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The dynamics of association/dissociation kinetics is studied, with an application to the titled reaction. The
focus is the geometry of the phase space of the phenomenological rate law, a Lindemann mechanism, and the
master equation of this reversible reaction, all of which are nonlinear. It is shown that all three systems
possess similar phase space structure, including a 1-D manifold. This 1-D manifold describes asymptotic
motion for either dissociation or recombination and is the analogue of the corresponding eigenvector for
linear master equations describing dissociation without recombination. The 1-D manifold allows for the
separation of asymptotic motion from transient behavior and together with other manifolds in phase space
allows a better understanding of the dissociation and recombination processes. The 1-D manifold also allows
us to test various approximations that have been used in the past to calculate association rate constants from
the master equation and Lindemann mechanism and develop new methods for calculating association rate
constants and generating rate laws.

I. Introduction

For the last few decades, master equations have been used
to extract pressure-dependent unimolecular dissociation rate
constants, with refs 1 and 2 providing summaries of work done
by many researchers. More recently, the uses of master equations
have been extended beyond unimolecular reactions, including
association reactions, bimolecular reactions, and multiple well/
multiple channel reactions.3-16 Many of these cases include
nonlinearity, differing from the unimolecular case, which is
linear. There, matrix diagonalization can be used to extract
asymptotic rates and thus rate constants. For nonlinear master
equations, approximations often need to be used to calculate
rate constants. Generally, these approximation are good but are
not always tested thoroughly.

In this paper, we present results from the study of one type
of nonlinear master equation, the one describing association and
dissociation. In a previous paper by one of us and Harding,17

pressure-dependent rate constants for methyl recombination were
calculated using the Variflex program.18 The main focus of ref
17 was the incorporation of good information concerning
potential energy surface features and statistical reaction theory
as well as comparison with experiments rather than the details
of the master equation calculation. In this paper, we look in
more detail at the dynamics of the master equation.

Another reason for the investigation undertaken here is the
recent work of one of us19-21 and others22-27 on the asymptotic
dynamics of kinetic equations. Until recently,20,28 these tech-
niques were applied only to complex chemical kinetics, although
there is a history of more rigorous approaches (i.e., beyond
steady-state approximations) used to model master equations.29-33

The techniques used in refs 19-28 involve the calculation of
low-dimensional manifolds that describe the asymptotic dynam-
ics of systems approaching equilibrium and are more rigorous
than the steady-state approximation. For nonlinear master

equations, a low-dimensional manifold is analogous to the
eigenvector with least negative eigenvalue,20 the one used to
calculate a pressure-dependent unimolecular rate constant.1,2 In
addition, low-dimensional manifolds allow for the systematic
elucidation of the global phase space structure of a dynamical
system that approaches an equilibrium point at long time.19 The
elucidation of the phase space structure allows for a better
understanding of transient effects.

This paper will lay out a plan of attack for studying both the
long-time dynamics and the transients of the association/
dissociation master equation and the related Lindemann mech-
anism. Previous work on such systems has generally ignored
the nonlinearity or incorporated it in an approximate way. One
of the purposes of this paper is to suggest ways to study the
nonlinear system and calculate rate constants with the nonlin-
earity fully included.

The outline of this paper is as follows. Section II is a study
of the dynamics of the phenomenological rate law from a
geometric standpoint. Section III addresses similar issues for
the Lindemann mechanism and investigates ways to extract rate
constants. Section IV applies what has been learned in the
previous two sections to the dynamics of a master equation
describing the reversible reaction in the title. It is shown that
association rate constants can be extracted in a novel way, but
it demonstrates that this extraction leads to rate constants that
vary with position in phase space. Section V presents a more
general and difficult procedure to generate rate laws and
demonstrates that the notion of an equilibrium constant may
break down along a 1-D manifold. Section VI has further
discussion and a conclusion.

II. Background: The Phenomenological Rate Law

Many of the tools used in the rest of the paper can be
developed for the phenomenological rate law of the reversible
reaction
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where the reactive species are A and C and M is a third body,
which leads to pressure dependence. The two directions are
characterized by the forward association rate constant,ka, and
the reverse dissociation rate constant,kd. These rate constants
are temperature- and pressure-dependent.

A. Rate Equations and Constants of the Motion.For
methyl recombination with possible subsequent dissociation of
ethane to two methyl radicals, eq 2.1 becomes

where the third body M has been dropped. The rate law for
this system is34

where the brackets indicate concentration. Because of conserva-
tion of mass (which can be checked by adding the equations),
there is a constant of the motion

This constant reduces the 2-D system of eq 2.3 to a 1-D system
and allows for an analytical expression for the time development
of the two species.34 For the case in eq 2.1 where A+ B replaces
A + A, this constant changes in an obvious way, and there is
an additional constant, [A]- [B].

By scaling the concentrations and using the constant defined
in eq 2.4, the rate law for methyl is

reducing it to a 1-D dynamical system.
B. Dynamics.Equation 2.5a can be integrated for the time

development of the methyl radical34 and in turn for ethane
through the constant in eq 2.4:

with

y0 is the initial value ofy. Equation 2.6 demonstrates that at

long time all trajectories except one approach the equilibrium
point

The exceptional point is forr ) 0 (eq 2.6b)

where the designation “s” is for source and is described in the
next subsection. Except for the equilibrium point, all trajectories
that are run backward in time approach this point.

To ensure that the concentrations of methyl and ethane are
positive, 0< y < 1. Equation 2.6 demonstrates that trajectories
initiated in this physically allowed region always remain in it.
For comparison to observables, it is necessary to examine the
dynamics in this region only. However, to obtain a global picture
of the dynamics and to generate asymptotic (in time) results
for the physical region, it is useful to extend the analysis beyond
the physical region.19 Equation 2.6 demonstrates that in the
nonphysical region there is a singularity, so trajectories started
with y values less than that of the source point approach-∞
and switch branches to approach the equilibrium point from
the positive side.

Figure 1 shows several trajectories for eq 2.6. These are
generated for eq 2.2 atT ) 1350 K andP )1000 Torr, withc
(eq 2.4) set to 1× 1013 molecules/cm3. The rate constants were
calculated for∆Ed ) 200 cm-1 (section IVC). The top three
panels of Figure 1 show trajectories propagated forward in time.
Two of these (Figures 1a and b) are started in the physically
allowed region and one is started in the nonphysical region
(Figure 1c). This latter trajectory is started on the negative side
of the source and moves through the singularity. These

Figure 1. Trajectories shown for eq 2.6a with rate constants calculated
in section IVC atT ) 1350,P ) 1000 Torr,∆Ed ) 200 cm-1, and
c ) 1 × 1013 molecules/cm3. The two rate constants areka ) 2.96×
10-12 cm3/s andkd ) 16.355 s-1. The top three trajectories are forward
propagated and the bottom, backward propagated.
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trajectories approach the equilibrium point at long time, as
indicated by the dotted line in the panels. Some trajectories,
such as those between the two fixed points, approach from the
methyl-rich region (y values greater than the equilibrium value,
Figure 1a), and others (Figure 1b) approach from the methyl-
poor region (y values less than the equilibrium value). Figure
1d shows a trajectory that is run backward in time and
approaches the source (dotted line) ast f -∞.

C. Global Phase Space Dynamics.The first step in generat-
ing the global phase space structure is to find the fixed points.35

These were described in eqs 2.6b and 2.7. In general, dynamical
systems cannot be integrated in closed form as in the previous
subsection, but fixed points can still be found. For the scaled
version of the phenomenological rate law, the fixed points are
found by setting eq 2.5a to zero (when the time derivative is
zero at any point the trajectory is “fixed” at the point)

and the two fixed points are obtained as the two roots of this
equation. At equilibrium or at the source,y2/x ) Keqas expected.
The nature of the two fixed points (equilibrium or source) is
judged as such from the linearization of eq 2.5a,

When y > 0, this quantity is negative and thus the equilib-
rium point is attractive. Wheny < -Keq/4, the right side of
eq 2.10 is positive, and this identifies the source as repulsive.
To investigate the global dynamics, it is useful to examine
the dynamics out to infinity. The following coordinates are
introduced:35

Although this transformation adds a dimension, the coordinates
are restricted to the positiveV portion of a unit circle, which
means motion is still 1-D. Infinity in the Cartesian coordinate
system is located atV ) 0 in this coordinate system.

Figure 2 summarizes the global dynamics for the rate law of
eq 2.5a as well as the two limiting cases of first-order and
second-order kinetics, as indicated on each plot. Each plot has
fixed points marked on them as large dots. In each of the top
two panels, there is a single finite fixed point compared to the
two fixed points in the bottom panel (eq 2.9). In addition, first-
order kinetics (top panel) has two sources at infinity. These result
from the blow-up of the differential equations backward in time.
The bottom panel of Figure 2 shows arrows that point to the
four trajectories of Figure 1. Because of the original scaling of
coordinates to givex andy, the physical region in Figure 2 is
0.0e u e 1/x2. Figure 2 presents generic dynamical behavior
for the indicated kinetic systems. As the parameters change (for
example,c and the rate constants), the locations of the finite
fixed points as well as the time scales change, but the dynamical
flow is not altered.

Figures 1 and 2 show how a global analysis is useful. The
behavior of the several forward-moving trajectories of Figures
1a-c can be summarized with a single plot. The behavior of
trajectories run backward in time (Figure 1d) can be summarized

with plots such as those in Figure 2 merely by switching the
direction of the arrows.

III. Lindemann Mechanism

The Lindemann mechanism1,2 is the next level of complexity
beyond the rate law of the previous section and has most of the
important dynamics of the master equation, possessing additional
features compared to the rate law of the previous section.
Although the Lindemann mechanism is generally used to model
the pressure dependence of unimolecular decomposition, it is
straightforward to add association. In this form, it is still a 2-D
system, and it possesses an easily identified reduction to a 1-D
manifold. Like the master equation, it is nonlinear.

A. Rate Equations and Constants of the Motion.The
Lindemann mechanism for the reaction in eq 2.1 is

In master equations for a system of this form, the molecule C
is modeled with a series of states, and the energy transfer process
in eq 3.1b is modeled by a series of transitions between states
(see refs 1 and 2 and the next section). Therefore, we consider
the Lindemann mechanism a two-state version of the master
equation with unexcited C considered to be state one and C*,
state two. The following rate law results:

Once again, there is a constant:

Figure 2. Global phase-space portrait of the system in Figure 1 shown
along with the contrasting portraits for first- and second-order kinetics
in the top and middle panels.
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The variablesx1, x2, andy are scaled versions of the concentra-
tions, as they were in eq 2.5, withx1, x2, and y the scaled
versions of [C], [C*], and [A], respectively. Because ofc, eq
3.2 can be reduced to a 2-D system

where microscopic reversibility has been invoked1,2 (the system
relaxes to a Boltzmann distribution at long time, withf1 andf2
the equilibrium populations). The derivation ofa is described
below and in the Appendix. Conservation of probability for the
closed system has also been included (the sum of eqs 3.4a and
3.4b is zero whenk andka are zero).

The Jacobian of the system is35

J describes the local linearized dynamics near a point and
depends only ony. This Jacobian is the 2-D version of eq 2.10.
It can be used to calculate the stability of fixed points.

The eigenvalues ofJ are

The square root in eq 3.6 can be expanded in terms of

which is very small for most values of the parameters (see the
Appendix and the caption to Figure 3) because the expression
in the parenthesis of the numerator is much smaller thana and
k. An expansion and algebraic manipulation gives the following
eigenvalues:

In the physical region, both eigenvalues are negative under
chemical kinetics conditions, withλ1 much lower in magnitude
than λ2, and the one associated with the rate constants for
association and dissociation.1,2 The first term on the right-hand
side of eq 3.8b dominates under most conditions, and because
(a + k) . 4kacy under these conditions,λ2 is nearly constant.
For the same reason,λ1 is generally a linear function ofy.

The eigenvectors of the Jacobian in the (x1, y) plane are

wherey0 refers to the point where the Jacobian is evaluated
andb refers to the intercept of the line, which is calculated from
the equilibrium point. Equation 3.9a describes the eigenvector
for λ1 and eq 3.9b, forλ2.

B. Global Dynamics: Fixed Points, Low-Dimensional
Manifolds, and Basins. Figures 3a and b show several
trajectories for a set of parameters extracted from the master
equation of section IV (see the Appendix). Figure 3 shows the
scaled CH3 variable (y) versus unexcited C2H6 (x1), with Figure
3a showing results for a density parameterc (eq 3.3) of 1×
1013 molecules/cm3 and Figure 3b showing results forc ) 3.5
× 1017 molecules/cm3. Trajectories are drawn as dashed lines
in Figures 3a and b except for one trajectory that is shown as
a thicker solid line. The equilibrium point for each system is
shown as a large dot on each of the panels. The direction of
flow for some of the trajectories is shown in Figure 3a. A time
profile of one of the trajectories of Figure 3a is shown in Figure
3c (the trajectory starts at (0.2, 0.0) in Figure 3a).

The top two panels of Figure 3 show that trajectories reach
a well-defined 1-D curve, and Figure 3c demonstrates that
trajectories do so in a short time followed by a slow approach
to the equilibrium point along this manifold. Figure 3c shows
that a typical trajectory takes between 10 and 100 ns to reach
the manifold and tens of milliseconds to get close to equilibrium.
The time scales decrease as the density of reactive species
increases.

To better understand the nature of trajectories for the
Lindemann mechanism, it is useful to generate a global picture
of the dynamics. The first step, once again, is to find the fixed
points. This is done by setting the velocities in eqs 3.4a and

Figure 3. Some trajectories for the Lindemann mechanism (eq 3.4)
with different values ofc shown in the top two panels and the time
development of one shown in the bottom panel. This trajectory is the
one started at (0.2, 0.0) in Figure 3a. The Lindemann parameters were
derived as described in the Appendix for the master equation atT )
1350 K,P ) 1000 Torr,∆Ed ) 200 cm-1, andc ) 1 × 1013 molecules/
cm3. These parameters area ) 4.75 × 107 s-1, k ) 1.98 × 108 s-1,
andf2 ) 4.26× 10-7 with c ) 1 × 1013 and 3.5× 1017 cm-1 in panels
a and b, respectively.
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3.4b to zero (the left-hand sides). Equation 3.4a can have a
nontrivial zero (i.e.,x1 * 0 andx2 * 0) only whenx1 andx2 are
the same fraction of their equilibrium valuesf1 and f2,
respectively, giving

Equation 3.10a is satisfied, and eq 3.10b gives the following
two fixed points:

Equation 3.11b is identical to eqs 2.7 and 2.8. One of the fixed
points here is the equilibrium point (two negative eigenvalues)

The other point is a saddle point (one positive, one negative).
Associated with each fixed point are stable and unstable

manifolds35 (see also ref 19). One type of manifold is shown in
Figures 3a and b with a thick line. This is a stable manifold for
the equilibrium point and is commonly called the slow
manifold22 because it is the direction of final approach to
equilibrium, as demonstrated in Figure 3. The nature of the
manifolds leads to a global understanding of the dynamics,35

and this is demonstrated in Figure 4 for the parameters of
Figures 3a and b. These are plotted in the coordinates of
eq 2.11, which are defined for the Lindemann mechanism as

Any pair of coordinates can be used. Once again, as in section
IIC, there is an additional dimension, but trajectories move on
the surface of a sphere in 3-D space, which renders the dynamics
2-D. The dynamics, which can be projected onto a plane, fills
a circle of radius) 1, with infinity in the original coordinates
corresponding to the circumference of the circle.

Fixed points are shown as solid dots in Figure 4. Besides the
two finite fixed points discussed above, there are four “fixed
points at infinity”.35 The slow manifold is plotted as a thick
solid line, and trajectories (dashed lines) approach this curve
on their way to equilibrium or the fixed point at (0.0, 1.0), which
is another sink. The thinner solid line is a manifold from the
saddle run backward in time and is the boundary between
trajectories that are asymptotic to the equilibrium and the sink
at infinity. At the saddle point, this manifold corresponds to
the eigenvector for the negative eigenvalue. Figure 4a also

includes arrows on some of the trajectories and the slow
manifold, which indicate the direction of the flow. The slow
manifold is also a trajectory that is started at infinity from either
of two fixed points there. Figure 4a includes a dotted line that
separates “dissociative” from “associative” trajectories. Dis-
sociative trajectories are those that approach equilibrium from
the ethane-rich end (u1 values greater than the equilibrium value
of u1), and associative trajectories are those that approach from
the methyl-rich end. Becausec is higher in Figure 4b, dissocia-
tion is favored (Figure 3b), and the saddle point lies almost on
top of the equilibrium point, masking some of the features. For
example, the dotted line that separates associative from dis-
sociative trajectories cannot be observed on the scale of Figure
4b

Figure 5 makes this discussion clearer for Figure 4a. All the
lines have the same meaning as they do in Figure 4. The arrows
show the direction of the approach to equilibrium. The thinner
solid line is, along with the circular boundary, the “basin
boundary”. All trajectories inside this region approach the
equilibrium point at long time along the slow manifold.
Trajectories outside this region move to the sink at infinity. The
dotted line in Figure 5 divides the basin into two parts, as
described in the bottom two panels. The middle panel shows
that all trajectories in the region to the right of the equilibrium
point are dissociative, and the bottom panel shows that those
to the left are associative.

C. Transient and Asymptotic Behavior: Pressure, Density,
and Temperature Dependence.Equations 3.2 and 3.4 show
an explicit dependence on the density of reactive species but
no explicit dependence on pressure. Pressure dependence is part
of the parametera, which also depends on temperature. There

Figure 4. Global phase-space portraits for the systems of Figures 3a
and b. All trajectories in a basin go to the relevant sink, the dominant
one being the equilibrium point at (0.27, 0.36) in Figure 4a. The arrows
on the top panel indicate the direction of the flow. The dotted curve
divides the equilibrium basin into associative and dissociative trajec-
tories. See text for further details.
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is also a temperature dependence in the infinite pressure
association rate constantka. It is well-known thata is linearly
dependent on pressure,1,2 and thereforea can be defined as

a′(T) depends on temperature through the collision rate.
Figure 6 shows the way asymptotic and transient behavior

changes with pressure and density for a specific temperature.
The three columns in this Figure correspond to three densities,
c, as noted there. The three rows correspond to three pressures:
100, 1000, and 10 000 Torr. The parameters of the Lindemann
mechanism for the middle plot (c ) 1 × 1013 andP ) 1000
Torr) were generated from a fit to the master equation data (see
the Appendix). The other parameters in the Figure were
calculated by scalinga (eq 3.14) up or down by a factor of 10
and by adjustingc in eqs 3.2 and 3.4.

The plots in Figure 6 include a solid, thick line showing the
slow manifold, which is nearly linear. The slow manifold is
also nearly the boundary for the physically realizable region of
the phase plane, which has the equationy ) 1 - 2x1. Anything
above this line means thatx2 < 0. Also included on each plot
are three open circles indicating three initial trajectories to focus
the discussion of transients. The open circles at (0.0, 1.0) and
(0.5, 0.0) are initial conditions with pure methyl or unexcited
ethane, respectively, which would be the most common
experimental initial conditions. The open circle at (0.0, 0.0)
indicates pure excited ethane (x2 ) 0.5). The solid dots show
the equilibrium points.

The equilibrium points change withc along any row but have
no pressure dependence. The slow manifold does not appear to
change with either pressure or density, a result not assured by
anything discussed previously, although eq 3.9a shows that the
eigenvector forλ1 has a very weak dependence on pressure and
density. The slow manifold lines up along the eigenvector near
equilibrium,35 which is consistent with its lack of dependence
on pressure or density.

All plots in Figure 6 include the fast manifold as a dotted
line. One of these was already shown in Figures 4 and 5. This
manifold is generated by running a trajectory that started on
the eigenvector forλ2 near the equilibrium point backward in

time. Like the slow manifold, the fast manifold does not
deviate in any noticeable way from the eigenvector in any of
the plots. However, the fast manifold is dependent on pressure,
as indicated in eq 3.9b, because it has an inverse dependence
on a.

All panels in Figure 6 show the behavior of the three
trajectories, but only the trajectory started at (0, 0) and plotted
as a dashed line exhibits transient behavior because the other
two lie almost exactly on the slow manifold. The asymptotic
behavior of this trajectory is determined by what side of the
fast manifold it lies on compared to the position of the
equilibrium point. When the initial condition lies on the ethane-
rich side of the fast manifold, it reaches the slow manifold, and
then the ethane shows enhanced dissociation. When the initial
condition lies on the ethane-poor side of the fast manifold, the
trajectory reaches the slow manifold and then exhibits enhanced
association.

Figure 7 shows the time development of the three dashed
trajectories in the middle row of Figure 6, with the top-to-bottom
panels in Figure 7 corresponding to the left-to-right panels in
the middle row of Figure 6. Figure 7 demonstrates that the long
time scales tend to decrease with increasingc, but the short
time scales remain about the same. The effect described in the
previous paragraph is evident in Figures 6 and 7. For example,
the first panel of the middle row of Figure 6 shows that the
trajectory started at (0, 0) lies on the ethane-rich side of
equilibrium. The fast manifold in the middle row indicates that
as trajectories approach the slow manifold there is an increase
in unexcited ethane (x1) and methyl. After reaching the slow
manifold, there is a time period over which the system exhibits
a slow increase (Figure 7a) in the methyl fraction as ethane
dissociates. In the other two panels of the middle row of Figure
6, the trajectory lies on the ethane-poor side of the fast manifold.
In these cases, the trajectories reach the slow manifold and then
show slow dissociation of ethane.

The behavior exhibited in Figures 6 and 7 quantifies chemical
intuition for the Lindemann mechanism. At low pressure, excited
ethane tends to dissociate before the steady state sets in and
then takes a long time to reequilibrate, meaning the association
of methyl radicals to ethane and final equilibrium. At higher
pressures, there is enough buffer gas to relax the excited ethane,
and then the slow step is redissociation to form a final
equilibrium with a mixture of unexcited ethane (x1), excited
ethane (x2), and methyl radical.

Figures 6 and 7 display results for the Lindemann mechanism
that are common over large pressure, density, and temperature
ranges. There is little visible effect of the nonlinearity nor is
there much transient behavior for pure, unexcited ethane (x1 )
0.5) or pure initial methyl (y ) 1.0). However, there are some
situations where transients are noticeable for both of these types
of initial conditions, and Figure 8 shows two cases.

The top panel of Figure 8 shows the result forP ) 10 000
Torr, with an initial density of methyl of 3.5× 1018 molecule/
cm3 or 5% dilution of methyl in argon buffer gas. The solid
line shows the slow manifold, which is now curved because
the nonlinear term in eq 3.2b is similar in magnitude to the
linear terms. The slow manifold still lines up with the appropri-
ate eigenvector near the equilibrium point (eq 3.9a), but it curves
away from it as the methyl fraction (y) increases. This leads to
transient behavior where the pure methyl initial condition on
the top panel (0.0, 1.0) is now started off the manifold and
merges with the manifold near (0.15, 0.62) after approximately
8 ns. Because the slow manifold is generated with the methods
reported in ref 19, it does not matter whether the manifold is

Figure 5. These plots elucidate the phase-space structure of Figure
4a.

a ) Pa′(T) (3.14)
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linear or whether the manifold conforms to the steady-state
approximation, although the latter condition is attained in this
case (see next subsection). The transient shown in the top panel
of Figure 8 is rapid and less common than it is for the master
equation of the next section.

A more unusual case of transient behavior for the Lindemann
mechanism is pictured in the bottom panel of Figure 8. It is
difficult to observe transitions from unexcited to excited ethane

for the Lindemann mechanism for the temperature range studied
in ref 17 because the equilibrium populations of excited ethane
are very much lower than those for unexcited ethane and the
ratio of up to down transitions is the ratio of these two quantities
(eq 3.4). In the bottom plot of Figure 8, the temperature has
been raised (f1 ) 0.9,f2 ) 0.1), and the density has been lowered
to 1 × 1010 molecules/cm3 compared to the middle row of
Figure 6, leading to transient behavior for the pure unexcited
ethane initial condition. Dots show the trajectory, which merges
with the slow manifold near (0.45, 0.0) after approximately
0.1 µs.

Figure 6. Series of plots showing how the phase-space structure changes with pressure andc. These changes affect the behavior of transients.
Initial conditions are open circles, and dashed lines are trajectories started there. The parameters are the same as those in Figures 3-5, with the
quantitiesc anda changed to reflect density and pressure changes (see the Appendix).

Figure 7. Time dependence of the three dashed trajectories of the
middle row of Figure 6 shown from top to bottom versus left to right
in Figure 6. The open circles show the time behavior of the
phenomenological rate law for the initial condition started at (0, 0) in
Figure 6. At short times, it is inaccurate, but it is accurate at long times.
Compare this behavior to that of the trajectory started at (0.5, 0.0),
which is accurate at short time (dots).

Figure 8. Situations where transients occur for initial conditions that
are pure methyl (top plot) and pure unexcited ethane (x1 ) 0.5). When
the density is high enough, the first case occurs, and at high temperature,
the second case occurs (bottom plot).
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D. Low-Dimensional Manifolds and the Steady-State
Approximation. In the Lindemann mechanism for unimolecular
dissociation, the steady-state approximation is invoked for the
excited molecule to generate a 1-D system and extract a
pressure-dependent rate constant.36 This is done even though
the kinetics is linear and the appropriate rate constants can be
extracted from the diagonalization of a 2× 2 matrix, which
has an analytical form similar to that of eqs 3.6-3.8. It is
recognized that the rate constant is more complicated when
represented this way, and because of the vast difference between
the rate of relaxation downward (a2 in eq 3.4) versus upward
(a1), the steady-state approximation is very accurate.37 Although
there are extra terms in the Lindemann mechanism of eqs 3.2
because of the association terms, the steady-state approximation
is still very accurate.

The steady-state approximation is found by setting dx2/dt )
0 in eq 3.4b. In the (x1, y) plane, it has the following form:

Because the coefficient of the linear term is usually much larger
than the coefficient of the quadratic term and because 0< y <
1 in the physically allowed region, the steady-state approxima-
tion is nearly linear except whenc is high. Similar behavior is
demonstrated in Figures 6 and 8a for the low-dimensional
manifolds.

Figure 9a compares the steady state approximation to the 1-D
manifold of the system studied in the middle row of Figure 6.
Figure 9b compares to the high-density case in the upper plot
of Figure 8. In each plot, the 1-D manifold is drawn with a
solid line, and the steady state approximation is represented by
a series of dots. In both cases, the steady-state approximation
is nearly exact, even in the high-density case (Figure 8a) where
the low-dimensional manifold is curved in the physically
allowed region. Small differences can be observed for this latter
case when the comparison is made in a plane including excited
ethane (x2), which has very low values along the manifold.

A case where the steady-state approximation is noticeably
different than the low-dimensional manifold is shown in the
bottom panel of Figure 9. The parameters were generated from
a master equation atT ) 474 andP ) 1000 Torr withc ) 4 ×
1018 molecules/cm3 (see the Appendix). In the bottom panel of
Figure 9, the 1-D manifold is plotted as a thick curved line,
and the steady-state approximation, as a dotted line, with
trajectories shown with dashed lines. The boundary of the
physical region is a solid, straight line. The bottom plot of Figure
9 demonstrates that the low-dimensional manifold is a better
representation of the asymptotic dynamics. The situation in the
bottom panel of Figure 9 is rare for typical parameters of the
Lindemann mechanism, but it is more common for the master
equation, where there are many bins and the steady-state
approximation can be defined in many ways depending on which
bins are assumed to be in steady state.

E. Extracting Rate Constants. The traditional way to
extract rate constants from a Lindemann mechanism is to in-
voke the steady-state approximation forx2 and compare the
resulting expression to the phenomenological rate law. This is
accomplished by first inserting the steady-state expression in
eq 3.15 to get the following expression for the rate of change
of y

and then equating term-by-term with eq 3.2c to give

whereka from the previous equations has been relabeled aska
∞

and kd
∞ ≡ kf2. Equations 3.18a and 3.18b are the standard

expressions for the pressure dependence of the two rate
constants.1

An alternate method for extracting the rate constants is by
comparing the linearization in eq 2.10 with the smaller
magnitude eigenvalue of eq 3.6:

Here,λ1 is equated to dy̆/dy in eq 2.10. It is assumed that there
is an equilibrium constant along the slow manifold,Keq ) kd/
ka. The equilibrium constant is evaluated at the high-pressure
limit. Equation 3.18 indicates that the rate constant is a function
of the overall reactive density (c) and the fraction of density in
the methyl radical (y). However, eq 3.8a shows thatλ1 is a

Figure 9. Top two panels demonstrate the accuracy of the steady-
state approximation. The parameters are the same as those of Figures
3a and b. The solid curved lines show the slow manifold, the small
dots show the steady-state approximation, and the larger solid dots show
the fixed points, with the one in the physical region being the
equilibrium point. The steady-state approximation breaks down only
under severe conditions. In the bottom panel, the thick solid line shows
the slow manifold, and the dotted line shows the steady state
approximation, with the solid thinner line showing the boundary of
the physical region. The dashed lines are trajectories. The slow manifold
is a better representation of the asymptotic dynamics, but trajectories
are not attracted strongly to anything forx1 values that are less than
approximately 0.25, indicating that there is no good 1-D manifold in
that region.

kd ) kd
∞( a

a + k) (3.17a)

ka ) ka
∞( a

a + k) (3.17b)

ka )
-λ1

Keq + 4cy
(3.18)

x1 ) 1
a + k[12(a2 + k)(1 - y) - kacy2] (3.15)

dy
dt

)
akf2

a + k
(1 - y) -

2akacy2

a + k
(3.16)
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similar function of the same quantities. In the limit where the
first term in the expansion of eq 3.8a is the accurate answer
(which it is over a large range of parameters), the association
rate constant is

whereλ1 of eq 3.8a has been substituted into eq 3.18. Except
at high density, 4ka

∞cy , a + k, and eq 3.19 is equal to eq
3.17b. These equations are also equal aty ) 0.

To calculate a rate constant from eq 3.18, a value of the
methyl fraction (y) must be chosen. The natural choice is the
equilibrium value, and the left column of Figure 10 shows the
results of such a calculation. These plots are made at a series
of densities (c), which are 3× 1011, 3.5× 1017, and 3.5× 1018

molecules/cm3 from top to bottom. The last density is unrealisti-
cally high, giving a 50% dilution of the reactive species in the
buffer gas. The rate constants as a function of pressure are shown
as solid lines in Figure 10a-c, and the dots show a series of
comparisons. In the top and bottom plots, comparisons are made
to the steady-state expression (eq 3.18b), and the middle panel
compares to the much lower density rate constants in the upper
panel.

Figures 10a-c demonstrate that the steady-state approxima-
tion gives a very accurate rate constant at the equilibrium point.

It also demonstrates that the density dependence is negligible
at equilibrium. However, the rate constant does change away
from equilibrium, giving a second type of transient in addition
to the one shown in Figure 8. Figures 10d-f show rate constants
as functions ofy. All parameters are the same as they were in
the plots in the left column except for the value ofc in the top
panel, which has been increased from 3× 1011 to 1 × 1013.
These plots demonstrate that as density increases there is a
change in the rate constant away from equilibrium, something
that is not observed in the steady-state approximation. Also
included in Figures 10e and f are results from eq 3.19 (shown
as dots), demonstrating that this equation is a reasonable
correction to the constant rate constant.

Comparisons are made in Figure 7c between trajectories
calculated for the Lindemann mechanism and those calculated
for the phenomenological rate law with rate constants calculated
at equilibrium. The dots are for a simulation starting with pure
unexcited ethane (x1 ) 0.5), and the open circles are for pure
excited ethane (x2 ) 0.5). The first initial condition places the
trajectory on the 1-D manifold, and the rate constant for this
set of parameters does not vary with methyl fraction (Figure
10d), thus making the rate law essentially exact. However, if
an initial condition is started off the manifold, the phenomeno-
logical rate law is not accurate until the trajectory has reached
the manifold, as demonstrated with the open circles.

Figure 10f shows that even when the motion lies on a 1-D
manifold it is possible for the time dependence of the species
to be different than the phenomenological rate law. Figure 11
shows a trajectory for this system. The top panel shows the
trajectory in the phase plane (dashed line) as it approaches the
1-D manifold (solid line). In the bottom panel, the solid line
shows the time dependence of the trajectory and the open circles

Figure 10. Association rate constants calculated at equilibrium vs
pressure in Torr for the left column. The parameters are the same as
those of Figure 3a except that the density constant,c, changes from
top to bottom: (a)c ) 3 × 1011 cm-3, (b) 3.5× 1017, (c) 3.5× 1018.
The solid lines in (a)-(c) show results for eq 3.18. The dots in the top
and bottom panels of the column compare to the steady-state rate
constants of eq 3.17b, and the dots in the middle panel compare to the
results of the top panel. The association rate constant changes as a
function of the methyl fraction, as shown in the right column. The
panels correspond to the same parameters as Figure 3, withc fixed as
in the left column of this figure. The dots in (e) and (f) were calculated
with eq 3.19.

ka )
aka

∞

a + k + 4ka
∞cy

(3.19)

Figure 11. Trajectory for the system in the top panel of Figure 8, but
with a pressure of 1000 Torr, shown as a dashed line in the top plot.
The slow manifold is shown as a solid curve. The time development
of the trajectory is shown in the bottom plot as a solid line, and a
trajectory calculated with the phenomenological rate law, as open
circles, with the rates calculated at equilibrium (Figure 10c).
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show a trajectory modeled by the rate law. This plot demon-
strates that even after the trajectory reaches the manifold its
time-dependent behavior is not accurately modeled by the
phenomenological rate law.

F. Summary. This section has shown that a geometric
investigation of the Lindemann mechanism provides a detailed
understanding of the global dynamics, including asymptotic and
transient behavior. For example, it provides a means of
partitioning the trajectories into dissociative and associative, thus
quantifying intuition concerning vibrational relaxation versus
dissociation or association as pressure changes. This task is
accomplished with the fast manifold. Whereas the slow manifold
is accurately modeled by the steady-state approximation under
most circumstances, there does not appear to be an analogous
way to generate the fast manifold other than with the present
approach.

This section has highlighted some of the dynamics for the
Lindemann mechanism with association using examples chosen
to preview the master equation studied in the rest of the paper.
The methods presented here were used to study the master
equation with association, particularly those methods used to
calculate association rate constants. In particular, it will be
shown how the method of extracting rate constants described
in section IIIE gives flexibility in avoiding numerical errors
associated with small eigenvalues of matrices.

IV. Master Equation

It is well known that the Lindemann mechanism is not a
complete picture of the pressure dependence of unimolecular
reactions,38 so the geometric analysis of the previous two
sections is extended to the master equation, which is more
accurate. Although it is difficult to picture some of the results
shown in the previous two sections for the master equation,
because of its higher dimensionality, it is possible to implement
many of the methods presented in sections II and III. Others,
such as the basins described in Figure 5, still provide a means
of thinking about the phase space structure of the full master
equation, which is similar to that of the Lindemann mechanism.
Specifically, in this section, we will discuss the methyl recom-
bination reaction whose pressure dependence has been the
subject of many experimental39-47 and theoretical studies.3,17,48-50

A. Rate Equations and Constants of the Motion.A master
equation for the processes pictured in eq 2.2 can be written as2,3

where, to be consistent with ref 51, densities are used instead
of concentrations. These equations describe the discrete form
of the integro-differential master equation.1,2 The subscripts in
eqs 4.1 and 4.2 refer to the ro-vibrational levels of ethane in
terms of a set ofm bins. There can be transitions between the
bins, whose rates are described by the products of the transition
momentsPij and the collision frequencyω. The buffer gas that
collides with ethane is argon. There are bins whose energies
are above the dissociation energy, and these can lead to
formation of two methyl radicals with the rate constantki. There
is also a termRi(t) that describes the formation of an ethane
molecule in bin i from two methyl radicals, which will be
explicitly shown below. For bins below the dissociation energy,

ki and Ri are zero. ThePij values are calculated via the
exponential gap model.1,2 A useful characterization of the
strength of this transition moment is the average energy
transferred per downward transition,1,2 which is labeled∆Ed in
the remainder of the paper.

Because thePij values are subject to microscopic reversibil-
ity,1,2 the expressions in eqs 4.1 and 4.2 can be summed to reveal
a constant of the motion that is similar to that in eq 2.4

where the superscripts have been dropped andFd refers to the
density of the methyl radicals. After collecting terms in eqs 4.1
and 4.2 and dividing bycF, these equations can be rewritten as

with ka
∞ referring to the infinite pressure limit of the associa-

tion rate constant and the termRi(t) now defined with

with fi referring to a Boltzmann population in bini.52 The g’s
are defined as

and

For bins below the dissociation energy,φi ) 0 becauseki ) 0.
In all calculations reported here, the master equation is divided

into 531 bins of 100 cm-1 each. Because the dissociation energy
for ethane from ref 17 is 30 613 cm-1, the last 225 bins are
above the dissociation energy. The total population in these bins
is defined as

Although it is straightforward to integrate all components of
eqs 4.4 and 4.5, the very slightly reduced system of eq 4.4 is
actually integrated withgd calculated from eq 4.8. It will also
be necessary to examine the Jacobian matrix for eq 4.4 under
this constraint. The elements of the Jacobian are

whereF refers to the right-hand side of eq 4.4. Equation 4.4
demonstrates that for bins above the dissociation energy, where

dFi
C2H6

dt
) ω∑

j)1

m

Pij Fj(t) - ωFi
C2H6(t) - ki Fi

C2H6 + Ri(t) (4.1)

dFCH3

dt
) 2∑

i)1

m

ki Fi
C2H6 - 2∑

i)1

m

Ri (4.2)

cF ) 2∑ Fi + Fd (4.3)

dgi

dt
) ∑

j

Rij gj - ki gi + ka
∞cFφi gd

2 (4.4)

dgd

dt
) 2∑

i

ki gj - 2ka
∞cFgd

2 (4.5)

φi )
ki fi

∑
i

ki fi

(4.6)

gi )
Fi

cF
(4.7a)

gd )
Fd

cF
(4.7b)

2∑
i

gi + gd ) 1 (4.8)

g* ) ∑
Ei >Ed

gi (4.9)

Jij )
∂Fi

∂gj
) Rij - 4ka

∞cFφi gd (4.10)
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φi is nonzero, there is a dependence ongd that is consistent
with that in eq 3.5.

B. Global Dynamics. The global dynamics of the master
equation is similar to that of the Lindemann mechanism in
section III, and the treatment here follows that of section IIIA
without the explicit calculation of basin boundaries that are
difficult to define because of the high dimensionality of the
system.

1. Fixed Points. There are two fixed points away from
infinity, as there were in the phenomenological rate law of
section II and the Lindemann mechanism of section III. By
defining the reduced Boltzmann distribution values for the bin
populations as

and substituting into eq 4.4, it follows that

because there is microscopic reversibility of theRij parameters
in eq 4.4. For bins whose energies are above the dissociation
energy,

By setting the left sides equal to zero in eq 4.13 and summing
over i, the following is obtained:

This expression results from eqs 4.6 and 4.8 and the definition
of kd

∞. The standard result for the value of the methyl radical at
the fixed points (e.g., eq 3.11b) is obtained:

Once again, the minus sign in eq 4.15 refers to a saddle point,
and the plus sign, to the equilibrium point; the saddle point lies
on the ethane-rich side of equilibrium. In all our calculations,
the saddle point has one positive real eigenvalue and 530
eigenvalues that have negative real parts.

The positions of the equilibrium and saddle points are shown
as a function of temperature for two different values ofcF in
Figure 12. Because the equilibrium constant favors ethane
formation at lower temperature, the saddle and equilibrium
points lie very close together there. At higher temperature, the
thermodynamics favors dissociation of ethane to methyl radicals,
and the saddle and equilibrium points then lie far apart.

Although it is difficult to picture the multidimensional phase
space out to infinity, as was done in Figures 4 and 9, fixed
points at infinity can be found using the procedure described
in chapter 3 of ref 35. In the coordinate system of eq 3.13, the
saddle point at infinity is

with φi defined in eq 4.6. In all the cases studied here, this saddle
point lies in the basin of the equilibrium point.

2. Low-Dimensional Manifolds. The final approach to
equilibrium for the master equation is a 1-D manifold, as it was
in section III for the Lindemann mechanism. The 1-D manifold
is the nonlinear analogue20 of the eigenvector whose eigenvalue
is used to generate rate constants for the linear master equa-
tion.1,2 Because there are once again two approaches to
equilibrium, the 1-D manifolds are generated in two pieces. The
ethane-rich side of the manifold is generated with the saddle-
point method of ref 19 using the saddle points pictured in Figure
12. The dynamics associated with these saddle points was
referred to as “idealized manifold dynamics” in ref 19. The
methyl-rich side of the manifold is generated from the saddle
point at infinity that is described in eq 4.16. Figure 13 shows
the results of these procedures and compares the methyl-rich
portion of the manifold to the predictor-corrector method of
ref 19. Because the two methods give essentially the same result,
this portion of the manifold is generated from the saddle point
at infinity in the rest of the paper.

Figure 14 illustrates the dynamics associated with the 1-D
manifold. The top panel shows the (gd, g1) plane and the bottom,
the (gd, g*) plane. The 1-D manifold is shown as a thick solid
line, and several trajectories are shown as dashed lines. The
equilibrium point [(gd, g1, g*) ) (0.405, 4.46× 10-5, 1.20×
10-6)] is shown as a large open circle in both panels. Figure 14
demonstrates that all trajectories merge with the manifold on
their way to equilibrium. The bottom panel of Figure 14 shows
that the 1-D manifold is nonlinear, although it is close to linear
for the projection shown in the top panel.

The behavior of two of the trajectories is illustrated by four
sets of symbols. One of these trajectories was started at (gd, g1,

Figure 12. Positions of the equilibrium and saddle points for the master
equation shown at a range of temperatures for two values ofcF (eq
4.3). The open circles show the equilibrium points, and the×’s show
the saddle points, which are in the nonphysical region of phase space
(gd < 0).

gi ) γfi (4.11)

dgi

dt
) 0 for Ei < Ed (4.12)

dgi

dt
) -γki fi + ka

∞cFφi gd
2 (4.13)

0 ) -γKeq + cF(1 - 2γ)2 (4.14)

gd ) 1
cF

(-Keq

4
( xKeq

2

16
+

cFKeq

2 ) (4.15)

ui ) 0, Ei < Ediss (4.16a)

ui )
-φi

x1 + ∑
j

φ j
2

, Ei > Ediss (4.16b)
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g*) ) (0.6, 0.2, 0.0) and the other, at (gd, g1, g*) ) (0.4, 0.0,
0.3) with g350 ) 0.3. Symbols describe the following time
ranges: solid dots, 50f 120 ns;×’s, 0.21 f 0.91 µs; open
circles, 3.1f 8.1 ms; triangles, 0.011f 0.091 s. The second
trajectory has the same order of symbols, but the time ranges
are 1f 12 ns; 22f 92 ns; 0.11f 1.1 µs; and 1f 5 ms.
Figure 14 shows that the open circles and the triangles lie on
the manifold for the first trajectory and the triangles lie on the
manifold for the second trajectory. These symbols indicate that
trajectories typically take∼1 µs to reach the manifold and tens
of milliseconds to get within a few percent of equilibrium for
cF ) 1 × 1013 molecules/cm3.

More information can be gleaned about the dynamics for the
two trajectories. The total fraction for the bins below dissociation
is 1 - gd - g*. Thus, the symbols indicate that the first
trajectory that starts atgd ) 0.6 and g1 ) 0.2 initially relaxes
with little dissociation (solid dots and×’s) over the course of
∼1 µs and reaches the manifold. Along the manifold (open
circles and triangles), the populations in the bins above
dissociation remain nearly constant as the system approaches
equilibrium, whereas there is considerable recombination, with
gd decreasing from 0.6 to 0.4. Becauseg* remains nearly
constant, it can be inferred that the g values for the bins below
dissociation increase by 0.1, with the fraction in the ground-
state bin shown on the top panel. All trajectories that reach the
manifold on the methyl-rich side of equilibrium exhibit this
behavior.

Trajectory 2 in Figure 14 that started atgd ) 0.4 andg* )
0.3 exhibits the following behavior. Over the first 12 ns (solid

dots), there is almost exclusive dissociation of ethane into
methyl. The×’s and open circles indicate that from 0.3 to 1.1
µs there is considerable relaxation from the excited-state bins
into those below dissociation, with little additional dissociation.
After the trajectory reaches the 1-D manifold, it exhibits the
same behavior as the first trajectory, although the final approach
to equilibrium is not shown.

The symbols in Figure 14 demonstrate that there are stages
to the process, indicating a dimensional cascade as suggested
in ref 23: before the phase space of the master equation shrinks
to the 1-D manifold and eventually to the zero-dimensional
equilibrium point, it may shrink through a series of higher-
dimensional manifolds.

3. Investigation of Transient Behavior for the Experi-
mental Initial Conditions. Although Figure 14 exhibited
interesting transient behavior on the way to the 1-D manifold,
the experimental initial conditiongd ) 1 exhibited none because
it lies directly on the 1-D manifold. However, because relaxation
occurs in a series of steps, transients for this initial condition
often occur, unlike that for the Lindemann mechanism, where
relaxation is a single-step process. Such transient behavior is
most common for the master equation at high density and
relatively small values of∆Ed.

Figure 15 shows two of these cases, with the top two panels
showing projections of the phase space onto thegd/g1 plane and
the bottom two panels showing the time development. The

Figure 13. One-dimensional manifolds have two pieces, one on the
methyl-rich side of equilibrium (top panel) and the other, the ethane-
rich end. The top panel shows the generation of the manifold with two
methods, the saddle point and the predictor-corrector methods (dashed
lines), which agree. The saddle point is at∞, which demonstrates that
the point gives accurate manifolds, and is used throughout the rest of
the paper. The bottom panel generates the manifold from the finite
saddle point, the ones shown with×’s in Figure 12.

Figure 14. Set of trajectories (dashed lines) shown for the master
equation, at the values of the parameters in the title of the plot. Two
projections are shown, withg* defined in eq 4.9. The 1-D manifold is
plotted as a solid line, and the plots demonstrate that trajectories merge
with the manifold. Portions of two trajectories are shown as a set of
symbols. The first starts at (gd, g1, g*) ) (0.6, 0.2, 0.0), and the second,
at (0.4, 0.0, 0.3). The four time ranges for trajectory 1 areb, 50 f
120 ns;×, 0.21f 0.91µs; O, 3.1f 8.1 ms;4, 0.011f 0.091 s. The
four time ranges for trajectory 2 are:b, 1 f 12 ns;×, 22 f 92 ns;
O, 0.11f 1.1 µs; 4, 1 f 5 ms.
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phase-space pictures demonstrate that the experimental initial
conditions lie away from the manifold, with the trajectory on
the top panel taking∼3 µs to reach the manifold. The bottom
two panels show the time development of the experimental
initial conditions and compares them to the phenomenological
rate law with the constants calculated in section IVC (dashed
lines). These panels demonstrate that transients in phase space
may (bottom panel) or may not (third panel) indicate the
breakdown of the phenomenological rate law.

4. Dynamics on the Manifold.Because the 1-D manifolds
of section IVB.1 describe the asymptotic motion and are
analogous to the eigenvectors for the linear master equation,20

they provide the means to test the approximations that were
used to calculate association rate constants in ref 17. These
approximations were developed in ref 3, are implemented in
the program Variflex,18 and rely on several important assump-
tions. The first assumption is that there is a state (“cemetery
state”) in ethane that divides the relaxation in the following
way: there are transitions from states above the cemetery state
to those below it, but there are no transitions in the opposite
direction. It is further assumed that all bins below the cemetery
state have a Boltzmann distribution relative to each other, with
the temperature of the distribution being the bath temperature.
The final assumption is that the bins above the cemetery state
are in the steady state, meaning that the derivatives on the left-
hand side of eq 4.4 are zero.

Figure 16 follows the vibrational distribution (dashed lines)
along the manifold and is typical for the cases studied here.
Figure 16 investigates the same system as do Figures 13 and
14, which has its equilibrium point atgd ) 0.405. The top six

panels are on the ethane-rich side of equilibrium, and the bottom
six are on the methyl-rich side. The manifold is followed as a
function of gd, which is labeled on each plot. The vibrational
distribution is compared to a Boltzmann distribution, plotted
as a solid line. The probabilities in the Boltzmann distribution
sum to 1- gd, which is the fraction of ethane present.

Figure 16 demonstrates that as equilibrium is approached the
vibrational distribution becomes closer to a Boltzmann distribu-
tion. It also shows that the lower-energy bins are much closer
to equilibrium than are the higher-energy bins, whose popula-
tions increasingly deviate from a Boltzmann distribution. On
the ethane-rich side of equilibrium, the deviation is on the low
side of the Boltzmann distribution, and on the methyl-rich end,
it is higher than the Boltzmann distribution. Because the sum
of the probabilities is 1- gd, deviations in the higher-energy
bins are compensated for by deviations in the lower-energy bins
that are similar in magnitude but are much smaller relative to
the values ofgi for the bins.

Figure 17 tests the steady-state assumption for the system of
Figures 13, 14, and 16, and Figure 18 tests it for one of the
systems in Figure 15, which showed transient behavior in the
top panel of that Figure. Both plots indicate that the steady-
state approximation gets better as equilibrium is approached at
gd ) 0.405 in Figure 17 andgd ≈ 0.0 in Figure 18. In Figure
17, dgi/dt is small for many bins below dissociation at bin 307
but has noticeably smaller values at and above dissociation. In
Figure 18, the values are never small away from equilibrium
until the dissociation threshold is reached, and then there is a
sharp drop. Because of the relative magnitude of dgi/dt in Figure
17, the steady-state approximation is probably valid well below
the dissociation threshold for that case away from equilibrium,
but for the case in Figure 18, the approximation is not valid
below the threshold, except close to equilibrium.

The case shown in the second and fourth panels of Figure
15 showed significant transient effects. Figure 19 examines the
vibrational distribution for this case. All panels examine the
methyl-rich end of the manifold, with equilibrium atgd = 0.
The first and third rows repeat the analysis of Figure 16, and
the second and fourth rows, the analysis of Figures 17 and 18.
These analyses demonstrate that even the lowest bins are
significantly different than a Boltzmann distribution away from
equilibrium (gd ) 0.336) and that the steady-state approximation
is poor even atgd ) 0.036 as the manifold approaches
equilibrium. The system studied in Figure 19 will be revisited
below in Figure 21, where it will be shown that the local rate
constant changes withgd and is consistent with the breakdown
of the methods in ref 17.

C. Rate Constants.Rate constants can be estimated in the
same manner as they were in section IIIE using the Jacobian
matrix whose elements were shown in eq 4.10. Because the
Jacobian depends on the density of the methyl radicals, it will
not be constant, although it will be shown below for dilute cases,
which are typical of experiments for methyl recombination,39-47

that the rate constants are constant over the whole domain, which
is something that could be observed analytically in section IIIE
for the Lindemann mechanism. It will be shown in this
subsection how to generate the rate constant for a wide range
of temperatures and pressures, as reported in ref 17, in a manner
that does not require the approximations used there. For
nondilute cases, rate constants are dependent ongd for a given
cF, and there is also a dependence of the rate constants oncF,
as discussed below.

1. Trends in Rate Constants.By analogy to eq 3.18, the
rate constants are calculated from the largest eigenvalue of the

Figure 15. Transient behavior demonstrated for the experimental initial
conditiongd ) 1.0 (pure methyl) because the 1-D manifold does not
cross thegd axis at (1.0, 0.0) in the top two panels. The top panel
shows the case atT ) 474 K, and the second,T ) 1350 K, with the
trajectories started at the experimental initial conditions shown as a
set of dots in the top panel and a dashed line in the second panel. The
trajectory in the top panel still follows the phenomenological rate as
demonstrated in the third panel, but the trajectory atT ) 1350 K does
not (fourth panel, compare the dashed line with the solid line). The
text has further details.
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Jacobian matrix, whose elements are shown in eq 4.10 (because
the matrix is calculated with the constraint of eq 4.8, all of the
eigenvalues are negative and the largest eigenvalue is the “least
negative”). In the notation of this section, the rate constant is
written as53,54

Once again, the rate constant is a function of the methyl fraction.
For low cF, this does not pose a problem for the Lindemann

mechanism for the reasons discussed in section IIIE. Figure 20
shows the results for a dilute case of 10 ppm at 1000 Torr,
which has a slightly higher density than that of Figure 14. The
top panel shows the largest eigenvalue as a function of the
methyl fraction,gd, and the bottom two panels show the next
largest eigenvalue and the lowest eigenvalue, respectively. These
demonstrate that the only eigenvalue that changes appreciably
with the methyl fraction is the largest one, which increases
approximately linearly. Because the second term in the denomi-
nator of eq 4.17 is much larger than the first, there is essentially

Figure 16. Vibrational distribution along the manifold, parametrized by the values ofgd, which are shown on each panel. The solid lines in the
panels show the Boltzmann distribution, and the dashed lines show the actual vibrational distributions. Equilibrium is atgd ) 0.405; the top six
panels are on the ethane-rich side of equililbrium, and the bottom six panels, on the methyl-rich side. These panels demonstrate that as the system
approaches equilibrium along the 1-D manifold it becomes more Boltzmann-like. On the ethane-rich side, the populations of high-energy bins are
smaller than Boltzmann populations, and on the methyl-rich side, they are larger.

Figure 17. Test of the steady-state approximation. The value of the time derivative on the left-hand side of eq 4.4 is plotted for the vibrational
distribution along the low-dimensional manifold parametrized by the value ofgd.

ka )
-λ1

Keq + 4cFgd
(4.17)
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a linear dependence of the denominator with respect to the
methyl fraction. Because Figure 20 shows thatλ1 also has a
linear dependence, the linear dependence of the denominator is
canceled by the linear dependence of the numerator in eq 4.17,
and the third panel in the left column of Figure 21 demonstrates
that the rate constant is constant across the entire phase space.
The other panels in the left column of Figure 21 show that the
rate constants are also constant across the full phase space for
other values of∆Ed.

The situation is different for less dilute cases. The right
column of Figure 21 shows a case where dilution is 5%. The
second panel of this column shows the same case as shown in
the second and fourth panels of Figure 15. The plots in the right

column of Figure 21 demonstrate that the rate constant need
not be constant when the density of the reactive species is not
very high. Comparison of the third panel in the right column
and the second panel of Figure 15 demonstrates that even after
the trajectory has reached the 1-D manifold the rate constant is
not constant. This result is interesting because after the system
has reached the 1-D manifold it should be described by a 1-D
rate law. This idea will be further explored in section V.

2. Rate Constants Near Equilibrium. A natural way to
address the problem of changing rate constants is to calculate
them at or near equilibrium. The top three panels of Figure 22
outline this procedure for the case in the third panel of the right
column of Figure 21 but at several different values ofcF, which

Figure 18. These panels give the same information as does Figure 17 but for a different set of master equation conditions.

Figure 19. The case in the second and fourth panels of Figure 15 is studied using the same measures as in Figures 16-18. These plots demonstrate
that this case is much further from a Boltzmann distribution than the one in Figure 16 and is considerably further from the steady state than are
those in Figures 17 and 18.
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is 3.6× 1017 molecules/cm3 in Figure 21. These panels show
that λ1 (top panel) andgd at equilibrium (second) change in

such a manner as to leave eq 4.17 constant. However, the
situation in the top three panels of Figure 22 is not always
realized. The bottom panel of Figure 22 shows the case forT
) 474 K whereka is far from constant as a function of methyl
density and also far from the actual rate constant that is shown
as a dotted line. The reason this case fails is thatλ1 is so small
that the diagonalization routine is unable to accurately calculate
it, and more sophisticated procedures need to be employed.55,56

Equation 4.17 would give accurate answers ifλ1 were correctly
calculated becausegd is very small and would compensate for it.

The problem of small eigenvalues plagues the calculation of
association rates. A natural procedure for calculating them would
be to calculate the dissociation rate constant, which is straight-
forward depending on the diagonalization of the matrix,1,2 but
as is the case with the system studied here, the dissociation rate
constant is so small atT ) 474 K that it is difficult to extract,
and other procedures are used that involve approximations3 or
more sophisticated techniques are used to extract the largest
eigenvalue for the dissociation rate constant.55,56

3. Beating the Small Eigenvalue Problem.The top panels
of Figures 20 and 22 demonstrate that the largest eigenvalue of
the matrix of eq 4.10 changes with the density constantcF, and
we employ this change to beat the small eigenvalue problem.
First, eq 4.17 is rewritten as

wheregd is fixed in eq 4.18 atgd
0, which here is taken to be

0.05, and λ1 is fixed at λ1
0, here taken to be-0.1. The

Figure 20. Eigenvalues of the Jacobian of eq 4.10 shown as a function
of gd. The top panel shows the largest eigenvalue, the second panel,
the next largest, and the bottom panel, the smallest. The largest
eigenvalue varies approximately linearly withgd, and the others are
nearly constant.

Figure 21. Association rate constants calculated using two different
values ofcF (eq 4.17) and plotted as functions ofgd. The left column
repeats the case in Figure 20, and the right column shows a much less
dilute case at the same pressure. Although the left column shows that
the association rate constant is in fact constant, the right column shows
otherwise.

Figure 22. The top three panels demonstrate that rate constants can
be extracted at equilibrium by diagonalizing the matrix in eq 4.17. The
top panel shows the largest eigenvalue, the second panel, the equilibrium
values of gd, and the third panel,ka as a function ofcF. These
demonstrate that the rate constant is constant over a large range of
density when calculated in this manner. However, this result cannot
always be attained because of numerical error, as demonstrated in the
bottom panel, whereka is not constant and is considerably in error when
compared to the correct value shown as a dotted line.

cF )
-(λ1

0 + kaKeq)

4kagd
0

(4.18)
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magnitude ofλ1 is sufficiently large that the numerical problem
encountered in the bottom panel of Figure 22 is avoided. The
value ofgd is acceptable because it is near equilibrium at high
density, where difficulties arise (e.g., the right column of Figure
21). Although it is far from equilibrium at low density, there
are no problems there.

The high-pressure limit of eq 4.18 is

All quantities are known, andcF
∞ can be calculated for fixed

values ofλ1 and gd. Estimates ofka at high pressure can be
made from eq 4.19. A few calculations at a series of high
pressures allowka to be extrapolated in eq 4.18 to lower
pressures, and values ofcF can be chosen to permitλ1 to be
approximately-0.1 when diagonalizing the Jacobian matrix of
eq 4.10. The actual value ofλ1 from the diagonalization is
always substituted into eq 4.17 to obtain the true value ofka.
This procedure is continued to lower pressure, with the last
several values ofka that are calculated in the current pressure
range used to extrapolate to lower pressure to ensure thatλ1 is
near-0.1. The success of this procedure is outlined in Figure
23. The top panel shows that the extrapolation procedure leads
to a series of diagonalizations withλ1 near-0.1. The bottom
panel then shows a series of rate constants calculated fromλ1

and eq 4.17.
This procedure allows the calculation ofka over a large

pressure and temperature range using matrix diagonalization,
as demonstrated in Figure 24. The rate constants are calculated

at five values ofEd. From bottom to top in each panel, they are
25, 100, 200, 400, and 800 cm-1. The dots in each plot are
values calculated in ref 17, and they demonstrate excellent
agreement.

V. Rate Law Along the 1-D Manifold

Although the results in the previous section reproduced those
of ref 17, they are somewhat unsatisfactory. The rate constants
calculated in Figure 24 are near the equilibrium values because
Figure 21 showed that for higher densities (right column) the
association rate constant varied with position, something that
is not surprising because the definition in eq 4.17 includesgd

and λ1, which depends ongd. This section describes a more
rigorous method for deriving a rate expression, although the
method is perhaps more difficult than those described in section
IV and methods used elsewhere.

We demonstrated in section IVB that the dynamics reaches
a 1-D manifold rather quickly and then proceeds to equilibrium
along the manifold. This result suggests that a 1-D rate law
should be sufficient to describe the association/dissociation
process along the manifold, and the following are investigated:

Feq
CH3 refers to the equilibrium methyl density, andgd

eq refers
to the scaled version of this quantity (eq 4.7b). The quantity
dgd/dt is calculated along the 1-D manifold using the master
equation of section IV and is fit to the right-hand side of eq
5.1b. Thebn values and dgd/dt depend oncF.

Besides providing a density dependence, eq 5.1 also includes
terms that are of a higher order than those of the standard rate
law of eq 2.3. However, for the cases studied here, it is necessary
to include only linear and quadratic terms as demonstrated in
the right column of Figure 25, which shows results atT ) 1350
K for three values of∆Edown and at several different densities.
The left column of Figure 25 presents the methyl-rich ends of
the 1-D manifolds, and trajectories flow from right to left as
demonstrated in the top panel of Figure 14. The right column
of Figure 25 shows a scaled version of the rate from eq 5.1b:

rs is negative, with the absolute value shown in Figure 25. The
scaled progress variable is defined as

with gd
max equal to the value ofgd on the manifolds as they

cross into the physically allowed regions, as shown on the plots
in the left column, ranging from less than 0.2 forcF ) 1018 in
Figure 25a to approximately 1.0 for all of the lowcF cases in
the left column (manifolds are started in nonphysical regions,
as described in section IVB).

The right column of Figure 25 includesrs as a function ofz
plotted as a solid line. The dots in the plots show linear least-

Figure 23. By using the prescription outlined in the text,cF can be
adjusted so that the maximum eigenvalue falls near-0.1, as demon-
strated in the top panel. These eigenvalues lead to the calculatedka-
values that are shown in the bottom panel.

cF
∞ )

-(λ1
0 + kd

∞)

4ka
∞gd

0
(4.19)

dFCH3

dt
) ∑

n)1

an(F
CH3 - Feq

CH3)n (5.1a)

dgd

dt
) ∑

n

bn(gd - gd
eq)n (5.1b)

rs ) 1

[cF(gd - gd
eq)]

dgd

dt
(5.2)

z )
gd - gd

eq

gd
max - gd

eq
(5.3)
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square fits, which are very good, and indicate that only the linear
and quadratic terms need be included in eq 5.1b. Under this
condition, eq 5.1b can be equated to eq 2.5a to calculate the
rate constants for association and dissociation:

Theb’s are the fitting coefficients from eq 5.1b. The superscripts
on the left sides of eqs 5.4b and 5.4c indicate that there are two
ways to definekd when making a term-by-term comparison
becausekd is the coefficient for both the constant and linear
terms in eq 2.5a.

Figure 26 presents the values ofka, kd
(1), andkd

(2) in (a), (b),
and (c), respectively. Included on each panel are points for seven
values ofcF and four values of∆Ed. Also included as solid
lines are the values ofka and kd from ref 17. Figure 26a
demonstrates thatka is nearly constant but is slightly lower at
high density and somewhat higher at low density. It would be
possible to include this density dependence in eq 5.1b, but that
is beyond the scope of this paper.

Although theka values in Figure 26 agree with the calculations
in section IV and ref 17, difficulties arise forkd in the bottom
two panels and indicate that the rate law of eq 5.1b may be a
better representation of the association/dissociation process than
is the usual phenomenological rate law of eq 2.5a. However,
the expansion coefficientsb1 and b2 in eq 5.4 have the same
sign. Althoughb2 remains nearly constant,b1 changes in a
fashion similar to that ofgd

eq; the subtraction in eq 5.4 may
make thekd values prone to numerical error, and some caution
should be exercised in making conclusions on the basis of
changes inkd values in Figure 26. Nevertheless, the fact that
theka values are nearly constant in Figure 26 and change in the
right column of Figure 21 suggests that the assumption that there
is a good equilibrium constant along the full manifold (see eq
4.17) may not be valid.

To probe this idea further, eq 5.4 is rewritten to give

with b2 substituted from eq 5.4a. By substituting

into eq 5.5, the following is obtained:

which reduces to the standard expressionkd/ka ) Keq only when
kd

(1) ) kd
(2).

This suggests that there is no well-definedKeq along the full
length of the 1-D manifolds for the high-density cases where
in Figure 26kd

(1) * kd
(2), although we emphasize again that there

is a caveat to this conclusion, as discussed above.

VI. Discussion and Conclusions

A numerical investigation of dissociation/association kinetics
has been undertaken in this paper from a geometrical perspec-
tive. It was shown how the geometry of phase space varied with
temperature, pressure, and density of reactive species for the
phenomenological rate law, a Lindemann mechanism, and a
master equation describing the recombination of two methyl
radicals to form ethane and the dissociation of ethane to form
two methyl radicals.

It was shown that a good way of investigating the asymptotic
motion of this nonlinear problem was by studying the approach
and subsequent motion on a 1-D manifold, which is the
nonlinear analogue of the appropriate eigenvector of the linear
master equation.1,2 For the lower-dimensional Lindemann
mechanism, the investigation of the 1-D slow manifold was
part of a larger analysis of the global phase-space structure of

Figure 24. Using the prescription in the text, rate constants can be calculated over a large range of temperature and pressure, as indicated in these
plots. The solid dots compare the results here to those calculated in ref 17 and demonstrate that agreement is excellent.

ka )
-0.5b2

cF
(5.4a)

kd
(1) ) -b1gd

eq + b2(gd
eq)2 (5.4b)

kd
(2) ) -b1 + 2b2gd

eq (5.4c)

1
ka

kd
(1) - gd

eqkd
(2)

1 - gd
eq

)
2cF(gd

eq)2

1 - gd
eq

(5.5)

2cF(gd
eq)2

1 - gd
eq

)
2cF

2(gd
eq)2

cF(1 - gd
eq)

)
(FCH3

eq )2

FC2H6

eq
) Keq (5.6)

1
ka

kd
(1) - gd

eqkd
(2)

1 - gd
eq

) Keq (5.7)
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the association/dissociation problem, which set the stage for the
more realistic and much higher dimensional master equation,
where a less thorough mapping of phase space is possible.
Although not all of the analysis used for the much lower
dimensional problem could be applied to the master equation,
it suggested the need for some caution. For example, before
using the methods for generating the 1-D manifolds on the
methyl-rich side (Figure 13), it had to be established that the
saddle point at infinity (eq 4.16 in section IV) was in the
basin of attraction of the equilibrium point, something that
was discussed in detail for the Lindemann mechanism (section
IIIB).

The investigation of the phase-space structure of the Linde-
mann mechanism and the master equation led to a new method
of calculating association rate constants, which was presented
in section IVC. It was shown there that association rate constants
could be calculated over large temperature and pressure ranges
and were in excellent agreement with those calculated previously
in ref 17 without using any approximations. However, it was
demonstrated that the rate constants varied with position in phase
space when the density was high or when∆Ed was low.

The variation of the rate constant with position is perhaps
not surprising, because the master equation is nonlinear, but is
nevertheless disconcerting and led to what we view as a more
rigorous approach in section V. A new rate law for the
association/dissociation process was developed there. It was
shown that a quadratic form of eq 5.1b was sufficient to model
a set of simulations atT ) 1350 K and that association rate
constants, which varied slightly with density, could be calcu-
lated. These results, in conjunction with earlier ones on the
change in the local rate constant, suggested that there may be

no well-defined equilibrium constant along the length of the
1-D manifold as density increases, although there is one at
equilibrium.
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Appendix: Generating a Lindemann Mechanism from
the Master Equation

The Lindemann mechanism studied in section III laid the
groundwork for the methods used for the master equation in
section IV, and it was thus desirable to have reasonable
parameters for the mechanism. The three parameters for the
Lindemann mechanism (eq 3.4) area, k, and f1, with f2 fixed
by f1 + f2 ) 1. Parameters were generated by first diagonalizing
the Jacobian matrix of eq 4.10 at several values ofgd between
0 and 1 (the minimum and maximum values), and the maximum
eigenvalue of the Jacobian of the master equation was fit to a
quadratic of the form

The parametersb1 andb2 were then equated to the corresponding
two terms in the expansion ofλ1 in eq 3.8a, which was generated
by expanding the denominator

Figure 25. Several 1-D manifolds are shown in the left column at a
series ofcF values marked on the plots forT ) 1350 K, P ) 1000
Torr, and various∆Ed values labeled on each panel. These demonstrate
that ascF gets larger the manifolds become more nonlinear. The right
column shows the values of|rs|, defined in eq 5.2, as a function of the
progress variablez, defined in eq 5.3. The dots show a fit to the form
in eq 5.1b with a maximumn of 2. The dots show thatrs is nearly
exactly linear.

Figure 26. Rate constants can be estimated from the fits in the right
column of Figure 25, as described in eqs 5.4a-5.4c. The top plot
demonstrates thatka (dots and dotted line) varies only slightly as a
function of cF and compares very favorably with the rate constants
calculated in ref 17, shown as the solid lines. Thekd values are much
worse, as demonstrated in the bottom two panels. The second panel
showskd calculated with eq 5.4b, and the bottom panel,kd calculated
with eq 5.4c. The text has further details.

λ1 ) b0 + b1gd + b2gd
2 (A.1)

λ1 =
-a(4kacy + kf2)

a + k (1 -
4kacy

a + k) (A.2)
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giving

Becausec is fixed in the simulation andka is known, these
equations definea and k. The Boltzmann factors are defined
from the requirement that the infinite pressure dissociation rate
constant must equalkf2.

The parametersa, k, andf1 used in most of the calculations
were derived from a Jacobian matrix atT ) 1350,cF ) 1 ×
1013, P ) 1000 Torr, and∆Ed ) 200 cm-1. Other parameter
sets were generated from this set. Pressure was “adjusted” by
scalinga as described in eq 3.14, andc was chosen from the
values quoted in the text. The only exceptions to this procedure
are for the calculations presented in the bottom panel of Figure
8, wherek was scaled by a factor of 0.001 andf1 and f2 were
chosen to be 0.9 and 0.1, respectively, and for those presented
in the bottom panel of Figure 9 whose parameters were
calculated from the diagonalization of the Jacobian matrix for
the master equation atT ) 474 K, cF ) 1 × 1018, P ) 1000
Torr, and∆Ed ) 100 cm-1.

References and Notes

(1) Gilbert, R. G.; Smith, S. C.Theory of Unimolecular and Recom-
bination Reactions; Blackwell Scientific: Oxford, U.K., 1990.

(2) Holbrook, K. A.; Pilling, M. J.; Robertson, S. H.Unimolecular
Reactions, 2nd ed.; Wiley: Chichester, U.K., 1996.

(3) Robertson, S. H.; Pilling, M. J.; Baulch, D. L.; Green, N. J. B.J.
Phys. Chem.1995, 99, 13452.

(4) Barker, J. R.Chem. Phys. 1983, 77, 301.
(5) Shi, J.; Barker, J. R.Int. J. Chem. Kinet.1990, 22, 187.
(6) Bedanov, V. M.; Tsang, W.; Zachariah, M. R.J. Phys. Chem. 1995,

99, 11452.
(7) Gates, K. E.; Robertson, S. H.; Smith, S. C.; Pilling, M. J.; Beasley,

M. S.; Maschhoff, K. J.J. Phys. Chem. A1997, 101, 5765.
(8) Vereecken, L.; Huyberechts, G.; Peeters, J.J. Chem. Phys. 1997,

106, 6564.
(9) Tsang, W.; Bedanov, V.; Zachariah, M. R.Ber. Bunsen-Ges. Phys.

Chem. 1997, 491.
(10) Venkatesh, P. K.; Dean, A. N.; Cohen, M. H.; Carr, R. W.J. Chem.

Phys. 1997, 107, 8904.
(11) Frankcombe, T. J.; Smith, S. C.; Gates, K. E.; Robertson, S. H.

Phys. Chem. Chem. Phys. 2000, 2, 793.
(12) Blitz, M. A.; Beasley, M. S.; Pilling, M. J.; Robertson, S. H.Phys.

Chem. Chem. Phys. 2000, 2, 805.
(13) Knyazev, V. D.; Tsang, WJ. Phys. Chem. A2000, 104, 10747.
(14) Barker, J. R.Int. J. Chem. Kinet. 2001, 33, 232.
(15) Barker, J. R.; Ortiz, N. F.Int. J. Chem. Kinet. 2001, 33, 246.
(16) Miller, J. A.; Klippenstein, S. J.J. Phys. Chem. A2001, 105,

7254.

(17) Klippenstein, S. J.; Harding, L. B.J. Phys. Chem. A1999, 103,
9388.

(18) Klippenstein, S. J.; Wagner, A. F.; Dunbar, R. C.; Wardlaw, D.
M.; Robertson, S. H.;Variflex, version 1.0; 1999.

(19) Davis, M. J.; Skodje, R. T.J. Chem. Phys. 1999, 111, 859.
(20) Davis, M. J.; Skodje, R. T.Z. Phys. Chem. 2001, 215, 233.
(21) Skodje, R. T.; Davis, M. J.J. Phys. Chem. A2001, 105, 10356.
(22) Fraser, S. J.J. Chem. Phys. 1988, 88, 4732.
(23) Roussel, M. R. A Rigorous Approach to Steady-State Kinetics

Applied to Simple Enzyme Mechanisms. Ph.D. Thesis, University of
Toronto, Toronto, Canada, 1994 and references cited therein.

(24) Roussel, M. R.; Fraser, S. J.Chaos2001, 11, 196 and references
cited therein.

(25) Maas, U.; Pope, S. B.Combust. Flame1992, 88, 239.
(26) Maas, U.; Pope, S. B.Proc. Combust. Inst. 1992, 28, 103.
(27) Maas, U.; Pope, S. B.Proc. Combust. Inst.1994, 25, 1349.
(28) Davis, M. J.J. Chem. Phys. 2002, 116, 7828.
(29) Brau, C. A.J. Chem. Phys. 1967, 47, 1153.
(30) Brau, C. A.J. Chem. Phys. 1967, 47, 3076.
(31) Hogarth, W. L.; McElwain, D. L. S.J. Chem. Phys. 1975, 63, 2502.
(32) Hogarth, W. L.; McElwain, D. L. S.Chem. Phys. 1977, 19, 429.
(33) Lim, C.; Truhlar, D. G.J. Phys. Chem. 1983, 87, 2683.
(34) Benson, S. W.The Foundations of Chemical Kinetics; McGraw-

Hill: New York, 1960.
(35) Perko, L.Differential Equations and Dynamical Systems; Springer-

Verlag: New York, 1996.
(36) Pilling, M. J.; Seakins, P. W.Reaction Kinetics; Oxford University

Press: Oxford, U.K., 1995.
(37) For an example where eigenvalues are explicitly defined, see

Hanning-Lee, M. A.; Green, N. J. B.; Pilling, M. J.; Robertson, S. H.J.
Phys. Chem.1993, 97, 860. This case involves bimolecular terms but
becomes pseudo-first order because one of the species is in excess.

(38) See, for example, the discussion in chapter 2 of ref 1.
(39) Mallard, W. G. NIST Chemical Kinetics Database, 1992 and

reference cited therein.
(40) Glänzer, K.; Quack, M.; Troe, J.Chem. Phys. Lett. 1976, 39, 304.
(41) Glänzer, K.; Quack, M.; Troe J. InSixteenth Symposium (Inter-

national) Combustion; 1977, p 949.
(42) Hippler, H.; Luther, K.; Ravishankara, A. R.; Troe, J.Z. Phys.

Chem. NF 1984, 142, 1.
(43) Slagle, I. R.; Guttman, D.; Davis, J. W.; Pilling, M. J.J. Phys.

Chem. 1988, 92, 2455.
(44) Walter, D.; Grotheer, H.-H.; Davies, J. W.; Pilling, M. J.; Wagner,

A. F. In Twenty-Third Symposium (Int.) Combustion; 1990, p 107.
(45) Hwang, S. M.; Rabinowitz, M. J.; Gardiner, W. C., Jr.Chem. Phys.

Lett. 1993, 205, 157.
(46) Davidson, D. F.; DiRossa, M. D.; Chang, E. J.; Hanson, R. K.;

Bowman, C. T.Int. J. Chem. Kinet. 1995, 27, 1179.
(47) Du, H.; Hessler, J. P.; Ogren, P. J.J. Phys. Chem. 1996, 100, 974.
(48) Wagner, A. F.; Wardlaw, D. M.J. Phys. Chem. 1988, 92, 2462.
(49) Smith, S. C.; Gilbert, R. G.Int. J. Chem. Kinet. 1988, 20, 307.
(50) Hessler, J. P.; Ogren, P. J.J. Phys. Chem. 1996, 100, 984.
(51) For example, eq 31 in ref 3.
(52) This form of the master equation has been used elsewhere; see ref

11 and Miller, J. A.; Klippenstein, S. J.; Robertson, S. H.Proc. Combust.
Inst. 2000, 28, 1479.

(53) Expressions such as this have been used elsewhere; see, for example,
ref 11.

(54) The assumption of an equilibrium constant for the master equation
has been discussed in Smith, S. C.; McEwan, M. J.; Gilbert, R. G.J. Chem.
Phys.1989, 90, 4265.

(55) See, for example, Jeffrey, S. J.; Gates, K. E.; Smith, S. C.J. Phys.
Chem. 1996, 100, 7090 and references therein.

(56) Frankcombe, T. J.; Smith, S. C.Faraday Discuss. 2001, 119, 159.

b1 )
-4akac

a+ k (1-
kf2

a+ k) )
-4akac(a+ kf1)

(a+ k)2
=

-4akac

(a+ k)
(A.3a)

b2 )
a(4kac)2

(a + k)2
(A.3b)

Association/Dissociation Kinetics J. Phys. Chem. A, Vol. 106, No. 24, 20025879


