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We compare hybrid density functional theory and multi-coefficient correlation methods for locating saddle
point geometries and calculating barrier heights on a Born-Oppenhiemer potential energy surface. We located
reactant, product, and saddle point stationary points by the multi-coefficient Gaussian-3 (MCG3) method for
15 reactions, and by the multi-coefficient quadratic configuration interaction with single and double excitations
(MC-QCISD) method for 22 reactions; and the resulting structures and energies are compared to those obtained
by the Møller-Plesset second order perturbation theory (MP2), QCISD, and modified Perdew-Wang
1-parameter-for-kinetics (MPW1K) methods. We examined three single-level methods with two basis sets,
6-31+G(d,p) and MG3. By comparison to calculations on five systems where the saddle point has been
optimized at a high level of theory, we conclude that the best saddle point geometries for the methods tested
are those found at the MC-QCISD, MCG3, and MPW1K levels. MP2 was shown to have systematic deficiencies
in predicting saddle point geometries. Our recommended most affordable methods are the MPW1K/6-31+G-
(d,p) and MC-QCISD methods for fully optimized calculations and the MCG3//MPW1K/6-31+G(d,p) method
for single-point calculations with mean unsigned errors in calculating reaction energies and barrier heights of
1.6, 1.6, and 1.1 kcal/mol respectively.

1. Introduction

The ability of electronic structure theory to make reliable
predictions of bond energies and enthalpies of formation has
advanced extraordinarily rapidly in recent years. Computational
thermochemistry now challenges experiment in accuracy, cost,
and convenience for many kinds of molecules and even more
so for reactive intermediates.1 Both correlated-wave function
theory, i.e., explicitly correlated methods (especially many-body
perturbation theory and coupled cluster methods), and density
functional theory (DFT) have contributed to the advances. There
has also been progress in computational thermochemical kinetics
and the calculation of potential energy surfaces, but such
calculations are harder, and much more remains to be done. In
the long-term, multireference explicitly correlated methods2 and
multireference DFT3,4 hold considerable promise for energies
of transition states and arbitrary points on potential surfaces,
but in the short term one would like to know the best strategy
for using currently widely available methods. In fact, if one
develops creative ways to use these tools, one may be able to
attain higher accuracy even without solving some of the
recalcitrant difficulties of multireference methods.

Reaction-path calculations and classical trajectory calculations
(the latter are sometimes called molecular dynamics, but the
implication that molecular dynamics calculations are always
classical is becoming increasingly unsuitable as it becomes
practical to employ a larger number of dynamics methods that
incorporate quantum effects) require energy gradients as well
as single-point energies (i.e., energy values for a fixed geom-
etry), and the calculation of vibrational frequencies requires
Hessians (second derivatives of the energy with respect to
nuclear coordinates). Geometry optimization of minimum-
energy structures and saddle points also requires gradients and

sometimes at least one Hessian. Characterization of stationary
points as minima or saddle points also requires Hessians.
Furthermore, both for fitting potential energy surfaces and for
carrying out direct dynamics calculations, one requires a large
number of energies and sometimes a large number of gradients
and Hessians. A major consideration in selecting electronic
structure methods and one-electron basis sets for dynamics
applications is the performance-to-cost ratio for energies,
gradients, and Hessians.

For some types of dynamics calculations, algorithms are
available for calculating a transition state structure or a reaction
path at one level and improving the energetic part of the
calculation with single-point energies.5 The well-known “//”
method6 (in which X//Y denotes a single-point energy calcula-
tion with level X at a geometry optimized by level Y) is the
prime example, but this method is basically limited to conven-
tional transition state theory and tunneling calculations that
neglect reaction-path curvature and corner cutting. More general
classical and semiclassical methods require consistent energies
and gradients, though, and so there is great interest in learning
the reliability of methods for which gradients are reasonably
affordable.

One class of strategies for extracting the maximum perfor-
mance from explicitly correlated methods involves extrapolating
the one-electron basis (“infinite basis” methods7), scaling the
correlation energy (SEC,8 SAC,9,10 and MCSAC methods11),
or both.11-16 A series of multi-coefficient correlation methods
(MCCMs) has been developed for simultaneous extrapolation
of the basis set and scaling of the correlation energy or its
components; these methods include MCG313 and MC-QCISD.16

A general name for all the methods in this paragraph is multi-
level electronic structure methods because the final results are
based on more than one of the conventional levels (where
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“level” in general denotes both level of electron correlation and
choice of one-electron basis set).

A strategy for improving the performance of DFT is to mix
in some fraction of Hartree-Fock theory (as in mPW1PW9117)
or to do this along with scaling one or more components of the
exchange and correlation functionals (as in the popular B3PW9118

and B3LYP19 methods). Recently, we have optimized one such
method for kinetics, resulting in a method called modified
Perdew-Wang 1-parameter-method for kinetics20 (MPW1K),
and we have also tested this method for saddle point geometries.
All such combinations of Hartree-Fock theory and DFT are
called hybrid HF-DFT, or, more usually, hybrid DFT.

With either explicitly correlated methods or DFT (either pure
or hybrid) one must choose not only the method to treat
correlation but also the basis set. The performance and cost are
both steep functions of basis set size (with cost typically
increasing as the fourth power of the number of basis functions
for a given system, which should not be confused with the even
steeper scaling, up to the seventh power for popularly used
methods, with system size if the number of basis functions per
atom is fixed).21

The goal of the present paper is to study a variety of levels
and combinations of levels, with and without “//” corrections,
to learn more about which strategies lead to the best performance-
to-cost ratios. The cost consideration is dependent on system
size but for quantitative estimations we will use a cost measure
based on primarily on a system with eleven atoms (2 carbons,
1 nitrogen, and 8 hydrogens). The conclusions clearly also
depend on the test set; we will use a set of 22 reactions for
which the true barrier heights have been estimated reasonably
reliably by comparing experimental data to dynamics calcula-
tions in the literature. These reactions mainly involve making
and breaking single bonds in neutral molecules, in most cases
by the transfer of hydrogen.

Section 2 summarizes the test set. Section 3 summarizes all
methods and basis sets to be tested. Section 4 presents results
and discussion.

2. Databases

The energy test set we will use in our comparisons consists
of the energy of reaction and forward and reverse barrier height
for 22 reactions. We will call this the kinetics energy database.
All energies reported in this paper will be molar energies in
units of kcal. Table 1 lists our best estimate of the zero-point
exclusive endoergicity∆E and forward (f) and reverse (r) barrier
heightVx

‡, which are related by

Note that∆E is also called the energy of reaction or classical
endoergicity (it is negative for an exoergic reaction), andVx

‡ is
also called classical barrier height. The best estimates of the
classical endoergicities were obtained from zero point-exclusive
atomization energies which in turn were obtained by removing
zero point energy contributions from experimental heats of
formation at 0 K. An earlier version of the kinetics energy
database was published elsewhere,22 but in the present paper
we updated all energetic values to take account of more accurate
experimental values for the heats of formation of CH3,23 H2,24

and OH.25 Thus, the values of∆E used in this paper were
calculated from the zero-point exclusive atomization energies
used previously13 with the exception of reactions involving CH3,
H2, and OH. One of the barrier heights (eitherVf

‡ or Vr
‡) is

estimated from the previously presented theoretical and experi-

mental kinetics data20 using the method described in previous
work.20,22 The other barrier height is then calculated from
Equation 1 and the experimental endoergicity. As a result of
using the new experimental endoergicities, the barrier height
calculated from eq 1 changed for most of the reactions in the
database (reactions 1-12,14-18, and 21) by∼0.1-0.3 kcal/
mol.

The database of saddle point geometries comes from our
previous work.22 These are more difficult to determine, so our
test set is smaller (reactions 1, 6, 10, 13, and 14), and it consists
of reactions where very high-level calculations26-29 of saddle
point geometries are available. The perpendicular looseness has
been defined22 as the sum of the making and breaking bond
distances; this is a measure of the looseness of the structure in
the direction perpendicular to the reaction coordinate. For
example, for the saddle point of reaction 14, the best estimate29

of the making bond distance is 0.894 Å, and the perpendicular
looseness is 2.109 Å.

3. Methods

The methods used to calculate endoergicities and barrier
heights include both full optimization and single-point methods;
in the latter, denoted X//Y, the energy is calculated at the higher
level X at the geometry obtained by an optimization at the lower
level Y. The methods used for geometry optimization include
the hybrid density functional MPW1K method,20 two ab initio
methods: Møller-Plesset second-order perturbation theory30

(MP2), quadratic configuration interaction with single and
double excitations31 (QCISD), and two multi-coefficient cor-
relation methods: multi-coefficient QCISD (MC-QCISD),16 and
multi-coefficient Gaussian-3 (MCG3).13 MPW1K was selected
because our previous studies20,22 showed that it is the most
satisfactory hybrid DFT method for kinetics, the MC methods
were chosen as candidates for best performance-to-cost ratio,
MP2 was chosen for comparison because of its widespread use
and relatively low cost, and QCISD was chosen for comparison
because of its good performance22 for saddle point geometries
and because it is a component of the MC-QCISD methods. The
methods used for single-point calculations include some of those
used in optimization as well as QCISD with quasiperturbative
connected triples31 (QCISD(T)). All calculations are based on

TABLE 1: Best Estimates of Classical Barrier Heights and
Classical Endoergicity

reaction ∆E Vf
‡ Vr

‡

1. H +HCl f C1 + H2 -3.0 5.7 8.7
2. OH+ H2 f H + H2O -16.1 5.7 21.8
3. CH3 + H2 f H + CH4 -3.2 12.1 15.3
4. OH+ CH4 f CH3 + H2O -12.9 6.7 19.6
5. H + CH3OH f CH2OH + H2 -6.0 7.3 13.3
6. H + H2 f H2 + H 0.0 9.6 9.6
7. OH+ NH3 f H2O + NH2 -9.5 3.2 12.7
8. CH3 + HCl f CH4 + Cl -6.2 1.7 7.9
9. OH+ C2H6 f H2O + C2H5 -16.5 3.4 19.9

10. F+ H2 f H + HF -31.6 1.8 33.4
11. O+ CH4 f OH + CH3 5.6 13.7 8.1
12. H+ PH3 f PH2 + H2 -20.1 3.1 23.2
13. H+ ClH′ f HC1 + H′ 0.0 18.0 18.0
14. H+ OH f O + H2 -2.4 10.7 13.1
15. H+ trans-N2H2 f H2 + N2H -35.0 5.9 40.9
16. H+ H2S f H2 + HS -13.7 3.5 17.3
17. O+ HCl f OH + Cl -0.6 9.8 10.4
18. NH2 + CH3 f CH4 + NH -14.4 8.0 22.4
19. NH2 + C2H5 f C2H6 + NH -10.8 7.5 18.3
20. C2H6 + NH2 f NH3 + C2H5 -7.0 10.4 17.4
21. NH2 + CH4 f CH3 + NH3 -3.3 14.5 17.8
22. s-trans cis-C5H8 f s-trans cis-C5H8 0.0 38.4 38.4

Vf
‡ ) Vr

‡ + ∆E (1)
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the spin-unrestricted formalism, i.e., a single Slater determinant
for the wave function or reference state with different orbitals
for different spins and no spin projection operators. The basis
sets employed for the ab initio and DFT methods are the
6-31+G(d,p) basis32 and the modified G3Large (MG3) basis,14

which is also called the G3LargeMP2 basis.33

The most important relativistic effect for reaction dynamics
with first and second row elements is spin-orbit coupling. The
MC-QCISD calculations were performed with version 2m
coefficients16 that implicitly account for spin-orbit coupling.
In all other calculations presented in this paper, the spin-orbit
stabilization energy was added to all atoms and to selected open-
shell molecules, as described previously.10 Therefore, for MCG3
we used version 2s parameters.13

The single-level calculations presented were performed with
the Gaussian98 program.34 The MCCM calculations were
performed with the aid of the program multilevel 2.0.35 All
saddle points were verified to be first order with a frequency
calculation, with the exception of reactions 9, 19, 20, and 22 at
the QCISD/MG3 level. For these 4 systems, the numerical
Hessian would require an excessive amount of computing
resources, but the structures are very similar to those confirmed
at lower levels. The structures of all MCG3 and MC-QCISD

optimized saddle points are given in Supporting Information.
Note that the multi-level optimization methods are sometimes
called MCG3//ML and MC-QCISD//ML, but in the present
paper we omit the “//ML” to simplify the notation.

The cost function we use is designed to be an estimate of
the cost of a geometry optimization. The actual number of
energies, gradients, and Hessians required for an optimization
varies greatly depending on the system, initial geometry,
coordinate system, and optimization algorithm. Therefore, for
comparison purposes we defined a standard cost (C) by

whereE is the CPU time to perform an energy calculation,G
is the time to calculate a gradient, andH is the time to calculate
a Hessian. All of the timed calculations were performed on a
single 300 MHz R12000 processor on an Origin 2000 computer,
and the value tabulated is the sum of theC functions for
calculations on two of the saddle point structures, namely
ClHCH3 and H2NHC2H5. For single point calculations, X//Y,
where the geometry is optimized at level Y and a single point
energy is calculated at level X, the standard cost function is
defined as

Note that, as expected, the cost function is dominated by the
larger system.

4. Results and Discussion

4.1. Saddle Point Geometries.Table 2 summarizes the error
in Rmaking bond

‡ and Rbreaking bond
‡ and in perpendicular looseness

for the five reactions in the saddle point geometry database.
The errors in Table 2 were computed using the values in the
reaction geometry database rounded to 0.001 Å along with the
unrounded results of our calculations, but the mean errors are
rounded to 0.01 Å to allow the significant trends to be seen
more easily. The lowest RMS error in bond distances for each
of the basis sets was achieved by MPW1K for both the 6-31+G-
(d,p) and MG3 basis sets. MCG3, which uses three basis sets,
gives the smallest error. The methods MPW1K and MCG3 do
not exhibit the systematic error in perpendicular looseness that
is found in MP2. Geometries optimized with QCISD are well
balanced with respect to perpendicular looseness; however, the
method is prohibitively expensive for many systems. If one can
afford the cost, MCG3 gives the lowest error in bond distances
at the saddle point. MPW1K predicts saddle point geometries
almost as well with only an augmented, polarized double-ú basis
and a much lower cost (the standard cost function is more than
300 times lower).

4.2. Energetics.Table 3 compares the mean signed error
(MSE), mean unsigned error (MUE), and root-mean-squared

TABLE 2: Mean Errors (Angstroms) in Saddle Point Internuclear Distances for Reactions 1, 6, 10, 13, and 14

bond distance perpendicular looseness

method MSEa MUEb RMSEc MSEa MUEb RMSEc cost

MPW1K/ 6-31+G(d,p) 0.00 0.02 0.03 -0.01 0.02 0.02 2.5(2)d

MP2/ 6-31+G(d,p) -0.03 0.03 0.05 -0.05 0.05 0.07 2.6(2)
QCISD/ 6-31+G(d,p) -0.01 0.03 0.04 -0.02 0.03 0.04 1.9(4)
MPW1K/ MG3 -0.01 0.01 0.01 -0.01 0.02 0.02 1.6(3)
MP2/ MG3 -0.03 0.04 0.06 -0.07 0.07 0.08 3.3(3)
QCISD/ MG3 -0.01 0.02 0.03 -0.01 0.02 0.03 1.9(5)
MC-QCISD -0.01 0.02 0.02 -0.01 0.01 0.02 5.4(3)
MCG3 0.00 0.01 0.01 0.00 0.01 0.02 7.8(4)

a Mean signed error.b Mean unsigned error.c Root-mean-squared error.d Power of 10 in parentheses.

TABLE 3: Mean Errors (kcal/mol) for Consistently
Optimized Calculations

method MSE MUE RMSE cost

66 data
MPW1K/6-31+G(d,p) 1.6 2.3 2.5(2)a

MP2/6-31+G(d,p) 4.4 5.3 2.6(2)
QCISD/6-31+G(d,p) 3.8 4.4 1.9(4)
MPW1K/MG3 1.6 2.0 1.6(3)
MP2/MG3 3.6 4.4 3.3(3)
QCISD/MG3 2.4 2.8 1.9(5)
MC-QCISD 1.6 1.9 5.4(3)
MCG3 1.2 1.7 7.8(4)

44 barrier heights
MPW1K/6-31+G(d,p) -1.2 1.6 2.3
MP2/6-31+G(d,p) 5.3 5.7 6.2
QCISD/6-31+G(d,p) 4.0 4.3 4.8
MPW1K/MG3 -1.2 1.7 2.2
MP2/MG3 3.7 4.2 4.9
QCISD/MG3 2.4 2.8 3.1
MC-QCISD 1.1 1.7 2.1
MCG3 0.4 1.2 1.8

22 energies of reaction
MPW1K/6-31+G(d,p) 1.6 2.2
MP2/6-31+G(d,p) 1.9 2.8
QCISD/6-31+G(d,p) 2.9 3.4
MPW1K/MG3 1.3 1.6
MP2/MG3 2.4 3.3
QCISD/MG3 1.6 2.0
MC-QCISD 1.3 1.6
MCG3 1.1 1.6

a Power of 10 in parentheses.

C ) 10 (E + G) + H (2)

C(X//Y) ) C(Y) + E(X) (3)
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error (RMSE) for the barrier heights and reaction energies for
the set of 22 reactions for the calculations in which the
geometries are optimized at the same level that the energy is
calculated. The first seven rows of Table 3 show the MSE,
MUE, and RMSE over all 66 data (44 barrier heights and 22
energies of reaction). For MCG3, 15 of the structures were fully
optimized, and for the remaining 7, the QCISD/MG3 geometry
was used. Table 4 displays the same errors for single-point
energy calculations on the structures optimized at the MPW1K/
6-31+G(d,p) level. Table 5 shows the errors for seven other
single-point-energy methods.

Among the fully optimized calculations, MCG3 outperforms
all other methods in accuracy. MC-QCISD and MPW1K are
similar in performance, although MPW1K is significantly lower
in cost. As is well-known, the MP2 and QCISD methods both
systematically overestimate the barrier height due to incomplete
treatment of electron correlation energy.

Among the “//” methods, the methods using MCG3 energies
have the lowest error. The MCG3//MPW1K/6-31+G(d,p)
method has the lowest computational cost among the “MCG3//”
methods.

In testing methods against experimental data, a universal
problem that cannot be avoided is the diversity of the testing
data. As on considers broader classes of reactions, it is always
possible that one will find different levels of performance.

The costs in Table 3 are on the same scale as is used in Table
2 and in subsequent tables, as explained in section 3. Readers
may of course convert these to relative costs or percentages.
For example, the cost of MP2/6-31+G(d,p) is 8% of the cost
of MP2/MG3.

5. Conclusions

This paper compares the cost and accuracy of a number of
methods available for calculating saddle point geometries,
reaction barrier heights, and reaction energies. It attempts to
quantify the average error in the saddle point geometry predicted
by several methods.

In previous work, we have proposed two quite different
semiempirical approaches to calculating barrier heights for
chemical reactions. The first, multi-coefficient correlation
methods (MCCMs), builds on the success of earlier approaches
such as SEC,8 SAC,9,10 Gaussian-x methods,14,33 extrapolating
the one-electron basis,7 and MCSAC.11 Two especially powerful
MCCMs that emerged from this research are MC-QCISD16 and
MCG3.13,15 The second semiempirical approach that we have
advocated is hybrid DFT with one parameter for kinetics, in
particular MPW1K,20,22 that builds on the success of earlier
B3LYP19 and mPW1PW9117 methods. The present paper

presents a systematic comparison of these methods by applying
them both to the same kinetics database of forward and reverse
barrier heights and energies of reaction for 22 reactions and
saddle point geometries for five reactions. For perspective, we
also include three levels of ab initio theory, namely MP2,30

QCISD,31 and QCISD(T).31 The MPW1K, MP2, and QCISD
methods are each tested with two basis sets, whereas the MC-
QCISD and MCG3 methods have built-in (intrinsic) basis set
choices. We do not repeat comparisons in earlier papers of
MPW1K to other hybrid DFT methods20,22 or of MC-QCISD
to other MCCM and ab initio methods,16 but simply remind
the reader that these methods emerged as having particularly
attractive accuracy vs cost tradeoffs.

Our first test involved saddle point geometries. We will
summarize these results in terms of the mean unsigned error in
5 saddle point interaction distances (making and breaking bond
distances and perpendicular looseness for the 5 reactions). The
second comparison involves barrier heights and energies of
reaction, and we will summarize the results by focusing on the
MUE in the 66 energy differences in our kinetics database. We
list these two MUEs and the cost functions in Table 6, in this
case listing all methods in order of increasing cost function. It
is worthwhile to repeat the warning that the precise values of
cost functions may depend strongly on how they are defined,
but our conclusions on accuracy are independent of cost, and
the actual cost function we use should be very reasonable for
geometry optimization or a variety of dynamics applications.
Because accurate saddle point geometries are usually required
for calculating accurate barrier heights, our cost functions are
also very appropriate for calculating barrier heights. Our cost
function is dominated by a system with eleven atoms; as one
proceeds to larger systems, the cost functions will increase in
this order: MPW1K (most gradual increase), MP2, MC-QCISD,
QCISD, MCG3, QCISD(T) (steepest increase).

Summarizing the data in this way makes the conclusions very
apparent. Among the methods involving consistent geometry
optimization (these are the methods that have a value in the
geometries column in Table 6 and that are most useful for full
dynamics calculations where one requires consistent energies

TABLE 4: Mean Errors (kcal/mol) for
//MPW1K/6-31+G(d,p) Calculations

single-point energy MSE MUE RMSE cost

66 data
QCISD(T)/MG3 1.3 1.6 1.9(3)a

MC-QCISD 1.5 1.9 3.2(2)
MCG3 1.1 1.6 3.6(2)

44 barrier heights
QCISD(T)/MG3 0.9 1.4 1.7
MC-QCISD 1.1 1.7 2.1
MCG3 0.4 1.2 1.7

22 energies of reaction
QCISD(T)/MG3 1.0 1.3
MC-QCISD 1.3 1.6
MCG3 1.1 1.6

a Power of 10 in parentheses.

TABLE 5: Mean Errors (kcal/mol) for Other // Methods

method MSE MUE RMSE cost

66 data
QCISD(T)//QCISD/6-31+G(d,p) 3.0 3.6 2.0(4)a

MCG3//QCISD/6-31+G(d,p) 1.2 1.7 2.0(4)
QCISD(T)//QCISD/MG3 1.3 1.6 1.9(5)
MCG3//QCISD/MG3 1.2 1.7 1.9(5)
MC-QCISD//MPW1K/MG3 1.8 2.2 1.7(3)
MCG3//MPW1K/MG3 1.2 1.7 1.7(3)
MCG3//MC-QCISD 1.1 1.6 5.5(3)

44 barrier heights
2.9 3.2 3.8

QCISD(T)//QCISD/6-31+G(d,p) 0.4 1.2 1.8
MCG3//QCISD/6-31+G(d,p) 0.9 1.4 1.7
QCISD(T)//QCISD/MG3 0.4 1.2 1.7
MCG3//QCISD/MG3 1.4 1.9 2.4
MC-QCISD//MPW1K/MG3 0.2 1.6 2.7
MCG3//MPW1K/MG3 0.1 1.2 1.7
MCG3//MC-QCISD 2.9 3.2 3.8

22 energies of reaction
QCISD(T)//QCISD/6-31+G(d,p) 2.6 3.1
MCG3//QCISD/6-31+G(d,p) 1.1 1.8
QCISD(T)//QCISD/MG3 0.9 1.3
MCG3//QCISD/MG3 1.2 1.6
MC-QCISD//MPW1K/MG3 1.4 1.8
MCG3//MPW1K/MG3 1.3 1.6
MCG3//MC-QCISD 1.1 1.5

a Power of 10 in parentheses.
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and gradients), Table 6 shows that the MPW1K method is a
clear winner for all but the highest-accuracy calculations. In
particular it has better performance than MC-QCISD, QCISD,
and MP2, but poorer performance than MCG3. The MCG3
method though, is relatively very expensive compared to
MPW1K (although it is much faster than nonextrapolated
methods such as QCISD(T) with a large basis set, which is too
expensive to even include in Table 6). Although MC-QCISD
is less accurate then MPW1K, it may still be very useful for
reactions quite different from those in the database, at least until
we get more definitive accuracy assessments for a broader range
of reactions.

Among the double-slash methods, the winning strategy is
clearly to use MPW1K with the smaller basis set, 6-31+G-
(d,p), to optimize geometries. When this is done, one can afford
the MCG3 method as the high level, and this combination
appears to be very accurate, a clear winner.

The answer to the question in the title to the paper is clearly
MCG3//MPW1K. If one is considering a system for which
hybrid DFT has not been validated, one might be more confident
with a method that does not involve density functionals. In that
case, MCG3//MC-QCISD is very accurate, with a moderate
increase in cost.
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TABLE 6: Unsigned Error Summaries for All Methods in
Order of Increasing Cost Functiona

MUE

method
saddle point

geometries (A) energies cost/100

MPW1K/6 0.02 1.6 2.5
MP2/6 0.03 4.4 2.6
MC-QCISD//MPW1K/6 1.5 3.2
MCG3//MPW1K/6 1.1 3.6
MPW1K/M 0.01 1.6 16
MC-QCISD//MPW1K/M 1.6 17
MCG3//MPW1K/M 1.2 17
QCISD(T)/M//MPW1K/6 1.3 19
MP2/M 0.04 3.6 33
MC-QCISD 0.02 1.6 54
MCG3//MC-QCISD 1.1 55
QCISD/6 0.03 3.8 194
MCG3//QCISD/6 1.1 195
QCISD(T)/6//QCISD/6 3.0 195
MCG3 0.01 1.2 784
QCISD/M 0.02 2.4 1859
MCG3//QCISD/M 1.2 1860
QCISD(T)/M//QCISD/M 1.3 1875

a In this table only, /6 denotes /6-31+G(d,p) and /M denotes /MG3.
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