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The kinetics of the growth of depletion zones around a static trap in an effective one-dimensional geometry
were studied with a new fluorescence-based setup. The experiment consists of a photobleaching reaction of
fluorescein dye by a strong laser beam, which served as a phototrap in the experiment, inside a 150-µm gap
between two parallel microscope slides. The kinetics of the growth of the depletion zone were monitored by
the previously definedθ distance, which can be directly measured experimentally. The effect of trap strengths
on the kinetics was tested experimentally by changing the photobleaching laser power. The strong laser power
acted as a perfect trap, which gives at1/2 scaling behavior for theθ distance over most of the time range.
However, the experiment with a weak laser power produced an anomalous early-time behavior for theθ
distance, which is faster than thet1/2 time scaling. A crossover behavior was observed with an intermediate
laser power. The experimental results are consistent with an exact one-dimensional analytical solution and
were also reproduced in Monte Carlo simulations as well as by exact enumeration calculations. The latter
two methods show that the asymptotic results for an exact one-dimensional lattice are still valid in a quasi-
one-dimensional system, for both perfect and imperfect trapping reactions.

I. Introduction

The kinetic rate laws of diffusion-limited elementary reactions
in low dimensions have been shown to exhibit anomalous time
dependences,1-20 which are dramatically different from con-
ventional rate laws found in many textbooks.21 At the core of
this anomalous kinetics behavior lies the fact that diffusion is
not efficient enough to mix the reactants during reaction,
resulting in the development ofself segregationof the reactants
in time. This self segregation leads to drastic reductions of the
reaction rate and to other anomalous kinetic behaviors. It has
also been shown by theory and simulations2,5-9,12,20,22-24 that,
in diffusion-limited reactions in low dimensions, there are
regions calleddepletion zoneswhere one species of the reactants
is locally dominant with a corresponding depletion of the counter
species in the region. The anomalous kinetic behavior has been
predicted even in three dimensions (3D) for the elementary
bimolecular reaction A+ B f C,1,2,9and this has been recently
observed experimentally by Monson et al.25

A simple model with anomalous kinetic characteristics is the
trapping reaction A+ T f T in low dimensions, in which T is
a static trap and A is a diffusing species that is annihilated upon
collision with the trap. Following Smoluchowski,26,27 one
idealizes the reaction by assuming a single, immobile spherical
T surrounded by an initially uniform distribution of A particles,
each of which is allowed to diffuse, independent of the others,

throughout an unbounded space. The occurrence of A-T
reactions creates a zone of depletion around the trap, which is
another form of self segregation of reactants. A quantitative
characterization of this phenomenon can be framed in terms of
one or more parameters. One of them is the rate of annihilation
of the A species,R, which is predicted to be28-30

Lin et al.31 tested this system by a photobleaching experiment
for one dimension (1D) and two dimensions (2D), which
demonstrated the dimensional dependence of the reaction rate
for this system.

In this work, we attempt a direct experimental observation
of the self segregation of reactants in an A+ T f T system in
an effectively 1D system. The kinetics of the growth of the
depletion zone is examined with a new fluorescence-based setup.
There are two parameters mainly used to describe the self
segregation of reactants, which is equivalent to observing a
depletion zone, quantitatively. One is the nearest-neighbor
distance (usually denoted asL(t)), which is the distance from
the trap (T) to the nearest “surviving” reactant (A) at a given
time. Despite its significance and popularity from the theoretical
point of view, this quantity would be extremely hard to measure
directly in real experiments because of its molecular-level scale
of magnitude, by definition. The other quantity, which is more
manageable experimentally, is a “θ distance” (rθ), the distance
from the trap T to the point where the concentration of the
reactants A reaches some specified fraction (θ) of it’s value in
the bulk. According to the theory by Havlin et al.,29 the θ
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distance is predicted to show differentasymptotictime scalings
for a perfect trap in different spatial dimensions, that is,

In our experiments, we measure the temporal changes in the
spatial distribution of reactants inside and outside the trap. The
experiment is the photobleaching of fluorescein dye molecules
by a horizontally focused laser beam in a very shallow trough
(150-µm thin cell). This also mimics an electrochemical setup
in a very thin “sandwich” or wafer configuration with electrode
side strips. The laser beam is focused in aline shapeusing a
cylindrical lens to produce an effectively 1D environment. This
experiment allows us to directly measure theθ distance and to
compare with the theory described above. In the following, we
will first describe the experimental procedures briefly and then
present the data and the results of analyses. We also show that
the experimental results are consistent with results from
simulations and exact enumerations. We then perform a
comparison study of the depletion zone behavior for different
trap strengths. We find that there is an anomalous early-time
regime for the growth of the depletion zone outside an imperfect
trap, which has not been observed or predicted previously. We
also show that the exact 1D lattice results carry over to quasi-
1D systems for both perfect and imperfect trapping reactions.
Finally, an equivalence of imperfect trapping in 1D system to
the simple diffusion with radiation boundary condition is quoted
and discussed.

II. Methods

1. Experimental Setup and Procedure.The experiment is
the photobleaching of fluorescein dye molecules in a buffer
solution using a focused laser beam. The photobleaching occurs
inside a small gap between two flat microscope slides with
dimensions 75 mm× 25 mm× 1 mm. Two optical fibers with
a diameter of 150µm are inserted as spacers between the two
parallel microscope slides to produce a small gap with a
thickness of 150µm, which serves as a reaction vessel in this
experiment. It has been shown recently32 that the 150-µm gap
between two flat microscope slides is small enough to provide
a diffusion-controlled environment for the aqueous solutions
without the presence of a gel, eliminating convection or any
other mass-transport mechanism faster than diffusion. We made
the reaction space as long as possible by positioning the two
spacers 70 mm apart between the slides so as to minimize the
possibility of finite size effects in the experiment. Fluorescein
molecules were chosen for this experiment because fluorescein
is well-known to be easily photobleached by intense excitation
light sources.

The aqueous solution of fluorescein was prepared in a
phosphate buffer solution at pH 8.5 with a concentration of
7 × 10-5 M. Spectroscopic grade fluorescein dye was purchased
from Aldrich and used without further purification. The
phosphate buffer solution was prepared by dissolving monobasic
and dibasic potassium phosphate into triply distilled water. The
buffer solution was used to increase the solubility of the
fluorescein as well as to prevent any potential pH change of
the solution during the photobleaching process. The aqueous
fluorescein solution was injected into the 150-µm gap between
two parallel slides using a glass pipet. After the sample was

injected, a sealant (Krytox, DuPont Co.) was applied to the edges
of the slides to prevent evaporation of the sample solution during
the data acquisition.

The experimental setup is depicted in Figure 1. We used a
focused laser beam (“phototrap”) to photobleach the fluorescein
dye molecules. The laser (see below) beam was expanded to
approximately 1-in. diameter using two biconvex lenses and
was then sent to a rectangular cylindrical lens (f ) 15 cm) that
focused the beam into a line shape, inside the sample plane,
through a dichroic beam splitter unit. We put another focusing
lens in front of the beam expander to reduce any loss of the
laser power from the frequency doubler (see below), which
produced a much more divergent beam than the argon-ion laser
beam. The size of the focused laser beam in a line shape was
∼60-µm wide and∼1-in. long on the sample plane. We used
three different laser powers from two different wavelengths, at
488 and 430 nm, as the photobleaching laser beams to
investigate the effect of the trap strength. A 488-nm line from
an air-cooled Ar-ion laser (Ion Laser Technology, model no.
5490AWC-0), with 20 mW power at the output, served as the
weak trap. A 430-nm femtosecond pulse from a frequency
doubler (Spectra-Physics, model no. GWU-23FS) coupled with
a Ti-sapphire laser (Spectra-Physics, Tsunami, model no. 3941-
L1S) served as both a strong trap with 280 mW average output
power and an intermediate trap with 210 mW average output
power in the experiment. The laser powers at the sample position
were 12 mW for the weak trap and 100 and 150 mW for
intermediate and strong traps, respectively, producing more than
a factor of 12 in intensity ratio between weak and strong traps.
The power densities of the laser beams are calculated to be 7.9,
65.6, and 98.4 mW/mm2 for weak, intermediate, and strong
traps, respectively, at the focus on the sample plane.

Another light source at 480( 5 nm with approximately 1-in.
diameter from a mercury lamp (Ushio, model no. USH-102D)
was used to probe the progress of the photobleaching. The probe
beam illuminates an elliptical area of 1-in. long horizontally
and ∼0.5-in. long vertically on the sample plane to generate
fluorescence signals at different times, which are recorded by a
detector. The power density of the probe beam from the mercury
lamp on the sample plane is calculated to be less than 0.001
mW/mm2, which is significantly smaller than the densities of
the photobleaching laser beams described above. Hence, the
effect of photobleaching by the probe beam can be neglected
on the typical time scale of the entire experiment, which is less
than 2 h. To support this argument, we prepared a sample
solution in the same reaction vessel as the one that we used for
the photobleaching experiments and illuminated with a probe
beam, monitoring any signal drop in fluorescence emission
caused from photobleaching by a probe beam. In this test, there

rθ ≈ t1/2 in 1D

tθ/2 (0 < θ < 1) in 2D

t0 (“static”) in 3D (2)

Figure 1. A schematic diagram of the experimental setup.
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was no noticeable decrease in the fluorescence signal level at
least for 2 h of continuous illumination, which verifies our
argument. As a further protection to our sample from the probe
beam, we put two computer-controlled mechanical shutters in
front of two light sources to control the illumination times of
the photobleaching laser beam and of the probe beam (mercury
lamp) accurately during the photobleaching experiments. The
shutters, coupled with a CCD detector, operate in such a way
that the probe beam from the mercury lamp is illuminated on
the sample only when the CCD camera takes a fluorescence
image, while the photobleaching laser beam shines on the
sample only when the photobleaching is underway and there is
no data collection by the CCD. In this way, the probe beam is
blocked during the photobleaching periods of the experiment
and illuminates only during short data collection periods. This
experimental design minimizes the total illumination time of
probe beam on the sample to less than 3 min in the typical
experiment, which collects 40 fluorescence images with a 4-s
CCD integration time for each image recording.

The images of fluorescence emission from the sample were
collected at different times, using a CCD camera (Spectra Source
Instruments, model Teleris 2 12/16) equipped with a macro lens
(Nikon, AF Macro 60 mm f2.8, 1:1). The CCD takes square
images of size 1 cm× 1 cm with a 512× 512 pixel resolution.
Typical integration time of the CCD was 4 s for each image in
the experiment.

After the sample solution in the reaction vessel was placed
onto the sample holder, a probe beam at 480( 5 nm from the
Hg lamp illuminated the entire area of detection, to generate
the initial fluorescence signal. This fluorescence image was
recorded (before the photobleaching laser beam was introduced)
and was saved as an image at timet ) 0. We use this image as
a reference in the data analysis. To start the photobleaching, a
laser beam was guided and focused onto the sample plane as a
thin line, using the cylindrical lens. The beam was intense
enough to start photobleaching within 1 s. After each bleaching
time interval from 1 s in thebeginning to 300 s in the final
stage of the data collection period, the laser beam was blocked
to stop bleaching during the CCD exposure time for taking the
fluorescence image of the reactants at that time. The clock was
stopped during this data-collection step, and the typical CCD
exposure time in our experiments was 4 s. The photobleaching
was followed for 1 h in thetypical experiment. After photo-
bleaching, we replaced the reaction vessel containing a pho-
tobleached sample solution with a new “sandwich” vessel
containing only a phosphate buffer solution without fluorescein
and took a blank image for the background correction in the
data analysis. The home-built data acquisition program, which
controls a CCD coupled with two shutters and time intervals
between data acquisitions, allows us to measure time information
accurately, which is especially crucial in the early time range,
in which any small error is amplified and exaggerated in the
logarithmic scale of the data analysis. The entire experiment is
performed at room temperature.

In the data analysis, we first measured intensity profiles along
one specific horizontal pixel line perpendicular to the laser beam
trap from images at different times. Then, a background signal
was subtracted and corrected, using a blank profile as well as
the fluorescence intensity profile at time zero, which produced
a spatial profile of the fraction of reactants surviving (θ) at a
given time. Theθ distances were measured at several different
θ values directly from the fraction profiles for the different times
and plotted in time on a log-log scale to measure the time
scaling.

2. Simulations.Monte Carlo simulations were performed on
a 200× 200 square lattice, and a 200× 2 line trap was put
vertically in the middle of the lattice. Particles with the initial
concentration 0.25 are randomly generated on the lattice at a
time step zero. No more than one particle is allowed to occupy
a given site at any moment, that is, we use the excluded volume
principle. Particles are allowed initially to land, both inside and
outside the trap, randomly. The diffusion is modeled by random
walks at each time step of all particles (which are independent
of each other). The cyclic boundary condition was used at the
edges of the lattice. If a particle is chosen to move to a site that
is already occupied by another particle, then this move is not
allowed and the particle remains at its original site for that time
step. If a particle moves into a trap site, it is trapped with a
certain probabilityp. The effect of trap strength can be tested
in the simulations by changing this trapping probabilityp from
0 (no trap) to 1 (perfect trap). The probability values tested in
this work arep ) 0.01, 0.02, 0.2, 0.8, and 1. Once the particle
is trapped, it is removed irreversibly from the lattice, leading
to a decrease in particle concentration. If it is decided that a
particle is not trapped on the trap site, the particle continues to
perform its random walk, just like all of the other particles. A
concentration profile of reactants along the lattice at a given
time stept was obtained by adding all of the particles in each
column of the lattice parallel to the vertical trap at that time.
Each simulation was run 100 times to achieve better statistics
for the concentration profiles, except for the case ofp ) 0.01,
which needed 1000 runs to get a satisfactory signal-to-noise
(S/N) ratio. For all simulations, the reactant profiles were
followed from 1 up to 900 time steps.

3. Exact Enumeration. We derived a series of recursive
formulas for the A+ T f T system with a static trap T in
exact-1D and quasi-1D geometries. The equations are based on
the lattice model33 and generate the exact values of reactant
concentrations,C(i,t), at any positioni at any timet for given
initial and boundary conditions. The formulas are summarized
in Table 1. Here, we describe briefly how the formula was
derived for the simple case of the exact-1D system with a perfect
trap. The idea can be easily extended to derive the formulas for
the case of imperfect trap and for quasi-1D cases.

Consider an exact 1D lattice with a perfect trap of width 1 at
position 0. All of the lattice sites outside the trap are equivalent,
so particle A has the same probability to land on each lattice
site. We use a constantC0 (0 < C0 < 1) to denote the initial

TABLE 1: Recursion Relationships of Reactant Concentrations at Positioni (Integer) at Time t ) 0, 1, 2, ... for Various Line
Trap Systemsa

system recursion relation IC,C(i,0) BC,C(0,t)

exact 1D, perfect trap C(i,t) ) [C(i-1,t-1) + C(i+1,t-1)]/2 C0(const) 0
quasi-1D, perfect line trap C(i,t) ) [C(i-1,t-1) + C(i+1,t-1)]/4 + C(i,t-1)/2 C0(const) 0
exact 1D, imperfect trap C(i,t) ) [C(i-1,t-1) + C(i+1,t-1)]/2 C0(const) (1- p)[C(1,t-1)]
quasi-1D, imperfect line trap C(i,t) ) [C(i-1,t-1) + C(i+1,t-1)]/4 + C(i,t-1)/2 C0(const) (1- p)[C(1,t-1) + C(0,t-1)]/2

a We assume the space and time to be discrete, and all of the particles are forced to move randomly at each time step. The trap location is 0.
Quasi-1D means a 2D rectangular space where one edge is much longer than the other. IC) initial condition; BC) boundary condition;p ) trap
strength.
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homogeneous probability, which is equivalent to the concentra-
tion of particles at each lattice site. Because the particles move
randomly at each time step, we assume that the probability of
one particle at positioni at time t to move to the positioni -
1 is the same as the probability to move to the positioni + 1
at time t + 1. Hence, the concentration at the next time step
t + 1 at positioni can be described as

The proper initial (IC) and boundary conditions (BC) should
be

To check the validity of the recursion formulas in Table 1,
we calculated and compared the concentration profiles with
perfect trap for exact-1D and quasi-1D cases, which have a well-
known scaling behavior oft1/2. The numerical calculations were
performed using the Matlab software package. The lattice size
varied from 1000 to 3000 for the exact-1D system and was 1000
× 1000 for the quasi-1D system, and time steps were followed
up to 104. Theθ distances were measured from the calculated
concentration profiles and plotted to see the time scaling. For
the exact-1D system with imperfect trap, we used several
different trap strengths (p) of 1 (perfect trap), 0.50, 0.20, 0.15,
0.10, 0.05, and 0.01. The time steps were followed up to 107 to
achieve asymptotic behavior, and the lattice size was 3000.

III. Results and Discussion

1. Line Trap Experiments with Different Laser Beam
Power. Figure 2 shows various fluorescence images from the
experiment with a low photobleaching laser power, using the
argon-ion laser. Figure 2a shows an image of the trap as a bright,
thin vertical line in the middle, which is a focused laser beam
on the sample plane. Figure 2b is a fluorescence image of
fluorescein solution in the reaction vessel before photobleaching.
This image is saved as data at time zero. Figure 2c shows the
progress (in time) of the photobleaching of fluorescein by a
laser beam. The images are background-corrected ones, using
Figure 2b. The dark vertical band in the middle area of images
represents the depletion zone outside the trap. The depletion
zone appears to be dark because the photobleaching causes the
fluorescein to be invisible to our detection system. We can see
that the depletion zone grows continuously with time, as
predicted by theory for 1D (as opposed to the case for the
classical result in 3D in which the size of the depletion zone
remains constant in time).

Figure 3 shows spatial profiles of the fraction (θ) of reactants
surviving at different times obtained from experimental data
for weak laser power in Figure 2. The plot shows the growth
of the depletion zone in time quantitatively, enabling one to
measure theθ distance directly. Similar fraction profiles were
also obtained from the strong laser power experiments. We
measured theθ distance atθ ) 0.8 from both experiments with
different laser powers (see Figure 4). We notice a dramatic
difference in the time scaling between the two data sets. Theθ
distance for the system with a strong laser power shows at1/2

behavior in the given time scale of the experiment, which is
predicted as an asymptotic behavior for the perfect trap in 1D.
However, the time exponent of theθ distance is clearly above
1/2 for the system with weak laser power over the entire
experimental time scale.

We believe that the different time scalings stem from the
difference in photobleaching laser power, which corresponds
to a difference in trapping strength, causing a slower approach
to the asymptotic limit for the weak trap case. This result
suggests that there should exist an early-time regime for weak
traps, which is faster than thet1/2 asymptotic behavior. It also
suggests the existence of a crossover between the early-time
and the asymptotic limit time regime for weak trap cases. To
check this hypothesis, we performed the same photobleaching
experiment with an intermediate laser power at 100 mW on
the sample plane from the 430-nm pulsed laser. In Figure 4,
we could see only the early-time behavior with a weak laser
power and only the asymptotic behavior with a strong laser
power. Therefore, by using an intermediate laser power for the
trap, we expect to see both the early-time and the asymptotic-
time regime within the time scale of the experiment. Theθ
distances were measured atθ ) 0.8 and 0.9 from the fraction
profiles obtained from the experiment, which is shown in Figure
5. In this figure, theθ distances show a crossover from a fast,

Figure 2. A typical line trap image (a) used for photobleaching. The
laser beam is expanded and then focused into a line shape at the sample
plane using a cylindrical lens (f ) 15 cm). The trap width in this image
is 60 µm. Fluorescence images of fluorescein without background
corrections are shown (b) before photobleaching (t ) 0) and (c) after
t ) 1, 50, 200, 410, 800, and 1500 s of photobleaching by line-shaped
laser beam, after the background corrections using the image in
panel b.

Ci(t+1) ) [Ci-1(t) + Ci+1(t)]/2 (3a)

IC: Ci(0) ) C0, i ) 1, 2, 3, ... (3b)

BC: C0(t) ) 0, t ) 0, 1, 2, 3, ... (3c)
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early-time behavior to the asymptotict1/2 behavior in the given
time scale of the experiment, as expected. This result supports
our argument that the trap strength affects the kinetics of the
growth of the depletion zone around the trap, specifically for
the time scaling of theθ distance in the early-time range, in an
effectively 1D system. This hypothesis is tested and verified
further by computer simulations and exact enumerations below.

2. Simulation: Effect of Trap Strength on Growth of
Depletion Zone.The reactant profiles on a quasi-1D lattice at
different times were obtained from Monte Carlo simulations
for different trapping probabilities. A representative result for
the trapping probabilityp ) 0.02 is shown in Figure 6. All other
simulation profiles for different trapping probabilities look very
similar, except that a higher trapping probability causes a faster
decrease in reactant concentration at the trap position on the
lattice.

To obtain the scaling exponent, we measuredθ distances at
θ ) 0.8 for different probabilities and plotted against time on
a log-log scale. The results are shown in Figure 7. Theθ
distance showst1/2 behavior for most of the time range for the

perfect trap with trapping probability 1 or 0.8, while there is an
early-time regime with time exponent bigger than1/2 for trapping
probabilities 0.2 or less. This directly supports our experimental
result described earlier. Furthermore, it is shown that this early-
time deviation lasts longer for a system with a lower trapping
probability before it eventually converges to the asymptotict1/2

behavior.
3. Exact Enumeration. For a system in exact 1D with a

perfect trap, theθ distances were measured at three different
fractions (θ ) 0.2, 0.5, and 0.8) from the exact enumeration
results for the concentration profiles, shown as solid lines in
Figure 8, for time steps up to 104. The measuredθ distances
for different values ofθ are plotted against time on a log-log
scale in Figure 9 (filled symbols). The slopes are basically1/2
for the entire time range, regardless ofθ. This result is well-
known, but it confirms the validity of our recursion formula.
There is a slight deviation of the slopes (0.49) from the
theoretical value1/2, in early times, presumably due to the
“discreteness” of our model for the mathematical equations.

The dotted line in Figure 8 is the exact concentration profile
at a time step 104 for the quasi-1D system, with a perfect “line”

Figure 3. Typical background-corrected fluorescence intensity profiles
along a horizontal pixel line across the line trap at different times from
1 s up to 2 h ofphotobleaching. They-axis scale represents the fraction
of reactants surviving at each position as the photobleaching progresses.
Profiles are from the experiment using a trap with low laser intensity
(Figure 2).

Figure 4. Plots ofθ distance (rθ) vs time from experiments. Therθ’s
are measured atθ ) 0.8 for both the weak trap experiment with low
laser intensity (profiles are shown in Figure 3) and the strong trap
experiment with high laser intensity (profiles not shown). Note that
we see the early time behavior up to∼2 h in the weak trap case, while
the asymptotic regime is quickly achieved within 20 s in the strong
trap case.

Figure 5. A plot of θ distance (rθ) vs time from the experiment with
an intermediate laser power. Therθ was measured atθ ) 0.8 and 0.9
from the experimental data. Both data sets show a crossover behavior
from the fast, early-time regime to the asymptotic,t1/2 scaling regime.

Figure 6. Spatial concentration profiles at different times up to 900
time steps for imperfect line trap in 2D from Monte Carlo simulation.
The trapping probability,p, is 0.02 in this case. Simulations were
performed on a 200× 200 square lattice and a 200× 2 line trap was
put vertically at the center of the lattice. Initial particle density is 0.25.
The cyclic boundary condition is used. Data are averaged 100 times
for a better S/N ratio.

7590 J. Phys. Chem. A, Vol. 106, No. 33, 2002 Park et al.



trap lying on a 2D lattice. For the quasi-1D system, we notice
that the overall diffusion distance is much shorter than for the
exact 1D case. This is well expected because particles can now
move in perpendicular directions as well as in horizontal
directions on the 2D lattice. However, the time exponents of
theθ distance at differentθs, shown as open symbols in Figure
9, are basically the same as in the exact 1D case, that is,1/2 in
the entire time range of up to 104 steps. This result shows that
a perfect line trap on a 2D plane actually generates an effective
1D behavior for the reactant profiles, which supports our basic
assumption in this work. This result also suggests that we can
simply use an exact-1D model to study a scaling behavior for
a quasi-1D system.

Now we discuss the results for the quasi-1D system with an
imperfect trap, which closely corresponds to our experimental
system. On the basis of the conclusion that the scaling results
are identical for the exact-1D and quasi-1D system for the
perfect trap, we simply used the formula for the exact 1D with

imperfect trap in this case. This allows us to study a much longer
time scale, which is crucial for observing the asymptotic
behavior for the imperfect trap system. A series of reactant
concentration profiles, similar to those in Figure 8, were obtained
for different trapping probabilities from the exact enumeration
calculations for an imperfect trap in 1D. We measured theθ
distances from the profile and plotted them in time, as shown
in Figure 10. We see that they all converge to the one-
dimensionalt1/2 behavior at the long-time limit, with anomalous
early-time deviations observed only for the imperfect traps. The
present result matches well with the experimental as well as
the simulation results for the imperfect trap systems in quasi-
1D.

It is interesting to note that, according to Ben-Naim et al.,34

the infinite 1D trapping system with an imperfect trap is
equivalent to a semiinfinite 1D free diffusion system with a
radiation boundary condition. From this equivalence, an exact
expression for the concentration of the reactants for imperfect
trap in 1D is the same as the solution for the diffusion equation
in semi-1D with radiation boundary condition, which is33-35

Figure 7. A plot of rθ vs time atθ ) 0.8 from Monte Carlo simulations.
Trap strength (p) is varied between 1 (perfect trap) and 0.01. Each
simulation was averaged 100 times to achieve a decent S/N ratio, except
for the case ofp ) 0.01, which was averaged 1000 times to obtain a
reasonable S/N ratio. Note the more dramatic effect of early time
behavior as the trap strength decreases.

Figure 8. The reactant concentration profiles at different times from
exact enumeration calculations for a perfect trap in exact 1D (solid
lines). The trap is located at position 0, and the trapping probability is
p ) 1. The time step is up to 104. Similar concentration profiles can
be obtained for a perfect trap in quasi-1D, in which the trap is located
vertically at the edge of the 3000× 3000 square lattice. For comparison,
only one concentration profile at a time step 104 for the quasi-1D case
is shown as a dotted line in this figure. Calculations were performed
on Matlab.

Figure 9. A plot of rθ vs time for the perfect trap in exact 1D (filled
symbols) and in quasi-1D (open symbols) from exact enumerations.
The θ distances are measured atθ ) 0.8, 0.5, and 0.2.

Figure 10. A plot of rθ vs time for various trap strengths in 1D from
exact enumerations. Theθ distances are measured atθ ) 0.8 for all
different trap strengths. Note that there is an early-time regime for weak
traps, while the perfect trap has no such behavior. Also Note that all
of theθ distances at different trap strengths eventually converge to the
1D t1/2 behavior at the long-time limit.

c(x,t) ) c0{erf[x/(4Dt)1/2] +

exp(κ2Dt + κx) erfc[(x + 2κDt)/(4Dt)1/2]} (4)
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wherec0 is the initial reactant concentration,D is a diffusion
constant of the reactant,κ is an absorption rate of the trap, which
is defined to be zero for complete reflection (no trapping) and
∞ (infinity) for perfect trapping. The erf(z) is the error function
and erfc(z) is the complementary error function. We generated
a series of concentration profiles forκ ) 1/9 using this equation,
and theθ distances were measured forθ ) 0.4 and 0.8, which
are shown as circles and squares in Figure 11. Atsufficiently
long time, the expression ofrθ can be approximated from
eq 4 as35

According to this result, when the trap is imperfect, the
asymptotict1/2 behavior forrθ is recovered after aVery long
time, whereθxπDt . 1/κ. However,rθ deviates from thet1/2

scaling when the time is not long enough and the effect of the
second term (1/κ) in eq 5 is not negligible. Therefore, eq 5 holds
for both asymptotict1/2 range and amarginally longtime range
(say, an “intermediate”-time range), whererθ deviates from the
asymptotict1/2 scaling. The solid lines in Figure 11 are an
attempt to fit the analytical data for theθ distances from eq 4
with the long-time approximation in eq 5. The solid lines
collapse at a short-time range, but fit well with the slight
deviations from thet1/2 behavior at an “intermediate” time range
as well as with the asymptotict1/2 behavior. This partially
explains the anomalous early-time deviations of theθ distance
from asymptotic behavior for the imperfect trap systems in
Figures 4, 5, 7, and 10.

IV. Summary

The effect of trap strengths on the growth of depletion zones
in A + T f T with a static trap T in 1D was studied. Different
trap strengths were achieved by changing the laser power (served
as a phototrap in the experiment). The strong laser power
simulated a perfect trap, which has at1/2 scaling behavior for
the θ distance over most of the time range. However, the
experiment with a weak laser power produced an anomalous
early-time behavior for theθ distance, which is faster than the
t1/2 scaling. A crossover behavior from the early-time regime
to the asymptotic-limit regime was observed experimentally,

using an intermediate strength laser power. The experimental
results are consistent with an exact one-dimensional analytical
solution and were also reproduced in the computer simulations
as well as by the exact enumeration calculations. A simple,
quasi-1D, imperfect trapping model is consistently corroborated
by the experiments, the simulations, and the exact enumerations.
The new fluorescence-based experimental system enables the
simultaneous spatial and temporal resolution required for this
study.
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Figure 11. A plot of rθ vs time for a trap strengthκ ) 1/9 in exact 1D
from exact solution. Theθ distances were measured atθ ) 0.8 (b)
and 0.4 (9). The solid lines represent the fit of the data with eq 5.

rθ = θ xπDt - 1/κ (5)
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