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A post-VBSCF method, called valence bond configuration interaction (VBCI), is developed here. The method
incorporates dynamic correlation, by use of configuration interaction (CI) to improve the energetics after a
VBSCF calculation. The levels of CI are fashioned as in the corresponding molecular orbital approach. Thus,
VBCIS involves only single excitations, while VBCISD involves also doubles, and so on. The VBCI method
retains the simplicity of a VB presentation by expressing the wave function in terms of a minimal number of
effective structures that dictate the chemistry of the problem. The method was tested by calculating the bond
energies of H2, LiH, HF, HCl, F2, and Cl2 as well as the barriers of identity hydrogen abstraction reactions,
X• + X′H f XH + X′• (X, X ′ ) CH3, SiH3, GeH3, SnH3, or PbH3). It is shown that VBCIS gives results
that are at par with breathing orbital valence bond method. The VBCISD method is better and its results
match those of the molecular orbital based coupled cluster CCSD method. Future potential directions of the
development of the VBCI approach are outlined.

Introduction

Molecular orbital (MO) theory is the main computational
method in contemporary quantum chemistry. Nevertheless,
valence bond (VB) theory remains as a widespread conceptual
matrix for many chemists. The stumbling block for the develop-
ment of VB theory has always been its quantitative implementa-
tion. Thus, VB methods generally require extensive computation
times, while their accuracy is not always satisfactory. To convert
VB theory into a mainstream method in contemporary quantum
chemistry, one needs to develop practical VB methods that
possess accuracy at the lowest possible time consumption. This
is the primary goal of the present paper, which introduces a
valence bond configuration interaction method.

The classical VB method, which uses covalent and ionic
structures based on unoptimized atomic orbitals (AOs), is
extremely poor.1 A considerable improvement is obtained in
the VBSCF method,2 when the orbitals of the classical VB
structures are allowed to optimized. The VBSCF method takes
care of the static electron correlation and gives equivalent results
to CASSCF.3 A similar quality is exhibited by the generalized
VB (GVB)4 and the single configuration spin coupled VB
(SCVB)5 methods. These methods, however, used semidelo-
calized orbitals and as such their VB structures do not
correspond anymore to the classical structures,6 except for cases
where bond ionicity is not significant. VBSCF lack dynamic
correlation, which is very important for obtaining good accuracy.

A VB method which incorporates dynamic correlation is the
breathing orbital VB (BOVB)7 method. This method provides

an extra degree of freedom during orbital optimization, such
that each VB structure ends up having its own set of orbitals.
Thus, the orbitals adopt themselves to the instantaneous field
of the VB structures, rather than to the mean field of all the
structures,8 as is the case in VBSCF, GVB or SCVB. This
degree of freedom in BOVB introduces dynamic correlation,
and thereby improves considerably the accuracy of the results.1

One drawback of the BOVB method is its time consumption
and its occasional failure to converge when many VB structures
are used.1 While most of these difficulties can be overcome by
expert users.1,9 This creates difficulties for general users who
are not VB experts. A logical step forward is to devise a method
that keeps the conceptual clarity of the classical VBSCF method,
while incorporating dynamic correlation like BOVB, but in a
manner that is less time-consuming. Approaches that include
dynamic correlation in VB theory have been proposal already
by Hiberty et al,10 Gallup et al,11 Nascimento et al.,12 Wu and
McWeeny,13 Cooper et al.,14 and so on. Thus, Hiberty et al.10

have shown that if the classical VB structures are augmented
by configuration interaction, using single excitations, the
quantitative accuracy is greatly improved. In fact, the use of
single excitations is approximately equivalent to a BOVB
procedure performed with a minimal number of structures. The
present paper follows these ideas and introduces a general
method that augments a VBSCF calculation by subsequent
configuration interaction (CI), or in short VBCI. The paper
describes the formulation of the virtual space of orbitals, outlines
the CI methodology and the condensation of the final CI space
into a minimal number of VB structures dictated by the chemical
problem. The paper then follows with some applications to the
calculations of bond energies and reaction barriers. As shall be
demonstrated, the VBCI method is quantitatively equivalent to
the MO-Based CCSD method and to the BOVB method, when
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all are performed at the same conditions; basis set and number
of optimized orbitals.

Theory and Methodology

A. The Spin-Free Approach for Valence Bond Theory.
The VB calculations use the spin-free formulation of quantum
chemistry. The spin-free approach for VB theory has been fully
described elsewhere15-17 and will be sketched only briefly.

In spin-free VB theory, a many-electron wave function is
expressed in terms of spin-free VB functionsΦK,

ΦK may be a bonded tableau (BT) state,16 defined as

whereNK is a normalization factor,ers
[λ] is a standard projector

of the symmetric groupSN, defined through the irreducible
representation matrix elements,Drs

[λ](P), as

wherefλ is the dimension of the irreducible representation [λ],
andΩK is an orbital product,

which maintains a one by one correspondence with the usual
VB structure, by the arrangement of orbital indices.

With this permutation symmetry-adapted basis eq 2, the
Hamiltonian and overlap matrix elements are written respec-
tively as

and

The coefficientsCK in eq 1 are subsequently determined by
solving the usual secular equationHC ) EMC .

The so-called “N!” difficulty is that the Hamiltonian and
overlap matrix elements, eqs 5 and 6, containN! terms due to
the use of nonorthogonal orbitals. To ameliorate this problem,
Wu et al.17 developed recently the paired-permanent-determinant
approach using symmetric group techniques. This approach is
implemented in an ab initio VB program, XIAMEN-99 pack-
age,18 with which all the calculations are performed.

B. Virtual VB Orbitals and Excited VB Structures. One
of the most important advantages of VB theory is that it can
provide insight into chemical problems even with only a few
VB structures. In the VBSCF method, only structures that are
essential for the description of the particular chemical problem
are involved in calculation. The orbitals and coefficients of the
VB structures are optimized simultaneously to minimize the total
energy. In the present work, the structures that are used in the
VBSCF calculation are referred to as fundamental structures,
denoted asΦK

0, and the VB orbitals that appear in the VBSCF

structures are referred to as occupied VB orbitals. For example,
in the F2 case as a prototypical bond energy problem, one
covalent and two ionic structures are used for the VBSCF wave
function. By freezing the 1s orbitals, there remain eight occupied
VB orbitals (six lone pairs and two bonding orbitals) that are
described in1-3. Thus, all the valence orbitals are referred to
as occupied VB orbitals, and are optimized during the calcula-
tion.

A VB orbital is usually written as a linear combination of
basis functions,

where the coefficients are optimized in the VBSCF calculation.
The form of the expression depends on whether localized,
delocalized, or bond-distorted orbitals8c are required for the
particular application. In the present work, the basis functions
are grouped into different blocks

where the superscripts A, B, and C ofø stand for blocks A, B,
and C, respectively. The blocks can be defined by reference to
the whole molecules, or its fragments, atoms, etc. If delocalized
orbitals (Coulson-Fischer orbitals19) are used, there will be only
one block, which covers the entire system. The occupied VB
orbitals in a given block are expanded over the basis set which
belongs to that block. For example,φi

A, which belongs to block
A, will be written as follows:

Taking again F2 as an example, suppose we wish to do a
calculation with localized VB orbitals. One can then divide the
basis functions into four blocks:σ-type basis functions centered
on F1, σ-type basis functions centered on F2, π-type basis
functions centered on F1, and π-type basis functions centered
on F2. Scheme 1 shows the four blocks for 6-31G basis set.

In a traditional VBSCF method, only occupied VB orbitals
are optimized in the calculation and it is not essential to define
virtual VB orbitals. However, virtual orbitals are required if
one wishes to adapt a configuration interaction technique in the
VB method. To keep the advantage of classical VB theory, the
virtual VB orbitals should also be strictly localized, much like
the occupied VB orbitals. In the present work, virtual VB
orbitals are defined over the various blocks,

Obviously, the total number of occupied and virtual VB orbitals
for block A should be the same as the number of the basis
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functions in block A. Thus, the total number of occupied and
virtual VB orbitals for the entire molecule is equal to the total
number of basis functions.

A way to define the virtual orbitals of block A is to use a
projector20

whereVA is the vector of orbital coefficients. TheMA andSA

are the overlap matrixes of the occupied VB orbitals and the
basis functions, respectively, while the index A indicates that
all matrixes are associated with block A. It can be shown that
the eigenvalues of the projectorPA are 1 and 0. The eigenvectors
associated with eigenvalue 1 are the occupied VB orbitals, while
the eigenvectors associated with the eigenvalue 0 are used as
the virtual VB orbitals of block A. The virtual VB orbitals
produced in this manner share two important features. They are
strictly localized on block A and are at the same time orthogonal
to the occupied VB orbitals{φi

A}. By diagonalizing the pro-
jectors for all blocks, we can have all the virtual VB orbitals,
which belong to different blocks. In the case of F2 with 6-31G,
there are eight virtual orbitals, which are distributed in the four
blocks, defined in Scheme 1. As an example, we give in Scheme
2 the symmetry unique VB and virtual orbitals of an atom F in
the F2 molecule, using the 6-31G basis set.

After generating the virtual VB orbitals, we can create excited
VB structures in the following way: Given a fundamental VB
structureΦK

0, an excited VB structureΦK
i is built by replacing

occupied VB orbital(s)φi
A with virtual orbital(s) φa

A. By
restricting the replacement of virtual orbitalφa

A to the same

block asφi
A, the excited VB structureΦK

i retains the same
electronic pairing pattern and charge distribution asΦK

0. In
other words, bothΦK

i and ΦK
0 describe the same “classical”

VB structure. Thus, the collection of excited VB structures
nascent from a given fundamental structure serve to relax the
fundamental VB structure and endow it with instantaneous
dynamic correlation. Since all the fundamental structures
experience simultaneously the same effect, the end result is like
a set of fundamental VB structures which are internally
correlated and adopted to mix with each other, to yield the
lowest possible energy within the particular type of the wave
function.

C. Valence Bond Configuration Interaction (VBCI) Method.
Once a VBSCF calculation involving all the fundamental VB
structures is carried out, as in eq 12,

and the occupied VB orbitals are optimized, the virtual orbitals
and the excited VB structures are automatically created. A
subsequent VBCI calculation will involve all the fundamental
and the excited VB structures,

where the coefficientsCKi are determined by solving the secular
equation without further orbital optimization. The total energy
of the system is

SCHEME 1

SCHEME 2

PA ) VA(MA)-1VA
+SA (11)

ΨVBSCF ) ∑
K

CK
SCFΦK

0 (12)

ΨVBCI ) ∑
K
∑

i

CKiΦK
i (13)
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Since the CI space is large, we can truncate this space following
the usual CI methodology. The starting point always involves
single excitations, i.e., VBCIS. This can be followed by
VBCISD, VBCISDT, etc., where D stands for double and T
for triple excitations. The level at which truncation is employed
will depend on the size of the problem and the desired accuracy.
HoweVer, what is important is the fact that the results can be
improVed systematically.

One of the most important advantages of modern VB theory
is that it provides chemical insight with a very compact wave
function. The VBCI method has this feature since it enable one
to represent the CI wave function, eq 13, in a compact form,

where VB structureΦK
CI is of the form in eq 16,

which collects all the VB functions that belong to the same
structure in terms of pairing and charge distribution.

The coefficientsCK
CI and C′Ki is determined by the normal-

ization of ΦK
CI, written respectively as

and

The elements of the compact Hamiltonian and overlap
matrixes are respectively written as

and

Structural weight analysis is one of the most important
advantages of VB theory. The weight of an individual VB
structure given by

is not so important by itself. What is more important is the total
weight of the fundamental and its excited structures that belong
to the same electronic structure. Thus, the combined weight is
summed over all these structures to give a weight of a single
VB structure.

In this manner, the extensive VBCI wave function is condensed
to a minimal set of fundamental structures that are all dressed
with dynamic correlation.

D. The Structure of the Hamiltonian and Overlap Ma-
trixes. It is well-known that the Hamiltonian and overlap
matrixes in the MO-based CI are sparse due to orthogonal
molecular orbitals. Unfortunately, for the VBCI method, these
two matrixes are not sparse because of the use of nonorthogonal
VB orbitals. However, we can still obtain the following
properties of the Hamiltonian and overlap matrixes.

Property 1. A Hamiltonian matrix elementHKL is zero if there
are three VB orbitals inΦK (ΦL) that are orthogonal to all VB
orbitals inΦL (ΦK).

Property 2.An overlap matrix elementMKL is zero if there
is one VB orbital inΦK (ΦL) that is orthogonal to all VB orbitals
in ΦL (ΦK).

With properties 1 and 2, we can determine if a given matrix
element is zero or not without computing. From the applications
tried so far, about 20% of the matrix elements are zero.

Applications

All the calculations were performed with the Xiamen VB
package18 that incorporates the VBCI method.

A. Bond Energies.The VBCIS and VBCISD are applied to
the bond energy calculations of diatomic molecules: H2, LiH,
HF, HCl, F2, and Cl2. The Pople basis set 6-31G** is used in
the calculations, and the geometries are optimized by CCSD/
6-31G**. All electrons in the inner shells are frozen at their
Hartree-Fock level. Three fundamental VB structures, one
covalent and two ionic structures, as shown in Scheme 3, are
used for the VBSCF calculations. For H2 and LiH, basis
functions on each atom form a block. Thus, there are two blocks
for these two molecules. For the other molecules, e.g., F2, σ-π
separation is used, and there result four blocks.

Table 1 shows the VBCI bond energies of the molecules with
various methods. It can be seen that the Hartree-Fock bond
energies are poor as expected. The simple VBSCF bond energies
are much improved, but still not quantitatively good, especially
for F2 and Cl2, which are known to be difficult cases for bond
energy calculations. VBCIS provides already good bond energies
similar to the D-BOVB method.7 The VBCISD bond energies
are even better and in very good agreement with those of CCSD.
The number of the VB structures involved in the VBCI
calculations, as shown in Table 1, is very small compared to
the number of the configurations that are involved in the
molecular orbital based CI. This is due to the fact that the VB
excitations are restricted within blocks.

Table 2 shows the weights of one covalent and two ionic
structures for all the molecules. It can be seen that the weights
for various methods are in very good agreement. The weights
of the covalent structures for VBCIS and VBCISD are slightly
lower than those of VBSCF, and are similar to the BOVB
weights.

B. Reaction Barriers. As a second application of the VBCI
method, we calculated the barriers of identity hydrogen abstrac-
tion reactions,22 X• + X′H f XH + X′• (X, X ′ ) CH3, SiH3,
GeH3, SnH3, or PbH3). The Pople basis set 6-31G* is used for
X ) CH3 and SiH3 and LANL2DZ/31G* for the rest. All
geometries are optimized at the MP2 level. Eight structures, as
shown in Scheme 4, are involved in the calculations.

Table 3 shows the resulting barriers for various methods. With
exception of entries 2 and 8, all the electrons in the inner shell
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and eightπ electrons are frozen at their Hartree-Fock form.
In entries 2 and 8 all orbitals are optimized. It is seen that the
VBCIS barriers (entry 6) are slightly less good than those of
D-BOVB (entry 5), while VBCISD results (entry 7) compatible
with the D-BOVB data (entry 5). The VBCISD results are at
par with CCSD values that are obtained by freezing theπ
orbitals during the CCSD procedure (entry 3). At present,
performing VBCISD with excitation from all valence electron
is too time-consuming due to the size of the CI. This size is
determined not only by the atomic basis set, but also by the
number of fundamental structures, which for this problem is
eight (Scheme 4). A VBCIS calculation involving all the valence
electrons (entry 8) gives good agreement with those of CCSD
(entry 2) for X dCH3 and SiH3, but not for X) GeH3, SnH3,

and PbH3. Apparently, the use of effective core potential
(LANL2DZ) requires a higher level of excitation than singles
only.

Size consistency problems exist in all configuration interaction
methods whenever a truncation technique is adapted. Obviously,
we were also concerned about the problem in the VBCI method.
Table 4 shows that the total energy of F2 atRFF ) 10 Å obtained
by computing it as a whole molecule and by computing two F
atoms, respectively. A similar calculation was carried out for
the C2H7 transition state from Table 3. In both cases, it can be
seen that the problem of size-insistency in VBCI is negligible
(0.6-1.4 kcal/mol), in contrast with the MO based CISD method
that suffers from a serious inconsistency (4.4-8.0 kcal/mol).

Summary

This paper presents a post-VBSCF method, called VBCI. The
method uses configuration interaction technique to improve the
energetics after a VBSCF calculation. The levels of CI are
fashioned as in the corresponding molecular orbital approach.
Thus, VBCIS involves only single excitations, while VBCISD
involves also doubles, and so on. From this point of view VBCI
has no limitations,in principle, since it can always be improved
systematically with the increasing computing power and im-
provements in software. From a conceptual point of view, VBCI
retains the simplicity of a VB presentation since the wave
function is ultimately expressed in terms of a minimal number
of effective structures that dictate the chemistry of the problem.

TABLE 1: Bond Energies (D) with Various Methods (kcal/mol)

molecule DHF DB3LYP DCCSD DVBSCF DBOVB a DVBCIS b DVBCISD Dexptlc

H2 84.6 111.7 105.9 95.8 96.0 96.0(11) 105.9(55) 104.2
LiH 32.5 57.2 49.5 42.4 43.0 42.8(27) 49.6(118) 56.6
HF 94.9 132.4 127.2 105.1 115.9 125.0(40) 126.0(274) 137.2
HCl 77.6 103.1 99.1 85.8 89.9 92.0(40) 98.0(274) 101.2
F2 -33.1 41.4 28.3 10.9 31.5 40.4(81) 33.9(1089) 38.0
Cl2 14.5 48.4 41.6 26.2 35.6 38.9(81) 42.1(1089) 58.0

a The BOVB method refers to D-BOVB described in ref 1. Much better results are obtained with SD-BOVB, which splits the filled orbitals of
the ionic structures.b Values in parentheses are the number of VB structures involved in the calculations.c All experimental values are from ref 21.

SCHEME 3

TABLE 2: Weights of the VB Structures 4-6 (See Scheme
3) for Various VB Methods

H2 LiH HF HCl F2 Cl2

VBSCF
covalent 0.8074 0.8919 0.5829 0.6708 0.7933 0.6949
ionic 0.0963 0.0028 0.0106 0.0725 0.1033 0.1531

0.0963 0.1053 0.4066 0.2567 0.1033 0.1520
BOVBa

covalent 0.7606 0.8756 0.5182 0.6486 0.7012 0.6513
ionic 0.1197 -0.0062 0.0637 0.0998 0.1494 0.1744

0.1197 0.1306 0.4181 0.2516 0.1494 0.1744
VBCIS

covalent 0.7489 0.7622 0.5024 0.6386 0.6975 0.6439
ionic 0.1256 0.0520 0.0530 0.1022 0.1513 0.1781

0.1256 0.1858 0.4446 0.2593 0.1513 0.1780
VBCISD

covalent 0.7727 0.8799 0.5515 0.6547 0.7395 0.6637
ionic 0.1137 -0.0137 0.0191 0.0847 0.1305 0.1681

0.1137 0.1338 0.4293 0.2606 0.1300 0.1682

a This refers to D-BOVB (See ref 1).

SCHEME 4

TABLE 3: The Barriers of X • + X′H f XH + X′• (X )
CH3, SiH3, GeH3, SnH3, or PbH3) (kcal/mol)

entry method CH3 SiH3 GeH3 SnH3 PbH3

1 HF 35.1 25.2 22.0 18.5 15.2
2 CCSDa 22.5 15.7 12.8 10.7 8.2
3 CCSDb 26.5 19.3 16.6 13.5 13.0
4 VBSCFb 33.0 25.9 25.5 20.5 17.3
5 BOVBb 23.1 19.1 18.0 14.9 12.3
6 VBCISb 26.7 19.2 18.9 15.5 12.7
7 VBCISDb 24.5 17.9 17.5 14.8 11.4
8 VBCISa 22.7 17.5 17.3 14.2 11.5
9 Exp. 14.7c(18)d

a No valence orbitals are frozen.b All orbitals with π symmetry with
respect to the X-H-X axis are held frozen.c Activation energy from
ref 23. d Barrier estimated from the activation energy in (c). See ref
23.

TABLE 4: Size Consistency in VBCISD and CISD

∆E(size)a

method F2 C2H7
b

VBCISD 0.6 1.4
CISDc 4.4 8.0

a ∆E(size)) E(separate fragments)- E(supermolecule with frag-
ments at 10 Å).b The two fragments are CH3 and CH4. C2H7 itself is
the transition state for the reaction described in Table 3.c This is the
molecular orbital based CI.

Valence Bond Configuration Interaction J. Phys. Chem. A, Vol. 106, No. 11, 20022725



The tests in this paper show that VBCIS gives results that
are at par with D-BOVB. The VBCISD method is somewhat
better and its results match those of the molecular orbital based
coupled cluster CCSD method. At present, the VBCISD
procedure is still time-consuming for problems with many
fundamental structures and more than 14 valence electrons as
in the problem presented in Table 3. The practical solutions
are either to use VBCIS with all valence orbitals or VBCISD
with a few frozen valence orbitals. VBCIS can often be a
practical economic solution as shown by the example of C2H7

in Table 3 (entry 8).
The CPU limitations of VBCI can be overcome in a few

manners. Improvement of the paired-permanent-determinant
(PPD) approach for the spin-free VB theory17 can be achieved
by making use of the fact that most of sub-PPDs required in
the evaluation of a fundamental VB structure are the same as
those of its excited VB structures. In addition, ideas of
perturbation theory and coupled cluster can be imported into
VB theory to generate a family of new and economical post-
VBSCF methods. Such methods are under development.
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