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The dynamics of association/dissociation kinetics is studied, with an application to the titled reaction. The
focus is the geometry of the phase space of the phenomenological rate law, a Lindemann mechanism, and the
master equation of this reversible reaction, all of which are nonlinear. It is shown that all three systems
possess similar phase space structure, including a 1-D manifold. This 1-D manifold describes asymptotic
motion for either dissociation or recombination and is the analogue of the corresponding eigenvector for
linear master equations describing dissociation without recombination. The 1-D manifold allows for the
separation of asymptotic motion from transient behavior and together with other manifolds in phase space
allows a better understanding of the dissociation and recombination processes. The 1-D manifold also allows
us to test various approximations that have been used in the past to calculate association rate constants from
the master equation and Lindemann mechanism and develop new methods for calculating association rate
constants and generating rate laws.

I. Introduction equations, a low-dimensional manifold is analogous to the
gigenvector with least negative eigenvatfiehe one used to
calculate a pressure-dependent unimolecular rate corstamt.
addition, low-dimensional manifolds allow for the systematic

For the last few decades, master equations have been use
to extract pressure-dependent unimolecular dissociation rate
constants, with refs 1 and 2 providing summaries of work done o ;
by many researchers. More recently, the uses of master equationgluc'dat'on of the global phase.s.pa.lce structure of a.dynamlcal
have been extended beyond unimolecular reactions, includingSYStem that approaches an equilibrium point at long tifritne
association reactions, bimolecular reactions, and multiple well/ €lucidation of the phase space structure allows for a better
multiple channel reactiorfs 16 Many of these cases include understanding of transient effects. _
nonlinearity, differing from the unimolecular case, which is  This paper will lay out a plan of attack for studying both the
linear. There, matrix diagonalization can be used to extract long-time dynamics and the transients of the association/
asymptotic rates and thus rate constants. For nonlinear masteflissociation master equation and the related Lindemann mech-
equations, approximations often need to be used to calculatenism. Previous work on such systems has generally ignored
rate constants. Generally, these approximation are good but ardhe nonlinearity or incorporated it in an approximate way. One
not always tested thoroughly. of th_e purposes of this paper is to suggest ways to study t_he

In this paper, we present results from the study of one type non_llnear system and calculate rate constants with the nonlin-
of nonlinear master equation, the one describing association ancgarity fully included.
dissociation. In a previous paper by one of us and Haréfing, The outline of this paper is as follows. Section Il is a study
pressure-dependent rate constants for methyl recombination wer@®f the dynamics of the phenomenological rate law from a
calculated using the Variflex prograthThe main focus of ref geometric standpoint. Section Ill addresses similar issues for
17 was the incorporation of good information concerning the Lindemann mechanism and investigates ways to extract rate
potential energy surface features and statistical reaction theoryconstants. Section IV applies what has been learned in the
as well as comparison with experiments rather than the detailsprevious two sections to the dynamics of a master equation
of the master equation calculation. In this paper, we look in describing the reversible reaction in the title. It is shown that
more detail at the dynamics of the master equation. association rate constants can be extracted in a novel way, but

Another reason for the investigation undertaken here is the it demonstrates that this extraction leads to rate constants that
recent work of one of 482 and other® 27 on the asymptotic ~ vary with position in phase space. Section V presents a more
dynamics of kinetic equations. Until recen#§28 these tech- ~ general and difficult procedure to generate rate laws and
niques were applied only to complex chemical kinetics, although demonstrates that the notion of an equilibrium constant may
there is a history of more rigorous approaches (i.e., beyond break down along a 1-D manifold. Section VI has further
steady-state approximations) used to model master equétidhs.  discussion and a conclusion.

The techniques used in refs 298 involve the calculation of )

low-dimensional manifolds that describe the asymptotic dynam- !I- Background: The Phenomenological Rate Law

ics of systems approaching equilibrium and are more rigorous  Many of the tools used in the rest of the paper can be
than the steady-state approximation. For nonlinear masterdeveloped for the phenomenological rate law of the reversible
reaction
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where the reactive species are A and C and M is a third body, 6 1 : : : .
which leads to pressure dependence. The two directions are £ 05 f .
characterized by the forward association rate conskagnand % oFf .
the reverse dissociation rate constdgt,These rate constants 5 05r -
are temperature- and pressure-dependent. PO ' i ' ;
A. Rate Equations and Constants of the Motion.For _
methyl recombination with possible subsequent dissociation of £ 1 b T ' T
ethane to two methyl radicals, eq 2.1 becomes zé 0'(5) i ]
ka E: -05 F b
CH; + CH;— C,Hq (2.2a) - -l ' : ' '
K, § 20 T ; . .
C,Hg— CH, + CH, (2.2b) E lg i L I
_ SHET \ .
where the third body M has been dropped. The rate law for T 20 . : ! !
this system i& 0 002 004 006 008 0.1
E 2 T . . T
d[C,H¢] 2 g L7 l
—g = KlCH +k[CHJ®  (2.3a) Lo -
@)
d[CH] 2 . 0 0|02 0|04 0I06 olos 0.1
e 2k, [CH — 2k [CH] (2.3b) 02-0.04 -0.06 -0.08 0.

time (s)

where the brackets indicate concentration. Because of Conserva_ﬁgure 1. Trajectories shown for eq 2.6a with rate constants calculated

; : : . in section IVC atT = 1350,P = 1000 Torr,AEy = 200 cnt?, and
:Ir?:r:];sm;isorg\ggr??ocfameb?ng?iiiked by adding the equatlons)’c =1 x 10" molecules/cri The two rate constants akg= 2.96 x

1072 cmd/s andky = 16.355 s. The top three trajectories are forward
propagated and the bottom, backward propagated.
c=2[C,H{] + [CH4] (2.4)
long time all trajectories except one approach the equilibrium
This constant reduces the 2-D system of eq 2.3 to a 1-D systempoint
and allows for an analytical expression for the time development
of the two specie&! For the case in eq 2.1 where#AB replaces

. . . . 1 _Keq Kgq Keqc
A + A, this constant changes in an obvious way, and there is Yeo= A~ tA 72 T 5 2.7)
an additional constant, [A} [B]. c\ 4 16 2
By scaling the concentrations and using the constant defined
in eq 2.4, the rate law for methyl is
y=kyi(l—y) = 2key’
[CHy]

The exceptional point is for = 0 (eq 2.6b)

_ 2
(2.58) ysz%(%l_ ,/%Jr'(%c) 2.8)

[CoH4l
C y c x+y=1 (2.5b) where the designation “s” is for source and is described in the

next subsection. Except for the equilibrium point, all trajectories
that are run backward in time approach this point.

To ensure that the concentrations of methyl and ethane are
positive, 0< y < 1. Equation 2.6 demonstrates that trajectories
initiated in this physically allowed region always remain in it.
For comparison to observables, it is necessary to examine the
dynamics in this region only. However, to obtain a global picture

X

reducing it to a 1-D dynamical system.

B. Dynamics. Equation 2.5a can be integrated for the time
development of the methyl radié4land in turn for ethane
through the constant in eq 2.4:

2 t
y= &14_ Keq (ref’ — 1) — &‘ Keq= E (2.6a) of the dynamics and to generate asymptotic (in time) results
2c  16c\ret+1/ 4 Tk for the physical region, it is useful to extend the analysis beyond
5 the physical regioA? Equation 2.6 demonstrates that in the
eq Keqg | Keg nonphysical region there is a singularity, so trajectories started
2c ' 162 ¢ Yo with y values less than that of the source point approaeh
r= (2.6b) and switch branches to approach the equilibrium point from
Keq K2y Keg the positive side. o
2c ' 162 4c 0 Figure 1 shows several trajectories for eq 2.6. These are
generated for eq 2.2 &= 1350 K andP =1000 Torr, withc
with (eq 2.4) set to x 103 molecules/cri The rate constants were

p=2,\/2kdkac+kzé

Yo is the initial value ofy. Equation 2.6 demonstrates that at of the source and moves through the singularity. These

calculated forAE4 = 200 cnt! (section IVC). The top three

panels of Figure 1 show trajectories propagated forward in time.
Two of these (Figures la and b) are started in the physically
allowed region and one is started in the nonphysical region
(Figure 1c). This latter trajectory is started on the negative side
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trajectories approach the equilibrium point at long time, as
indicated by the dotted line in the panels. Some trajectories,
such as those between the two fixed points, approach from the
methyl-rich regiony values greater than the equilibrium value,
Figure 1a), and others (Figure 1b) approach from the methyl-
poor region ¥y values less than the equilibrium value). Figure
1d shows a trajectory that is run backward in time and
approaches the source (dotted line)tas —co.

C. Global Phase Space DynamicS.he first step in generat-
ing the global phase space structure is to find the fixed pénts.

These were described in eqs 2.6b and 2.7. In general, dynamical
systems cannot be integrated in closed form as in the previous

subsection, but fixed points can still be found. For the scaled
version of the phenomenological rate law, the fixed points are
found by setting eq 2.5a to zero (when the time derivative is
zero at any point the trajectory is “fixed” at the point)

0=ky(1—y) — 2key’

and the two fixed points are obtained as the two roots of this
equation. At equilibrium or at the sourgg/x = Keqas expected.
The nature of the two fixed points (equilibrium or source) is
judged as such from the linearization of eq 2.5a,

(2.9)

Q:

o= K Aoy (2.10)

Wheny > 0, this quantity is negative and thus the equilib-
rium point is attractive. Whey < —Ked4, the right side of

eq 2.10 is positive, and this identifies the source as repulsive.
To investigate the global dynamics, it is useful to examine

the dynamics out to infinity. The following coordinates are
introduced®

y
u=—= (2.11)
Vi+y?
1
U:

Vi

Although this transformation adds a dimension, the coordinates
are restricted to the positive portion of a unit circle, which
means motion is still 1-D. Infinity in the Cartesian coordinate
system is located at = 0 in this coordinate system.

Figure 2 summarizes the global dynamics for the rate law of
eq 2.5a as well as the two limiting cases of first-order and

second-order kinetics, as indicated on each plot. Each plot has,

fixed points marked on them as large dots. In each of the top
two panels, there is a single finite fixed point compared to the
two fixed points in the bottom panel (eq 2.9). In addition, first-
order kinetics (top panel) has two sources at infinity. These result
from the blow-up of the differential equations backward in time.
The bottom panel of Figure 2 shows arrows that point to the
four trajectories of Figure 1. Because of the original scaling of
coordinates to give andy, the physical region in Figure 2 is
0.0 < u = 1/v/2. Figure 2 presents generic dynamical behavior

for the indicated kinetic systems. As the parameters change (for

example,c and the rate constants), the locations of the finite
fixed points as well as the time scales change, but the dynamical
flow is not altered.

Figures 1 and 2 show how a global analysis is useful. The
behavior of the several forward-moving trajectories of Figures
la—c can be summarized with a single plot. The behavior of
trajectories run backward in time (Figure 1d) can be summarized

Davis and Klippenstein

y=ky(1-y)

y=ky(l-y) - 2k,y”

Figure 2. Global phase-space portrait of the system in Figure 1 shown
along with the contrasting portraits for first- and second-order kinetics
in the top and middle panels.

with plots such as those in Figure 2 merely by switching the
direction of the arrows.

Ill. Lindemann Mechanism

The Lindemann mechanigriis the next level of complexity
beyond the rate law of the previous section and has most of the
important dynamics of the master equation, possessing additional
features compared to the rate law of the previous section.
Although the Lindemann mechanism is generally used to model
the pressure dependence of unimolecular decomposition, it is
straightforward to add association. In this form, it is still a 2-D
system, and it possesses an easily identified reduction to a 1-D
manifold. Like the master equation, it is nonlinear.

A. Rate Equations and Constants of the Motion.The
Lindemann mechanism for the reaction in eq 2.1 is

A+tA+M<=C*+M
C*+M<=C+M

(3.1a)
(3.1b)

In master equations for a system of this form, the molecule C
s modeled with a series of states, and the energy transfer process
in eq 3.1b is modeled by a series of transitions between states
(see refs 1 and 2 and the next section). Therefore, we consider
the Lindemann mechanism a two-state version of the master
equation with unexcited C considered to be state one and C*,
state two. The following rate law results:

dx,
i + a% (3.2a)
dx,
ot Bt T A% kg, + ke’ (3.2b)
%’ = 2kx, — 2k cy? (3.20)
Once again, there is a constant:
c=2([C] + [C*]) + [A] (3.3)
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The variablesq, %2, andy are scaled versions of the concentra- 1 2 . : i . :
tions, as they were in eq 2.5, with, %z, andy the scaled og b L/ ’
versions of [C], [C*], and [A], respectively. Because @feq g 06 LS NS / |
3.2 can be reduced to a 2-D system g
«o 04 F N ; 5 B F
dx, oot f S SN A
oo Ak + ax, (3.4a) o v
dXZ 2 1 b T T T T ]
i (a, + Kx, + kc(1 — 2x, — 2x,)°  (3.4b) N A S
a, = af,, a, = afy, fi+f,=1 (3.4c) g 06F NG S AT
o 04fF ~NG S
where microscopic reversibility has been invokéfthe system © o2l f
relaxes to a Boltzmann distribution at long time, witrandf 0 T T T
the equilibrium populations). The derivation afis described 0 01 02 03 04 05
below and in the Appendix. Conservation of probability for the Xy
closed system has also been included (the sum of eqs 3.4a and .
3.4b is zero wherk andk, are zero). 0.5
The Jacobian of the systen®is g 041 1
g 03 .
—af, af, £
J= 3.5 o 02r 1
af, — dkcy —(af,+K) —akey] GO g ]
J describes the local linearized dynamics near a point and 109 1e07 1005 0001001
depends only og. This Jacobian is the 2-D version of eq 2.10. time (s)
It can be used to calculate the stability of fixed points. Figure 3. Some trajectories for the Lindemann mechanism (eq 3.4)
The eigenvalues of are with different values ofc shown in the top two panels and the time
1 development of one shown in the bottom panel. This trajectory is the
1. =—a+ k+ 4kcy+ one started at (0.2, 0.0) in Figure 3a. The Lindemann parameters were
+ 2[ key derived as described in the Appendix for the master equatidn=at

1350 K,P = 1000 Torr, AEq = 200 cnt?, andc = 1 x 10 molecules/
\/(a +k+ 4kaCy)2 — da(4kcy + kf))] (3.6) cme. These parameters ase= 4.75 x 107 s, k = 1.98 x 108 52,
andf, = 4.26 x 1077 with c =1 x 108 and 3.5x 10 cm!in panels
The square root in eq 3.6 can be expanded in terms of a and b, respectively.
4a(4kcy + kf,)
TR (3.7 whereyy refers to the point where the Jacobian is evaluated
@+ k+4kcy) andb refers to the intercept of the line, which is calculated from

N the equilibrium point. Equation 3.9a describes the eigenvector
which is very small for most values of the parameters (see thefor J1 and eq 3.9b, fori,.

Appendix and the caption to Figure 3) because the expression
in the parenthesis of the numerator is much smaller ¢hand
k. An expansion and algebraic manipulation gives the following

B. Global Dynamics: Fixed Points, Low-Dimensional
Manifolds, and Basins. Figures 3a and b show several
trajectories for a set of parameters extracted from the master

eigenvalues: equation of section IV (see the Appendix). Figure 3 shows the
a(akcy + ki) scaled CHvariable §) versus unexcited £1s (x1), with Figure
=t ... (3.8a) 3a showing results for a density parametgieq 3.3) of 1x
a+k+4kcy 10' molecules/crhand Figure 3b showing results for= 3.5
a(dkcy + ki) X 1917 molecules/cri Trajectories are _drawn as dashed lines
A, = —(a+k+ 4kgy) + Z. . (3.8b) in Figures 3a and b except for one trajectory that is shown as
a+k+4kcy a thicker solid line. The equilibrium point for each system is

) ) . . shown as a large dot on each of the panels. The direction of
In the physical region, both eigenvalues are negative underyq,y for some of the trajectories is shown in Figure 3a. A time

chemical kinetics conditions, withy much lower in magnitude ol of one of the trajectories of Figure 3a is shown in Figure
than 4,, and the one associated with the rate constants for 3c (the trajectory starts at (0.2, 0.0) in Figure 3a)

association and dissociatiéf The first term on the right-hand The top two panels of Figure 3 show that trajectories reach
side of eq 3.8b dominates under most conditions, and because; \yell-defined 1-D curve. and Figure 3c demonstrates that
(@ + k) > 4ky under these conditions, is nearly constant.  yajectories do so in a short time followed by a slow approach
For the same reasof, is generally a linear function of. to the equilibrium point along this manifold. Figure 3c shows
The eigenvectors of the Jacobian in the §) plane are that a typical trajectory takes between 10 and 100 ns to reach

—2(@+ 1, the manifold and tens of milliseconds to get close to equilibrium.
= X, + b’='_—2X1 +b ax1, (3.9a) The time scales decrease as the density of reactive species
af f) increases.
K+ 4k cy, — A To better understand the nature of trajectories for the
= Yo 1x1 + b= Lxl +b k> 4k Cyp, A, Lindemann mechanism, it is useful to ger!era_lte a global pigture
af; afy of the dynamics. The first step, once again, is to find the fixed

(3.9b) points. This is done by setting the velocities in eqs 3.4a and
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3.4b to zero (the left-hand sides). Equation 3.4a can have a T
nontrivial zero (i.e.x; = 0 andx; = 0) only whenx; andx; are
the same fraction of their equilibrium values and fy,
respectively, giving

0= ya(—ff, + f,f,) (3.10a)

U3

0= —kyf, + ko1 — 2y)? (3.10b)

Equation 3.10a is satisfied, and eq 3.10b gives the following
two fixed points:

1K + 4c K2 CKe
X = vt %= 7.0 VizE(eqTi G_ZQJFTO‘

(3.11a)

2
_ 1 =Keg Keq CKeq)
y—C( 2OF AT (3.11b)

u3

Equation 3.11b is identical to eqs 2.7 and 2.8. One of the fixed
points here is the equilibrium point (two negative eigenvalues)

2
1| —K /K cK,
Xieq™ foli Xoeq™ yffZ! Yeq™ E( 4eq + 1_21 + Tq)

(3.12)

0

The other point is a saddle point (one positive, one negative). Figure 4. Global phase-space portraits for the systems of Figures 3a
Associated with each fixed point are stable and unstable and b. All trajectories in a basin go to the relevant sink, the dominant

manifold$® (see also ref 19). One type of manifold is shown in - gne peing the equilibrium point at (0.27, 0.36) in Figure 4a. The arrows

Figures 3a and b with a thick line. This is a stable manifold for on the top panel indicate the direction of the flow. The dotted curve

the equilibrium point and is commonly called the slow divides the equilibrium basin into associative and dissociative trajec-

manifold?? because it is the direction of final approach to tories. See text for further details.

equilibrium, as demonstrated in Figure 3. The nature of the

manifolds leads to a global understanding of the dyna#fics, includes arrows on some of the trajectories and the slow

and this is demonstrated in Figure 4 for the parameters of manifold, which indicate the direction of the flow. The slow

Figures 3a and b. These are plotted in the coordinates of manifold is also a trajectory that is started at infinity from either

eq 2.11, which are defined for the Lindemann mechanism as of two fixed points there. Figure 4a includes a dotted line that
separates “dissociative” from “associative” trajectories. Dis-

_ Xy sociative trajectories are those that approach equilibrium from
U= (3.13a) the ethane-rich endi{ values greater than the equilibrium value
V1+x+y of up), and associative trajectories are those that approach from
y the methyl-rich end. Becausss higher in Figure 4b, dissocia-
Uy = —F—F—— (3.13b) tion is favored (Figure 3b), and the saddle point lies almost on
A1+ Xi + y2 top of the equilibrium point, masking some of the features. For

1 example, the dotted line that separates associative from dis-
vE——— (3.13¢c) sociative trajectories cannot be observed on the scale of Figure
ity ab
Figure 5 makes this discussion clearer for Figure 4a. All the
Any pair of coordinates can be used. Once again, as in sectionlines have the same meaning as they do in Figure 4. The arrows
IIC, there is an additional dimension, but trajectories move on show the direction of the approach to equilibrium. The thinner
the surface of a sphere in 3-D space, which renders the dynamicsolid line is, along with the circular boundary, the “basin
2-D. The dynamics, which can be projected onto a plane, fills boundary”. All trajectories inside this region approach the
a circle of radius= 1, with infinity in the original coordinates  equilibrium point at long time along the slow manifold.
corresponding to the circumference of the circle. Trajectories outside this region move to the sink at infinity. The
Fixed points are shown as solid dots in Figure 4. Besides the dotted line in Figure 5 divides the basin into two parts, as
two finite fixed points discussed above, there are four “fixed described in the bottom two panels. The middle panel shows
points at infinity”3%> The slow manifold is plotted as a thick that all trajectories in the region to the right of the equilibrium
solid line, and trajectories (dashed lines) approach this curve point are dissociative, and the bottom panel shows that those
on their way to equilibrium or the fixed point at (0.0, 1.0), which to the left are associative.
is another sink. The thinner solid line is a manifold from the C. Transient and Asymptotic Behavior: Pressure, Density,
saddle run backward in time and is the boundary between and Temperature DependenceEquations 3.2 and 3.4 show
trajectories that are asymptotic to the equilibrium and the sink an explicit dependence on the density of reactive species but
at infinity. At the saddle point, this manifold corresponds to no explicit dependence on pressure. Pressure dependence is part
the eigenvector for the negative eigenvalue. Figure 4a also of the parametea, which also depends on temperature. There
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Basin for equilibrium point

All initial conditions in the
region approach equilibrium
from dissociative end

All initial conditions in the
region approach equilibrium
from associative end
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time. Like the slow manifold, the fast manifold does not
deviate in any noticeable way from the eigenvector in any of
the plots. However, the fast manifold is dependent on pressure,
as indicated in eq 3.9b, because it has an inverse dependence
ona.

All panels in Figure 6 show the behavior of the three
trajectories, but only the trajectory started at (0, 0) and plotted
as a dashed line exhibits transient behavior because the other
two lie almost exactly on the slow manifold. The asymptotic
behavior of this trajectory is determined by what side of the
fast manifold it lies on compared to the position of the
equilibrium point. When the initial condition lies on the ethane-
rich side of the fast manifold, it reaches the slow manifold, and
then the ethane shows enhanced dissociation. When the initial
condition lies on the ethane-poor side of the fast manifold, the
trajectory reaches the slow manifold and then exhibits enhanced
association.

Figure 7 shows the time development of the three dashed
trajectories in the middle row of Figure 6, with the top-to-bottom
panels in Figure 7 corresponding to the left-to-right panels in
the middle row of Figure 6. Figure 7 demonstrates that the long

Figure 5. These plots elucidate the phase-space structure of Figure time scales tend to decrease with increagingut the short

4a.

time scales remain about the same. The effect described in the
previous paragraph is evident in Figures 6 and 7. For example,

is also a temperature dependence in the infinite pressurethe first panel of the middle row of Figure 6 shows that the

association rate constaky{ It is well-known thata is linearly
dependent on pressuté and thereforea can be defined as
a=Pda(T) (3.14)

a'(T) depends on temperature through the collision rate.
Figure 6 shows the way asymptotic and transient behavior

changes with pressure and density for a specific temperature

The three columns in this Figure correspond to three densities
¢, as noted there. The three rows correspond to three pressure

100, 1000, and 10 000 Torr. The parameters of the Lindemann

mechanism for the middle plot (= 1 x 10 andP = 1000

Torr) were generated from a fit to the master equation data (see

the Appendix). The other parameters in the Figure were
calculated by scaling (eq 3.14) up or down by a factor of 10
and by adjusting in egs 3.2 and 3.4.

The plots in Figure 6 include a solid, thick line showing the
slow manifold, which is nearly linear. The slow manifold is
also nearly the boundary for the physically realizable region of
the phase plane, which has the equagien 1 — 2x;. Anything
above this line means that < 0. Also included on each plot
are three open circles indicating three initial trajectories to focus

trajectory started at (0, 0) lies on the ethane-rich side of
equilibrium. The fast manifold in the middle row indicates that
as trajectories approach the slow manifold there is an increase
in unexcited ethanex{) and methyl. After reaching the slow
manifold, there is a time period over which the system exhibits
a slow increase (Figure 7a) in the methyl fraction as ethane
dissociates. In the other two panels of the middle row of Figure

'6, the trajectory lies on the ethane-poor side of the fast manifold.

’Sl_n these cases, the trajectories reach the slow manifold and then

show slow dissociation of ethane.

The behavior exhibited in Figures 6 and 7 quantifies chemical
intuition for the Lindemann mechanism. At low pressure, excited
ethane tends to dissociate before the steady state sets in and
then takes a long time to reequilibrate, meaning the association
of methyl radicals to ethane and final equilibrium. At higher
pressures, there is enough buffer gas to relax the excited ethane,
and then the slow step is redissociation to form a final
equilibrium with a mixture of unexcited ethang), excited
ethane %), and methyl radical.

Figures 6 and 7 display results for the Lindemann mechanism
that are common over large pressure, density, and temperature

the discussion of transients. The open circles at (0.0, 1.0) andranges. There is little visible effect of the nonlinearity nor is

(0.5, 0.0) are initial conditions with pure methyl or unexcited
ethane, respectively, which would be the most common
experimental initial conditions. The open circle at (0.0, 0.0)
indicates pure excited ethane & 0.5). The solid dots show
the equilibrium points.

The equilibrium points change withalong any row but have

there much transient behavior for pure, unexcited ethane (
0.5) or pure initial methyly = 1.0). However, there are some
situations where transients are noticeable for both of these types
of initial conditions, and Figure 8 shows two cases.

The top panel of Figure 8 shows the result Br= 10 000
Torr, with an initial density of methyl of 3.5 10'® molecule/

no pressure dependence. The slow manifold does not appear tem?® or 5% dilution of methyl in argon buffer gas. The solid

change with either pressure or density, a result not assured byline shows the slow manifold, which is now curved because
anything discussed previously, although eq 3.9a shows that thethe nonlinear term in eq 3.2b is similar in magnitude to the
eigenvector foil; has a very weak dependence on pressure andlinear terms. The slow manifold still lines up with the appropri-

density. The slow manifold lines up along the eigenvector near
equilibrium3® which is consistent with its lack of dependence
on pressure or density.

ate eigenvector near the equilibrium point (eq 3.9a), but it curves
away from it as the methyl fractioryY increases. This leads to

transient behavior where the pure methyl initial condition on

All plots in Figure 6 include the fast manifold as a dotted the top panel (0.0, 1.0) is now started off the manifold and
line. One of these was already shown in Figures 4 and 5. This merges with the manifold near (0.15, 0.62) after approximately

manifold is generated by running a trajectory that started on
the eigenvector foi, near the equilibrium point backward in

8 ns. Because the slow manifold is generated with the methods
reported in ref 19, it does not matter whether the manifold is
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Figure 6. Series of plots showing how the phase-space structure changes with pressorelhase changes affect the behavior of transients.
Initial conditions are open circles, and dashed lines are trajectories started there. The parameters are the same as those-ib, Rigtir¢ise3
guantitiesc anda changed to reflect density and pressure changes (see the Appendix).
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Figure 7. Time dependence of the three dashed trajectories of the are pure methyl (top plot) and pure unexcited ethane=(0.5). When
middle row of Figure 6 shown from top to bottom versus left to right the density is high enough, the first case occurs, and at high temperature,
in Figure 6. The open circles show the time behavior of the the second case occurs (bottom plot).

phenomenological rate law for the initial condition started at (0, 0) in

Figure 6. At _short timt_es, itis inaccurate, bL_Jt it is accurate at long times. for the Lindemann mechanism for the temperature range studied
Compare this behavior to that of the trajectory started at (0.5, 0.0), . AN ; N
which is accurate at short time (dots). in ref 17 because the equilibrium populations of excited ethane
are very much lower than those for unexcited ethane and the
linear or whether the manifold conforms to the steady-state ratio of up to down transitions is the ratio of these two quantities
approximation, although the latter condition is attained in this (eq 3.4). In the bottom plot of Figure 8, the temperature has
case (see next subsection). The transient shown in the top panégbeen raisedf{ = 0.9,f, = 0.1), and the density has been lowered
of Figure 8 is rapid and less common than it is for the master to 1 x 10'° molecules/cri compared to the middle row of
equation of the next section. Figure 6, leading to transient behavior for the pure unexcited
A more unusual case of transient behavior for the Lindemann ethane initial condition. Dots show the trajectory, which merges
mechanism is pictured in the bottom panel of Figure 8. It is with the slow manifold near (0.45, 0.0) after approximately

difficult to observe transitions from unexcited to excited ethane 0.1 us.
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D. Low-Dimensional Manifolds and the Steady-State
Approximation. In the Lindemann mechanism for unimolecular
dissociation, the steady-state approximation is invoked for the
excited molecule to generate a 1-D system and extract a
pressure-dependent rate consBnthis is done even though
the kinetics is linear and the appropriate rate constants can be
extracted from the diagonalization of a2 2 matrix, which
has an analytical form similar to that of eqs 3&8. It is
recognized that the rate constant is more complicated when
represented this way, and because of the vast difference between
the rate of relaxation downwar@yin eq 3.4) versus upward

(ay), the steady-state approximation is very accutafdthough ' \
1 Py 4)I

u3

there are extra terms in the Lindemann mechanism of egs 3.2
because of the association terms, the steady-state approximation -1
is still very accurate. -1 -05 0 05 1

The steady-state approximation is found by settirgdi = u
0 in eq 3.4b. In thexy, y) plane, it has the following form: L7 . — ——

%= Ra® A ke (315)

CHj; fraction

Because the coefficient of the linear term is usually much larger
than the coefficient of the quadratic term and becausey0<
1 in the physically allowed region, the steady-state approxima-
tion is nearly linear except whemis high. Similar behavior is 0 L L L 1
demonstrated in Figures 6 and 8a for the low-dimensional 0 01 02 0.3 04 0.5
manifolds. Xy

Figure 9a compares the steady state approximation to the 1-Drigure 9. Top two panels demonstrate the accuracy of the steady-
manifold of the system studied in the middle row of Figure 6. state approximation. The parameters are the same as those of Figures

Figure 9b compares to the high-density case in the upper plot3a and b. The solid curved lines show the slow manifold, the small

of Figure 8. In each plot, the 1-D manifold is drawn with a dots show the steady-state approximation, and the larger solid dots show

e - S the fixed points, with the one in the physical region being the
solid line, and the steady state approximation is represented byequilibrium point. The steady-state approximation breaks down only

a series of dots. In bF’th cases, the S_teady'Stat? approximation;hqer severe conditions. In the bottom panel, the thick solid line shows
is nearly exact, even in the high-density case (Figure 8a) wherethe slow manifold, and the dotted line shows the steady state
the low-dimensional manifold is curved in the physically approximation, with the solid thinner line showing the boundary of
allowed region. Small differences can be observed for this latter the physical region. The dashed lines are trajectories. The slow manifold
case when the comparison is made in a plane including excitedis @ better representation of the asymptotic dynamics, but trajectories
ethane %), which has very low values along the manifold. are not attracted strongly to anything forvalues that are less than

A case where the steady-state approximation is noticeably approxw_nately 0.25, indicating that there is no good 1-D manifold in

. . h . . . that region.
different than the low-dimensional manifold is shown in the
bottom panel of Figure 9. The parameters were generated fromand then equating term-by-term with eq 3.2c to give
a master equation dt= 474 andP = 1000 Torr withc = 4 x
108 molecules/crii(see the Appendix). In the bottom panel of k= kgo( a k) (3.17a)
Figure 9, the 1-D manifold is plotted as a thick curved line, a+ '
and the steady-state approximation, as a dotted line, with a
trajectories shown with dashed lines. The boundary of the k,= k:(T() (3.17b)
physical region is a solid, straight line. The bottom plot of Figure a
9 demonstrates that the low-dimensional manifold is a better
representation of the asymptotic dynamics. The situation in the

bottom panel of Figure 9 is rare for typical parameters of the .
. . L expressions for the pressure dependence of the two rate
Lindemann mechanism, but it is more common for the master constants

equation, where there are many bins and the steady-state . .
S ) . . . An alternate method for extracting the rate constants is by
approximation can be defined in many ways depending on which . . o .
: ) comparing the linearization in eq 2.10 with the smaller
bins are assumed to be in steady state. maanitude eigenvalue of eq 3.6:
E. Extracting Rate Constants. The traditional way to 9 g 425

wherek, from the previous equations has been relabeleld as
and kj = kf,. Equations 3.18a and 3.18b are the standard

extract rate constants from a Lindemann mechanism is to in- —,
voke the steady-state approximation fgrand compare the k,= KT dov (3.18)
resulting expression to the phenomenological rate law. This is eq T 4CY

accomplished by first inserting the steady-state expression in
eq 3.15 to get the following expression for the rate of change
ofy

Here, 1, is equated to {dy in eq 2.10. It is assumed that there
is an equilibrium constant along the slow manifoldg = Ko/
ka. The equilibrium constant is evaluated at the high-pressure
limit. Equation 3.18 indicates that the rate constant is a function
dy: akh (1-y)— 2a|gcf (3.16) of the overall reactive densitg) and the fraction of density in

y at+k ' the methyl radical ). However, eq 3.8a shows that is a
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] o o Figure 11. Trajectory for the system in the top panel of Figure 8, but
Figure 10. Association rate constants calculated at equilibrium vs ith a pressure of 1000 Torr, shown as a dashed line in the top plot.
pressure in Torr for the left column. The parameters are the same asThe slow manifold is shown as a solid curve. The time development
those of Figure 3a except that the density constgnthanges from  of the trajectory is shown in the bottom plot as a solid line, and a
top to bottom: (ak = 3 x 10" cm, (b) 3.5x 10", (c) 3.5x 10%. trajectory calculated with the phenomenological rate law, as open
The solid lines in (a)-(c) show results for eq 3.18. The dots in the top  circles, with the rates calculated at equilibrium (Figure 10c).
and bottom panels of the column compare to the steady-state rate

constants of eq 3.17b, and the dots in the middle panel compare to the . . .
results of the top panel. The association rate constant changes as { also demonstrates that the density dependence is negligible

function of the methyl fraction, as shown in the right column. The @t equilibrium. However, the rate constant does change away
panels correspond to the same parameters as Figure 3¢ fixkibd as from equlllbrlum, giving a second type of transient in addition

in the left column of this figure. The dots in (e) and (f) were calculated to the one shown in Figure 8. Figures tdshow rate constants

with eq 3.19. as functions ofy. All parameters are the same as they were in
the plots in the left column except for the valueadih the top
panel, which has been increased fromx310'! to 1 x 103
These plots demonstrate that as density increases there is a
change in the rate constant away from equilibrium, something
that is not observed in the steady-state approximation. Also

similar function of the same quantities. In the limit where the
first term in the expansion of eq 3.8a is the accurate answer
(which it is over a large range of parameters), the association
rate constant is

aK’ included in Figures 10e and f are results from eq 3.19 (shown
ky=—"—— (3.19) as dots), demonstrating that this equation is a reasonable
a+k+4kcy correction to the constant rate constant.

Comparisons are made in Figure 7c between trajectories
wherel; of eq 3.8a has been substituted into eq 3.18. Except calculated for the Lindemann mechanism and those calculated
at high density, Kcy < a + k, and eq 3.19 is equal to eq for the phenomenological rate law with rate constants calculated
3.17b. These equations are also equaf &t 0. at equilibrium. The dots are for a simulation starting with pure

To calculate a rate constant from eq 3.18, a value of the unexcited ethanex{ = 0.5), and the open circles are for pure
methyl fraction §) must be chosen. The natural choice is the excited ethanex; = 0.5). The first initial condition places the
equilibrium value, and the left column of Figure 10 shows the trajectory on the 1-D manifold, and the rate constant for this
results of such a calculation. These plots are made at a serieset of parameters does not vary with methyl fraction (Figure
of densities €), which are 3x 10, 3.5 x 10%7, and 3.5x 10'8 10d), thus making the rate law essentially exact. However, if
molecules/crifrom top to bottom. The last density is unrealisti- an initial condition is started off the manifold, the phenomeno-
cally high, giving a 50% dilution of the reactive species in the logical rate law is not accurate until the trajectory has reached
buffer gas. The rate constants as a function of pressure are showthe manifold, as demonstrated with the open circles.
as solid lines in Figure 10&c, and the dots show a series of Figure 10f shows that even when the motion lies on a 1-D
comparisons. In the top and bottom plots, comparisons are mademanifold it is possible for the time dependence of the species
to the steady-state expression (eq 3.18b), and the middle paneto be different than the phenomenological rate law. Figure 11
compares to the much lower density rate constants in the uppershows a trajectory for this system. The top panel shows the
panel. trajectory in the phase plane (dashed line) as it approaches the

Figures 10a-c demonstrate that the steady-state approxima- 1-D manifold (solid line). In the bottom panel, the solid line
tion gives a very accurate rate constant at the equilibrium point. shows the time dependence of the trajectory and the open circles
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show a trajectory modeled by the rate law. This plot demon- ki and R are zero. TheP; values are calculated via the
strates that even after the trajectory reaches the manifold itsexponential gap modé# A useful characterization of the
time-dependent behavior is not accurately modeled by the strength of this transition moment is the average energy
phenomenological rate law. transferred per downward transitibAwhich is labeledAEq in

F. Summary. This section has shown that a geometric the remainder of the paper.
investigation of the Lindemann mechanism provides a detailed Because th®; values are subject to microscopic reversibil-
understanding of the global dynamics, including asymptotic and ity,>2 the expressions in egs 4.1 and 4.2 can be summed to reveal
transient behavior. For example, it provides a means of a constant of the motion that is similar to that in eq 2.4
partitioning the trajectories into dissociative and associative, thus
quantifying intuition concerning vibrational relaxation versus c,= 22 pi + pg (4.3)
dissociation or association as pressure changes. This task is
accomplished with the fast manifold. Whereas the slow manifold where the superscripts have been dropped@néfers to the
is accurately modeled by the steady-state approximation underdensity of the methyl radicals. After collecting terms in egs 4.1
most circumstances, there does not appear to be an analogouand 4.2 and dividing byg,, these equations can be rewritten as
way to generate the fast manifold other than with the present
approach. dg;

This section has highlighted some of the dynamics for the —= z Rjg — kg +Kicg 9 (4.4)
Lindemann mechanism with association using examples chosen dt ]
to preview the master equation studied in the rest of the paper. da
The methods presented here were used to study the master = 22 kg — 2Kc g (4.5)
equation with association, particularly those methods used to dt T : ?
calculate association rate constants. In particular, it will be
shown how the method of extracting rate constants describedwith k% referring to the infinite pressure limit of the associa-
in section llIE gives flexibility in avoiding numerical errors  tion rate constant and the terRyt) now defined with
associated with small eigenvalues of matrices. ot

I

IV. Master Equation ¢ = (4.6)

I
It is well known that the Lindemann mechanism is not a z ki f;
complete picture of the pressure dependence of unimolecular I
reactions’® so the geometric analysis of the previous two
sections is extended to the master equation, which is more
accurate. Although it is difficult to picture some of the results
shown in the previous two sections for the master equation,

with f; referring to a Boltzmann population in bit?2 The g's
are defined as

because of its higher dimensionality, it is possible to implement g=— (4.7a)
many of the methods presented in sections Il and Ill. Others, Cp
such as the basins described in Figure 5, still provide a means P4
of thinking about the phase space structure of the full master 04=— (4.7b)
equation, which is similar to that of the Lindemann mechanism. C

Specifically, in this section, we will discuss the methyl recom-
bination reaction whose pressure dependence has been th@nd
subject of many experimentéi4” and theoretical studigd.’4850
A. Rate Equations and Constants of the MotionA master 22 g+g=1 (4.8)
equation for the processes pictured in eq 2.2 can be writfeh as !

o For bins below the dissociation energy,=— 0 becausd; = 0.
do; m o on In all calculations reported here, the master equation is divided
P WZ Pj pj(t) — wp (1) — ko 7+ R() (4.1) into 531 bins of 100 cm* each. Because the dissociation energy
£
C

for ethane from ref 17 is 30 613 crh the last 225 bins are
above the dissociation energy. The total population in these bins

dp°® m m . -
. =2Y kp - 25 R (4.2) is defined as
t = =
gr = szgi (4.9)
where, to be consistent with ref 51, densities are used instead Ei>
of concentrations. These equations describe the discrete form o ) .
of the integro-differential master equatibAThe subscripts in Although it is straightforward to integrate all components of

eqgs 4.1 and 4.2 refer to the ro-vibrational levels of ethane in €ds 4.4 and 4.5, the very slightly reduced system of eq 4.4 is
terms of a set ofn bins. There can be transitions between the actually integrated witlyy calculated from eq 4.8. It will also
bins, whose rates are described by the products of the transitionP€ necessary to examine the Jacobian matrix for eq 4.4 under
momentsP; and the collision frequency. The buffer gas that  this constraint. The elements of the Jacobian are

collides with ethane is argon. There are bins whose energies 9F
are above the dissociation energy, and these can lead to el B T

formation of two methyl radicals with the rate const&nirhere Ji ag, Ri 4kacf’¢' Y% (4.10)

is also a termR(t) that describes the formation of an ethane

molecule in bini from two methyl radicals, which will be  whereF refers to the right-hand side of eq 4.4. Equation 4.4
explicitly shown below. For bins below the dissociation energy, demonstrates that for bins above the dissociation energy, where
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¢i is nonzero, there is a dependence garthat is consistent Positions of equilibria and saddles
with that in eq 3.5. 1 T T T T . .
B. Global Dynamics. The global dynamics of the master cp=1x10"
equation is similar to that of the Lindemann mechanism in
section I, and the treatment here follows that of section Il1A 0.5 .
without the explicit calculation of basin boundaries that are
difficult to define because of the high dimensionality of the -
system. CHE B ’
1. Fixed Points. There are two fixed points away from ;
infinity, as there were in the phenomenological rate law of 0s | i
section Il and the Lindemann mechanism of section Ill. By '
defining the reduced Boltzmann distribution values for the bin
populations as 1 s ! L . L .
gi = ‘}/fl (4_11) 1 T 1|5 T T T T T
Co= 1x 10
and substituting into eq 4.4, it follows that 05
dg;
— =0 for E < E, (4.12)
dt K 0 - _
because there is microscopic reversibility of teparameters ™,
in eq 4.4. For bins whose energies are above the dissociation 05 F L
energy, :
dgl _ © 2 -1 1 1 1 L L L I
e —vki fi + kyc,d 95 (4.13) 200 400 600 800 1000 1200 1400 1600
T (K)
By setting the left sides equal to zero in eq 4.13 and summing Figure 12. Positions of the equilibrium and saddle points for the master
overi, the following is obtained: equation shown at a range of temperatures for two values ¢q
' 4.3). The open circles show the equilibrium points, andstfe show
_ 2 the saddle points, which are in the nonphysical region of phase space
0= —yKetc,(1—2y) (4.14) (gs < 0).

This expression results from eqgs 4.6 and 4.8 and the definition with ¢; defined in eq 4.6. In all the cases studied here, this saddle
of k7. The standard result for the value of the methyl radical at point lies in the basin of the equilibrium point.

the fixed points (e.g., eq 3.11b) is obtained: 2. Low-Dimensional Manifolds. The final approach to
equilibrium for the master equation is a 1-D manifold, as it was
1K K2 in section 1l for the Lindemann mechanism. The 1-D manifold
%=¢ Teq 1_21 ”2 cq (4.15) is the nonlinear analogéfof the eigenvector whose eigenvalue

is used to generate rate constants for the linear master equa-
) ) o ~ tion!? Because there are once again two approaches to
Once again, the minus sign in eq 4.15 refers to a saddle point,equilibrium, the 1-D manifolds are generated in two pieces. The
and the plus sign, to the equilibrium point; the saddle point lies ethane-rich side of the manifold is generated with the saddle-
on the ethane-rich side of equilibrium. In all our calculations, point method of ref 19 using the saddle points pictured in Figure
the saddle point has one positive real eigenvalue and 53012 The dynamics associated with these saddle points was

(4

eigenvalues that have negative real parts. _ referred to as “idealized manifold dynamics” in ref 19. The
The positions of the equilibrium and saddle points are shown methyl-rich side of the manifold is generated from the saddle
as a function of temperature for two different valuescpin point at infinity that is described in eq 4.16. Figure 13 shows

Figure 12. Because the equilibrium constant favors ethanethe results of these procedures and compares the methyl-rich
formation at lower temperature, the saddle and equilibrium portion of the manifold to the predictecorrector method of
points lie very close together there. At higher temperature, the ref 19. Because the two methods give essentially the same result,
thermodynamics favors dissociation of ethane to methyl radicals, thjg portion of the manifold is generated from the saddle point
and the saddle and equilibrium points then lie far apart. at infinity in the rest of the paper.

Although it is difficult to picture the multidimensional phase Figure 14 illustrates the dynamics associated with the 1-D
space out to infinity, as was done in Figures 4 and 9, fixed manifold. The top panel shows thgy(gs) plane and the bottom,
points at infinity can be found using the procedure described the @, g*) plane. The 1-D manifold is shown as a thick solid
in chapter 3 of ref 35. In the coordinate system of eq 3.13, the ine, and several trajectories are shown as dashed lines. The
saddle point at infinity is equilibrium point [@q, g1, g*) = (0.405, 4.46x 1075, 1.20 x
1079)] is shown as a large open circle in both panels. Figure 14

u =0, Ei < Buiss (4.16a) demonstrates that all trajectories merge with the manifold on
— o, their way to equilibrium. The bottom panel of Figure 14 shows
y=—" E > Eje (4.16b) that the 1-D manifold is nonlinear, although it is close to linear
for the projection shown in the top panel.
/1 + zqsf The behavior of two of the trajectories is illustrated by four
] sets of symbols. One of these trajectories was starteg,a(
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Figure 13. One-dimensional manifolds have two pieces, one on the
methyl-rich side of equilibrium (top panel) and the other, the ethane- Figure 14. Set of trajectories (dashed lines) shown for the master
rich end. The top panel shows the generation of the manifold with two equation, at the values of the parameters in the title of the plot. Two
methods, the saddle point and the predietmorrector methods (dashed  projections are shown, witly* defined in eq 4.9. The 1-D manifold is
lines), which agree. The saddle point isgtwhich demonstrates that ~ plotted as a solid line, and the plots demonstrate that trajectories merge
the point gives accurate manifolds, and is used throughout the rest ofwith the manifold. Portions of two trajectories are shown as a set of
the paper. The bottom panel generates the manifold from the finite symbols. The first starts agi, g1, g*) = (0.6, 0.2, 0.0), and the second,
saddle point, the ones shown witHis in Figure 12. at (0.4, 0.0, 0.3). The four time ranges for trajectory 1 @re50 —

120 ns;x, 0.21— 0.91us;0, 3.1— 8.1 ms;a, 0.011— 0.091 s. The

g*) = (0.6, 0.2, 0.0) and the other, ajs( g, g*) = (0.4, 0.0, four time ranges for trajectory 2 ar@®, 1 — 12 ns; x, 22— 92 ns;
0.3) with gsso = 0.3. Symbols describe the following time ~© 0-117 1.1us;A, 1—~5ms.

ranges: solid dots, 56> 120 ns; x’s, 0.21— 0.91 us; open . ) . . )
circles, 3.1— 8.1 ms; triangles, 0.014- 0.091 s. The second dots), there is almost exclusive dissociation of ethane into

trajectory has the same order of symbols, but the time rangesMethyl- Thex’s and open circles indicate that from 0.3 to 1.1
are 1— 12 ns; 22— 92 ns; 0.11— 1.1 4s; and 1— 5 ms. us there is considerable relaxation from the excited-state bins

Figure 14 shows that the open circles and the triangles lie on into those below dissociation, with little additional dissociation.

the manifold for the first trajectory and the triangles lie on the After the trajectory reaches the 1-D manifold, it exhibits the
manifold for the second trajectory. These symbols indicate that SMe behavior as the first trajectory, although the final approach
trajectories typically take-1 us to reach the manifold and tens  t© €quilibrium IS not_shown.
of milliseconds to get within a few percent of equilibrium for ~ The symbols in Figure 14 demonstrate that there are stages
¢, = 1 x 103 molecules/crh to the process, indicating a dimensional cascade as suggested
More information can be gleaned about the dynamics for the in ref 23: before the phase space of the master equation shrinks
two trajectories. The total fraction for the bins below dissociation t0 the 1-D manifold and eventually to the zero-dimensional
is 1 — gqg — g*. Thus, the symbols indicate that the first equilibrium point, it may shrink through a series of higher-
trajectory that starts ajg = 0.6 and g = 0.2 initially relaxes ~ dimensional manifolds.
with little dissociation (solid dots anst’s) over the course of 3. Investigation of Transient Behavior for the Experi-
~1 us and reaches the manifold. Along the manifold (open mental Initial Conditions. Although Figure 14 exhibited
circles and triangles), the populations in the bins above interesting transient behavior on the way to the 1-D manifold,
dissociation remain nearly constant as the system approacheghe experimental initial conditiogy = 1 exhibited none because
equilibrium, whereas there is considerable recombination, with it lies directly on the 1-D manifold. However, because relaxation
gq¢ decreasing from 0.6 to 0.4. Becaugé remains nearly occurs in a series of steps, transients for this initial condition
constant, it can be inferred that the g values for the bins below often occur, unlike that for the Lindemann mechanism, where
dissociation increase by 0.1, with the fraction in the ground- relaxation is a single-step process. Such transient behavior is
state bin shown on the top panel. All trajectories that reach the most common for the master equation at high density and
manifold on the methyl-rich side of equilibrium exhibit this relatively small values oAEq.
behavior. Figure 15 shows two of these cases, with the top two panels
Trajectory 2 in Figure 14 that started @t= 0.4 andg* = showing projections of the phase space ontagtiig plane and
0.3 exhibits the following behavior. Over the first 12 ns (solid the bottom two panels showing the time development. The
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Figure 15. Transient behavior demonstrated for the experimental initial
conditiongy = 1.0 (pure methyl) because the 1-D manifold does not
cross thegq axis at (1.0, 0.0) in the top two panels. The top panel
shows the case dt = 474 K, and the second, = 1350 K, with the

Davis and Klippenstein

panels are on the ethane-rich side of equilibrium, and the bottom
six are on the methyl-rich side. The manifold is followed as a
function of gq4, which is labeled on each plot. The vibrational
distribution is compared to a Boltzmann distribution, plotted
as a solid line. The probabilities in the Boltzmann distribution
sum to 1— gq, Which is the fraction of ethane present.

Figure 16 demonstrates that as equilibrium is approached the
vibrational distribution becomes closer to a Boltzmann distribu-
tion. It also shows that the lower-energy bins are much closer
to equilibrium than are the higher-energy bins, whose popula-
tions increasingly deviate from a Boltzmann distribution. On
the ethane-rich side of equilibrium, the deviation is on the low
side of the Boltzmann distribution, and on the methyl-rich end,
it is higher than the Boltzmann distribution. Because the sum
of the probabilities is I- g4, deviations in the higher-energy
bins are compensated for by deviations in the lower-energy bins
that are similar in magnitude but are much smaller relative to
the values ofg; for the bins.

Figure 17 tests the steady-state assumption for the system of
Figures 13, 14, and 16, and Figure 18 tests it for one of the
systems in Figure 15, which showed transient behavior in the
top panel of that Figure. Both plots indicate that the steady-
state approximation gets better as equilibrium is approached at
0g = 0.405 in Figure 17 andq ~ 0.0 in Figure 18. In Figure
17, dgi/dt is small for many bins below dissociation at bin 307
but has noticeably smaller values at and above dissociation. In
Figure 18, the values are never small away from equilibrium
until the dissociation threshold is reached, and then there is a
sharp drop. Because of the relative magnitudeggtitin Figure

trajectories started at the experimental initial conditions shown as a 17, the steady-state approximation is probably valid well below

set of dots in the top panel and a dashed line in the second panel. Th
trajectory in the top panel still follows the phenomenological rate as
demonstrated in the third panel, but the trajectory at 1350 K does

not (fourth panel, compare the dashed line with the solid line). The
text has further details.

phase-space pictures demonstrate that the experimental initia

conditions lie away from the manifold, with the trajectory on
the top panel taking-3 us to reach the manifold. The bottom
two panels show the time development of the experimental
initial conditions and compares them to the phenomenological
rate law with the constants calculated in section IVC (dashed

lines). These panels demonstrate that transients in phase space

may (bottom panel) or may not (third panel) indicate the
breakdown of the phenomenological rate law.

4. Dynamics on the Manifold. Because the 1-D manifolds
of section IVB.1 describe the asymptotic motion and are
analogous to the eigenvectors for the linear master equ#tion,
they provide the means to test the approximations that were

used to calculate association rate constants in ref 17. These

approximations were developed in ref 3, are implemented in
the program Variflexg and rely on several important assump-
tions. The first assumption is that there is a state (“cemetery
state”) in ethane that divides the relaxation in the following

&he dissociation threshold for that case away from equilibrium,

but for the case in Figure 18, the approximation is not valid
below the threshold, except close to equilibrium.

The case shown in the second and fourth panels of Figure
{L5 showed significant transient effects. Figure 19 examines the
vibrational distribution for this case. All panels examine the
methyl-rich end of the manifold, with equilibrium af = 0.

The first and third rows repeat the analysis of Figure 16, and
the second and fourth rows, the analysis of Figures 17 and 18.
These analyses demonstrate that even the lowest bins are
jgnificantly different than a Boltzmann distribution away from
equilibrium @q¢ = 0.336) and that the steady-state approximation
is poor even atgg = 0.036 as the manifold approaches
equilibrium. The system studied in Figure 19 will be revisited
below in Figure 21, where it will be shown that the local rate
constant changes withy and is consistent with the breakdown

of the methods in ref 17.

C. Rate Constants.Rate constants can be estimated in the
same manner as they were in section IlIE using the Jacobian
matrix whose elements were shown in eq 4.10. Because the
Jacobian depends on the density of the methyl radicals, it will
not be constant, although it will be shown below for dilute cases,

way: there are transitions from states above the cemetery statavhich are typical of experiments for methyl recombinatiérf/

to those below it, but there are no transitions in the opposite

that the rate constants are constant over the whole domain, which

direction. It is further assumed that all bins below the cemetery is something that could be observed analytically in section IIlE
state have a Boltzmann distribution relative to each other, with for the Lindemann mechanism. It will be shown in this

the temperature of the distribution being the bath temperature. subsection how to generate the rate constant for a wide range

The final assumption is that the bins above the cemetery stateof temperatures and pressures, as reported in ref 17, in a manner

are in the steady state, meaning that the derivatives on the left-that does not require the approximations used there. For

hand side of eq 4.4 are zero. nondilute cases, rate constants are dependegj for a given
Figure 16 follows the vibrational distribution (dashed lines) Cp, and there is also a dependence of the rate constarts on

along the manifold and is typical for the cases studied here. as discussed below.

Figure 16 investigates the same system as do Figures 13 and 1. Trends in Rate Constants.By analogy to eq 3.18, the

14, which has its equilibrium point @ = 0.405. The top six rate constants are calculated from the largest eigenvalue of the
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Distributions along manifold vs. Boltzmann, T = 1350, AE; = 200 cm™’,P = 1000 torr, p = 1 x 10*®
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Figure 16. Vibrational distribution along the manifold, parametrized by the valuegy,ofvhich are shown on each panel. The solid lines in the

panels show the Boltzmann distribution, and the dashed lines show the actual vibrational distributions. Equilibrigm=is0a405; the top six

panels are on the ethane-rich side of equililbrium, and the bottom six panels, on the methyl-rich side. These panels demonstrate that as the system
approaches equilibrium along the 1-D manifold it becomes more Boltzmann-like. On the ethane-rich side, the populations of high-energy bins are
smaller than Boltzmann populations, and on the methyl-rich side, they are larger.

Check St. State along manifold T = 1350, AE, = 200 cm™,P = 1000 torr, p = 1 x 10"
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Figure 17. Test of the steady-state approximation. The value of the time derivative on the left-hand side of eq 4.4 is plotted for the vibrational
distribution along the low-dimensional manifold parametrized by the valug.of

Jacobian matrix, whose elements are shown in eq 4.10 (becausenechanism for the reasons discussed in section IIIE. Figure 20
the matrix is calculated with the constraint of eq 4.8, all of the shows the results for a dilute case of 10 ppm at 1000 Torr,
eigenvalues are negative and the largest eigenvalue is the “leasivhich has a slightly higher density than that of Figure 14. The
negative”). In the notation of this Section, the rate constant is top pane| shows the |argest eigenva|ue as a function of the
written a§354 methyl fraction,gg, and the bottom two panels show the next
largest eigenvalue and the lowest eigenvalue, respectively. These
demonstrate that the only eigenvalue that changes appreciably
with the methyl fraction is the largest one, which increases
Once again, the rate constant is a function of the methyl fraction. approximately linearly. Because the second term in the denomi-
For low ¢, this does not pose a problem for the Lindemann nator of eq 4.17 is much larger than the first, there is essentially

_ll

= — 4.17
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Figure 18. These panels give the same information as does Figure 17 but for a different set of master equation conditions.
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Figure 19. The case in the second and fourth panels of Figure 15 is studied using the same measures as in Fig8rdhése plots demonstrate
that this case is much further from a Boltzmann distribution than the one in Figure 16 and is considerably further from the steady state than are
those in Figures 17 and 18.

a linear dependence of the denominator with respect to thecolumn of Figure 21 demonstrate that the rate constant need
methyl fraction. Because Figure 20 shows thatlso has a not be constant when the density of the reactive species is not
linear dependence, the linear dependence of the denominator isery high. Comparison of the third panel in the right column
canceled by the linear dependence of the numerator in eq 4.17 and the second panel of Figure 15 demonstrates that even after
and the third panel in the left column of Figure 21 demonstrates the trajectory has reached the 1-D manifold the rate constant is
that the rate constant is constant across the entire phase spaceot constant. This result is interesting because after the system
The other panels in the left column of Figure 21 show that the has reached the 1-D manifold it should be described by a 1-D
rate constants are also constant across the full phase space famate law. This idea will be further explored in section V.
other values oAEj. 2. Rate Constants Near Equilibrium. A natural way to

The situation is different for less dilute cases. The right address the problem of changing rate constants is to calculate
column of Figure 21 shows a case where dilution is 5%. The them at or near equilibrium. The top three panels of Figure 22
second panel of this column shows the same case as shown imoutline this procedure for the case in the third panel of the right
the second and fourth panels of Figure 15. The plots in the right column of Figure 21 but at several different valueggiwhich
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Figure 20. Eigenvalues of the Jacobian of eq 4.10 shown as a function Figure 22. The top three panels demonstrate that rate constants can
of ga. The top panel shows the largest eigenvalue, the second panel,pe extracted at equilibrium by diagonalizing the matrix in eq 4.17. The
the next largest, and the bottom panel, the smallest. The largestigp panel shows the largest eigenvalue, the second panel, the equilibrium
eigenvalue varies approximately linearly wigh, and the others are  \gjyes of ge, and the third panelk, as a function ofc,. These
nearly constant. demonstrate that the rate constant is constant over a large range of

density when calculated in this manner. However, this result cannot
P = 1000 torr, T = 1350 K

10 ppm 5% always be attained because of numerical error, as demonstrated in the
9e-14 T T T T T T T T H H H H
bottom panel, wherlk, is not constant and is considerably in error when
2 el compared to the correct value shown as a dotted line.
2 €- r 1 r 1
g el such a manner as to leave eq 4.17 constant. However, the
.MN e- - - - - . . . . .
Ay =25 cm” AEy=25 cm? situation in the top three panels of Figure 22 is not always

EV Y B A realized. The bottom panel of Figure 22 shows the casd for
= 474 K wherek, is far from constant as a function of methyl
density and also far from the actual rate constant that is shown

z AEg =100 cm™! as a dotted line. The reason this case fails is thd so small
g that the diagonalization routine is unable to accurately calculate
= lel2f . FAEy =100 cm™ . it, and more sophisticated procedures need to be empfSyéd.
i3 Equation 4.17 would give accurate answersifvere correctly
o- 1 L L 1 1 1 1 1

calculated becaugg is very small and would compensate for it.
8e-12 L L B B The problem of small eigenvalues plagues the calculation of

_ AE, =200 cm” AE; =200 cm’! association rates. A natural procedure for calculating them would
mé be-12 - i i i be to calculate the dissociation rate constant, which is straight-
< e b i I i forward depending on the diagonalization of the matfixut
= as is the case with the system studied here, the dissociation rate
2e-12 TR S T T T T constant is so small &t = 474 K that it is difficult to extract,
leell ——— - and other procedures are used that involve approximé&timms
— AE, =400 cm™! AE4 =400 cm™ more sophisticated techniques are used to extract the largest
mé 8e-12 T T I ] eigenvalue for the dissociation rate consf&it
S ez b i L i 3. Beating the Small Eigenvalue ProblemThe top panels
- of Figures 20 and 22 demonstrate that the largest eigenvalue of
de 120‘0 02 04,06 08 10 00 02 04,06 05 10 the matrix of eq 4.10 changes with the density constarand

we employ this change to beat the small eigenvalue problem.
Figure 21. Association rate constants calculated using two different First, eq 4.17 is rewritten as
values ofc, (eq 4.17) and plotted as functions @f The left column

repeats the case in Figure 20, and the right column shows a much less _(io + kK D)

dilute case at the same pressure. Although the left column shows that = ! © (4.18)
the association rate constant is in fact constant, the right column shows P 4kagg

otherwise.

is 3.6 x 107 molecules/crin Figure 21. These panels show Wwheregq is fixed in eq 4.18 ag], which here is taken to be
that A, (top panel) andy at equilibrium (second) change in  0.05, and; is fixed at A%, here taken to be-0.1. The
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T=1350 K, AE, = 200 cm™, Aim for A, = -0.1 at g4 =0.05 at five values oEy. From bottom to top in each panel, they are
-0.09 : : , : : : 25, 100, 200, 400, and 800 cth The dots in each plot are
values calculated in ref 17, and they demonstrate excellent
agreement.

I/_/\/\/\ V. Rate Law Along the 1-D Manifold

01 r i Although the results in the previous section reproduced those
of ref 17, they are somewhat unsatisfactory. The rate constants
calculated in Figure 24 are near the equilibrium values because
Figure 21 showed that for higher densities (right column) the

association rate constant varied with position, something that

}‘max

011 . . . L s s is not surprising because the definition in eq 4.17 inclugles
and 4;, which depends omg. This section describes a more
le-10 ' T ' ' ' ; rigorous method for deriving a rate expression, although the

method is perhaps more difficult than those described in section
IV and methods used elsewhere.

We demonstrated in section VB that the dynamics reaches
a 1-D manifold rather quickly and then proceeds to equilibrium

le-11

Z lel2
"= along the manifold. This result suggests that a 1-D rate law
= should be sufficient to describe the association/dissociation
i le-13 L . . .
process along the manifold, and the following are investigated:
le-14 CH
dp~"
CH CH
= a'n(p $ = peq 3)” (51&)
le-15 L 1 1 1 L 1 dt n=
0.1 1 10 100 1000 10000 100000 q
press (torr) gd
. . A —= > bygs— g (5.1b)
Figure 23. By using the prescription outlined in the text, can be dt n

adjusted so that the maximum eigenvalue falls ne@rl, as demon-

strated in the top panel. These eigenvalues lead to the calcikated pg:b refers to the equilibrium methyl density, amf” refers

values that are shown in the bottom panel. to the scaled version of this quantity (eq 4.7b). The quantity
dgy/dt is calculated along the 1-D manifold using the master

magnitude ofl; is sufficiently large that the numerical problem ~ €duation of section IV and is fit to the right-hand side of eq
encountered in the bottom panel of Figure 22 is avoided. The S-1b- Theb, values and dy/dt depend orc,. ,
value ofgq is acceptable because it is near equilibrium at high ~ Besides providing a density dependence, eq 5.1 also includes
density, where difficulties arise (e.g., the right column of Figure t€rms that are of a higher order than those of the standard rate
21). Although it is far from equilibrium at low density, there 1aw of g 2.3. However, for the cases studied here, itis necessary
are no problems there. :ﬁ |npllrj]f[je (l)nly Ilnfelr;r and 2q5uadrr]§1t|r:: tﬁrms as dﬁgr_n;nlsgSa(t)ed in
o - : e right column of Figure 25, which shows resu
The high-pressure limit of eq 4.18 is K for three values oAEgown and at several different densities.
0 e The left column of Figure 25 presents the methyl-rich ends of
= —(h k) (4.19) the 1-D manifolds, and trajectories flow from right to left as
P 4k‘;°gg ' demonstrated in the top panel of Figure 14. The right column
of Figure 25 shows a scaled version of the rate from eq 5.1b:

All quantities are known, and” can be calculated for fixed

values of4; and gq. Estimates ofk, at high pressure can be r = 1 % (5.2)
made from eq 4.19. A few calculations at a series of high * e (9q— 953 dt

pressures allowk, to be extrapolated in eq 4.18 to lower ?

pressures, and values of can be chosen to permis to be rsis negative, with the absolute value shown in Figure 25. The

approximately—0.1 when diagonalizing the Jacobian matrix of = scaled progress variable is defined as
eq 4.10. The actual value df from the diagonalization is
always substituted into eq 4.17 to obtain the true valuk,of gy — g
This procedure is continued to lower pressure, with the last z=—4 0
several values ok, that are calculated in the current pressure gy — gy’
range used to extrapolate to lower pressure to ensuréd tligt
near—0.1. The success of this procedure is outlined in Figure with g equal to the value ofls on the manifolds as they
23. The top panel shows that the extrapolation procedure leadscross into the physically allowed regions, as shown on the plots
to a series of diagonalizations wifh near—0.1. The bottom in the left column, ranging from less than 0.2 for= 10 in
panel then shows a series of rate constants calculatedffom Figure 25a to approximately 1.0 for all of the lawy cases in
and eq 4.17. the left column (manifolds are started in nonphysical regions,
This procedure allows the calculation &f over a large as described in section IVB).
pressure and temperature range using matrix diagonalization, The right column of Figure 25 includesas a function of
as demonstrated in Figure 24. The rate constants are calculategblotted as a solid line. The dots in the plots show linear least-

(5.3)
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Figure 24. Using the prescription in the text, rate constants can be calculated over a large range of temperature and pressure, as indicated in these
plots. The solid dots compare the results here to those calculated in ref 17 and demonstrate that agreement is excellent.

square fits, which are very good, and indicate that only the linear
and quadratic terms need be included in eq 5.1b. Under this
condition, eq 5.1b can be equated to eq 2.5a to calculate the

To probe this idea further, eq 5.4 is rewritten to give

1k’ —agk? _ 2c,(65)’

L . s = (5.5)
rate constants for association and dissociation: k. 1- o 1— g
—0.%, . . -
k,= (5.4a) with by substituted from eq 5.4a. By substituting
c
o
20 () 2(g): (g’
ki = —bygg+ by(g)* (5.4b) 1P(9d:)q - (f(gdq)e% = Ky (56)
—0i Cll—gy PcH
K? = —b, + 2b,g5 (5.4¢) ’ 2
into eq 5.5, the following is obtained:
Theb's are the fitting coefficients from eq 5.1b. The superscripts
on the left sides of eqs 5.4b and 5.4c indicate that there are two 1 K — g5
ways to defineky when making a term-by-term comparison T eq  Req (5.7)

; - . L
becauseky is the coefficient for both the constant and linear ka1 %

terms in eq 2.5a.
Figure 26 presents the valueslaf K", andk? in (a), (b),
and (c), respectively. Included on each panel are points for seven

values ofc, and four values oAEg4. Also included as solid . ; )
lines are the values ok and ky from ref 17. Figure 26a length of the 1-D manifolds for the high-density cases where

;i . . i i 1) (2) ; i
demonstrates thd, is nearly constant but is slightly lower at N Figure 26k = ki”, although we emphasize again that there
high density and somewhat higher at low density. It would be 1S & caveat to this conclusion, as discussed above.
possible to include this density dependence in eq 5.1b, but that

which reduces to the standard expressigk, = Keqonly when
kgl) — 12

This suggests that there is no well-defirteg, along the full

is beyond the scope of this paper.
Although thek, values in Figure 26 agree with the calculations
in section 1V and ref 17, difficulties arise fdg in the bottom

VI. Discussion and Conclusions

A numerical investigation of dissociation/association kinetics
has been undertaken in this paper from a geometrical perspec-

two panels and indicate that the rate law of eq 5.1b may be ative. It was shown how the geometry of phase space varied with
better representation of the association/dissociation process thamemperature, pressure, and density of reactive species for the
is the usual phenomenological rate law of eq 2.5a. However, phenomenological rate law, a Lindemann mechanism, and a
the expansion coefficients; andb, in eq 5.4 have the same master equation describing the recombination of two methyl
sign. Althoughb, remains nearly constank; changes in a  radicals to form ethane and the dissociation of ethane to form
fashion similar to that ofgj®% the subtraction in eq 5.4 may two methyl radicals.

make thekq values prone to numerical error, and some caution It was shown that a good way of investigating the asymptotic
should be exercised in making conclusions on the basis of motion of this nonlinear problem was by studying the approach
changes irky values in Figure 26. Nevertheless, the fact that and subsequent motion on a 1-D manifold, which is the
theka values are nearly constant in Figure 26 and change in the nonlinear analogue of the appropriate eigenvector of the linear
right column of Figure 21 suggests that the assumption that theremaster equatioh? For the lower-dimensional Lindemann

is a good equilibrium constant along the full manifold (see eq mechanism, the investigation of the 1-D slow manifold was
4.17) may not be valid. part of a larger analysis of the global phase-space structure of
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2 2 Figure 26. Rate constants can be estimated from the fits in the right

column of Figure 25, as described in egs 5:8alc. The top plot
demonstrates th&, (dots and dotted line) varies only slightly as a

T dvarioush | labeled h L Th d function of ¢, and compares very favorably with the rate constants
orr, and various\Eq values labeled on each panel. These demonstrate .o jated in ref 17, shown as the solid lines. Ka@alues are much

that asc, gets larger the manifolds become more nonlinear. The right worse, as demonstrated in the bottom two panels. The second panel

column shows the values k|, defined in eq 5.2, as a function of the  gpq\ysk; calculated with eq 5.4b, and the bottom patglcalculated
progress variable, defined in eq 5.3. The dots show a fit to the form | o) eq 5.4c. The text has furthér details.

in eq 5.;b with a maximumm of 2. The dots show thats is nearly
exactly linear. no well-defined equilibrium constant along the length of the

o ) o ) 1-D manifold as density increases, although there is one at
the association/dissociation problem, which set the stage for thegqyiliprium.

more realistic and much higher dimensional master equation,
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dimensional problem could be applied to the master equation, Sciences, Geosciences, and Biosciences, U.S. Department of
it suggested the need for some caution. For example, beforeEnergy, under contract No. W-31-109-ENG-38. The work of
using the methods for generating the 1-D manifolds on the S J.K. was supported by the Division of Chemical Sciences,
methyl-rich side (Figure 13), it had to be established that the Geosciences, and Biosciences, the Office of Basic Energy
saddle point at infinity (eq 4.16 in section V) was in the Sciences, U.S. Department of Energy.

basin of attraction of the equilibrium point, something that

was discussed in detail for the Lindemann mechanism (sectionAppendix: Generating a Lindemann Mechanism from

IIB). the Master Equation

The investigation of the phase-space structure of the Linde-  The Lindemann mechanism studied in section Il laid the
mann mechanism and the master equation led to a new methogyroundwork for the methods used for the master equation in
of calculating association rate constants, which was presentedsection 1V, and it was thus desirable to have reasonable
in section IVC. It was shown there that association rate constantsparameters for the mechanism. The three parameters for the
could be calculated over large temperature and pressure rangegindemann mechanism (eq 3.4) aaek, andfy, with f, fixed
and were in excellent agreement with those calculated previouslyby f, +f, = 1. Parameters were generated by first diagonalizing
in ref 17 without using any approximations. However, it was the Jacobian matrix of eq 4.10 at several valuegqdfetween
demonstrated that the rate constants varied with position in phasey and 1 (the minimum and maximum values), and the maximum
space when the density was high or wheq was low. eigenvalue of the Jacobian of the master equation was fit to a

The variation of the rate constant with position is perhaps quadratic of the form
not surprising, because the master equation is nonlinear, but is
nevertheless disconcerting and led to what we view as a more A =by+boy+ bzgﬁ (A1)
rigorous approach in section V. A new rate law for the
association/dissociation process was developed there. It wasThe parameters; andb, were then equated to the corresponding
shown that a quadratic form of eq 5.1b was sufficient to model two terms in the expansion &f in eq 3.8a, which was generated
a set of simulations af = 1350 K and that association rate by expanding the denominator
constants, which varied slightly with density, could be calcu-
lated. These results, in conjunction with earlier ones on the 1 = —a(4kcy + kfz)( _ 4kacy) (A.2)
change in the local rate constant, suggested that there may be 1= at+k a+Kk '

Figure 25. Several 1-D manifolds are shown in the left column at a
series ofc, values marked on the plots far = 1350 K, P = 1000
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giving
_ —hake( Kk | —4akc(atkf) _—hake
17 a+k \1 atkl (a+k? @tk (A.32)
iy
b, = e (A.3b)

Becausec is fixed in the simulation andk, is known, these
equations defin@ andk. The Boltzmann factors are defined
from the requirement that the infinite pressure dissociation rate
constant must equf,.

The parameters, k, andf; used in most of the calculations
were derived from a Jacobian matrix Bt= 1350,c, = 1 x
103, P = 1000 Torr, andAEq = 200 cntl. Other parameter

sets were generated from this set. Pressure was “adjusted” by

scalinga as described in eq 3.14, acdvas chosen from the

values quoted in the text. The only exceptions to this procedure Hi

are for the calculations presented in the bottom panel of Figure
8, wherek was scaled by a factor of 0.001 ahdandf, were
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