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The effective spectroscopic Hamiltonian fitted to experiment by Troellsch and Temps (Z. Phys. Chem.2001,
215, 207) and describing high vibrational excitation to bound and resonant states is used in conjunction with
methods of nonlinear classical dynamics and semiclassical mechanics to extract, for all of the observed highly
excited resonance levels in polyad 8, the molecular motions upon which they are quantized. Two types of
interlaced dynamically distinct ladders of states are revealed. The rungs of these ladders intersperse, making
the spectra complex. The resonant 2:2:1 frequency ratio of the DC and CO stretches and the bend, respectively,
is what causes the complexity and is what caused past attempts at interpretation to be at best incomplete. All
states are assigned with physically meaningful quantum numbers corresponding to quasiconserved quantities.
Most interestingly, it is pointed out that much of the information and assignment can be done without any
calculations at all, using only the qualitative ideas from nonlinear, semiclassical, and quantum mechanics,
along with the information supplied by the experimentalist.

1. Introduction

The vibrationaly excited bound and resonant states of
deuterated formyl radical, DCO, have been studied both
experimentally1,2 and theoretically.1-4 The vibrational level
structure of the molecule was found to be decomposable into
distinctive polyads arising from a 1:1:2 resonance between the
CD stretching, the CO stretching, and the DCO bending
vibrations, respectively. As such, as energy increases various
resonance couplings come into play, causing some of the local
modes to disappear only to be replaced by new internal motions.
Thus, ref 1 states that “only a minority of vibrational states can
be unambiguously assigned”. Reference 3, a theoretical effort
using an excellent potential surface and state-of-the-art com-
putational techniques, reported a “pleasing agreement between
calculated and measured energy levels for bound states and for
energies and widths for resonances”. Despite this agreement,
the paper3 reports that a “strong 1:1:2 stretch-stretch-bend
resonance prohibits unique assignment for the majority of
vibrational states”.

In ref 1, the spectrum was fit to a spectroscopic Hamiltonian
that we will use and that we will describe in the next section.
Also in ref 1, a whole array of analytic tools were applied to
analyze the spectrum. Energies, widths (obtained after the
addition of an absorbing potential to the spectroscopic Hamil-
tonian), and wave functions were computed in reasonable
agreement with ref 3 (except, for reasons explained in the paper,1

for those states with all excitation in the DC mode). Wave
packets were propagated to obtain IVR rates and pathways, and
a rationale was given for the 2-order-of-magnitude difference
between the experimental state-specific decay constants and the
statistical unimolecular rate theory prediction observed by Sto¨ck
et al.2 Even with this effort, no assignment, in the sense of
associating the states with three quantum numbers representing
quasiconserved quantities, was able to be given, nor was any

picture of the internal motions offered, especially for higher
energies. We do agree with ref 1, as will be seen below, that
the motion is between regular and statistical. We would say
that a mixed phase space exists for higher energies.

The latest work on DCO (i.e., ref 4) uses the potential surface
used in refs 2 and 3 and, in three dimensions, seeks and finds
the periodic orbits that organize phase space. Certain states are
shown to be associated with these said periodic orbits. This work
makes no new assignments using those made in ref 1, the
comments about which we have quoted above. Reference 4
shows that the wave functions for some series of states correlate
with the normal-mode periodic orbits and a saddle-node periodic
orbit. Only 2 of 45 states in polyad 8 are associated with periodic
orbits, and most states in polyad 8 are not discussed.

Here, as in our previous work, we show that the bottleneck
complications in wave function and phase space structure
visualization and comparison, a result of working in 3D, can
be avoided for DCO when an algebraic spectroscopic Hamil-
tonian is employed along with the polyad constant of motion.5,6

The polyad constant of the motion, which measures the total
level of excitation, commutes with the spectroscopic Hamilto-
nian, always exist when frequencies are in resonance, and does
not have an analogue for Hamiltonians represented in terms of
kinetic plus potential energy, is used to reduce the configura-
tional dimension of both the classical and quantum problem to
two. In 2D, working polyad by polyad, now much simpler wave
functions can be compared to organizing structures obtained
by mapping a much simpler (albeit still not very simple) phase
space. As shown in our previous works,7-10 where the limita-
tions and reasons for the success of the method are discussed
in detail, a comparison of these reduced but semiclassicaly exact
2D wave functions on the tori and periodic orbits of the 2D
classical analysis yields a complete dynamics-based assignment
in which the quantum numbers are quasiconstants of the motion.
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The increase of the quantum numbers represents an increase in
excitation level of a given classical, qualitatively describable,
internal motion. It will be seen that, most often, several different
classes of such motions exist in the polyad at any one energy.
Consequently, the level series or ladders based on such motions
run in energy simultaneously. The experiment or a theory that
is not based on classical organizing structures only sees the
interleaving of all of the rungs of these ladders and cannot
separate them. They see a “complex” spectrum that even seems
to be uninterpretable and unassignable. Moreover, if polyads
are not separated for experimental or theoretical reasons, further
interleaving makes the situation appear worse. Here, we will
show that, in polyad 8, two basic ladders coexist that can be
associated with the basic elements of the spectroscopic Hamil-
tonian. These will be a 2:1 Fermi-resonant motion coupling the
DC stretch and the bend with CO mode uncoupled and one in
which the stretch-stretch coupling causes the local stretches
to frequency lock, with both bonds generally increasing in length
in sync. More details will be given below. In a sense, because
these motions “might” be expected from the spectroscopic
Hamiltonian (but then why not expect a Fermi resonance
between CO stretch and the bend?), an achievement of this paper
is to sort the levels into the simple ladders.

Section 2 of this paper discusses the spectroscopic Hamil-
tonian and the methodology used to achieve a reduced-
dimension phase space. Section 3 gives the classical study of
the phase space associated with polyad 8 and shows the
association of the trivially obtained quantum wave functions
with the organizing structures from which come the assignment,
the ladders, and the description of the internal motions. Section
4 presents the conclusions, where it is pointed out that, once
one has a generic knowledge of the classical nonlinear meth-
odology and the phase space topology expected in such
molecules, in this problem (and in CHBrClF9 and N2O10

analysis), much of the information desired by the chemical
physicist, spectroscopist, and theorist could have been obtained
without any classical trajectory calculation and, in fact, without
any calculations at all.

2. The Model and Its Reduction

As a model to describe the vibrations of DCO, use is made
of the parametrized spectroscopic Hamiltonian set up in ref 1.
Here, we adopt the parameter values given as fit III in Table I
therein. It is a description in the three local modesm, n, andb
referring to the DC stretch, the CO stretch, and the bend,
respectively. In ref 1, the model is defined by giving the
Hamiltonian matrix in the separable basis of the number
representation. The corresponding Hamiltonian operator in terms
of harmonic raising and lowering operators is

We have written all operator products in symmetric form for
easier transition to the classical version, because in this order,
we can use the Heisenberg correspondence relation

where Ij and φj are actions and angles, respectively, of the
corresponding degrees of freedom. This correspondence gives
the classical Hamiltonian

In quantum mechanics, energies of states are usually measured
relative to the lowest state. To have coincidence between
classical and quantum energy, we subtract the constantE0 from
the classical Hamiltonian, which is the energy ofH for all
elementary actions set to the value1/2. In the following, we
call the angle-independent partH0 and call the angle-dependent
part the resonant interactions. As a conserved quantity, the
quantum mechanical Hamiltonian has the polyad operator, which
commutes withH

The classical Hamiltonian has the corresponding conserved
quantity

Here, we have subtracted the classical zero point to have the
same numerical values for the quantum and classical polyad
number. Next, we use the existence of this conserved quantity
to reduce the system to one with two degrees of freedom. To
make the reduction explicit, we apply a canonical transformation
whereK ) P + 5/4 is one of the new actions and where its
conjugate angleθ becomes a cyclic variable. As the other two
new actionsJm andJn, we use the old actionsIm andIn to have
a simple interpretation of the new actions. As the new angles
ψm andψn conjugate toJm andJn, respectively, we construct
slow variables such that the average speed of one of the new
angles or some combination of them becomes zero whenever
some frequency locking between the original degrees of freedom
occurs. This will be extremely helpful in detecting the transition
of the system from the original local modes to some new types
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of motion as such transitions are always caused by some kind
of frequency locking between the old modes. The following
choice of the canonical transformation turned out to be useful

In the new coordinates, the Hamiltonian is

The important structures in classical phase space will be
visualized in Poincare sections. Important periodic orbits and
general trajectories will be plotted in the reduced configuration
space, which is the two-dimensional torus in the coordinates
ψm andψn. A mercator-type representation of this torus (square-
shaped representations of density and phase plots in our
drawings) will be used for obvious reasons. The reader should
remember that opposite points on the boundary of this projection
are to be identified with each other. For comparison, the wave
functions also have to be plotted in the same reduced config-
uration space. This is done by representing the number state
basis function|nm, nn, nb> as the periodic plane wave

on the configuration torus.7,11 Thereby, the decomposition of a
wave function into number basis states is translated into the
Fourier decomposition of the corresponding function on the
torus. Note that the expansion of a given eigenstate into number
basis states contains contributions only from a single value of
P. Therefore, theθ dependence of the whole eigenstate is only
the common front factor exp(iPθ), which is a pure phase and
can be disregarded. As such, the eigenstate is represented as a
function of the two angle variablesψm andψn. The expansion
coefficients are those obtained from the diagonalization of the
algebraic Hamiltonian, which is available from the fitting
procedure.

This representation is semiclassical because Schro¨dinger
quantization

(I f -ip ∂/∂ψ, ψ f ψ) of general canonical coordinates is
only semiclassical and, in addition, the order of the action- and
angle-containing factors is not specified. Statements about which
of the many schemes for ordering we use are appropriate and
are made in ref 7.

Finally, we desire to relate trajectories in the reduced space
with the motion of the atoms in the molecule. This is done by
a lift procedure: Integration of dθ/dt ) ∂H/∂K givesθ(t), and
undoing the canonical transformation gives allIj(t) and φj(t).
Use of the harmonic expression relatingI andφ to plocal and
qlocal, i.e.

provides the motion of the atoms in harmonic local-mode
displacements. We expect that these displacements are quali-
tatively similar to the true displacements of the atoms in position
space.

A knowledge of the symmetries of the system in the reduced
angle variables are helpful for the classical analysis and
ultimately the quantum assignment. They are as follows:

(A) The original system is invariant under the translation

This induces the invariance under the translation

of the reduced Hamiltonian in new variables.
(B) The original system is invariant under the translation

This induces the invariance under the translation

in the new variables.
(C) The original system is invariant under the translation

This does not lead to important consequences for the reduced
system.

(D) All angles appear only as linear homogeneous expressions
in the arguments of cosine functions. Therefore, the Hamiltonian
is invariant under a simultaneous inversion of the angles. In
the old variables, this symmetry is

In new angles, it is

This implies that, to any given solution in terms of the action
angle variablesψm(s), ψn(s), Jm(s), Jn(s) of Hamilton’s equations
of motion, the curve-ψm(-s), -ψn(-s), Jm(-s), Jn(-s) is also
a solution of the equations of motion i.e., symmetry D is time
reversal. Therefore, most orbits come in symmetry-related pairs.
Common exceptions are such orbits as coincide exactly with
their symmetry images. The combination of all of these
symmetries will lead to corresponding symmetries in Poincare
plots and in plots of wave functions.

3. Dynamics and Implications for Wave Functions

In this section, we describe the important structures in
classical phase space and relate them to corresponding sequences
of quantum states. As an example, we discuss all details for
polyadP ) 8 as we sweep the energy through this polyad. For
other polyads, the dynamics is qualitatively the same as long
as the polyad number is restricted to reasonable values. For each
important form of motion, we show a classical Poincare map,
the trajectories of the most important classical skeleton elements
and the lifted motion in displacement space at a value of energy
where some corresponding quantum state exists. For purposes

Ik
1/2 exp(iφk) ) (qk - ipk)/x2 (9)

φm f φm + 2π (10)

ψm f ψm + 2π (11)

φn f φn + 2π (12)

ψn f ψn + 2π (13)

φb f φb + 2π (14)

(φm, φn, φb) f (-φm, -φn, -φb) (15)

(ψm, ψn) f (- ψm, - ψn) (16)

K ) Im + In + Ib/2 θ ) 2φb

Jm ) Im ψm ) φm - 2φb

Jn ) In ψn ) φn - 2φb (6)

H ) ωmJm + ωnJn + ωb2(K - Jm - Jn) +

xmmJm
2 + xnnJn
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2 + xmnJmJn +

xmbJm2(K - Jm - Jn) + xnbJn2(K - Jm - Jn) +

λ1xJmJn[1 + λ1′Jm + λ1′′Jn + λ1′′′2(K - Jm - Jn)] ×
cos(ψm - ψn) + λ2JmJn cos(2ψm - 2ψn) +

kmbbxJm2(K - Jm - Jn) cos(ψm)/x2 +

knbbxJn2(K - Jm - Jn) cos(ψn)/x2 - E0 (7)

exp[i(nmφm + nnφn + nbφb)] )
exp(iPθ) exp[i(nmψm + nnψn)] (8)

Ik
1/2 exp(- iφk) ) (qk + ipk)/ x2
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of comparison to the classical skeletal elements, in Figure 1a,
we show the density and phase plots of all 45 quantum states
of polyad 8.

3.1. Class A.At very low excitation, modem starts as the
fastest mode, but because of its enormous negative anharmo-
nicity, the states with most of the excitation in modem are the
energetically lowest states within the polyads starting from
polyad 4.

If the total Hamiltonian consisted only ofH0, then the surfaces
of constant action would form an invariant foliation of the phase
space. If the effective frequencies of the various modes are far
from resonance, the interaction terms in the full Hamiltonian
have moderate effect only and cause secondary KAM islands
and chaotic layers only on sizes too small to be of importance
for semiclassics. In such a case, most of the volume of phase
space is still occupied by invariant KAM tori that are continuous
deformations of the invariant surfaces ofH0. We will call these
tori the primary tori. In this sense, the dynamics is dominated
by the primary torus structure. Because of the deformation of
the primary tori, the speed of the trajectories on them varies
considerably, and as a consequence, the classical average density
of the projections of these trajectories into configuration space
varies strongly too. This will be transferred into a nonconstant
density in configuration space of the corresponding quantum
states that are carried by the primary torus structure via EBK
quantization (Einstein-Brillouin-Keller method, see ref 12).
Because the primary tori are continuous deformations of the
invariant leaves of the unperturbed HamiltonianH0, we expect
these corresponding quantum states to be continuous deforma-
tions of basis states, which are the eigenstates ofH0 (see eq 8).
In our model of DCO, this happens at the lower end of the
polyads forP > 4.

As an example, we show in Figure 2 the classical dynamics
for P ) 8 at energy 11800 which is the energy of quantum
state 9 of polyad 8. Part a shows a Poincare plot in surfaceψm

) 0 with negative orientation. The KAM torus shown by the
heavy line carries quantum state 9 according to the EBK method.
The action integral along the line shown in Figure 2a has the
value3/2. The action integral along a path inψm direction has
a value of 11/2. Remembering that the original degrees of
freedom are oscillations and that, accordingly, the zero-point
actions are1/2, we see that this state has quantum numbers 5 in
themdirection and 1 in then direction. Because the new actions
Jk conjugate to the new anglesψk coincide with the old actions
Ik, this state has five excitations in local modem and one
excitation in moden. BecauseP ) 8, it must have four
excitations in modeb. In Figure 2b, we show a segment of a
trajectory on this quantizing torus; in the long run, this trajectory
fills the whole torus densely. Figure 2c-e shows the corre-
sponding lifted motion projected into the three two-dimensional
coordinate planes of the three-dimensional displacement space.
We do not see any locking phenomenon. All three original
modes of vibration move independently. In this sense, the
motion is a continuously distorted local-mode motion. In the
same way, we can classify many more states carried by primary
tori according to the EBK method. All such states are classified
into class A. Table 1 shows which states of the whole polyad
belong to class A and which are obtained by EBK quantization
of primary tori. These states can also be classified alternatively
by an inspection of the wave function. For all states of class A,
the phase function is a continuous deformation of a basis
function and the excitation numbers in them andn directions
can be read off by counting the total phase advance along loops
in the ψm andψn directions, respectively, divided by 2π. The

magnitudes of states of class A wave functions do not show
any nodal pattern. The wave function inspection method also
works in some cases where the primary torus structure is already
too destroyed for the EBK method to be applied but where the
phase function can still be identified as a continuous deformation
of a basis function. In Table 1, we indicate the states for which
the EBK method works and those for which it does not. Figure
1a indicates which wave functions are in class A. The reader
should note the generally “striped” pattern in the phase and can
count the phase advances in theψm andψn direction to verify
the assignment in Table 1.

3.2. Class B.For increasing energy, the effective frequencies
of the modes come closer into resonance, and accordingly, the
interaction terms in the Hamiltonian have more effect, the
primary torus structure becomes destroyed in large parts of phase
space and chaos starts to appear on a large scale. ForP ) 8,
this effect sets in for energies around 12500, even though parts
of the primary torus structure survive to higher energies, giving
the coexistence of the influence of several important phase space
structures at one value of the energy. This coincides with the
energy at which some quantum states each simultaneously adopt
a topographic structure different from class A in the intensity
plots (Figure 1a) but might retain a similarity to class A in the
phase plots (Figure 1a). In our model, the interaction that causes
this change of behavior and that dominates the dynamics for
energies around 13000-14000 is the Fermi coupling between
the elementary modesmandb in the ratio 2:1. In this coupling,
the new angleψm moves with average speed zero, i.e., the
original modesm and b become locked. Accordingly, the
skeleton element of this motion is a periodic orbit B running in
the ψn direction, and therefore, its average speed in theψm

direction is zero. For some energies, it is stable and has a small
KAM island around it; for other energies, it is unstable. Figure
3 shows the classical dynamics for energy 13184, the energy
of quantum state 24. Part a shows a Poincare map, part b shows
the periodic orbit B, and parts c-e show the motion in
displacement space lifted from orbit B.

In the Poincare map, we see primary tori for large values of
Jm and a large chaotic sea for smaller values ofJm. Embedded
in the large chaotic sea is a KAM island of moderate size. Its
center represents the periodic orbit B shown in Figure 3b. The
island is too small to carry states according to the EBK method,
but the orbit B has a large influence on the motion in the chaotic
sea and, thereby, has an influence on a large sequence of
quantum states.

According to the dominance of them-b-b Fermi resonance,
the lifted motion in them-b local-mode plane is locked and
confined to a U-shaped strip because, in one period of motion,
only the U has two sweeps of them local mode for one sweep
of the b. The motion in then direction is uncoupled and
independent, as seen from the fact that the motion in then
direction is almost a pure rotor on the configuration torus. A
rotor in angle space is a free oscillator, here local, in the original
coordinates. From Figure 1a, we see how the density crests in
quantum states 19, 24, and 28 follow the classical orbit B. All
density is concentrated along the orbit B. In this sense, we call
such states the zeroth transversal excitation along orbit B and
give them the transverse quantum numbert ) 0. The phase
advance along the crest of density of these states for one
complete loop in theψn direction is an integer multiple of 2π,
which we call the longitudinal excitation numberl. In this sense,
state 19 is the zeroth longitudinal excitation of orbit B, state 24
is the first longitudinal excitation, etc. In state 15, the density
has a nodal line along orbit B and two crests on the two sides.

Spectra of Highly Excited Polyatomics: DCO J. Phys. Chem. A, Vol. 106, No. 13, 20023095



3096 J. Phys. Chem. A, Vol. 106, No. 13, 2002 Jung et al.



We call such a structure the first transversal excitation of orbit
B and give it quantum numbert ) 1. We also can identify
various states as combined transversal and longitudinal excita-
tions along orbit B. They are compiled in Table 1 where the
quantum numberst and l are given.

For energies around 12500, in the parts of the chaotic sea
close to the remnants of the primary torus layer, the general
trajectory shows a behavior similar to that inside of the primary
torus region. In the rest of the chaotic sea, the general dynamics
is heavily influenced by the periodic orbit B. With increasing
energy, the relative importance of the primary torus zone
decreases, and the relative importance of the periodic orbit B
increases. The transition is rather smooth. Accordingly, in this
transition region, we expect quantum states to show a smooth
transition from the continuously deformed basis state structure,
class A, to a structure resembling the flow along the orbit B. In
this sense, the sequence of states 7, 11, 17, 23 can be classified
using the phase diagrams (Figure 1a) as belonging to class A.
However, if we chose to focus on density diagrams of these
states, they resemble class B to their right in Figure 1a. As in
class B, l would come from the phase diagrams andt, in
principle, from the transverse node counted in the density
diagrams. Continuing from the right, we would expect this
column of four states to havet ) 4. We actually do not see the
nodal lines, but the figures shows that this column of four states
is definitely transition between class A and B. For the states
10, 12, 15, 14, and 16, the phase function is a continuous
deformation of a basis function. Accordingly, these states can
also be classified alternatively as class A, even though it seems
more natural on the basis of the intensity plot to put them into
class B. In Table 1, we indicate all alternative classifications
where the less natural ones are put into brackets. At first sight,
states 25 and 26 do not fit well into class B, even though some
structural elements look like class B. The cause for this difficulty
seems to be a quantum effect that is an accidental degeneracy
and a corresponding wave function mixing. Note, in Table 1,
how close in energy states 25 and 26 are. In Figure 1b, we also
show the symmetric and antisymmetric linear combinations,
which is the rotation of the states that minimizes the interference
between states 25 and 26. They fit perfectly into class B as
states with quantum numberst ) 3, l ) 3 and t ) 1, l ) 2,
respectively. In Table 1, we do not assign states 25 and 26, but
just below them, we place the disentangled states. Similarly,

the pair of states 30 and 31 and the pair 33 and 34 are each
atypical, and internally, the pairs are very close in energy, a
sign that they have to be disentangled before they can be
classified properly. Figure 1b shows that states 30 and 31
disentangle to two states of class B whose assignments is
indicated in the Table 1. Similarly, states 33 and 34, which can
be very roughly assigned as in the table, can be disentangled to
give the results shown in Figure 1b and indicated in Table 1.
Clearly, the antisymmetric combination of the states is a class
B state witht ) 0, and its phase diagram would sayl ) 3. The
symmetric combination will be interpreted after class C is
discussed.

The physical implications ofl andt in the classical motions
and wave function nodal structures in both reduced and full
dimensions require more discussion. These quantum numbers
clearly arise when the motion is restricted to a ring-shaped
region that loops the configuration torus. This localization
defines which modes are locked and which of the old quantum
numbers no longer exist. The locking anticipates the shape in
3D of the wave function projected into the plane of the locked
modes. The ring direction is the “free” direction, and the phase
advance in this direction tells us the degree of excitation,l, of
the free mode. If all of the resonances in the effective
Hamiltonian but the coupled ones were now ignored and the
effective measure of the amount of excitation in the ring
direction could be specified by an effective polyad numberP̃13

obtained by subtracting fromP the term associated in its
definition with the free motion,P would then tell us the degree
of excitation expected in the 2D coupled wave function.
Observation of the trajectories in 2D of such states tells us that
t correlates with the average amount of transverse (to the ring)
quasioscillating motion that accompanies the rotation about the
ring. It quantizes to the transverse nodes in 2D and can be
correlated with the number of the nodes transverse to the locked
motion (here the U).P̃ reduced by an integer timest then tell
us the number of nodes in 3D (not in 2D, because in 3D, we
have coupled oscillator motion that shows nodes, but in 2D,
we have a rotor whose excitation shows only in the phase) along
the locked motion. Of course, in our case of multiple resonances
and chaos, the wave functions usually at best only suggest that
the above underlying order exist. All of the problems of
inspectingND, N > 2, wave functions plus the chaos prevent

Figure 1. (a) Mercator plots of density and phase for all 45 states of polyad 8 in the reduced configuration space. (b) Mercator plots of density
and phase for the symmetric and antisymmetric linear combinations of the pairs (25, 26), (30, 31), and (33, 34) of eigenstates. (c) Key for parts a
and b.
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the clear observation of the ideal case, which is why we work
in reduced space in the first place.

3.3. Class C.For still higher energy around 14000, the
couplings between modesm and n take over and confine the
accessible part of configuration space to a strip running in the
diagonal direction. In phase space, the flow runs inside an
imaginary guiding tube projecting onto this diagonal strip. Inside
the tube, we find the period-one trajectories C1a, C1b, and C2
acting as guiding centers for the whole tube. The orbits C1a
and C1b are symmetry images of each other; therefore, we can
consider them as one periodic orbit C1. All of them have loop
numbers 1 and 1, respectively, along the two fundamental cycles
of the toroidal configuration space. Because periodic orbits C1
and C2 have different loop numbers than periodic orbit B, the
transition from behavior dominated by orbit B into behavior
dominated by orbits C1 and C2 cannot be as smooth as the

transition between the behavior of classes A and B. Therefore,
it is easier first to describe the behavior at the highest energies
and then to describe the transitional region around energy

Figure 2. Classical dynamics atE ) 11800 in polyad 8. Part a shows
the Poincare plot in the planeψm ) 0 with negative orientation. The
torus that carries quantum state 9 according to the EBK method is
shown by the heavy line. Part b shows a trajectory segment on this
quantizing torus projected into the configuration space. Parts c-e show
the lift of the trajectory from part b into the displacement space, part
c is the projection into them-n plane, part d is the projection into the
m-b plane, and part e is the projection into then-b plane. The frame
boundaries in part b are-π and+π, the frame boundaries ofqm and
of qn are-3 and+3, and the frame boundaries ofqb are-4 and+4.

TABLE 1: Classification and Assignment of All States of
Polyad 8a

number energy class EBK l t m n

1 8931 A yes - - 8 0
2 9845 A yes - - 7 0
3 10485 A yes - - 7 1
4 10614 A yes - - 6 0
5 11216 A yes - - 6 1
6 11236 A yes - - 5 0
7 11704 A yes - - 4 0

(B) no 0 4 - 0
8 11779 A yes - - 6 2
9 11800 A yes - - 5 1
10 12010 B no 0 3 - 0

(A) no - - 3 0
11 12226 A yes - - 4 1

(B) no 1 4 - 1
12 12244 B no 0 2 - 0

(A) no - - 2 0
13 12325 A yes - - 5 2
14 12471 B no 1 3 - 1

(A) no - - 3 1
15 12521 B no 0 1 - 0
16 12656 B no 1 2 - 1

(A) no - - 2 1
17 12712 A yes - - 4 2

(B) no 2 4 - 2
18 12812 A yes - - 5 3
19 12838 B no 0 0 - 0
20 12884 B no 2 3 - 2
21 12902 B no 1 1 - 1
22 13031 B no 2 2 - 2
23 13163 A yes - - 4 3

(B) no 3 4 - 3
24 13184 B no 1 0 - 1
25 13233 - no - - - -
26 13256 - no - - - -
25 + 26 13245 B no 2 1 - 2
25 - 26 13245 B no 3 3 - 3
27 13379 B no 3 2 - 3
28 13488 B no 2 0 - 2
29 13527 B no 4 3 - 4

(C) no 4 1 - -
30 13569 (B) no 3 1 - 1
31 13579 (A) yes - - 4 4
30 + 31 13574 B no 3 1 - 3
30 - 31 13574 B no 4 4 - 4

(A) yes - - 4 4
32 13689 B no 4 2 - 4

(C) no 5 2 - -
33 13752 (B) no 3 0 - 3
34 13785 (C) no 5 1 - -
33 + 34 13763 B no 5 2 - 5
33 - 34 13763 B no 3 0 - 3
35 13848 B no 4 1 - 4
36 13900 C no 6 2 - -
37 13985 C no 6 1 - -
38 14023 C no 7 2 - -
39 14055 C no 8 3 - -
40 14086 C no 6 0 - -
41 14130 C no 8 2 - -
42 14211 C no 7 1 - -
43 14330 C no 7 0 - -
44 14383 C no 8 1 - -
45 14540 C no 8 0 - -

a The first column gives the number of the states ordered by
increasing energy. The second column gives the value of the energy in
cm-1. The third column gives the class to which the state is assigned.
Column 4 indicates whether classification and quantum numbers are
provided by the EBK method. Columns 5 and 6 give longitudinal and
transverse quantum numbersl andt, respectively, for states of classes
B and C. Columns 7 and 8 give quantum numbersmandn, respectively,
of the basic modes for states of class A. Because, for states of class B,
the longitudinal motion runs into then direction, the longitudinal
quantum number can also be interpreted as the quantum number of
this local mode and is repeated in the corresponding column. For many
states, alternative classifications are possible. Then, we give first the
most natural or obvious classification (in particular that obtained from
the EBK method) and give in parentheses on the line below the
alternative classification. For states 25, 26, 30, 31, 33, and 34, we have
also used the untangling described in the main text to determine the
classification.
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13500-14000 later. For energies above 14100, where the orbit
B has disappeared and where only classical motion in the
diagonal direction is possible, the quantum states show a very
clear alignment in the diagonal direction. Clearly, here,<ψa>
) <ψb>, and therefore,ψ̇a ) ψ̇b, and by eq 6,ωn ) ωm; hence,
the local modes phase lock.

In Figure 4 , weshow the classical dynamics at energy 14540
which is the energy of the highest quantum state. Part a shows
the Poincare section, part b shows orbit C1, parts c-e show
the lift of orbit C1, part f shows orbit C2 and parts g-i show
the lift of orbit C2. In part b, we show both symmetry-related
copies of orbit C1. In parts c-e, we show the lift of just one of
the two copies; the other produces the same lift because of
symmetry. In the Poincare plot, we do not detect any KAM
island of reasonable size; the dynamics is close to completely
chaotic. The dynamics is dominated bym-n coupling, which
leads to the highly correlated motion in the (ψm, ψn) plane,
which is an oscillation around the diagonal motion. It is easy
to imagine how the orbits C1a, C1b, and C2 together guide all
of the flow in the diagonal direction. The modeb is free and
independent and keeps its local-mode character. In the plot of

Figure 3. Classical dynamics atE ) 13184 in polyad 8. Part a gives
the Poincare section inψm ) 0 with negative orientation. Part b shows
the periodic orbit B in reduced configuration space. Parts c-e show
the lift of the orbit B. Otherwise, it is constructed like Figure 2.

Figure 4. Classical dynamics atE ) 14540 in polyad 8. Part a gives
the Poincare section inψn ) 0 with positive orientation. Part b shows
the periodic orbits C1a and C1b in reduced configuration space. Parts
c-e show the lift of orbit C1. Part f shows the periodic orbit C2 in
reduced configuration space. Parts g-i show the lift of orbit C2.
Otherwise, it is constructed like Figure 2.
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the wave function for state 45, we see a clear confinement of
the density to a strip in the diagonal direction. The transverse
excitation number ist ) 0. The phase advance along the density
crest is 8× 2π, which shows, becauseP ) 8, that all excitation
is in the perfectly coupledm-n motion. Our model formulated
in abstract modes does not indicate the absolute or relative
phases of the motion of the atoms in the molecule. This is seen
from the absence of a phaseRk in the exponential in eq 9. Hence,
we cannot determine whether the coupled motion is quasian-
tisymmetric (Rm - Rn ) π and the guiding periodic orbit along
the negatively sloped direction in theqm versusqn plane);
quasisymmetric (Rm - Rn ) 0 and a periodic orbit in positively
sloped direction); or even an intermediate trajectory as a
negatively sloped (major axis of) ellipse, a circle, or a positively
sloped ellipse asRm - Rn varies fromπ to zero. To determine
where we are in this “spectrum of motions”, we must therefore
determine the relative phase. In fact, in Figure 4c and g, because
we did not know the phases, we arbitrarily set all phases to
zero. To settle this issue, we seek a 3D periodic orbit or near-
periodic orbit associated with this state to observe its qualitative
nature. In practice, because this is the highest state in the polyad
and because lower polyads have qualitatively the same type of
state, as we see for state 45 in Figure 1a, we could work at
lower total excitationP, and finding such a trajectory would
not be difficult. In this case, the search is made easy by the
work of ref 4, where the 3D periodic orbit associated with state
45 has been located and shown to be quasiantisymmetric i.e.,
negative slope. Hence, for us, it has a relative phase ofπ.

In comparison to state 45, in state 43, the longitudinal
excitation has decreased to 7, which indicates that one quantum
is taken out of them-n motion and converted intob excitation.
This is consistent with what one sees in comparing how the
important number representation basis functions change in the
3D representations of states 45 and 43. For comparison, in state
44, the longitudinal excitation is still eight, whereas there is
one quantum of transverse excitation. This means that most
excitation is still in the combinedm-n motion, but one of the
quanta has gone into the out-of-phase motion. To see this, we
observe in Figure 1a that the excitation of the transverse
direction in the (ψm, ψn) plane causes a broadening of the wave
function transverse to the positively sloped line, which we now
know should be rotated to negative slope, and that it is the
quasiantisymmetric motion. Classically, plots such as those
shown in Figure 4b and 4f lead us to believe that transverse
broadening causes the trajectory in this plane to fluctuate even
more widely, but with a mean of zero, about a line of positive
slope. This, in turn, causes in the (qm, qn) lifted plane, as
suggested by Figure 4c and 4g (recall that we now know the
ellipse should be rotated to the negative slope direction), an
elliptical shape that, on average, has a larger minor axis. It
follows that this introduces more elements of symmetrical
(which is the motion transverse to the quasiantisymmetrical)
motion. Hence, in a sense, the transverse excitation is that of a
quasisymmetric stretch mode. All quantum states based on this
diagonal motion are classified as class C, and their correspond-
ing longitudinal and transverse excitation numbers are given in
Table 1.

3.4. Transitional StatessThe Importance of Overshadow-
ing. There remain a few states that are more difficult to interpret
from wave function inspection; they are states 29, 32, 34 (also
after demixing with 33), 36, and 37. They all lie in the transition
region in phase space between classes B and C. The difficulty
comes from the coexistence of the organizational elements for
classes B and C, i.e., the periodic orbits B and C1, C2. They

have winding numbers (0, 1) and (1, 1) on the toroidal
configuration space, respectively. As a consequence, an infinity
of other periodic orbits having various winding numberslm and
ln on the configuration torus exist, where the ratio betweenlm
andln can be any rational number between 0 and 1. Some, such
as those with loop numberslm ) 1, ln ) 2 andlm ) 2, ln ) 3,
are sufficiently important to have an influence on a few quantum
states and to impose a corresponding winding ratio in the path
following the density crest of such functions. In the spirit of
higher-order perturbation theory, these orbits can be thought of
as created by the corresponding multiple combinations of the
interaction terms in the Hamiltonian. Correspondingly, some
quantum states should show a mixture of features belonging to
classes B and C. We now briefly describe possible classifications
of these states.

State 29.This state can be interpreted as a perturbed class B
state with quantum numbersl ) 4, t ) 3 or even as a class C
state withl ) 4, t ) 1. At the same time, it shows a pattern of
winding ratio 1:2 (slope), indicating that the motion upon which
this state is quantized is a trajectory that loops once around
about periodic orbit B with winding ratio 0:1 for each time it
loops about the periodic orbits of type C with winding ratio
1:1. This would give a netn:m winding ratio of 1:2 and could
have features of both the class B and class C states.

The appearance of longer resonant periodic orbits as com-
binations of the shortest periodic orbits as templates demon-
strates the idea of overshadowing. Typically, as the interaction
terms become more important, one first recognizes the basic
(shortest, simplest, template) orbits and, with increasing effect
of the coupling, also some combinational orbits. In our case,
the combinational orbit observed, the one with winding ratio
1:2, can be described as a one plus one composition of the basic
orbit of class B having winding ratio of 0:1 with the basic orbit
of class C having a winding ratio of 1:1.

State 32.This state can be interpreted as a perturbed class B
state with quantum numbersl ) 4, t ) 2 or even a C-type state
with l ) 5, t ) 2.

State 34.Before demixing with state 33, this state shows a
1:2 winding ratio and can be interpreted as a perturbed state of
class C withl ) 5, t ) 1. After demixing, because of accidental
degeneracy, Figure 1b shows that it can be considered as a class
B state withl ) 5 andt ) 2 or, better, as a state with slope1/3,
indicating a 1:3 winding ratio that loops around the 0:1 B-type
periodic orbit twice for every time it loops the 1:1 C-type
periodic orbit.

State 36.This state shows a 2:3 winding ratio in its density
crest. It can be interpreted as a perturbed state of class C with
l ) 6, t ) 2 or a motion that loops the C 1:1-type periodic
orbit twice for each looping of the B-type 0:1 state.

State 37.This state is the perturbed state of class C with
quantum numbersl ) 6, t ) 1.

For higher polyads, one can expect ladders of states built on
periodic orbits with winding ratios such as 1:3 and 2:3.

Also, a few other states with lower energy that we have
already assigned to class B can alternatively be interpreted as
highly perturbed states of class C. See the alternative assign-
ments given in Table 1.

In the classification and assignments of the highly perturbed
states, we have also taken account of the energy spacings in
various ladders of states to determine whether they appear to
fit those of the particular sequence.

This multiple classical assignment is the dynamic generaliza-
tion and explanation of the fact that, in quantum mechanics,
significant weights, often greater than 50%,14 can be found on
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a single configuration for each of two different basis sets usually
formed from oscillator functions along orthogonal coordinate
systems (e.g., normal or local). Clearly, the dynamic explanation
is more powerful, as wave functions, or more precisely packets,
follow classical organizing structures rather than coordinates
chosen for convenience. The same dynamic effective forces that
confine trajectories defining organizing structures also confine
the wave packets which when Fourier transformed, give
similarly confined wave functions.15 Several comments are in
order. First, note that each class of states can be viewed as a
ladder of states with some shared rungs. The ladders overlap in
energy so that states of different dynamic types interleave.

Second, in experimental and theoretical calculations,1,3 no
local-mode resonance states exist. We obtain them because no
continuum sink is in the spectroscopic Hamiltonian and no decay
is possible. Polyad 8 is made completely of resonances, so only
class B and C and mixed states actually exist. The reason for
this is that the local modes are decoupled modes, and therefore,
the D-C motion, which points to the exit channel leading to D
+ CO, has no restraint on its tendency “to head out the door”,
which, in turn, means that no resonance exists. The other states
that are resonances exist because the DCO motion is restrained
by the resonant coupling in the spectroscopic Hamiltonian. It
is not clear that anything can be said on the basis of the
dynamics about the magnitude of the lifetimes of states in class
B as opposed to class C. The absence of states withn-b-b
Fermi-resonant coupling is no mystery. Simply put, we see no
region of phase space that corresponds ton-b-b that is big
enough to accommodate the semiclassical volume of such states.
The region we do see is too small to hold states, and nearby
trajectories are not influenced by it.

4. Conclusions

At this point, a significant practical point can be made about
the analysis. The analysis as done in this paper reveals the types
of classical dynamics exhibited by the molecule and then uses
the ideas about classical trajectories and wave functions fol-
lowing organizing structures to associate states with dynamics
and appropriate assignments. Now, if one is interested not in
insights into classical dynamics but rather in molecular motions
and the assignment, it would be possible to obtain most, albeit
not all, of this latter information without carrying out much
dynamics. For example, the class B states all lie on a vertical
intensity strip, and the quantum numbers come from quantum
phase and node counts. One would not know if the organizing
structure was a periodic orbit or a torus or several periodic orbits
running parallel toψn in a region where<ψ̇m> ) 0, but one
could infer <ψ̇m> ) 0 from wave function localization, and
from there, one could infer the U-shaped motion in them-b

local-mode plane and the nearly uncoupled motion of the local
mode in the other two planes. Clearly, here, one uses the
principles of nonlinear dynamics and semiclassical mechanics
without calculating trajectories. Of course, the full method is
superior, but for those unskilled in the art of investigating phase
space or for those who want rapid qualitative insights, the latter
approach will yield much of the desired knowledge without any
significant calculations other than producing the phase and
intensity pictures using the expansion coefficients of the wave
functions obtained during the fit of the Hamiltonian to the
experimental spectra.

A method for extracting the dynamics and assignments of
the highly excited vibrational levels of DCO directly from
spectra has been presented and applied successfully. DCO,
because of its multiple resonant pattern, previously had not been
fully and meaningfully assigned, even though 3D wave functions
and periodic orbits in the phase space of this 3D system were
known. The advantage of the present type of analysis is made
apparent by the completeness of the physically meaningful
assignment and the detailed unveiling of the underlying, often
complex, dynamics.
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