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We present a new method for the decomposition of an experimental absorbance matrix into concentration
and molar absorption coefficient matrices. The decomposition in general is not unambiguous; therefore, the
method may yield only ranges for these matrices. The experimental matrix is not changed, so deviations
from the original data can be monitored element by element. Consequently, all chemical constraints (such as
stoichiometry) can be taken into account. The method, which does not require an explicit chemical model, is
used to analyze the reaction between a Co(II)-EDTA complex and H2O2.

I. Introduction

Advanced spectroscopic instruments routinely produce large
experimental data sets in matrix form. A new algorithm for
handling these matrices and for determining the number of
independent absorbing species (NIAS) was reported in part 1.1

Once NIAS is known, the next step is usually the decomposition
of the experimental matrix into concentration and molar
absorbance matrices, based on the Beer-Lambert law (or its
analogues):

where A is the experimental matrix,C is the concentration
matrix, andE is the matrix of molar absorption coefficients.
The dimensions of these matrices are given in parentheses,
wheren, p, andq are the numbers of absorbing species, samples,
and wavelengths, respectively.

Methods used to perform the decomposition fall into either
of two classes, which differ in principle. Model-based ap-
proaches posit a mathematical model that describes the relation
among the concentrations or between the concentrations and
their time derivatives. These methods most frequently use a least
squares technique2-4 to calculate the parameters of the model,
e.g., formation constants in equilibrium studies or rate constants
in kinetics. Finding an appropriate model in complex kinetic
or equilibrium systems requires intuition, chemical instinct,
experience, and sometimes a bit of luck. In these calculations,
instead of thep × n individual concentration data, one calculates
only a few chemical parameters that describe the relations
among them.

The second category of methods, to which the approach
developed here belongs, is model-free. If a model-free solution
for the concentrations is known, then further evaluation, i.e.,
setting up an appropriate chemical model, will be much easier
than using any model-based method alone. Model-free decom-
position is typically based on factor analysis (FA) and its
offshoots,5 mainly principal component analysis (PCA).

In part 1, we detailed obstacles to the evaluation of large
experimental matrices in connection with matrix rank analysis

(MRA). These problems, particularly interdependence of the
primary data, must be considered when FA is used as well.
Additional issues should be taken into account when applying
such techniques. The most important of these problems is that
the solution of eq 1 is rarely, if ever, unique. One trivial example
is that if aC-E matrix pair is a solution for eq 1 then theR ×
C-E/R matrix pair also satisfies eq 1 whereR is any positive
constant. This difficulty can be remedied by introducing
additional, often chemically evident, constraints (e.g., the sum
of the concentrations of absorbing species is constant). However,
the application of stoichiometric constraints is hardly ever
sufficient to yield a unique solution, which can be calculated
only if the measured matrix contains independent experimental
information for every species. A unique solution cannot be
extracted if the elements of the matrixA (i.e., the measured
absorbances) are determined by more than one absorbing
species.

Almost all variants of FA are based on an eigenvalue
calculation for the matrixAA ) AT × A. We have shown in
part 1 that this approach may be misleading, because the
statistical criteria of the eigenvalue calculation are not valid for
large matrices originating from spectroscopic data acquisition
systems. The nonnegativity of the elements of the absorbance
matrix is an important constraint in most experimental methods
(e.g., UV-vis spectrophotometry). A negative element may only
be accepted if its absolute value is smaller than the experimental
error.

The aim of the present work is to introduce a new algorithm
to overcome the difficulties outlined above. The new method
is called M3 (model-free modeling with matrices). As we shall
see, the method is capable of determining NIAS and calculating
a large number of possibleC andE matrix pairs. The algorithm
is illustrated on a real example, the reaction of a cobalt(II)-
EDTA (EDTA ) ethylenediaminetetraacetate) complex with
hydrogen peroxide.

II. The M 3Algorithm

The goal of M3 is to minimize the target function
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wherecik and εkj are the concentration and molar absorption
coefficient, respectively, of thekth species in theith sample
and at thejth wavelength.Sn indicates that the assumed NIAS
is n.

The proposed procedure uses the data of the original
experimental matrix, avoiding any transformation, to assign
deviations to individual points; it is numerically stable, even in
the case of singular matrices; and it allows for the incorporation
of chemical constraints and any independent information such
as known molar absorbances.

To meet these requirements, the following two-level proce-
dure is employed. Initially, the elements of theE matrix are
estimated. The estimation requires some experience to choose
an appropriate initial guess, but it is not crucial. Formally, the
cik values are the only unknowns in eq 2. Because different rows
of the A matrix depend on different concentration values and
each concentration value occurs in only one row,Sn is the sum
of the following mathematically independent expressions

To minimize Sni, concentrations for the following linear
equation system (LES) are calculated:

Additional equation(s) must be added to eq 4 if there are
stoichiometric constraints on the concentrations. For example,
if the sum of the concentrations of the absorbing species is
constant, the following equation must also be taken into account:

whereTi is the total concentration in theith sample.
If the number of equations in eqs 4 and 5 is equal to NIAS,

then the concentrations are given “exactly” andSni is zero.
Otherwise, the LES to be solved is overdetermined, andSni is
calculated after solving the LES.

OnceSni has been determined for all rows,Snand the matrix
C are known at a fixedE. Thus, Sn can be regarded as a
function of E (Sn ) Sn(E)) only, because the concentrations
are now fixed. By finding the minimum ofSn(E), the elements
of the E matrix can also be calculated. The minimization can
be performed by any numerical method of nonlinear parameter
estimation, becauseSn is a continuous function of the elements
of E. During parameter estimation, any element ofE can be
fixed or omitted. If statistical features, especially the correlation
matrix, are taken into consideration, any relationships among
the elements ofE can also be found.

Alternatively, if A has more columns than rows, the concen-
tration matrix can be fixed first, and then the elements of matrix
E can be calculated column by column.

III. Calculations

Programs for M3 were developed in Borland Pascal for IBM
PC (DX-486) compatible computers. Standard mathematical

procedures2 were applied wherever possible. The calculations
were performed with at least 19 significant digits.

A. Preparation of the Experimental Matrix. Before ap-
plying M3, one must estimate a range of plausible values for
NIAS, adjust the experimental data to unit cell length if
necessary, and remove any erroneous rows or columns. The
size of the matrix should be kept as small as possible. The
optimal number of wavelengths is one or two greater than the
largest possible NIAS. In this way, the LESs to be solved are
overdetermined, and the number of parameters to be fitted is
not unnecessarily high. Those wavelengths of the original matrix
evaluation that carry the important experimental information
should be kept for further evaluation. Preparation of the matrix
for M3 may easily be carried out by using the MRA technique1.

B. Solving LESs: A combination of two numerical methods
is used to calculate the concentrations at the initially guessed
or iteratively refinedE. First, the singular value decomposition
(SVD) algorithm2 is applied. It is fast, can handle singular
matrices, and yields residuals that may be either positive or
negative. The price paid for speed is that the procedure is not
stable whenE is far from the final solution. The instability may
be manifested in negative concentrations and/or in failure to
find a solution. Should a negative value occur, we may either
(a) reject it and replace the singular value method by the slower
linear optimization, which guarantees a positive concentration
or (b) accept a negative value forcik if the calculated negative
concentrations are smalland |cikεkj| is negligible compared to
the experimental errors at all wavelengthsj. The final calculated
concentrations should be same within experimental error for
either choice.

If the above condition for negative concentrations is not
fulfilled or if no solution is found, then instead of the LES
defined in eq 4 the following system of inequalities is employed:

The inequalities (6) may be supplemented by chemical con-
straints such as eq 5. The problem is then to find the maximum
of the target function

subject to the conditions in eq 6.
The task defined by eqs 6 and 7 is a standard linear

optimization problem. Our programs use the simplex algorithm2

for calculating the concentrations. This algorithm is slow (the
SVD algorithm runs about five times faster), and all of the
residuals are positive, but the procedure is very stable and is
independent of the elements ofE. It therefore always finds an
appropriate solution.

The “mixing” of two different target functions for solving
the same problem raises the question of whether the results are
the same, or at least compatible with further steps. From the
experimental side, it is evident that an increase in experimental
accuracy decreases the difference between the results. Compu-
tationally, we apply the following procedure. WhenE is still a
crude approximation, only the simplex algorithm is used. Near
the end of the fitting process, when SVD is also stable, we
switch to this algorithm. The final results are calculated by SVD.
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n

cikεkj, j ∈ {1, ...,q}

cik g 0.0, k ∈ {1, ...,n} (6)
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C. Parameter Estimation. Once the concentrations are
known with the initial or a refinedE, the minimum ofSn(E) is
sought by the downhill simplex method.2,6 This method is slow
but requires the weakest set of assumptions about the surface
to be searched. It is probably the most reliable method for
seeking minima. When the minimum is reached, the final
iteration and calculation of statistical parameters are carried out
by the Gauss-Newton-Marquardt method2,7 with a numerical
Jacobian matrix.

IV. An Example

We illustrate the application of M3 with a real example, the
reaction of a cobalt(II)-EDTA complex with hydrogen perox-
ide, which is treated in detail in part 1. One absorbing species
in the system is CoII-EDTA2-. Its molar absorption coefficients
have been determined independently8 as 0.6403, 0.3910, 0.3349,
9.579, 4.705, and 2.184 M-1 cm-1 at 340, 350, 360, 520, 550,
and 590 nm, respectively. These data were used as fixed
parameters inE.

A. MRA as a Preparatory Method for M 3. In part 1, we
found that MRA alone cannot distinguish between NIAS) 4
and NIAS) 5. The residual absorbance curves (obtained from
a series of MRA), however, suggested that NIAS is 5. The use
of M3, therefore, was restricted to NIAS) 4 and to NIAS) 5.
The example matrix includes six columns, so the LESs to be
solved are always overdetermined.

The relevant stoichiometric constraint in the present case is
that a weighted sum of the concentrations of the absorbing
species is equal to the initial Co(II) concentration.9 More
generally, MRA can be used to find the stoichiometric con-
straints.

Wallace10 and Ainsworth11 elaborated a method to detect the
presence of stoichiometric constraints. If one row is subtracted

from all of the other rows of the absorbance matrix, then a
stoichiometric constraint is manifested as a decrease of rank. If
no decrease of rank is found, then there is no stoichiometric
constraint among the absorbing species in the system.

We carried out this analysis on our matrix. Table 1 sum-
marizes the results. The first row of the table shows the absolute
values of the largest residuals when (i - 1) absorbing species
are assumed. The second row contains the results of MRA after
the subtraction. All of the 1680 rows were subtracted from the
others, one by one, and the mean of the calculated 1680 largest
absolute residuals is indicated in the table. These means really
characterize their ranges, e.g., when abs(P5) and abs(P6) were
calculated for the second row, the ranges were 0.008-0.0207
and 0.0016-0.0052 a.u. (absorbance units), respectively. It is
clear from these nonoverlapping ranges that the subtraction did
not decrease the rank of the experimental matrix, no matter
which row was subtracted.

This calculation was repeated using experimental data
measured in samples of 0.04 M initial concentration of Na2-
CoII-EDTA (runs 1-8, 13 and 14). Comparison of the third
and fourth rows of Table 1 reveals that the rank of the matrix
decreased by one. The chemical meaning of the decrease of
the rank at constant initial concentration is that all Co(II)-
containing species present in the system absorb light in the
wavelength range selected, i.e.

We note thatP5 ) 0.0035 a.u. is slightly higher than the usual
experimental error (0.002 a.u.). Experimental uncertainty in
[Na2CoII-EDTA]0 can easily cause this increase. Equation 8
must be incorporated into the LESs when M3 is used.

TABLE 1: Determination of the Stoichiometric Constraint in the CoII -EDTA2--H2O2 Reaction by Using Different
Applications of MRA a

used series i 1 2 3 4 5 6

1-14 abs(Pi) 1.2890 0.8732 0.1223 0.0197 0.0101 0.0021
1-14, one row subtracted mean of 1680 abs(Pi) 0.9157 0.5776 0.0868 0.0205 0.0107 0.0025
1-8, 13, 14 abs(Pi) 1.2890 0.8732 0.1223 0.0197 0.0101 0.0019
1-8, 13, 14, one row subtracted mean of 1200 abs(Pi) 0.9394 0.4969 0.0197 0.0149 0.0035 0.0023

a Pi denotes theith element of theP vector which includes the largest residuals of the successive elimination steps (see part 1 for the detailed
definition).

Figure 1. Differences between measured and calculated absorbances in the CoII-EDTA2--H2O2 reaction. The lower curves were calculated with
four absorbing species, and the upper curves were calculated with five. The constraint given in eq 8 was applied.

[Na2CoII-EDTA]0i ) ∑
k)1

NIAS

cik (8)

Model-Free Resolution of Absorbance Matrices: M3 J. Phys. Chem. A, Vol. 106, No. 15, 20023901



B. Calculations with M3. To determine the number of
absorbing species and their possible concentration vs time
curves, calculations were carried out with the linear equation
system defined by eqs 4 and 8.

Four absorbing species were assumed initially. The lower part
of Figure 1 shows the differences between the measured and
calculated absorbances for all 10 080 experimental data. The
figure shows many differences that are too large relative to the
experimental photometric reproducibility.

It can be seen from Figure 1 that the large deviations are
functions of time. Moreover, there are systematic relations
between these deviation vs time curves and some chemical
parameters (Figures 2 and 3). Figure 2 shows the residual vs
time curves at 360 nm as a function of the initial hydrogen
peroxide concentration. (Similar figures are obtained at other
wavelengths.) Changing [Na2CoII-EDTA]0 instead of [H2O2]0

yields curves that represent similar relations.
Figure 3 illustrates another feature of the residuals. Residual

vs time curves at different wavelengths but for the same samples
show a systematic change in the shape of the curves.

These examples demonstrate both that four absorbing species
are insufficient to describe the absorbance matrix of our example

and that the residuals can be monitored element by element in
theA matrix, which provides useful information for determining
the chemical model

In the calculations with NIAS) 4, we did not obtain unique
C and E matrices. On the contrary, manyC-E matrix pairs
could be calculated from significantly different initial estimates
of theE matrix. However, all of them gave the same calculated
absorbance matrix. The experimental matrix carries enough
information to calculate the smallest possible residuals, but it
does not include enough information for a unique solution of
the deconvolution. Mathematically, theSn function defined by
eq 2 has numerous minima, and the function values are the same
at these minima. The productsA1, A2, A3, and A4 of four
different C and E matrix pairs are shown in Figure 4. The
elements ofA1 are taken as the independent variable, whereas
the elements of theA2, A3, andA4 matrices are the dependent
variables. The plotted points have the same positions in their
matrices. The figure clearly shows that all of the 30 240 plotted
points lie on they ) x straight line, demonstrating that the
products of differentC andE matrix pairs are identical whenever
the calculated absorbance matrices correspond to a minimum
of Sn.

Figure 2. Residual absorbances as a function of time at different initial hydrogen peroxide concentrations in the CoII-EDTA2--H2O2 reaction.
Runs 13, 1, 14, and 8 from Table 1 of part 11 were used.

Figure 3. Residual absorbances at several wavelengths in the CoII-EDTA2--H2O2 reaction. Run 1 from Table 1 of part 11 was used.
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We carried out further calculations assuming five independent
species. The upper part of Figure 1 shows the residuals for all
individual data. No systematic deviation can be detected, and
each residual is smaller than the photometric reproducibility.
Therefore, five linearly independent absorbing species are
necessary and sufficient to describe the primary absorbance
matrix.

We also checked the distribution of the residuals for both
four and five absorbing species. It is clear from Figure 5 that a
normal distribution is appropriate if NIAS is 5. However, this
distribution of residuals cannot be described by the theoretical
Gaussian histogram if NIAS is 4. This result also supports the
existence of five absorbing species.

The concentrations calculated by M3 (or any model-free
method) are not unambiguous, as was pointed out explicitly by
Lawton and Sylvestre12 and Ohta.13 In spite of their warnings,
this crucially important limitation has often been forgotten. The
shapes of the concentration vs. time curves, however, carry

important information. For example, Figure 6 shows two
different “optimal” time series. Both contain an important feature
in common, a minimum in [CoII-EDTA2-]. These minima were
found in every one of the 100 or so calculatedC matrices, which
suggests that the reaction mechanism must have step(s) in which
CoII-EDTA2- is regenerated in the later stages of the reaction.
Without M3, this feature does not emerge from the primary
experimental data, and there is no indication of it in the
literature.12-15

V. Discussion and Conclusion

In this article, we have demonstrated that M3 is a powerful
tool for determining the number of linearly independent
absorbing species. Like MRA, described in part 1, M3 avoids
sophisticated statistical considerations and is simpler and more
reliable than other methods using eigenvalue calculations. The
results can be interpreted easily, and the interdependence of the

Figure 4. Calculated absorbance residuals of three differentC andE matrix pairs as a function of residuals belonging to a fourthC andE matrix
pair. Positions of the dependent and independent variables are the same in all matrices. NIAS) 4.

Figure 5. Histograms of the residuals for NIAS) 4 and 5. The thick line shows fitted density function for a Gaussian distribution. Relative widths
of intervals, width of interval divided by the half width, are the same for both cases. Axes are normalized.
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measured data does not influence the conclusions. M3 has several
advantages over MRA: it does not require transformation of
the primary experimental data, it can incorporate the nonnega-
tivity of the absorbance matrix, and it monitors the residuals
element by element, whereas MRA considers the deviations only
row by row and/or column by column. However, MRA requires
much less computation time and computer memory than does
M3, and the residuals derived from MRA can be evaluated more
easily. MRA is necessary for filtering the matrix before using
M3.

In addition to determining NIAS, M3 is able to resolve the
absorbance matrix into matrices of concentrations and molar
absorption coefficients. In the literature, many variants of factor
analysis are used for this deconvolution. M3 offers several
advantages over FA-based methods. Because M3 does not
transform the primary matrix, the residuals are not distorted.
They can be interpreted easily, and they can be monitored during
the whole calculation process element by element. Stoichio-
metric constraints can readily be incorporated, as can any
independent chemical information by fixing or omitting elements
of theE matrix. Relations among the calculated molar absorption
coefficients can also be studied by any reliable method of
parameter estimation. If multiple solutions exist, M3 and
parameter estimation together may provide the most important
features of the system. Many series of concentration vs time
curves can be calculated systematically. Their shapes are helpful
in developing a chemical model of the system. In contrast, the
variants of FA calculate only abstract matrices having no
chemical meaning. To obtain realC andE matrices, a matrix
transformation must be carried out.5 Such a procedure requires
intuition, sophisticated knowledge of matrix algebra, experience,
and a great deal of calculation. This transformation can easily
result in the loss of important experimental information.

The use of M3 makes it possible to extract much essential
experimental information from large matrices without assuming
a chemical model. It is rarely possible, however, to obtain a
unique solution without a chemical model. M3 can give much
information about the system examined, but unless a total

characterization of the experimental data is feasible, neither M3

nor FA can replace completely the usual evaluation procedures
based on a postulated chemical model. Using M3 or FA is,
however, important for carrying out further calculations ef-
ficiently, and M3 extracts information from large matrices more
simply and more reliably than FA.
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