaunt, D. H.; Dobbyn, A. J.AdV. Chem. Phys.1997, 101, 745.

(2) Reid, S. A.; Reisler, H.Annu. ReV. Phys. Chem.1996, 47, 495.
(3) Peskin, U.; Reisler, H.; Miller, W. H.J. Chem. Phys.1994, 101,

9672.
(4) Marcus, R. A.J. Chem. Phys.1952, 20, 359.
(5) Marcus, R. A.; Rice, O. K.J. Phys. Colloid Chem.1951, 55, 894.
(6) Pechukas, P.; Light, J. C.J. Chem. Phys.1965, 42, 3285.
(7) Pechukas, P.; Light, J. C.; Rankin, C.J. Chem. Phys.1966, 44,

794.
(8) Klots, C. E.J. Phys. Chem.1971, 75, 1526.
(9) Brody, T. A.; Flores, J.; French, J. B.; Mello, P. A.; Pandey, A.;

Wong, S. S. M.ReV. Mod. Phys.1981, 53, 385.
(10) Levine, R. D.AdV. Chem. Phys.1988, 70, 53.
(11) Polik, W. F.; Moore, C. B.; Miller, W. H.J. Chem. Phys.1988,

89, 3584.
(12) Polik, W. F.; Guyer, D. R.; Miller, W. H.J. Chem. Phys.1990,

92, 3471.
(13) Waite, B. A.; Miller, W. H.J. Chem. Phys.1980, 73, 3713.
(14) Dobbyn, A. J.; Stumpf, M.; Keller, H.-M.; Hase, W. L.; Schinke,

R. J. Chem. Phys.1995, 102, 586.
(15) Dobbyn, A. J.; Stumpf, M.; Keller, H.-M.; Schinke, R.J. Chem.

Phys.1996, 104, 8357.
(16) Someda, K.; Nakamura, H.; Mies, F. H.Prog. Theor. Phys.1994,

116, 443.
(17) Mandelshtam, V. A.; Grozdanov, T. P.; Taylor, H. S.J. Chem.

Phys.1995, 103, 10 074.
(18) Kirmse, B.; Abel, B.; Schwarzer, D.; Grebenshchikov, S. Y.;

Schinke, R.J. Phys. Chem.2000, 104, 10 398.
(19) Zyubin, A. S.; Mebel, A. M.; Chao, S. D.; Skodje, R. T.J. Chem.

Phys.2001, 114, 320.
(20) Hollebeek, T.; Ho, T. S.; Rabitz, H.Annu. ReV. Phys. Chem.1999,

50, 537.
(21) Ho, T.-S.; Hollebeek, T.; Rabitz, H.; Harding, L. B.; Schatz, G. C.

J. Chem. Phys.1996, 105, 10472.
(22) Murrell, J. N.; Carter, S.J. Phys. Chem.1984, 88, 4887.
(23) Chao, S. D.; Skodje, R. T.J. Phys. Chem. A2001, 105, 2474.
(24) Lee, S. H.; Liu, K.Chem. Phys. Lett.1998, 290, 323.
(25) Lee, S. H.; Liu, K.J. Phys. Chem. A1998, 102, 8637.
(26) Zhang, H.; Smith, S. C.Phys. Chem. Chem. Phys.2001, 3, 2282.
(27) Yu, H. G.; Smith, S. C.Ber. Bunsen-Ges. Phys. Chem.1997, 101,

400.
(28) Yu, H. G.; Smith, S. C.J. Chem. Phys.1997, 107, 9985.
(29) Yu, H. G.; Smith, S. C.Chem. Phys. Lett.1998, 283, 69.
(30) Yu, H. G.; Smith, S. C.J. Comput. Phys.1998, 143, 484-494.
(31) Zhang, H.; Smith, S. C.J. Chem. Phys2001, 115, 5751.
(32) Lanczos, C.J. Res. Natl. Bur. Stand.1950, 45, 255.
(33) Moro, G.; Freed, J. H.J. Chem. Phys.1981, 74, 3757.
(34) Balint-Kurti, G. G.; Dixon, R. N.; Marston, C. C.J. Chem. Soc.,

Faraday Trans.1990, 86, 1741.
(35) Balint-Kurti, G. G.; Dixon, R. N.; Marston, C. C.Int. ReV. Phys.

Chem.1992, 11, 317.
(36) Echave, J.; Clary, D.Chem. Phys. Lett.1992, 190, 225.
(37) Colbert, D. T.; Miller, W. H.J. Chem. Phys.1992, 96, 1982.
(38) Zhang, H.; Smith, S. C.J. Chem. Phys.2002, 116, 2354.
(39) Zimmermann, T.; Cederbaum, L. S.; Meyer, H. D.; Koppel, H.J.

Phys. Chem.1987, 91, 4446.
(40) Porter, C. E.; Thomas, R. G.Phys. ReV. 1956, 104, 483.
(41) Geers, A.; Kappert, J.; Temps, F.; Wiebrecht, J. W.J. Chem. Phys.

1993, 99, 2271.
(42) Miller, W. H.; Hernandez, R.; Moore, C. B.; Polik, W. F.J. Chem.

Phys.1990, 93, 5657.
(43) Reid, S. A.; Reisler, H.J. Phys. Chem.1996, 100, 474.
(44) Gilbert, R. G.; Smith, S. C.Theory of Unimolecular and Recom-

bination Reactions; Blackwell Scientific Publishers: Oxford, 1990.
(45) Song, K.; Peslherbe, G. H.; Hase, W. L.; Dobbyn, A. J.; Stumpf,

M.; Schinke, R.J. Chem. Phys.1995, 103, 8891.
(46) Wardlaw, D. M.; Marcus, R. A.AdV. Chem. Phys.1988, 70, 231.

Unimolecular Dissociation of H2S J. Phys. Chem. A, Vol. 106, No. 25, 20026135



(47) Smith, S. C.J. Chem. Phys.1992, 97, 2406.
(48) Smith, S. C.J. Chem. Phys.1999, 111, 1830-1842.
(49) Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J.J. Phys. Chem.

1996, 100, 12 771.
(50) Robra, U.; Zacharias, H.; Welge, K. H.Z. Phys. D1990, 16, 175.
(51) Miyawaki, J.; Yamanouchi, K.; Tsuchiya, S.J. Chem. Phys.1993,

99, 254.

(52) Bergeat, A.; Cartechini, L.; Balucani, N.; Capozza, G.; Phillips, L.
F.; Casavecchia, P.; Volpi, G. G.; L, L. B.; Rayez, J. C.Chem. Phys. Lett.
2000, 327, 197.

(53) Stumpf, M.; Dobbyn, A. J.; Mordaunt, D. H.; Keller, H.-M.;
Fluethmann, H.; Schinke, R.Faraday Discuss.1995, 102, 193.

(54) Schinke, R.; Keller, H.-M.; Stumpf, M.; Dobbyn, A. J.J. Phys. B
1995, 28, 3081.

6136 J. Phys. Chem. A, Vol. 106, No. 25, 2002 Zhang and Smith


