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Resonance phenomena associated with the unimolecular dissociatigh-of 8H + H have been investigated
quantum mechanically by the Lanczos homogeneous filter diagonalization method using a newly developed
potential energy surfacel(Chem. Phys200], 114 320). Resonance energies, widths (rates), and product
state distributions have been obtained. Both dissociation rates and product state distributions of SH show
strong fluctuations, indicating that the dissociation ofSHs essentially irregular. Statistical analysis of
neighboring level spacing and width distributions also confirms this behavior. The dissociation rates and
product state distributions are compared to the predictions of quantum phase space theory.

1. Introduction Some statistical theories, which are based upon random matrix
) ) o ) ) theory (RMT), can be used to describe the fluctuating behavior
The study of unimolecular dissociation reactions is funda- i, ine observables about the mean vaRiéa It is interesting
_mentlazlly important to many areas of pure and applied chem- 54 informative to compare the results of exact quantum
istry.-“The quantum mechanical characterization of unimolec- e chanical calculations with those of statistical theories for
ular dissociation involves the calculation of resonance states, ¢ a1l molecules. and some very useful work has been done in
which are quasi-bound, so-called compound states that arey,s girection, mostly focusing on unimolecular dissociation of
embedded in the continuum. These are eigenfunctions of theHZCO NOs, and HO, using RMT and RRKM theor§it-18
Schrainger equation with outgoing wave_poundary cc_>nd|t|ons. For example, Schinke et #.have recently compared exact
Because of th.(la compleix béufqua/rzy cc_)rnhdltlonsl, the te'gfrt‘;l/aluesquantum dissociation rates in N@iith statistical theories and
are necessarily comp eXEr—il/2}. The real part of the with experimental results. The multiexponential decay curves
eigenvalue Eg, is th_e energy of the metastablg state O.f the calculated by using quantum mechanical rates are in good
molecule, Whefeﬂs its unimolecular decay riteis given in agreement with the experimental curves, especially at longer
terms of the imaginary parfT}{#} (The latter relationship is times. The statistical adiabatic channel model can adequately

only true if the resonance states are no_nqverlgpﬁ_rtm)lke describe the initial short time decay, but fails to predict the slow
bound states, resonance states have a finite width in the energ)fong time dissociation

domain and their wave functions extend to infinity. Because )
they are scattering states, resonances are generally more R€cently, a new potential energy surface faiSthas been

complicated to calculate than bound states. At present, it is developed? which is based upon extensive ab initio calcula-
possible to perform exact quantum mechanical calculations to tions. The calculations have been performed for geometries
obtain the energies and widths of the resonant states for onlySufficiently extended along the dissociative coordinates to allow
small molecules with a low density of states. Product state the simulation of the dynamics in both entrance and exit
distributions reflect scattering from resonances into product channels accurately. A global representation of the lowest PES
states through a transition state, and thus contain additional clue's been obtained by employing both the reproducing kernel
about the intra- and intermolecular dynamics of the system. EachHilbert space (RKHS) meth84* and Murrell-Carter fitting
resonance has a unique width and is associated with a uniquescheme? The RKHS method has proven successful in fitting
product state distribution. To fully understand unimolecular the similar i+ O (*D) reaction. QCT calculatioA%have been
dissociation dynamics, therefore, it is useful to consider all three performed on the new potential energy surface, and comparison
observables (energy, width, and product state distribution) for of QCT results to the molecular beam experiméi3shows
as many resonances as possible. general agreement. This potential energy surface has a deep well
For large molecular systems, it is generally not possible to oflabout3.9 eV and, ther.efore., a.relatively.high density of states.
calculate resonances using exact quantum methods. Insteadf iS €xpected that the dissociation of$twill show statistical
statistical theories such as RieRamspergerKasser-Marcus ~ Pehavior; hence, the molecule is a good candidate for compari-
(RRKM) theory5 or phase space theory (PSare oftenused ~ SONs between exact quantum mechanical calculations (although
to estimate rate constant as well as product state distributions.these are difficult and challenging) and statistical approaches.
In this paper we will apply our recently developed Lanczos

* To whom correspondence should be addressed. Fax: 61-7-3365-4290.n0mogeneous filter diagonalization (LHFD) metfbto the
E-mail: s.smith@chemistry.ug.edu.au. unimolecular dissociation of #$$ system. LHFD is a further
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simplified version of our previous Lanczos subspace filter
diagonalization metho#.~%° In this Lanczos subspace method,
we first transform the primary Hamiltonian into a Lanczos
tridiagonal representation. We then perform filter diagonalization

Zhang and Smith

(iii) Construct the overlap matrix with elementS;
(¢(E)I¢(E;)) and subspace Hamiltonian matrix with elements
W = (¢(E)ITml¢(Ey)). Note thatWj can be calculated using
a three-term summation

within the Lanczos representation to extract resonance energies

and widths. Corresponding resonant eigenstates can be obtained

within the Lanczos representation by an efficient three-term
recursion, and then be utilized to obtain final state distributions
in a manner described recentfyThe paper is organized as
follows. We describe the LHFD method in section 2. Then in
section 3 we shall give the results of the quantum three-
dimensional calculations performed on the unimoleculg® H

M
W = glwk(Ej)ﬂm_l(Ejo + P (E) oy (E)) +
A(EDBir1a(En] (6)

(iv) Solve the generalized complex-symmetric eigenvalue
problemWB = SEe to obtain the complex energiefs}.

dissociation, alongside the statistical analysis and the comparison (v) Span the energy domain by repeating—iilv) window

with PST results. Section 4 concludes this work.

by window.

Due to the tridiagonal structure of the subspace Hamiltonian,
one can generatdl the elements of a filtered state by specifying
practically any value for the scalgi,. Because the choice is

2.1 Resonance Energies and WidthQuantum-mechani-  arbitrary, the solution must be normalized after step (ji) to yield
cally, resonances can be treated in the time-independent domairthe true filtered stateg(E) — u; x ¢(E). To check the
by solving the homogeneous SéHilmger equation convergence of the eigenvalues as well as the quality of the
eigenpairs generated by the above iterative methods, one can
typically compute the error norm about the eigenendggy

o(E) = [I(Ty — B)S(B)I| ()

2. Theoretical Methods

1)

Here H' = H — iVaps i.6., @ complex absorbing potential
augments the HamiltonianH] to invoke the appropriate

boundary conditions at “infinite” product separation, aig

is the resonance wave function. Briefly, in the LHFD met#od

we first project the augmented Hamiltonian into a Krylov
subspace using the Lanczos metRBbéthside the subspace, the

Hamiltonian (represented as a tridiagonal matfiy) can be 2.2 Product State Distributions. The basic idea of asymp-
used to perform FD calculations for various energy windows. tqic state analysis in unimolecular fragmentation has been
Most FD approaches require the solution of inhomogeneous yronosed by Balint-Kurti et al. in the context of photodisso-
systems of linear equation&x = b, to converge filtered states. ciation3435and here we use it in the somewhat different context
In contrast, our LHFD method, as its name suggests, relies upongf resonance decay. The complex resonance wave functions in
solving A_x = 0. The advantage associated with thl§ choice is eq 1 obey the Siegert-type boundary conditions asymptotically,
that the linear system can be solved exactly by a simple scalarj ¢ they are products of outgoing radial waves in the scattering
three-term recursiof?. ] o coordinateR, say, and internal eigenfunctions in the remaining
In more detail, the LHFD algorithm for characterizing .gordinates. For our target system3H the resonance wave

resonances can be summarized as follows: L function in terms of Jacobi coordinate®, (r, 6) has the
(i) Choose a normalized, randomly generated initial vector following asymptotic form

v1 = 0 and setf1, vop = 0. Then use the 3-term Lanczos
algorithm for complex-symmetric matrix&s

(E-H)P.=0

where the Lanczos eigenvecti{E) is cheaply regenerated for
each complex eigenenergy using eq 3. Clearly, true eigenvalues
should have small error norms and can thus be distinguished
from any unconverged/spurious eigenvalues.

u _

@ g (1.0)
Rk,
to project the non-Hermitian augmented Hamiltonian into a
Krylov subspace. Th# x M tridiagonal representation of the
Hamiltonian, Ty, has diagonal glemenmk = (uk|F||uk) and
subdiagonal elemenj8 = (vk-1|H|wk). Note that a complex-
symmetric inner product is used (i.e., bra vectors are not
complex conjugated).

(i) For all j =1, 2, ...,jmax generate filtered stategE;) by
solving the homogeneous linear system

Byi1is1 = H'oe — oy — B 8

lIIER(Roo!r!e) = zan(ER)

where

h _
an(Eq) = 4/—'(” e " Flpy(r,0)| We (Ror00  (9)
Uy sH

andn = (v, j) is product vibrational and rotational quantum
number, and = 4/ 2uy i (Ex—e€,)-

Within the subspace, we can use eq 8 to perform the
asymptotic scattering analysis. The product rotational state
distribution, P, = |ay(Er)|2, may be acquired by computing

(§ — Twle(E)L=0 ®3)

Here, a backward substitution recursion is employed:
(a) Choosepu, the Mt element ofp(E)), to be arbitrary (but

nonzero; usually seby = 1), and calculate Ak,
1 Py = ml [@n(r,0) WER(R,,.r,0)IP (10)
Py-1= ﬂ_(EjfﬁM = QyPn) 4) '
. The analysis is done in the region where the interaction potential
(b) Fork = M-1, M-2, ..., 2, update scalaf1 is small, but before the region where the absorbing potential is
nonzero (where the resonance wave function is exponentially
Bibi—1 = Eb — b — PrraPira (5) decreasing).
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One can transform wave functions between the primary empirical form for the absorbing potential in bok and r

representation and the Lanczos subspace through

E(ER) = VIWE, (11)

M
WE, = VE(E) = Y L(EQy (12)

whereV = [v1, vp,...oM] IS the column-orthonormal Lanczos

vector matrix. So, using eq 12, the inner product appearing in

eq 10 can be re-expresséd

M

IIjon(r,@)PPER(Rw,r,B)D: GERQWP,(r,0)|u(R,.r,0) =

M
> GE” (13)

Thus, from a single Lanczos iteration sequence, one can

calculate the complex resonance energiedthe product state

coordinates

. zZ- 2
Vapd2) = Vo{ Zmax——ZOZO} (15)

where Znax = 15.5 @, and Vp and Znax are two adjusting
parameters. For our purposes, WeAtHlsez 5.0 eV andZmax=
11.5 @. One then ha#laps= H — iVaps

The ro-vibrational eigenfunctions of HS are direct products

_1

¢ =100 (16)

whereP; is a Legendre polynomial of degrgeThej-dependent
radial vibrational components satisfy the radial Sclimger
equation

K &, G+ DR
B St 2
2uys dr 2up,of

+ V(D] IvE= e, lvD (17)

distributions for different resonances. This does not require that We take a slice of k& PESV(R.r,0¢) as HS potential and use
one construct the resonance wave functions explicitly in the r PODVRs described above to solve eq 17 to [g&nd en.
primary representation because eqs 10 and 13 show that one 3.2 Resonance Energies and Widths (RatesEmploying

need only compute and store the overlap coefficigﬁ‘lsas the
iteration proceeds.

3. Calculations
3.1 Hamiltonian. The triatomic HS Hamiltonian with total

angular momentund = 0 is written in terms of product Jacobi
coordinates

R 18, A1

I:i = — = _— r
2ups RO 2upsT gr?
2
+ %( 1 ;1 2)1“2 + V(Rr,0) (14)
PapsRE gt

whereR is the separation of H from the center of mass of HS,
r is the H-S separatior is the bend angle, and; ys andups

the method described above, we have computed resonance
energies and widths window by window in the energy range
from —0.02 eV to 0.28 eV. Here, the zero energy is referred to
the second reaction threshold H- S (D), but below about
0.28 eV the H + S (D) channel is still not open due to zero-
point vibrational energy, and in this paper we only consider
the dissociation channebB— SH+ H. In the LHFD approach,

we set up a Lanczos subspace of omdler 40 000, and stored

the two sets of matrix elemenfs})' and {f,}5 for subse-
qguent construction of the subspace matrixes. Six energy
windows of width 0.06 eV have been used, each with 200 basis
functions, to perform the FD calculations. In Table 1 we present
the calculated resonance energies and widths, together with
corresponding error norms, just below the second reaction
threshold. In this energy range, there are a total of 86 calculated
narrow resonances, with their error norms less than8.10
Broader resonances cannot be extracted from the spectrum,
simply because they are hidden in the background. In what
follows, we will present some statistical analysis of the

are reduced masses. This choice of product Jacobi coordinatesesonance energy level spacing and resonance width distribution,
facilitates the final state analysis for product state distributions and compare the quantum rates with the results from statistical

via eqs 10 and 13. Faf(Rr,0) we utilize the newly developed
ground-state b5 PES by Zyubin et d° The PES has an
equilibrium geometry oR. = 2.53 @, re = 2.54 @, andf, =
1.43 rad and has a dissociation energy of 3.9 eV to the H
SH limit.

The Hamiltonian was then represented in a potential-
optimized discrete variable representatfoPODVR). For the
R coordinate, we usellr = 158 PODVR points, which were
contracted from 450 evenly spaced primitive Sinc DVR pdihts
spanning the range from 0.5 @0 15.5 @ with the one-
dimensional reference potentM(Rre,60¢). Similarly, for ther
coordinateN; = 142 PODVR points were obtained from 426
primary DVR points spanning the range from 1g3ta 15.50
& using the reference potentisl(Re,r,6¢). For 6 variable, we
usedNy = 43 G-Legendre quadrature DVR points. The resulting

PST model.

In Figure 1, we present the nearest neighbor spacing distribu-
tion P(s) of resonances after the spectrum was unfolded, i.e.,
rescaled to make the poles uniformly distributed with unit mean
level spacing. Here, the spaciags the distance of two complex
eigenvalues in the complex plane. Also shown in this figure
are the analogous Poisson distribution (long dashed line) and
Ginibre distribution (short dashed line) for comparison. As
pointed out elsewheté (also see the references therein), the
statistical analysis of bound states is different from that of
resonances. For bound states, Wigner distribution corresponding
to the eigenvalues of the random Gaussian ensemble of the
orthogonal matrixes can be viewed as an evidence of the chaotic
nature of the bound state spectrum, whereas the Poisson
distribution corresponds to a regular bound state spectrum. On

direct product basis set was further contracted by discarding the other hand, for resonances, Ginibre distribution corresponds
those points whose potential energies were higher than the cutoffto the eigenvalues of the random Gaussian ensemble of the

energy Veuorr = 1.2 €V, resulting in the final basis size of
219030. Similar to our recent wofR,we adopt the following

complex symmetric matrixes, thus can be used as an evidence
of the chaotic nature of the spectrum, whereas the analogue
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TABLE 1: Calculated Resonance Energie€, and Widths I, below the Second Reaction Threshold (H+ S (ID))?2

n En Iy On n En I On
1 —0.0174 .67x 10793 .36 x 10712 44 1279 76x 10792 .31x 10710
2 —0.0150 .15x 1070t 49 x 10799 45 .1307 .13x 10792 61 x 10711
3 —0.0142 .20x 10792 .15x 10710 46 1351 .35¢ 10793 .39x 1071t
4 —0.0086 A46x 10793 44 x 1071 47 1410 .36x 10703 A48 x 10711
5 —0.0069 .32x 10792 .59 x 10710 48 1444 21x 10792 A15x 1071
6 —0.0042 .95x 10793 42 x 10710 49 .1459 11x 1079 78 x 10710
7 .0041 .36x 10792 21x 1071 50 .1516 79 10792 A1 x 1079
8 .0071 .24x 10792 A3 x 1071 51 1522 .69 10793 90 x 10°1*
9 .0124 A2x 10798 29 x 10710 52 .1567 .16x 10792 .22 x 10710
10 .0147 A8x 10792 11 x 1079 53 .1590 .37 10792 .18 x 10710
11 .0152 A9 10792 17 x 10710 54 .1619 11x 10792 .15x 10710
12 .0201 69 10793 .35x 10710 55 .1659 14x 10792 .88x 1071*
13 .0215 10x 107 15x 10708 56 .1693 .13x 10792 90x 10711
14 .0238 23« 1079 17 x 10710 57 .1758 .69 10793 95 x 1071t
15 .0270 22x 10792 A11x 1079 58 .1780 .50x 10792 41 x 1071
16 .0277 24x 10793 11 x 10710 59 .1820 .15¢ 10792 .38x 1071t
17 .0311 A7 10703 55x 1071 60 .1830 14x 1079 19 x 10710
18 .0350 34x 1072 .86 x 10710 61 .1867 14x 10792 .64 x 1071t
19 .0359 22¢ 1079 90x 1012 62 .1907 .31x 10792 20x 10710
20 .0408 .62¢ 10792 .67 x 10710 63 .1973 .15¢ 10792 34 x 1071t
21 .0445 .29 10703 14 x 10710 64 .1999 .15< 10°%? .33x 1071t
22 .0497 .98x 1079 .38x 1079 65 .2013 A9 10792 T4 x 1071t
23 .0509 A1x 10792 21 x 10799 66 .2046 .20x 10793 67 x 10711
24 .0577 24x 10702 19x 10799 67 .2060 97x 10792 .31x 10710
25 .0593 25< 1079 11 x 10797 68 .2064 .15< 10793 57 x 10711
26 .0641 .68x 1072 .64 x 10710 69 .2086 .87x 1079 25x 1071
27 .0654 .62x 10792 51 x 10710 70 2122 .31x 10793 76 x 10711
28 .0704 .94x 10793 30x 1071 71 .2146 .36x 10791 .97 x 10798
29 0771 .67x 10703 90x 10711 72 .2168 .39 10792 .32 x 10710
30 .0801 .91x 10792 54 x 10708 73 .2225 45¢ 10703 16 x 1071
31 .0828 18x 1072 .28 x 1079 74 .2295 .35¢ 10792 .67 x 10°1%
32 .0871 .20x 10792 13 x 10710 75 .2359 .34x 10792 91x 101
33 .0907 A2¢ 10702 12 x 10710 76 .2395 .54x 10792 75x 1071t
34 .0950 22¢ 10703 73x 1071 77 .2445 .97x 10703 11 x 10710
35 .1014 61x 1079 14 x 10710 78 2472 12¢ 10792 22x 1071t
36 .1054 .33« 10792 61x 1071 79 .2525 14x 1079 25x 10708
37 .1056 A3< 1079 .63 x 10710 80 .2563 .18x 10792 .30x 10710
38 1113 79 10703 34x 1071 81 .2652 .39 10792 46 x 10710
39 .1148 .36x 1079 49 x 10712 82 .2687 .67x 10704 13 x 10710
40 1176 23x 1079 42 x 10799 83 .2695 12< 10792 50x 1071t
41 .1198 ATx 10798 A48 x 1071 84 .2715 .58« 10792 46 x 10710
42 1222 .60x 10703 22x 1071 85 .2788 29 1072 .38x 10710
43 .1269 .90x 1079 A45x 1071 86 .2794 .35x 10792 48 x 10710

a Also shown are the corresponding error normas The zero energy is referred to the second reaction threshold. All energy units are in EV.

1 e e e spectrumtb1239A superficial inspection reveals that the level

I spacing distribution obtained from our computations is closer
to the Ginibre distribution than to the Poisson limit, particularly
at lower level spacings. This would seem to imply largely
irregular behavior in unimolecular dissociation 0634 The

4 comparison is clearly not definitive, however. This may be due
to the fact that the number of resonances in the energy range
below the opening of the second channel $HH is not large
(see Table 1) which makes the statistics subject to fluctuation.
It may also be due to the presence of some traces of regular
dynamics.

Figure 2 presents the resonance width distributi(f)
obtained from our computations together witjp?aistribution
0 i b e L with 1 degree of freedom (dashed line), i.e., PotfBnomas
0 05 ! 15 2 25 3 distribution. Here, resonance widih is rescaled so that the
s average value is one. This kind of distribution was first found
Figure 1. Plot of the nearest neighbor spacing distributiR{s) of the  in the classic work of Porter and Thom&svhen studying
unfolded spectrum for resonant states (solid line). The bin length is he\1ron emission widths of heavy nuclei. Porter and Thomas
0.37. Also shown in this figure are Poisson distribution (long dashed .
line) and Ginibre distribution (short dashed line) for comparison. pointed out that compqund nucleus states are 39 complgx that
the nuclear decay matrix elements have a Gaussian distribution
with zero mean, and thus, the decay rates exhibit this distribu-
Poisson distribution, which is in fact identical to the Wigner tion. This distribution is in fact a member of the family of chi-
distribution for bound states, corresponds to a regular quantumsquared distributions withv degrees of freedor?, and the

04 r

02+
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rates from quantum phase space theory (dashed line). The
guantum phase space thebi¥rate constant is given by

08 W(E)
E)=—2 (18)
- 0 Here,W(E) is the number of open product channels at energy
a E, p(E) is the density of resonance states, ani$ Planck’s

0.4

0.2

Figure 2. Resonance width distributioR(I"), with T rescaled such
that O= 1. The dashed line is @? distribution with 1 degree of

freedom, i.e., PorterThomas distribution.

constant. Having obtained the resonance poles, the density of
states p(E) can be constructed quantum mechanically by
summing over these pols

T,/2n
B=)—""- (19)
’ Z(E —E)Y+TY4

Using the data in Table 1 the density of states in our considered
energy range is easily calculated and then used to compute
guantum PST rates. As can be seen from Figure 3, the
dissociation rates acquired via LHFD and quantum PST are in
good agreement. The dissociation rates show a large fluctuation,

o ' ' ' ' ' varied over 3 orders of magnitude. This fluctuating behavior
15 b ] has also been obtained by other theoretical calculations gh HO
s dissociationt#1517 and observed experimentally for several
14 b ] dissociation systems including,80, CHO, and NQ.41-43
3 n " " A The close correspondence in the fluctuations of the quantum
s 1BE g g L ;‘Eh bl o Vi) rate constants and the PST rate constants in this case should
=2 ':’I\'l\-l.*p'\: N |-V'L-|'_'_" ,\h' ot not be too surprising because we are utilizing the quantum
S 12 j-. -IH L N g '_ . T density of states obtained directly from our computed resonances
C .4-' i 'y in the denominator of the PST expression, eq 18. If we had
1M F n] used energy-grain-averaged densities of states based on some
: zero-order Hamiltonian, as is commonly done for statistical
10 f . calculations!* then, of course, the PST rate constants would
. not display the same fluctuations and would appear as a much
9 = : ; ) ; ! smoother curve. Inspection of eq 19 reveals that the quantum

0 005 01 015 02 025
E(eV)

density of states carries the signature of the quantum rate
constants of the individual resonances. Indeed, when evaluated
Figure 3. Plot of the logarithmic resonance rates, |dg, (versus at the _resonance energﬁn, p(En) is p.reC|ser |nv§rsgly.
resonance energy in the energy range.02 eV to 0.28 eV. Solid proportlon_al toly. Thus, n the pres_ent implementation it is
squares represent the results from quantum LHFD calculations andthedenominatowf eq 18 which effectively guarantees the good
dashed line denotes the statistical rates from quantum phase spac@greement in Figure 3 between the fluctuating quantum rates
theory. The unit of decay rate is’s and the PST rates. Because the characteristic which distinguishes
PST from other statistical rate theories is the particular ap-
. B - proximation which it invokes for the numerator of eq 18, Figure
number has been interpreted as the number of ef_fec_nve_ OPEN 3 should not be interpreted as a justification of the specific
decay channels. The fact tha}t t'he Por{éhomas d'Str'bUt'on assumptions of PST for this molecular system. The appropriate-
(v = 1) gives a reasonable fit is in some sense puzzling because,qss of PST in comparison with other more sophisticated

the number of open channels in the SHH arrangement is  giavistical rate theories as approximations to the reaction flux
clearly greater than one over the energy range incorporated for,nich relates to the numerator of eq 18, e.g., refs 14,15,45

the analysis (i.e., all resonances bfelow the opening qf thg Secontyg) hecomes more relevant in the context of averages over
arrangement channel). However, it should be borne in mind that ogonances in the overlapping resonance regime of energies.

the resonance density in this system is not so great that onerpjs issue has been addressed in detail previously and so we
can do a statistical analysis of resonances within a narrow energyqq, not pursue it further at this point.

range that has a well-defined number of open channels associ- 3 3 Rotational State Distributions. As is evident from the
ated with it. Hence, although the comparison of Figure 2 is form of eq 13, it proves to be relatively straightforward to
suggestive it cannot meaningfully be pushed too far. calculate final rotational distributions for various resonant
For isolated resonances, the dissociation rates are widthsenergies. Figure 4, parts-a, shows the SH rotational distribu-
divided by A. In our considered energy range, most of the tions at four almost evenly spaced resonant energies. By
resonances are isolated siridg= 0.906 < 1, wherep(E) is inspecting Figure 4, we can identify some general features and
the density of resonance states (see below). Only in several smaltrends. First, the number of occupied rotational channels
regions are the resonances overlapping. Nevertheless, forincreases steadily with energy, which is simply the result of
simplicity, we will use the rates as defined above as quantum energy conservation. Second, the distributions show a very
rates independent of the energy regime, following the work of complicated oscillatory behavior, with the number of oscillations
Schinke et al® In Figure 3 we present the quantum rates generally increasing with energy. Third, the fluctuations in the
calculated from Table 1 (solid square), together the statistical distributions seem to be random and unpredictable from
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Figure 4. (a) SH ¢ = 0) rotational distributions & = 0.0311 eV. Solid squares represent the results from quantum LHFD calculations, whereas
dashed line denotes the statistical PST results. All distributions are normalized. (b) Same as previous figurg, x@dd3 eV. Figure 4 (c).
Same as previous figure, excdpt= 0.1907 eV. Figure 4 (d). Same as previous figure, exéept 0.2687 eV.

resonance to resonance. (We have calculatethe rotational 8 : i : i :
state distributions for = 0 for the resonances lying between .
—0.02 eV to 0.28 eV. For brevity, only four of them have been 7F ]
reported.) Fluctuations of this sort have been observed experi- .
mentally for NO rotational state distributions in the unimolecular 6F ]
dissociation of N@50.51

The rotational state distributions of the fragments reflect the 5t * ]

<j>

angular dependence of wave function at the translational state

and the anisotropy of the PES in the exit channel. These 4r ]
distributions for the HS dissociation are complicated mainly aF e n . ]
due to the complicated translational-rotational coupling in the ;-

exit channel. In what follows, we will use a simple phase space oL . ]
statistical model to predict the product state distributions, and L]

compare them with the quantum results. Phase Space Theory 1 . L . L .

(PST) predicts that the amount of products formed in a particular 0 005 01 015 02 025 03
ro-vibrational state is simply proportional to the ratio of the Energy(eV)

degeneracy of the pgrtlcular ro-V|brat|onaI 'state. to the tqtal Figure 5. Average rotational excitation for both quantum (solid
number of states which are accessible, while still conserving squares) and PST (solid circles) methods at the eight resonant energies
total energy and total angular momentum. At a particular energy, E = 0.0124, 0.0147, 0.0152, 0.0201, 0.0311, 0.113, 0.1907, and 0.2687
all product states with energies equal to or below it will be eV.

populated with equal probability. For the case oSHlissocia-

tion with total momentumJ = O, it predicts a constant average rotational distributions are in general agreement.
distribution, i.e., all energy accessible rotational states will be Therefore, in Figure 5 we present the average rotational quantum
equally populated. The PST product state distributions are alsonumber of the SH fragment for both quantum and PST methods
shown in Figure 4 (see dashed lines) for comparison. It is at the eight selected resonance energies. At low energies, the
apparent that the fluctuations in the quantum distributions are general agreement between the two methods is satisfactory.
not reproduced in the PST model. This in itself is not surprising However, with increasing energy the agreement becomes worse
since the simple assumptions of PST are not necessarily true inand worse, with PST apparently predicting hotter rotational
real molecular systems. What is of interest is whether the distributions that are not born out by the quantum dynamical
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