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The charge response kernel (CRK),∂Qa/∂Vb, was reformulated using a modified definition of the partial
chargeQa. The modifications could effectively prevent numerical instability of the partial charges based on
the electrostatic potential, and thus eliminate spurious components of CRK due to the fitting problem. The
modified CRK was directly derived via the coupled-perturbed Hartree-Fock equations. The performance of
this modified CRK model was examined by applying it to some test molecules including ethanol, DMSO,
chloroform, and trimethylamine.

1. Introduction

It has been recognized in solution chemistry for a few decades
that electronic polarization has a crucial role in accurate
modeling of the solvation structure and dynamics in solutions.
By properly taking account of the electronic polarization, some
experimental facts have been elucidated via molecular dynamics
(MD) simulations, including the anomalously slow diffusion
coefficients of some aromatic radicals,1,2 or the very fast
vibrational relaxation of the azide ion.3 A key quantity to
represent the electronic polarization throughout those works has
been the charge response kernel (CRK), which was recently
proposed via ab initio molecular orbital (MO) formulations.1

The CRK is defined in terms of the intramolecular site
representation as∂Qa/∂Vb, whereQa is the partial charge at the
site a andVb the electrostatic potential at the siteb. This quantity
is utilized to represent the partial charge redistribution among
the molecular sites with respect to the external electrostatic
perturbation. A similar fluctuating charge model with empirical
formulation has been also proposed by Berne and co-workers.4,5

The CRK has been shown to be a quite promising method of
general polarizable molecular models, for a number of reasons
listed below. First, the formulation is fully based on the ab initio
MO theory at any level of accuracy, and thus no empirical
adjustment of the parameters is required. Second, it is capable
of describing any nonlocal charge distribution among the sites,
whereas some other polarizable models where each site carries
a usual polarizability can describe only the local polarization
at each site. Third, in implementing the CRK to MD codes,
usual interaction site molecular models could be readily
extended.

Despite these potential advantages, we were aware of some
technical problems that remain to be resolved, to establish the
general usefulness of this theoretical method. One of the most
crucial problems is the definition of the partial chargesQa. In
the original formulation of ref 1, the partial charges were
assigned to the intramolecular sites through the least-squares
fitting to the ambient electrostatic potential outside the molecule.
Although the partial charges thus defined, generally called ESP
(electrostatic potential) charges,6,7 have an advantage to be
optimized to describe the intermolecular electrostatic interaction,

it is well-known that the charge assignment often becomes
problematic, particularly when those of buried atoms are
involved. The partial charge distribution of the buried atoms is
not well defined from the electrostatic potential in the outer
region, because the buried partial charges are shielded and
readily offset by other surrounding charges, and thus have
merely indirect influence to the electrostatic potential in the outer
region. The ill-defined behavior of the ESP charges may become
even more serious in the CRK than the partial charges
themselves, since the intramolecular charge redistribution could
be easily contaminated by the instability of the charge definition.
Therefore, to obtain the well-defined CRK, we should distin-
guish the real charge flow induced by the external field from
the spurious one due to the uncertainty of the charge assignment.
Though the spurious flow may little affect the intermolecular
electrostatic interaction, the CRK involving the spurious charge
flow could facilitate the unphysical divergence of the polariza-
tion,2,8,9when it is applied to charge polarizable MD simulations.

In this paper we introduce a modified fitting procedure of
the electrostatic potential and extend the CRK formulation in
accord with the model. The present philosophy is analogous to
the restrained electrostatic potential (RESP) method developed
by Kollman and co-workers.10-13 The RESP model was devised
to avoid this problem of the charge assignment with little
increase of the computational cost, and has been shown to be
almost as accurate as the original ESP model in the intermo-
lecular electrostatic interaction.10 While the RESP model is quite
convenient and successful, the extension to the CRK poses a
problem, since the charge-fitting procedure of the RESP model
involves a nonlinear equation which has to be solved iteratively.
Accordingly the analytical definition of CRK based on the RESP
charge should involve complicated nonlinear equations, and the
usual coupled-perturbed Hartree-Fock (CPHF) equations14-16

could not be utilized. Therefore, we introduce an alternative
definition of the partial charges based on the electrostatic
potential. This partial charge model is as robust and effective
to avoid the uncertainty problem of the charges as the RESP
model, and in fact it gives similar partial charges to the RESP
model, whereas the extension to the CRK has no problem with
this model via the CPHF equations. When we use a CRK model
with the virtue of the RESP charges, the present model could
be recommended.
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The remainder of this paper is as follows. In section 2, the
definition of the partial charges and the CRK based on this
model are described. The new model is applied to some test
molecules in section 3, i.e., ethanol, dimethyl sulfoxide (DMSO),
chloroform, and trimethylamine, to distinguish the spurious
charge flow in the original CRK and to determine the parameter
involved in the new model. A brief conclusion and future
prospect are given in section 4.

2. Formulation

The original definitions of the partial charges and the CRK
were given elsewhere,1 and thus the modifications are empha-
sized here. In the usual least-squares fitting procedure for a set
of the ESP charges{Qa}, the sum of the squared deviationL is
minimized,

whereRs(a), Rn(c), Rg(n), andr denote the coordinates of the
site a, the atomic nucleusc, the grid pointn and electron,
respectively. (Note that the coordinates of the sites and atomic
nuclei are not necessarily identical.)Dpq is the electronic density
matrix, andp, q refer to the atomic orbitals as the basis functions.
Zc is the nuclear charge.wn is the weighting factor in the least-
squares fitting. The equation to be solved is

where 2λ and 2ê ) (2êx, 2êy, 2êz) are the Lagrange multipliers
to impose constraint on the total chargeQ and the dipole
momentµ ) (µx, µy, µz). Equation 2 leads to the following linear
equation for eacha to determine the set of partial charges{Qa},

where

Note that the matrixA is symmetric and positive definite when
the weighting factorwn is positive, which is almost always the
case. The partial chargeQa is thus given as

whereA-1 is the inverse matrix ofA. The explicit expressions
of λ andê are given in eq 17 of Appendix A.

In the above least-squares fitting procedure, the problem of
the charge fitting may occur in solving eq 3, when the matrix
A has a very small eigenvalue. Thus a small displacement of
{Qa} along the eigenvector little affects the accuracy of the least-
squares fitting, and often unphysically large displacement along
this mode results from the fitting procedure. Hence we modify
the A matrix by augmenting such small eigenvalues. Suppose
the A matrix is diagonalized as follows:

then the eigenvalueei is replaced byxei
2+ε

2, where ε is a
certain parameter. The modified inverse matrix (Amod)-1 is
subsequently defined as

Equation 8 is employed in eq 6 (or eqs 16 and 19 in Appendix
A) to obtain the modified partial charges.

The effect of this modification is illustrated in Figure 1. This
figure implies that the unstable behavior is suppressed when
the eigenvalueei is equal to or less thanε, while the inverse
eigenvalue 1/ei is little influenced by this modification at a larger
ei. The parameterε will be defined in the next section through
examining some test molecules.

The derivation of the charge response kernel∂Qa/∂Vb is now
straightforward via the CPHF equations. When the electrostatic
perturbation HamiltonianH′ is given in the site representation
as

whereQ̂a is the partial charge operator at the sitea. Q̂a consists
of the electronic and nuclear parts as

where the explicit expressions ofq̂a andQa
nuc are given in eqs

26 and 27 of Appendix A.Q̂a derives the partial chargeQa of
eq 6 viaQa ) 〈Ψ|Q̂a|Ψ〉 with the electronic wave functionΨ.
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Figure 1. The damping effect of the inverse eigenvalue in the modified
fitting procedure. The dotted curve refers to the original inverse

eigenvalue 1/ei, and the solid curve to the modified one 1/xei
2+ε
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The modified partial charge operator is defined in the same way
by replacingA-1 in eqs 16, 26, and 27 with (Amod)-1 derived
in eq 8.

When Ψ is a closed-shell restricted Hartree-Fock (RHF)
wave function, the CPHF equation for each sitea is as follows:

where the suffixesi-l denote canonical MOs;i andj stand for
the occupied MOs, andk and l for the virtual, respectively.εi

is the ith canonical orbital energy,Hlikj ) 4(li |kj) - (lk|ij ) -
(lj |ik), and Qli

a ) 〈l|q̂a|i〉. Using U obtained from eq 11, the
CRK is given as

whereE is the total energy, andi andk stand for the occupied
and virtual MOs, respectively.

Finally, we make a few comments on the nature of the CRK.
As discussed in section 1, the CRK represents the general
response of the intramolecular charge distribution to the external
field on the basis of the site representation, and therefore the
usual molecular polarizability is expressed as a special case of
the perturbation field. The molecular polarizabilityr is derived
by the CRK as

whereX denotes the tensor product. The value ofr in eq 13
will be confirmed to be consistent to that of the direct ab initio
calculations in the next section.

We note the asymptotic behavior of the partial charges and
CRK with very largeε. Equation 8 implies that (Amod)-1 is
asymptotically scaled with 1/ε when ε is sufficiently large.
Subsequently, the partial chargeQa is also scaled with 1/ε as
indicated by eq 6, and hence the linearity of the CPHF eq 11
implies thatU is scaled in the same way. Therefore, the CRK
in eq 12 is asymptotically scaled with 1/ε2. The scaling factors
of the partial charges and CRK are consistent with the fact that
the partial charges and CRK are the first and second derivatives
of the total energy;Qa ) ∂E/∂Va and ∂Qa/∂Vb ) ∂2E/∂Va∂Vb.

3. Results and Discussion

The modified partial charges and CRK described in section
2 is now applied to some test molecules, i.e., ethanol, DMSO,
chloroform, and trimethylamine, to examine the validity of the
present model and to determine the damping parameter involved,
ε.

The grid points to evaluate the electrostatic potential,Rg(n)
in eq 1, are distributed on the envelope of the united spheres
surrounding the molecule. The center of each sphere is located
at an atomic nucleus and its radius is the standard atomic van
der Waals radius by Bondi17 plus a 1.5 Å margin. This margin
approximately corresponds to the radius of a contact atomic
site of another molecule. The grid distribution adheres to the
point group symmetry of the molecule. Each sphere would have
1646 grid points evenly distributed on the 4π steradian area if
the atom were completely exposed. The total numbers of grid
points Ngrid are 3584 for ethanol, 3821 for DMSO, 3664 for
chloroform, and 4204 for trimethylamine. The weighting factor,

wn in eq 1, is set to be unity for all the grid points. We employ
all atoms for the sites throughout; the site locationsRs are
identical to the atomic nucleiRn.

For the present discussion, ab initio MO calculations are
employed in the HF/6-31G* level. This is because the RESP
charges have been determined at this level of calculations and
we could make use of those results to optimize the damping
parameterε. The molecular geometries are also optimized at
the same level of calculations. The electronic structure calcula-
tions were carried out via the HONDO package18 complemented
with the program code developed by us for the partial charges
and the CRK calculations.

3.1. Ethanol and DMSO.Both ethanol and DMSO have two
buried atoms of carbon, i.e., C1 and C2 for ethanol and C2 and
C3 for DMSO in Figure 2. Due to these buried sites, the
molecules could suffer from the fitting problem discussed in
section 2, which is certainly the case as shown below. The
optimized molecular geometry retains theCs symmetry in either
case. In the following, we first discuss the ethanol case in details
as an example, and the parallel discussion also holds in the
DMSO case as shown later.

Table 1 shows the eigenvalues and eigenvectors of the original
A matrix of ethanol in eq 4. The modes 1 (with the symmetry
A′) and 2 (A′) have particularly small eigenvalues, 0.003 and
0.005, and accordingly these modes could cause the fitting
problem. The eigenvectors of these modes 1 and 2 essentially
consist of the buried carbons, C1 and C2 respectively, with the
largest amplitude and the adjacent atoms (C2, and H5-H7 for
the mode 1, C1, O3, and H8-H9 for the mode 2) with the
opposite phase. These eigenvectors correspond to the charge
displacement from the buried carbon sites, C1 and C2, to the
adjacent sites surrounding the buried carbons, or vice versa,
which is not well defined from the electrostatic potential of the
outer region. The partial charges of the buried sites are
determined to be-0.258 and 0.497 via the original ESP fitting
with ε ) 0 in Table 2, which substantially overestimate the
RESP charges,-0.099 and 0.312, determined from the same
level of wave function HF/6-31G*.12

Table 2 also displays the eigenvalue analysis of the CRK
with ε ) 0, which apparently indicates that two of the CRK
modes have particularly large negative eigenvalues,-42.4 and
-38.4. We notice in Table 2 that the eigenvectors of these CRK
modes are quite analogous with the modes 1 and 2 of theA
matrix in Table 1. The strong correlation suggests that these
soft CRK modes 1 and 2 in Table 2 might be a direct
consequence of the particularly small eigenvalues of the modes
1 and 2 in Table 1, implying the problem of charge fitting.

This problem is further investigated via the dependence of
the CRK modes and charges on the damping parameterε. Figure
3 demonstrates that the two CRK modes with the largest
negative eigenvalues atε ) 0 are readily damped with increasing
ε to approach the asymptotic behavior∼1/ε2, whereas the
eigenvalues of the other modes are nearly invariant untilε ∼
10-1. One observes many avoided crossings among the modes

Figure 2. Schematic pictures of ethanol (left part), DMSO (center),
and trimethylamine (right) with the serial numbers of the atomic sites.
Note that ethanol and DMSO haveCs symmetry and trimethylamine
hasC3V at their optimized geometries.

(εl - εi)Uli
a + ∑

j

occ

∑
k

vir

HlikjUkj
a ) - Qli

a (11)

∂Qa

∂Vb

)
∂

2E

∂Va∂Vb

) ∑
i

occ

∑
k

vir

4Qik
a Uki

b (12)

r ) - ∑
a,b

sites∂Qa

∂Vb

Rs(a) X Rs(b) (13)

Charge Response Kernel J. Phys. Chem. A, Vol. 106, No. 15, 20023911



with the same symmetry in Figure 3, but the mode characters
of the “diabatic states” are preserved through the avoided
crossings, and the two softest modes atε ) 0 are diabatically
correlated with the two hardest modes (with smallest negative
eigenvalues) at sufficiently largeε J 0.05.

Figure 4 deals with the root-mean-square deviation of the
ESP fitting procedure as an index of the fitting accuracy,

xL/Ngrid, whereL is defined in eq 1 andNgrid is the number of
the grid points. While the root-mean-square deviation increases
with ε, the fitting accuracy is not so deteriorated with increasing
ε until ε ∼ 10-1. In fact, the root-mean-square deviation

xL/Ngrid is only 1.65 times enhanced atε ) 0.05 compared to
that atε ) 0. The eigenvalues of the CRK modes 1 and 2 are
already quite suppressed to be-0.34 and-0.13 atε ) 0.05
from -42.4 and-38.4 atε ) 0, which implies that the charge
polarization along these modes should be less significant than
those along the other modes.

The partial charges are displayed in Figure 5 as a function
of ε, which shows that even in the rangeε ) 0-10-1 where
the root-mean-square deviation does not vary much, the
magnitude of the ESP charges of the buried sites is dramatically
reduced.

The polarizability derived from the CRK via eq 13 was
examined. The CRK-derived polarizability always agreed with
the polarizability directly obtained from ab initio calculations
within 0.04% over all range ofε considered. This excellent
agreement is attributed to the constraint on the dipole moment
in the charge fitting procedure, regardless ofε.

In the DMSO case, essentially the same story as ethanol can
be applied, as shown in Figure 6. TheA matrix of DMSO has
two particularly small eigenvalues, 0.0029 (with the symmetry
A′) and 0.0030 (A′′). These two eigenvalues are far smaller than
the third smallest one, 0.238, and the two modes correspond to

TABLE 1: Eigenvalues and Eigenvectors of the Original A Matrix (Equation 4) of Ethanola

1(A′)
0.003

2(A′)
0.005

3(A′)
0.179

4(A′′)
0.672

5(A′)
1.102

6(A′′)
4.350

7(A′)
5.890

8(A′)
15.98

9(A′)
557.2

1 C 0.88 0.20 -0.04 0.00 0.01 0.00 -0.06 0.27 0.33
2 C -0.27 0.85 -0.16 0.00 -0.15 0.00 0.16 -0.12 0.33
3 O -0.03 -0.25 -0.76 0.00 0.03 0.00 -0.37 -0.33 0.33
4 H 0.04 0.04 0.54 0.00 0.43 0.00 -0.30 -0.57 0.33
5 H -0.24 -0.10 -0.12 0.00 0.72 0.00 0.31 0.44 0.33
6 H -0.22 -0.10 0.19 -0.50 -0.26 -0.50 -0.34 0.33 0.33
7 H -0.22 -0.10 0.19 0.50 -0.26 0.50 -0.34 0.33 0.33
8 H 0.03 -0.27 0.08 0.50 -0.26 -0.50 0.46 -0.18 0.34
9 H 0.03 -0.27 0.08 -0.50 -0.26 0.50 0.46 -0.18 0.34

a Parentheses in the first row indicate the symmetry of the modes, and the second row the eigenvalues in au. The serial numbers of the atomic
sites are shown in Figure 2.

TABLE 2: The ESP ChargesQa and the Eigenvalues/Vectors of the CRK of Ethanol atE ) 0

eigenvalues/vectors of CRK

Qa

1(A′)
-42.4

2(A′)
-38.4

3(A′)
-4.93

4(A′′)
-2.23

5(A′′)
-2.23

6(A′)
-2.05

7(A′)
-1.12

8(A′)
-0.52

9(A′)
0.00

1 C -0.258 0.85 0.30 0.02 0.00 0.00 -0.01 -0.08 0.27 0.33
2 C 0.497 -0.37 0.82 -0.12 0.00 0.00 -0.03 0.23 -0.09 0.33
3 O -0.719 0.06 -0.21 -0.80 0.00 0.00 -0.08 -0.22 -0.38 0.33
4 H 0.415 0.00 0.01 0.54 0.00 0.00 0.10 -0.48 -0.60 0.33
5 H 0.041 -0.20 -0.12 -0.06 0.00 0.00 0.82 -0.14 0.37 0.33
6 H 0.079 -0.22 -0.14 0.09 0.28 -0.65 -0.39 -0.19 0.35 0.33
7 H 0.079 -0.22 -0.14 0.09 -0.28 0.65 -0.39 -0.19 0.35 0.33
8 H -0.067 0.05 -0.26 0.12 -0.65 -0.28 0.00 0.54 -0.13 0.33
9 H -0.067 0.05 -0.26 0.12 0.65 0.28 0.00 0.54 -0.13 0.33

Figure 3. The eigenvalues of the CRK modes of ethanol (cf. Table 2
at ε ) 0) as a function ofε. The solid lines denote the A′ modes, and
the dotted lines the A′′ modes. The ordinate refers to the absolute
eigenvalue in the log scale.

Figure 4. The root-mean-square deviationxL/Ngrid of the electro-
static potential reproduced via the ethanol ESP charges as a function
of ε.

Figure 5. The partial charges of the ethanol sites as a function ofε.
The two solid lines denote the carbon sites C1 and C2, the dash-dotted
line the oxygen O3, and the three dotted lines the hydrogens H4, H5-
H7, and H8-H9. The charges of the equivalent methyl hydrogens H5-
H7 are averaged. (SeeQa in Table 2 for further assignment.)
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the charge displacement from the two buried carbon sites to
the adjacent sites or vice versa. Subsequently, the CRK atε )
0 has two particularly large negative eigenvalues, relevant to
the two buried sites. Figure 6a clearly shows that the two CRK
modes with large negative eigenvalues atε ) 0 are readily
suppressed with increasingε.

Next we provide an optimumε for the partial charges and
CRK calculations, on the basis of the above considerations.
Figures 4 and 6b imply that any value ofε in the range ofε )
0-10-1 could be employed in terms of the fitting accuracy.
The derived ESP charges are displayed in Figures 5 and 6c as
a function ofε, which indicate that even in the allowable range
ε ) 0-10-1, the ESP charges, particularly those of the buried
carbon sites, do vary considerably. Therefore, besides the root-
mean-square deviation, we make use of another criterion to
optimizeε. Fox and Kollman12 determined the RESP charges
of ethanol and DMSO using the same 6-31G* basis set as shown
in Table 3. Accordingly we determined the optimumε in the
allowable range so that the partial charges best match the RESP
charges. The recommended value ofε is ε ) 0.006. This value
should be reasonable, since it effectively augments the smallest
eigenvalues of theA matrix (about 0.003-0.005) associated to
the buried sites, while it little affects the other, larger eigenvalues
of A (J0.1) as discussed in Figure 1. The partial charges and
CRK of ethanol and DMSO withε ) 0.006 are listed in Table
3. This table also shows the averaged values among the methyl
hydrogens in the parentheses, since it would be convenient to
regard the methyl hydrogens as equivalent sites, when the

internal rotation of the methyl moiety is considered in actual
simulations.

3.2. Chloroform. Chloroform is a simple example having
one buried atom. One might expect the similar problem of
charge fitting, but this system has an exceptional behavior as
discussed below.

Figure 7 summarizes the results of theε dependence. We
see in Figure 7a that one of the CRK modes with the largest
negative eigenvalue atε ) 0 is readily suppressed asε increases,
whereas the other CRK modes keep almost invariant eigenvalues
overε. The former mode corresponds to the charge displacement
from the central carbon site to the others or vice versa, and this
character is retained “diabatically” through the avoided crossing
at ε ≈ 0.07 in Figure 7a.

However, a remarkable feature is seen in Figure 7 (b) that
the root-mean-square deviation of the ESP fitting is nearly
constant overε. On the other hand, Figure 7c reveals a transition
region atε ) 10-2-10-1, where the negative charge on the
carbon site shifts to the three equivalent chlorine sites. This
transition behavior can be understood using eq 6 or 19,
indicating that the partial chargeQa consists of the first term
and the rest involving the Lagrange multipliers; the former
results from the least-squares fitting, and the rest from the
constraint on the total charge and dipole moment. Whenε is
sufficiently large, the first term becomes negligible and con-
sequently the Lagrange constraint takes over the partial charge
distribution.

A peculiar feature of this molecule is that the two sets of the
partial charge distribution, before and after the transition, have
equivalent performance in terms of the root-mean-square
deviation. In the present system, there remains only one net
degree of freedom for the charge distribution, since the three
partial charges on the carbon, hydrogen, and three equivalent
chlorine sites are restricted by the constraint on the total charge
and the dipole moment along the molecular axis. The only
remaining degree of freedom, corresponding to the charge
displacement from the central carbon to the chlorines, happens
to have little influence on the root-mean-square deviation. This
insensitivity of the root-mean-square deviation toε arises from
very few degrees of freedom in the partial charge distribution.
Nonetheless, we note that the partial charges determined with
the recommendedε ) 0.006 in the previous subsection areq(C)
) - 0.3529,q(H) ) 0.2925, andq(Cl) ) 0.0201, which are
consistent to the RESP charges using the same 6-31G* basis
set: q(C) ) - 0.3460,q(H) ) 0.3097, andq(Cl) ) 0.0121.12

3.3. Trimethylamine. Trimethylamine, N(CH3)3, has three
buried carbon sites. The optimized geometry includes a pyra-
midal nitrogen site with the overallC3V symmetry, as schemati-
cally illustrated in Figure 2. TheA matrix of trimethylamine
has three particularly small eigenvalues, 0.0019 with the
degenerate E symmetry and 0.0021 with A1; the fourth smallest
eigenvalue is 0.210, much larger in two orders of magnitude.
Therefore, it is expected that the recommended value ofε )
0.006 should also be reasonably applied to this molecule.

Theε dependence of (a) the eigenvalues of the CRK modes,
(b) the root-mean-square deviation of the charge fitting, and
(c) the partial charges is displayed in Figure 8. Part a reveals
three CRK modes, i.e., one A1 mode and two degenerate E
modes, are quite sensitive to the variation ofε. These three
modes are characterized as the charge distribution among the
three carbon sites and their adjacent sites, essentially the same
character of the unstable modes discussed in section 3.1. The
root-mean-square deviation in part b indicates a transition region
at ε ) 10-1-101, where the root-mean-square deviation

Figure 6. DMSO. (a) The eigenvalues of the CRK modes. The solid
lines denote the A′ modes, and the dotted lines A′′. (b) The root-mean-
square deviationxL/Ngrid for the ESP charges. (c) The site partial
charges. The dashed line denotes the sulfur site S1, the solid line the
two equivalent carbon sites C2 and C3, the dash-dotted line the oxygen
O4, and the dotted line the methyl hydrogens H5-H10. The partial
charges of the equivalent methyl hydrogens H5-H10 are averaged.
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noticeably increases. This figure implies that we could use any
value ofε before the transition,ε < 10-1, in terms of the fitting
accuracy measured by the root-mean-square deviation. The
above discussion in the trimethylamine case is in quite parallel
with that in the case of ethanol or DMSO in section 3.1.

The partial charge distribution in part (c) shows a character-
istic behavior in the nitrogen site. Atε ) 0, the nitrogen site
has a small partial charge in magnitude,-0.039, while the
carbon sites have a much larger (more negative) charge,-0.570.
This tendency is contrary to our chemical intuition based on
the electronegativity19,20or the Mulliken charges. Asε increases,
the carbon charge is substantially reduced while the nitrogen
charge negativelyincreasesto exceed the carbon charge atε )
0.0048 and show a negative maximum-0.387 atε ) 0.05.
The partial charges at the recommendedε ) 0.006 areq(N1) )
- 0.289,q(C2-C4) ) -0.223, andq(H5-H13) ) 0.107, where
the equivalent methyl hydrogens are averaged. The correspond-
ing average RESP charges are-0.330, -0.165, and 0.092,
respectively. The appropriateε leads to a well-behaved set of
the partial charges with a larger negative charge on the nitrogen,
and at the same time substantially suppresses the eigenvalues
of the three CRK modes as shown in part a.

4. Concluding Remarks

In the ab initio formulation of the charge response kernel
∂Qa/∂Vb, a useful quantity to represent the intramolecular
electronic polarization, the partial charge at sitea, Qa, is least-
squares determined from the electrostatic potential of the outer
region of the molecule. However, it is widely known that partial
charges thus determined are often not well behaved, particularly
when some buried sites are involved. This problem of unstable
partial charge fitting could also affect the definition of CRK,
because of the contamination by spurious intramolecular charge
redistribution. Therefore in this paper, we proposed a modified
formulation of the CRK to resolve this problem. The partial
charges are redefined using the modifiedA matrix (Amod), which
makes the new charge definition as robust as that of the RESP
model. The modified charge assignment readily leads to the
corresponding CRK formulation using the CPHF equations. The
CRK accurately reproduces the polarizability obtained directly
via the ab initio MO calculations.

The present formulation is applied to ethanol, DMSO,
chloroform and trimethylamine. All these molecules have one
or more buried sites, and thus are expected to suffer from the
problem of the partial charge fitting. The spurious charge flow

TABLE 3: The Partial Charges Qa and CRK of Ethanol and DMSO Determined by HF/6-31G* with E ) 0.006a

(a) Ethanol

C1 C2 O3 H4 H5 H6 H7 H8 H9

Qa -0.110 0.252 -0.669 0.415 0.012 0.053 0.053 -0.002 -0.002
(0.039) (0.039) (0.039)

Qa
RESP -0.099 0.312 -0.672 0.414 0.035 0.035 0.035 -0.029 -0.029

1 -6.590
2 -0.831 -12.135
3 -0.211 2.329 -3.922
4 0.434 0.401 1.918 -1.915
5 1.534 0.991 -0.153 -0.067 -1.901

(1.866) (1.178) (0.068) (-0.206) (-2.137)
6 2.032 1.272 0.178 -0.275 0.028 -2.255

(1.866) (1.178) (0.068) (-0.206) (-0.036) (-2.137)
7 2.032 1.272 0.178 -0.275 0.028 -0.165 -2.255

(1.866) (1.178) (0.068) (-0.206) (-0.036) (-0.036) (-2.137)
8 0.800 3.351 -0.158 -0.110 -0.229 -0.378 -0.437 -2.521

(-0.348) (-0.348) (-0.348)
9 0.800 3.351 -0.158 -0.110 -0.229 -0.437 -0.378 -0.317 -2.521

(-0.348) (-0.348) (-0.348)

(b) DMSO

S1 C2 C3 O4 H5 H6 H7 H8 H9 H10

Qa 0.296 -0.329 -0.329 -0.498 0.121 0.147 0.162 0.121 0.147 0.162
(0.143) (0.143) (0.143) (0.143) (0.143) (0.143)

Qa
RESP 0.316 -0.324 -0.324 -0.521 0.142 0.142 0.142 0.142 0.142 0.142

1 -7.593
2 2.541 -12.782
3 2.541 0.476 -12.782
4 2.621 0.320 0.320 -2.494
5 -0.064 3.590 -0.322 -0.186 -2.634

(-0.018) (3.268) (-0.120) (-0.128) (-2.460)
6 -0.042 3.669 -0.462 -0.096 -0.531 -2.730

(-0.018) (3.268) (-0.120) (-0.128) (-0.328) (-2.460)
7 0.051 2.544 0.425 -0.102 -0.192 -0.259 -2.016

(-0.018) (3.268) (-0.120) (-0.128) (-0.328) (-0.328) (-2.460)
8 -0.064 -0.322 3.590 -0.186 0.374 0.114 -0.148 -2.634

(-0.018) (-0.120) (3.268) (-0.128) (0.038) (0.038) (0.038) (-2.460)
9 -0.042 -0.462 3.669 -0.096 0.114 0.442 -0.104 -0.531 -2.730

(-0.018) (-0.120) (3.268) (-0.128) (0.038) (0.038) (0.038) (-0.328) (-2.460)
10 0.051 0.425 2.544 -0.102 -0.148 -0.104 -0.198 -0.192 -0.259 -2.016

(-0.018) (-0.120) (3.268) (-0.128) (0.038) (0.038) (0.038) (-0.328) (-0.328) (-2.460)

a Unit: au. The serial numbers of the atomic sites are shown in Figure 2. The values in parentheses are the averaged ones among the equivalent
methyl hydrogens, i.e., H5-H7 for Ethanol, H5-H7, and H8-H10 for DMSO. The RESP chargesQa

RESPby Fox and Kollman12 are also shown for
comparison.
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originating from the buried sites is readily distinguished by
systematically changing the damping parameterε. The fitting
accuracy of the modified charges is almost as good as that of
the original charges in the range ofε ) 0-10-1, and a
recommended damping parameterε is then determined to beε
) 0.006 at little expense of the fitting accuracy, so that the
partial charges are consistent with those of the RESP model.

We note that the recommended damping parameterε ) 0.006
should be further examined to establish the transferability to
other molecules. In application to another system, the damping
parameterε could also be optimized to the system through the
eigenvalue analysis of theA matrix.

We think that the present work to improve the CRK model
is an important step toward general usefulness of the CRK
model. We will further make use of this modified CRK model
for polarizable MD simulations. In certain cases, the confor-
mational dependence of the CRK should also be considered in
the MD application.
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Appendix A: Partial Charge Expression

This Appendix supplements the definition of the partial charge
Qa and the operatorQ̂a discussed in section 2. The partial charge
fitting in section 2 is accompanied with the constraint on the

total chargeQ and the dipole momentµ, which are given using
eq 6 as follows:

Now the following two notationsC andF are introduced as

Hereafter in this section the summation overb will be
employed for the sites. Then the Lagrange multipliersλ, êx-êz

in eqs 14 and 15 are expressed in a matrix form

where

Figure 7. Chloroform. (a) The eigenvalues of the CRK modes. The
solid lines denote the A1 modes, and the dotted line the degenerate E
modes. (b) The root-mean-square deviationxL/Ngrid for the ESP
charges. (c) The site partial charges. The solid line denotes the carbon
site, the dash line the three equivalent chlorine sites, and the dotted
line the hydrogen.

Figure 8. Trimethylamine. (a) The eigenvalues of the CRK modes.
The solid lines denote the A1 modes, the dashed line the A2 mode, and
the dotted lines the degenerate E modes. (b) The root-mean-square
deviationxL/Ngrid for the ESP charges. (c) The site partial charges.
The dash line denotes the nitrogen site N1, the solid line the three
equivalent carbon sites C2-C4, and the dotted line the hydrogen sites
H5-H13. The partial charges of the equivalent methyl hydrogens H5-
H13 are averaged.

Q ) ∑
a

sites

Qa ) ∑
a,b

sites

[A-1]ab{Bb + λ + ê‚Rs(b)} (14)

µ ) ∑
a

sites

QaRs(a) ) ∑
a,b

sites

[A-1]abRs(a){Bb + λ + ê‚Rs(b)}

(15)

C(b) ) ∑
a

sites

[A-1]ab, F(b) ) ∑
a

sites

[A-1]abRs(a) (16)

[λ
êx

êy

êz
]) G-1[Q - ∑bC(b)Bb

µx - ∑bFx(b)Bb

µy - ∑bFy(b)Bb

µz - ∑bFz(b)Bb

] (17)
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Therefore, the partial chargeQa in eq 6 is expressed as

Next, the partial charge operatorQ̂a in eq 10 is given, which
consists of the electronic partq̂ and the nuclear partQnuc. We
could also decomposeBb, Q, andµ in eq 19 into the electronic
and nuclear parts as follows:

where

and r̂ in eqs 22 and 23 is the electronic position operator.Nnuc

andµnuc in eqs 21 and 22 are the total charge and the dipole
moment of the nuclei; i.e.,

Thus the electronic partq̂a and nuclear partQa
nuc of eq 10 are

represented as follows:
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G )

[∑bC(b) ∑bFx(b) ∑bFy(b) ∑bFz(b)

∑bFx(b) ∑bFx(b)Rsx(b) ∑bFx(b)Rsy(b) ∑bFx(b)Rsz(b)

∑bFy(b) ∑bFy(b)Rsx(b) ∑bFy(b)Rsy(b) ∑bFy(b)Rsz(b)

∑bFz(b) ∑bFz(b)Rsx(b) ∑bFz(b)Rsz(b) ∑bFz(b)Rsz(b)
]

(18)

Qa ) ∑
b

[A-1]abBb +

[C(a) Fx(a) Fy(a) Fz(a)]G-1[Q - ∑bC(b)Bb

µx - ∑bFx(b)Bb

µy - ∑bFy(b)Bb

µz - ∑bFz(b)Bb

] (19)

Bb ) - ∑
p,q

AO

Dpq〈p|b̂b|q〉 + bb
nuc (20)

Q ) - ∑
p,q

AO

Dpq〈p|q〉 + Nnuc (21)

µ ) - ∑
p,q

AO

Dpq〈p|r̂ |q〉 + µnuc (22)

b̂b ) ∑
n

grids

wn

1

|r̂ - Rg(n)|
‚

1

|Rs(b) - Rg(n)|
(23)

bb
nuc ) ∑

n

grids

wn ∑
c

nuclei

Zc

1

|Rn(c) - Rg(n)|
‚

1

|Rs(b) - Rg(n)|
(24)

Nnuc ) ∑
c

nuclei

Zc, µnuc ) ∑
c

nuclei

ZcRn(c) (25)

q̂a(i) ) - ∑
b

[A-1]abb̂b(i) -

[C(a) Fx(a) Fy(a) Fz(a)]G-1[1 - ∑bC(b)b̂b(i)

x̂(i) - ∑bFx(b)b̂b(i)

ŷ(i) - ∑bFy(b)b̂b(i)

ẑ(i) - ∑bFz(b)b̂b(i)
] (26)

Qa
nuc ) ∑

b

[A-1]abbb
nuc+

{C(a) Fx(a) Fy(a) Fz(a)]G-1[Nnuc - ∑bC(b)bb
nuc

µx
nuc - ∑bFx(b)bb

nuc

µy
nuc - ∑bFy(b)bb

nuc

µz
nuc - ∑bFz(b)bb

nuc] (27)
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