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We examine the origin of the orbital localization requirement, commonly imposed on effective potential
implementations of the Perdew-Zunger (PZ) self-interaction correction (SIC). We demonstrate that the
condition arises because of the presence of irreducible off-diagonal Lagrangian multipliers in the coupled PZ
eigenequations. Thus, this condition is essential for obtaining an energy-minimizing solution. Further, we
report on an implementation of PZ SIC for the generalized gradient approximation (GGA) to the exchange-
correlation energy within density functional theory (DFT). The implementation relies on the Krieger-Li-
Iafrate (KLI) approximation to the optimized effective potential (OEP), simplifying the evaluation of molecular
properties, such as the NMR chemical shifts. We examine several approaches toward incorporating the frozen
core orbitals within the SIC-KLI -OEP scheme. To achieve an accurate description of both the energetic
and magnetic properties, core orbitals must be included in the KLI potential on an equal footing with the
valence orbitals. Implementation of the frozen core orbitals enables incorporation of relativistic effects via
the quasirelativistic Pauli Hamiltonian. As the first application of the SIC-GGA approach, we examine31P
NMR chemical shifts of 18 representative small molecules, as well as the previously reported C, H, N, O,
and F SIC-LDA (local density approximation) test set. For C, N, O, and F NMR chemical shifts, SIC-GGA
performs similarly to SIC-LDA, whereas a significant improvement is observed for hydrogen. Almost identical
results, both for the chemical shifts and absolute shieldings, are obtained with different parent GGAs. For the
31P test set, SIC-revPBE (revised Perdew-Burke-Ernzerhof functional of Zhang and Yang) leads to an
root-mean-square (RMS) residual error of 23 ppm, compared to 54 ppm for its parent GGA, and 40 ppm for
the SIC-VWN (Vosko-Wilk-Nusair) LDA functional. In particular, SIC-revPBE correctly reproduces
the experimental trends in the PF3-PCl3-PBr3-PI3 series, which is described qualitatively incorrectly by
VWN, revPBE, and SIC-VWN calculations. A similar improvement is observed for the31P shielding tensor
components. The spurious self-interaction, in modern approximate DFT, appears to be a major, and so far
largely overlooked, source of errors in calculations of the NMR shielding tensors.

1. Introduction

Because of a nuclear spin of1/2 and 100% natural abundance,
phosphorus-31 is one of the easiest NMR nuclei to observe.1

The interest in31P NMR has been increasing recently, as a result
of its importance in studies of nucleic acids and other biological
systems.2 Both the isotropic NMR chemical shifts and the
shielding tensor anisotropies3,4 can be useful in such investiga-
tions. Structural interpretation of the NMR results in terms of
simple, empirical structural increment rules is often possible
for the lighter nuclei (H, C, N, O, and F). Such approaches have
proven to be of only limited utility for31P chemical shifts.5

Instead, the interpretation of phosphorus chemical shifts has
benefited greatly from theoretical computations on the NMR
shielding tensors.5-16 Some recent examples of synergy between
theory and experiment in phosphorus NMR include the deter-
mination of the NMR shielding tensors of the PI4

+ cation14 or
the experimental confirmation17 of the theoretically predicted7,11

shielding tensor components of M(CO)5PR3 (M ) Cr, Mo, or
W) complexes. Multivariate analysis of theoretical31P chemical
shifts was also used to devise simple empirical rules for31P

substituent effects.8,10,13 At the same time, achieving useful,
uniform qualify in theoretical prediction of31P shielding tensors,
across the whole range of phosphorus bonding environments,
has proven more difficult than for the lighter nuclei.6,7,10,14,16

Not only are31P NMR chemical shifts highly sensitive to the
quality of the description of the electron correlation,6,10,16they
are also influenced by relativistic effects.7,11,14

Classical correlated ab initio approaches to the NMR chemical
shifts, such as MP2,18-20 MP3,21 CCSD,22 CCSD(T),23 CC2,24

SOLO,25 and MC-SCF,26,27 can provide extremely accurate
results for small, isolated systems. However, because of their
computational complexity, such calculations are often impracti-
cal for larger molecules. With the development of density
functional theory (DFT) approaches to the NMR chemical
shifts,28-35 DFT emerged as the method of choice for the
prediction of the NMR parameters of systems with a large
number of electrons, particularly where electron correlation is
important. However, unlike classic ab initio approaches, ap-
proximate DFT does not provide a systematic way of improving
the quality of the results. If the calculated NMR chemical shifts
fail to follow the experimental trends, the only recourse is to
try a different approximate functional, with no a priori reason
to expect a better description of the NMR properties. For this
reason, several simple semiempirical prescriptions have been
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proposed,28,29,36,37which often afford an improvement in the
DFT magnetic properties. Two such prescriptions, by Malkin
et al. (“SOS-DFPT”),29,38 and by Wilson et al. (“WAH”),36,37

have been particularly successful in solving many of the
problematic cases in DFT NMR.36,39,40 Devising a plausible
theoretical justification for these prescriptions, as well as the
formal consequences for the gauge dependence and the existence
of the basis set limits within SOS-DFPT and WAH, has also
attracted considerable attention.16,28,29,36,41Both SOS-DFPT and
WAH start with the observation that DFT tends to underestimate
the difference in the Kohn-Sham (KS) eigenvalues of the
highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO), compared to the ex-
perimental excitation energies. In SOS-DFPT, the orbital
energy differences are “improved” by adding a suitable cor-
rection term in the denominator of the standard perturbational
energy expressions for the NMR shielding tensors,28,29 while
the composition of the KS molecular orbitals is left unchanged.
In the WAH approach,36,42 the desired increase in the orbital
energy differences is achieved by determining the KS orbitals
from a hybrid DFT calculation, with a suitable fraction (typically
5%) of the exact Hartree-Fock exchange mixed in. Shielding
tensors are then computed using standard, uncoupled DFT
expressions. In both SOS-DFPT and WAH, the KS molecular
orbitals are not self-consistent with the zeroth order Hamiltonian,
employed (either explicitly or implicitly) in the property
evaluation, with some undesirable consequences.16,41 Unfortu-
nately, both SOS-DFPT and WAH have been only partially
successful in applications to the31P shieldings.16,38 For this
nucleus, WAH chemical shifts appear to be inferior to B3LYP
DFT results,16 and the (expensive) ab initio MP2 calculations
were reported to be necessary for achieving uniformly accurate
results.6,10,16

Recently, self-interaction corrected DFT (SIC-DFT), together
with a simple local density approximation (LDA) exchange-
correlation functional, was shown to offer a substantial improve-
ment over the standard approximate functionals in calculations
of the magnetic properties of C-, H-, N-, O-, and F-containing
molecules and ions.43 Because SIC-DFT relies on a physically
well-defined contribution to the total energy and to the
exchange-correlation potential, one might hope that a similar
improvement is possible, also in cases where the more empirical
schemes fail. In the present work, we augment the previously
reported43 SIC-DFT implementation in two aspects. First, the
treatment of the Perdew-Zunger (PZ) self-interaction correction
(SIC) is applied to gradient-corrected functionals. Further, the
formalism is extended to allow a consistent treatment of the
frozen core orbitals. The latter development allows self-
consistent applications of the Pauli quasirelativistic Hamiltonian
and, hence, applications to molecules, where relativistic effects
may be important. The updated SIC-DFT approach is then
applied to31P NMR chemical shifts and the shielding tensor
component and shown to compare favorably with the best
available calculations to date.

Section 2 of this paper briefly discusses the physical origin
of the additional orbital localization step in SIC-OEP formula-
tion, which is commonly imposed on semiintuitive grounds.43,44

Section 3 outlines the implementation of the generalized gra-
dient approximation (GGA) functionals and frozen core orbitals
within the SIC-KLI -OEP scheme. Section 4 provides com-
putational details. Sections 5 and 6 discuss respectively NMR
results for the first main row nuclei and31P. Finally, section 7
provides the conclusions and outlines the directions for future
work.

2. Orbital Localization and SIC-OEP

The theory behind the PZ SIC, optimized effective potentials
(OEP), and the Krieger-Li-Iafrate (KLI) approximation to the
OEP is discussed in detail elsewhere45-53 and need not be
restated. Therefore, we will only briefly recapitulate the key
equations, essential for the practical implementation of SIC-
KLI -OEP in a molecular DFT program. Within the PZ scheme,
the total electronic energy of a system is given by (atomic
units)45

whereψσi are Kohn-Sham molecular orbitals (here assumed
to be real),Vext is the external potential, andExc

approx is an
approximate exchange-correlation energy functional.Nσ is the
number of the (possibly partially) occupied spin-σ orbitals,
whereas occupation numbers of the KS MOs are given bynσi.
Spin-R and spin-â electron densities are given byFR and Fâ,
whereas the total density is given byF. The last term in eq 1
represents the PZ energy correction, defined on the electron
densitiesF̃σi of localized orbitalsψ̃σi:

In eq 2, coefficientsUji
σ define a unitary transformation

and are chosen such that

The inverse transformation is then given by

The functional Etot
PZ has to be minimized, subject to the

condition

or, equivalently

Except for the SIC, the functionalEtot
PZ is invariant to unitary

transformations between KS orbitals with the equal occupation
numbers. Given the definition ofUji

σ (eqs 4, 5), anarbitrary

Etot
PZ ) ∑

σ)R,â
∑
i)1

Nσ

nσi〈ψσi | -
1

2
∆|ψσi〉 +

1

2
∫ F( rb1) F( rb2)

r12

drb1 drb2 + ∫Vext( rb) F( rb) drb +

Exc
approx[FR, Fâ] - ∑

σ)R,â
∑

i

Nσ {1

2
∫ F̃σi( rb1) F̃σi( rb2)

r12

drb1 drb2 +

Exc
approx[F̃σi, 0]} (1)

ψ̃σi ) ∑
j

Uji
σψσj (2)

F̃σi ) ñσi|ψ̃σi|2 (3)

∑
k

Uki
σ Ukj

σ ) δij (4)

Uji
σ ) 0 if nσj * ñσi (5a)

Uji
σ ) δij if i > Nσ or j > Nσ (5b)

ψσi ) ∑
k

Uik
σ ψ̃σk (6)

〈ψσi|ψσj〉 ) δij (7a)

〈ψ̃σi|ψ̃σj〉 ) δij (7b)
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choice ofU will lead to the same energy, as long as the localized
orbitals ψ̃σi remain unchanged. It is therefore convenient to
minimize the total energy functional with respect to the localized
MOs ψ̃. Application of the standard variational techniques leads
directly to the eigenequations

where the Lagrangian multipliersλij
σ correspond to the con-

straints (7b) for the localized MOsi and j. Operatorsf̂σ
KS and

Vσi
SIC are given by

These eigenequations can be solved directly in an energy
minimization approach.46,47 In such implementations, the lo-
calization transformation (2) does not change the total energy,
and it need not be considered.

Because the self-interaction contribution to the potential
Vσi

SIC is orbital-specific, the eigenequations (8) cannot be trans-
formed to the diagonal, canonical form, without additional
approximations. If an appropriately chosen universal effective
potential (such as the OEP or the KLI approximation to the
OEP) is substituted forVσi

SIC, the eigenequations can be sepa-
rated, giving

where the eigenvaluesεσi are related toλij
σ by a unitary

transformation:

Because eq 1 provides complete freedom in the choice of the
occupied MOsψσi within the subspace spanned by the energy-
minimizing orbitalsψ̃σi, the occupied canonical eigenorbitals
ψ′σi can be identified with the MOsψσi. The localization
transformationUij

σ is then given simply by the eigenvectors of
the nondiagonal Lagrangian multiplier matrixλij

σ. The condi-
tions, determining the transformation, can be derived by
integrating the eigenequations (8) forψ̃σi and ψ̃σk with
respectivelyψ̃σk ad ψ̃σi, and subtracting46,54,55

In practice, some approximation to the exact conditions, which
does not require the (expensive) repeated evaluation of the self-
interaction potentialsVσi

SIC andVσk
SIC, is usually employed.43,44 In

this respect, it is important to note that the condition (13) is
satisfied exactly for any pair of orbitals, localized in spatially
nonoverlapping regions, so that an arbitrary set of localized MOs
automatically provides a good approximation to the exact
conditions (13).

Finally, the proper effective potential approximation to the
energy-minimizing solutions of the PZ eigenproblem (8) is given
by the localizedMOs ψ̃, rather than by the canonical orbitals
ψσi. It is then clear why the canonical MOs can be employed
safely in atomic PZ calculations45 but often lead to qualitatively

incorrect results for molecular systems.43,44,47 In atoms, the
canonical MOs are necessarily similar to the energy-minimizing,
localized MOs, so that the off-diagonal Lagrangian multipliers
in eq 8 are small and can be ignored safely. In molecules,
canonical MOs may extend over the whole system, making the
off-diagonal contributions toλij

σ more important.

3. Implementing Gradient-Corrected Functionals and
Frozen Cores within SIC-KLI -OEP

In the SIC-KLI -OEP approximation, the effective potential
Vσ

KLI is computed as a density-weighted average of the per-
orbital SIC potentials:50

where

The coefficientsxσi andCσ are obtained by solving an auxiliary
system of linear equations:

(See ref 43 for the reasons behind this definition of the global
potential shift parameterCσ.) The auxiliary integralsMij

σ, Vjσi
S ,

andVjσi
SIC, determined by numerical integration on a real-space

grid, are given by

In our implementation, the Coulomb potentials of the individual
localized MOs are computed using auxiliary fits to each orbital
electron density.43,56

SIC-KLI -OEP and GGA Functionals. In our previous
SIC-KLI -OEP implementation, as well as in most other
molecular SIC codes44,46,47,57 (but see refs 58 and 59), the
approximate XC functional is restricted to the local density
approximation form, such asXR or VWN functionals. On the
other hand, gradient-corrected functionals are usually superior
to LDA in standard DFT calculations, particularly when
chemical bonds are broken or formed.60 GGA functionals also
provide a much better approximation to the exact total electronic
and atomization energies60 and presumably reduce the self-
interaction contribution in the energy.61 Some of these improve-
ments over LDA may be expected to carry over to a self-
interaction corrected approach.

Incorporation of GGA functionals within the SIC-KLI -OEP
approach requires the following changes to an existing LDA
implementation:

1. Cartesian gradients of the localized per-orbital electron
densities,F̃σi, need to be evaluated. The gradients are required

( f̂σ
KS+ Vσi

SIC)ψ̃σi ) ∑
j

λij
σψ̃σj (8)

f̂σ
KS ) - 1

2
∆̂ + Vext( rb) + ∫ F( rb′)

| rb - rb′| drb′ +
δExc

approx[FR,Fâ]

δFσ
(9)

Vσi
SIC( rb) ) -

δExc
approx[F̃σi,0]

δF̃σi
- ∫ F̃σi( rb′)

| rb - rb′|drb (10)

( f̂σ
KS + Vσ

KLI )ψ′σi ) εσiψ′σi (11)

εσi ) ∑
kl

Wki
σ λkl

σ Wli
σ (12)

∫ψ̃σk( rb)[Vσi
SIC( rb) - Vσk

SIC( rb)]ψ̃σi( rb) drb ) 0 (13)

Vσ
KLI ( rb) ) Vσ

S( rb) + Fσ
-1( rb) ∑

i)1

Nσ

F̃σi( rb)(xσi - Cσ) (14)

Vσ
S( rb) ) Fσ

-1( rb) ∑
i)1

Nσ

F̃σi( rb)Vσi
SIC( rb) (15)

∑
j)1

Nσ

(δijnσj - Mij
σ)xσj ) Vjσi

S - Vjσi
SIC, i ) 1...Nσ (16)

Cσ ) max(xσi) (17)

Mij
σ ) ∫F̃σi( rb)F̃σj( rb)

Fσ( rb)
drb (18)

Vjσi
S ) ∫F̃σi( rb)Vσ

S( rb) drb (19)

Vjσi
SIC ) ∫F̃σi( rb)Vσi

SIC( rb) drb (20)
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for evaluating the self-exchange contribution to the total energy
(Exc

approx[F̃σi, 0] in eq 1) and the exchange-correlation part of the
per-orbital SIC potential (δExc

approx[F̃σi, 0]/δF̃σi in eq 10).
2. Cartesian second derivatives, of the per-orbital electron

densities, are required for the exchange-correlation part of the
per-orbital SIC potential.

These modifications can be incorporated into an existing SIC-
LDA program with a minimal effort and at a moderate
computational expense. In our implementation, a single-point
SIC-GGA self-consistent calculation requires twice the time of
a comparable SIC-LDA calculation.

SIC-KLI -OEP and Frozen Cores. In our previously
reported SIC-KLI -OEP implementation,43 all electrons are
treated explicitly and are included in both the variational energy
calculations and in the KLI-OEP potential evaluation. Although
it is an acceptable choice for calculations involving only light
nuclei, the all-electron approach leads to difficulties for heavier
elements. In particular, the simplest quasirelativistic approach,
employing the Pauli Hamiltonian, cannot be applied variationally
in all-electron calculations with large basis sets, because of the
danger of variational collapse of the core levels.62 Additionally,
the computational cost of the SIC-KLI -OEP is roughly
proportional to the total number of variationally treated electrons
in the system, making all-electron calculations on heavy
elements relatively expensive. Finally, the need to approximate
the rapidly varying densities of the localized core orbitals places
a heavy demand on the quality of the auxiliary fit sets, which
in turn may lead to numerical stability issues in practical
calculations.

Similar issues arise in standard DFT calculations. In ADF
(Amsterdam density functional) program,56 they are solved by
“freezing” the core orbitals at their atomic values. Frozen core
orbitals on atom A in ADF are represented by an expansion
over atom-centered Slater basis functions, with real tesseral
harmonics63 used for the angular parts of the orbitals:

(An auxiliary minimal Slater basis set is used to ensure the
orthogonality of the valence orbitals to the frozen core(s), see
refs 56, 64, and 65 for details.) The coefficientsDµ,i

A are
determined from atomic calculations and do not constitute an
additional degree of freedom.

In atomic SIC studies, calculations employing canonical and
localized MOs are known to lead to almost identical results for
total energies and the orbital eigenvalues.45,47 The same may
be expected to hold true for the core orbitals in molecular
calculations, so that application of the localization transformation
(eq 2) appears unnecessary for the frozen core orbitals. As a
result, the frozen core contribution to the self-interaction energy
should cancel identically for all chemically meaningful energy
differences. Thus, in the presence of the frozen core orbitals,
the summation in eq 1 can be simply taken to run over the
valence orbitals alone.

In standard DFT calculations, it is often acceptable to include
only the outermost (ns, np, and (n - 1)d) atomic shells within
the valence region and treat the remaining electrons with the
frozen core approximation. However, in SIC calculations, the
self-interaction energy is determined by the localized orbitals.
If the core orbitals are frozen, and do not participate in the
localization transformation (which would have introduced an
undesirable additional degree of freedom), localized valence
orbitals, derived from a frozen core calculation, are typically
more extended, compared to an all-electron calculation. For this

reason, two outermost electronic shells of each symmetry have
to be included in the valence region in SIC calculations. An
exception can be made for the first main row elements, where
the compact, nodeless 1s orbital can be included within the
frozen core, without substantially affecting the valence SIC
energies.

The most straightforward approach toward evaluation of the
frozen core contribution to the KLI potential,Vσ

KLI , is to
explicitly include core orbitals in the average Slater potential
(15) as well as in the KLI potential equilibration (the second
term in eq 14). Because the potential shifts parametersxσi are
completely determined by the localized orbital densitiesF̃σi (eqs
16-20), this does not introduce an additional degree of freedom.
Moreover, because the orbital densities of the core orbitals
remain frozen, their contributions to the average Slater potential,
in the form of F(rb)Vσ

S(rb), at grid points, can be precomputed
and stored. We call this approach the “full” SIC-KLI -OEP
treatment of the frozen core.

Calculation of the KLI shift parametersxσi, for the core
orbitals, still requires that the core orbital densities are reevalu-
ated on every SCF cycle. These densities are required for the
evaluation of the integralsMij

σ (eq 18) for valencei and corej,
Vjσi

S for the core orbitals, as well as in eq 14. In the spirit of the
simplified SIC approach, proposed by Ullrich et al.,57 it may
appear attractive to neglect the (relatively expensive) equilibra-
tion contribution that is due to core orbitals, so that the
summation in eqs 14 and 16 runs over the valence orbitals only.
This is the “Slater” treatment of the frozen core. Finally, as the
chemically relevant quantities may be expected to be unaffected
by the fine details of the core potential, core contributions to
the SIC-KLI -OEP potential can be neglected altogether, with
summation in eqs 14-16 running over the valence orbitals only,
and total densityFσ taken to exclude the core electron density.
This is the “ignore” approximation for the SIC-KLI -OEP core
potentials.

The “full” treatment can be expected to be the most accurate,
but also the most expensive, approach to the KLI potential
because of the frozen core orbitals. To strike the appropriate
balance between the accuracy and computational expediency,
we compare the three approaches to the all-electron treatment
for Kohn-Sham orbital energies, atomization energies, and
absolute NMR shielding constants of selected small molecules.
For the orbital energies in CH4, C2H4, and PF3 (Table 1), the
“full” treatment is clearly superior, with the average absolute
relative error of just 0.6%. The distribution of the residual
deviations in the “full” treatment is also uniform, with the largest
relative deviation not exceeding 1.5% (for the virtual orbitals
in PF3). Ignoring the frozen core altogether also works well for
the orbital energies, with an average relative error of 2.1%. As
may be expected, the distribution of the relative errors is no
longer uniform, with the larger errors observed for the core,
virtual, and high-lying occupied orbitals. A similar behavior,
of KLI -OEP orbital energies with respect to neglect of core
orbital contributions, was observed previously.66 Somewhat
surprisingly, including the average Slater SIC potential for the
core orbitals, but ignoring the equilibration contributions, is the
worst possible approach. The average relative deviation from
the all-electron results for this treatment is more than 20%, with
some of the individual errors exceeding 40%. The complete
failure of the “Slater” approach can be understood, given the
relative magnitudes of the KLI shift constantsxσi for the core
and valence orbitals. For third-row atoms, such as phosphorus,
xσ,1s values are typically close to 1-4 Hartree (3.2 H for PH3,
using SIC-VWN), corresponding to anupward shift of tens of

ψA,i
C ( rb) ) ∑

µ

Dµ,i
A

φµ
C( rb) (21)
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electron volts in the core orbital energies. When this contribution
is excluded, as in the “Slater” frozen core treatment, core orbitals
become excessively stable. Simultaneously, high-lying occupied
MOs and virtual MOs are destabilized, compared to all-electron
calculations. Thus, the “Slater” treatment appears to be unsuit-
able for practical calculations and need not be discussed any
further.

Compared to the orbital energies, atomization energies (Table
2) are less sensitive to the choice of the frozen core potential
treatment. Very similar residual errors are found for the full
treatment and by ignoring core orbitals altogether. Finally, for
the NMR absolute shielding constants (Table 3), the “full”
treatment is, again, superior to ignoring the SIC potential of
the core orbitals. The average errors are respectively 1.5% for
the full treatment and 3.0% for the “ignore” approach, with the
“ignore” approach showing substantial deviations from all-
electron results for some molecules (PF3). Overall, it appears
that only the “full” treatment of the frozen core orbitals leads
to an acceptable description of molecular properties.

One technical aspect of the implementation of the frozen core
KLI potentials, worth mentioning, is the evaluation of the
Coulomb potential that is due to the frozen core orbitals. In
ADF, the Coulomb potential, of the valence electron density,
is determined by a secondary fitting of the electron density.56,64,65

For the core orbitals, where the total core density is necessarily

spherically symmetric, the potential is determined through one-
dimensional numerical integration. Neither approach is appealing
for the evaluation of the Coulomb potentials of the individual
core orbitals. The numerical integration approach is not ap-
propriate, because of the loss of spherical symmetry for the
individual orbitals. The secondary fitting technique can, in
principle, be adapted to the core orbitals. However, this would
necessitate the inclusion of a large number of steep, high-angular
momentum functions in the fitting basis set, thus largely
negating computational advantages of the frozen core ap-
proximation.

At the same time, the frozen core orbitals (21) are, by
definition, expressed in terms of basis functions, centered on
the same atom. The corresponding orbital densities can then be
expressed as a sum over auxiliary Slater product functions,
centered on the same atom:

If the core basis functionsφµ
C and φν

C are determined by
respectively quantum numbers (nµ, lµ, mµ) and (nν, lµ, mµ) (only
functions with the identical orbital and magnetic quantum
numbersl andm may contribute to the same core orbital), the

TABLE 1: Comparison of the Kohn-Sham Orbital
Energies in Selected Molecules, within the All-Electron and
Variants of the SIC-KLI -OEP Frozen Core Potential
Treatmenta

treatment of the frozen core

molecule ε, eV AEb ignorec slaterd fulle

CH4 (Td) 1a1 (core) -276.92 -267.74 -295.54 -276.04
2a1 (occ) -23.63 -23.49 -23.46 -23.64
1t2 (occ) -16.00 -16.05 -16.00 -16.02
3a1 (virt) -5.08 -5.06 -5.11 -5.09
2t2 (virt) -3.45 -3.45 -3.53 -3.44

C2H4 (D2h) 1a1g (core) -276.81 -267.61 -296.09 -275.88
1b3u (core) -276.79 -267.61 -296.09 -275.88
2a1g (occ) -24.59 -24.40 -24.26 -24.61
2b3u (occ) -19.92 -19.81 -19.68 -19.95
1b2u (occ) -17.21 -17.25 -17.05 -17.25
3a1g (occ) -15.96 -16.01 -15.97 -15.98
1b1g (occ) -14.22 -14.25 -14.07 -14.26
1b1u (occ) -12.46 -12.52 -12.52 -12.47
1b2g (virt) -6.45 -6.50 -6.70 -6.46
4a1g (virt) -4.14 -4.11 -4.02 -4.16

PF3 (C3V) 1a1 (core) -2093.69 -2071.76 -2142.87 -2088.27
1e1 (core) -668.91 -656.46 -698.17 -666.74
2a1 (core) -668.91 -656.46 -698.17 -666.74
3a1 (occ) -184.20 -182.89 -193.22 -184.10
2e1 (occ) -135.88 -135.43 -145.71 -135.76
4a1 (occ) -135.74 -135.29 -145.52 -135.62
5a1 (occ) -37.37 -37.63 -33.33 -37.35
3e1 (occ) -36.32 -36.53 -32.17 -36.28
6a1 (occ) -22.35 -22.88 -19.49 -22.44
4e1 (occ) -19.28 -19.99 -15.99 -19.40
7a1 (occ) -18.10 -18.84 -14.87 -18.24
5e1 (occ) -17.30 -18.09 -13.72 -17.44
6e1 (occ) -16.49 -17.29 -12.98 -16.64
1a2 (occ) -16.22 -17.02 -12.70 -16.36
8a1 (occ) -13.85 -14.30 -11.87 -13.94
7e1 (virt) -6.90 -7.37 -5.02 -6.99
9a1 (virt) -4.77 -5.28 -2.78 -4.84

average relative absolute error, percent 2.1 21.1 0.6

a Using TZ2P basis sets, optimized BP86 geometries, and nonrela-
tivistic Hamiltonian.b All-electron calculations.c No SIC potential
because of the core orbitals.d Core orbitals contribute to the average
Slater potential (eq 15) but do not participate in the KLI “potential
stitching” (eq 14).e Frozen core orbitals are treated identically to the
localized valence orbitals.

TABLE 2: Comparison of the Atomization Energies, in
kcal/mol, of Selected Molecules, within the All-Electron and
Variants of the SIC-KLI -OEP Frozen Core Potential
Treatmenta

treatment of the frozen core

molecule AEb ignorec slaterd full e

CH4 467.65 472.39 470.66 471.62
C2H4 627.90 636.99 634.00 635.39
N2 239.23 241.15 234.22 241.29
PH3 330.61 330.05 288.07 330.67
PF3 416.17 438.23 422.31 435.32

average relative absolute error, percent 1.8 3.6 1.5

a Using TZ2P basis sets, optimized BP86 geometries, and nonrela-
tivistic Hamiltonian.b All-electron calculations.c No SIC potential
because of the core orbitals.d Core orbitals contribute to the average
Slater potential (eq 15) but do not participate in the KLI “potential
stitching” (eq 14).e Frozen core orbitals are treated identically to the
localized valence orbitals.

TABLE 3: Comparison of Nonrelativistic Absolute Shielding
Constants (in ppm) for Selected Molecules, within the
All-Electron and Variants of the SIC-KLI -OEP Frozen
Core Potential Treatmenta

treatment of the frozen core

molecule nucleus AEb ignorec slaterd full e

CH4 C 191.5 191.2 178.5 191.2
H 30.61 30.66 29.85 30.65

C2H4 C 58.0 58.7 -4.6 59.8
H 25.11 25.20 23.93 25.20

N2 N -73.8 -71.0 -173.8 -68.6
PH3 P 569.6 568.4 486.0 567.6

H 28.45 28.43 26.45 28.44
PF3 P 149.7 171.4 -49.4 150.2

F 198.3 212.1 92.0 202.7
average relative absolute error, percent 3.1 51.8 1.5

a Using TZ2P basis sets, optimized BP86 geometries, and nonrela-
tivistic Hamiltonian.b All-electron calculations.c No SIC potential
because of the core orbitals.d Core orbitals contribute to the average
Slater potential (eq 15) but do not participate in the KLI “potential
stitching” (eq 14).e Frozen core orbitals are treated identically to the
localized valence orbitals.

FA,i
C ( rb) ) ∑

µν

Dµ,i
A Dν,i

A
φµ
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∑
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A Eλ,µν}øλ
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1092 J. Phys. Chem. A, Vol. 106, No. 6, 2002 Patchkovskii and Ziegler



corresponding product functions must have quantum numbers
nλ ) nµ + nν - 1, lλ ) 0, 2, ..., 2lµ, andnλ ) - 2|mµ|, 0, +
|mµ|. The orbital exponentúλ is always the sum of the orbital
exponentsúµ and úν. The coupling coefficientsEλ,νν may be
expressed in terms of 3J symbols.67 Once the expansion (22)
of the core orbital densities, in terms of auxiliary Slater-type
product functions, is determined, standard techniques56,64,65can
be used to compute per-orbital Coulomb potential. Thus, in
effect, we generate the optimal, exact fit set for every individual
core orbital.

4. Computational Details

All calculations are based on DFT60,62,68and were performed
with the ADF program package,56,64,65,69using Cartesian space
numerical integration70 and analytical gradients for the geometry
optimization.71 For the C, H, N, O, and F data set, calculations
were performed at the previously reported43 optimized geom-
etries. For the phosphorus data set, molecular geometries were
optimized using the revPBE72-74 GGA functional and ADF
standard basis set IV of TZP quality in the valence region of
main-group elements,75 with ns, np, and (n - 1)d (if present)
electron shells included within the valence part. Scalar relativ-
istic effects, on the molecular geometry, were included within
the quasirelativistic framework76 employing relativistic frozen
core potentials, in conjunction with the first-order Pauli Hamil-
tonian. The final optimized geometries are provided as Sup-
porting Information. For PH3, PF3, PCl3, PBr3, and PI3, which
are described poorly by GGA functionals,7,11,16 experimental
geometries77,78 were also used in NMR calculations.

Calculations involving the SIC functionals were performed
with a modified version of ADF. The SIC-KLI -OEP imple-
mentation supports both local and generalized gradient ap-
proximation (GGA) functionals of the spin-density asExc

approxin
eq 1. Frozen atomic core orbitals are also supported within a
SIC calculation, as described above. The SIC correction was
applied self-consistently, with the Foster-Boys79,80 localization
procedure used to obtain approximate solutions for the varia-
tional conditions (13).

Calculations of the NMR shielding tensors employed gauge-
including atomic orbitals (GIAOs),81-83 using the implementa-
tion of Schreckenbach and Ziegler.31,35 Basis set with 3x(ns),
3x(np), and 2x(nd) functions was used on hydrogen atoms. For
the NMR calculations on molecules from the C, H, N, O, and
F set, the previously reported43 all-electron Slater basis sets of
TZ2P quality, containing 5x(ns), 3x(np), 2x(nd), and 2x(nf) basis
functions, was used. These calculations employed a nonrela-
tivistic Hamiltonian.

NMR calculations, on molecules from the phosphorus data
set, employed a scalar quasirelativistic Pauli Hamiltonian,
together with a Slater basis set of TZ2P quality in the valence
region. Frozen 1s cores were used on C, N, O, F, P, Si, and Cl.
Chromium and bromine basis sets employed 2p frozen cores,
whereas a 3p frozen core was used on iodine. From the previous
experience,31,84 these basis sets are approaching saturation for
calculations of NMR chemical shifts. In all cases, the auxiliary
fitting sets were optimized to reproduce atomic orbital densities
to machine accuracy.85 These basis sets are included in the
Supporting Information.

All calculations were performed with Vosko-Wilk-Nusair
(VWN)86 LDA, BP86,87,88 and revPBE72,73 GGA functionals.
These functionals were applied self-consistently, both in standard
DFT calculations and within the SIC-KLI -OEP program.

5. SIC-GGA for NMR Chemical Shifts of C, H, N, O,
and F

Before discussing the NMR chemical shift results for31P, it
is instructive to examine the performance of SIC-GGA
functionals for the previously studied43 C, H, N, O, and F data
set. For these nuclei, SIC-LDA already provides qualitative
improvement over standard LDA and GGA functionals. The
statistical evaluation of the results, for this reference set, is given
in Table 4. The individual chemical shifts are provided in Table
S2 of the Supporting Information, whereas the reference
isotropic shieldings (see ref 43 for details of the statistical
evaluation procedure) are given in Table S3. As can be seen
from the results, the two SIC-GGA functionals, examined
presently (SIC-BP86 and SIC-revPBE), lead to essentially
identical results for the NMR chemical shifts. For this reason,
only SIC-revPBE results will be discussed from now on.

On average, SIC-GGA results for C, N, and F present a
modest improvement over those for SIC-LDA. For carbon, the
rms error decreases from 7.1 (SIC-VWN) to 6.5 ppm (SIC-
revPBE) compared to 6.3 ppm for revPBE GGA itself. For
nitrogen, SIC-VWN error of 21.3 ppm is reduced to 17.7 ppm
with SIC-revPBE. The parent GGA functional (revPBE) leads
to the rms error of 68.2 ppm for this nucleus. For fluorine, SIC-
revPBE leads to 13.1 ppm rms error, whereas SIC-VWN and
revPBE give respectively 14.5 and 18.7 ppm. Individual SIC-
VWN and SIC-revPBE chemical shifts, computed for C, N,
and F nuclei, are also quite similar.

Oxygen NMR chemical shifts are more interesting: the SIC-
revPBE rms error for this nucleus is dominated by the chemical
shift of the terminal oxygen atoms in ozone. This chemical shift
is too positive with LDA (1830 ppm) and revPBE (1754 ppm)
compared to the experimental value of 1630 ppm. At the same
time, all self-interaction corrected functionals predict chemical
shift values for the terminal oxygen, which are too shielded:
1477 ppm for SIC-VWN and 1369 ppm for SIC-revPBE.
This, in turn, leads to SIC-revPBE rms error of 80 ppm
compared to SIC-VWN error of 70 ppm. In this respect, it is
interesting to note that highly correlated ab initio techniques
also predict the terminal oxygen in ozone to be too shielded
compared to the experiment.89 Thus, MCSCF-GIAO predicts
chemical shift of about 1461 ppm,90 whereas CCSD(T)-GIAO
finds 1516 ppm23 for this nucleus. Given the experimental error
bar of 170 ppm cited for this chemical shift, it appears
reasonable to exclude it from the statistical evaluation of the
results. Once ozone is excluded, both SIC-VWN and SIC-
revPBE rms errors decrease to respectively 53 and 45 ppm, in
comparison to the revPBE error of 104 ppm for the same
restricted subset.

For 1H chemical shifts, SIC-VWN fails to improve the
results compared to the parent VWN LDA functional (rms error
of 0.44 vs 0.46 ppm). As a consequence, SIC-VWN 1H
chemical shifts are not competitive with standard GGA re-
sults91 (revPBE rms error for the same data set is 0.32 ppm).
However, when SIC is combined with a gradient-corrected
approximate exchange-correlation functional, the rms error
improves dramatically, to 0.22 ppm in the case of SIC-revPBE.
This residual error is obtainedwithout scaling the results
and compares favorably to the bestscaled results for 1H
chemical shifts, obtained with standard functionals.91 A large
fraction of the overall improvement is obtained for the pro-
ton chemical shifts in small molecules, with the hydrogen nu-
clei attached directly to an atom carrying electron lone pairs
or participating in a multiple bond (HOF, H2O, H2O2, HCH,
and NH3).
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When comparing the results from calculations of the NMR
chemical shifts, at equilibrium molecular geometries, to experi-
ment, one should always keep in mind the zero-point motion
and thermal averaging effects. Relative to the chemical shift
range, such effects are particularly large for hydrogen.92-94 In
extreme cases, zero-point vibrational corrections to the1H
absolute shieldings may amount to+0.50/-0.70 ppm.94 There-
fore, the 0.22 ppm rms error, obtained for the1H NMR chemical
shifts with SIC-revPBE, must, to a large extent, arise from a
fortuitous cancellation of errors. The same observation applies
to other theoretical approaches, which utilize solely the equi-
librium molecular geometries.94

Overall, SIC-GGA functionals provide a modest, but sig-
nificant, improvement to the calculated NMR chemical shifts
for the first main-row elements (C, N, O, and F) compared to
those for SIC-VWN. For hydrogen, where SIC-VWN failed
to improve the results, compared to VWN itself, SIC-GGA
functionals hold a substantial advantage.

6. SIC-GGA for NMR Chemical Shifts of 31P

For 31P, we adopted the reference set of van Wu¨llen,16 which
has been studied with several DFT (BP86 and B3LYP), ab initio
(HF and MP2), and empirically adjusted (WAH) approaches.
This data set was augmented with PCl3, PI3, and P2H2, which
are known to present difficulties in standard DFT and ab initio
calculations.6,15,38Because the experimental31P reference (85%
phosphoric acid) is not suitable for direct theoretical compari-
sons, we follow the procedure of van Wu¨llen16 for calculation
of the 31P chemical shifts. Calculated absolute shieldings are

converted to the NMR chemical shifts, such that the experi-
mental gas-phase chemical shift of PH3 (-266.1 ppm95) is
reproduced exactly, i.e

Calculated SIC-VWN and SIC-revPBE NMR chemical shifts
are collected in Table 5, in comparison with the parent XC
functionals (VWN and revPBE) and the experiment. The
correlations between the experimental and calculated chemical
shifts, for these four approaches, are illustrated in Figures 1-4.
Where available in the literature, results obtained with empiri-
cally corrected WAH technique,36,42B3LYP hybrid functional,
and ab initio MP2 are given for comparison.

At this point, we should emphasize that the effects of a
gradient-corrected functional and of the SIC on the absolute
NMR shielding are not additive. As an example, for PH3 at the
experimental geometry, we calculate31P isotropic shieldingsσ
of 590.6 (VWN) and 578.8 ppm (SIC-VWN), so that account-
ing for the self-interaction errorreducesthe absolute shielding
by 12 ppm. At the same time, the corresponding revPBE and
SIC-revPBEσ values are 584.0 and 592.2 ppm, so that, in
this case, the absolute shielding isincreasedby taking self-
interaction into account. Given that the phosphorus basis set,
used in this study, is far from saturation in the core region, the
excellent agreement of the SIC-revPBE absolute shielding with
the experiment (594.45( 0.6395) should be treated as fortuitous.

As was documented previously,7,16 optimized DFT bond
lengths in PF3, PCl3, PBr3, and PI3 show large deviations from
the experiment and are therefore unsuitable12 for NMR chemical

TABLE 4: Statistical Evaluation of the SIC-VWN, SIC-BP86, and SIC-revPBE Results for Isotropic NMR Chemical Shifts
of C, H, N, O, and F Containing Molecules, in Comparison with the Parent Functionals

C H N O (O)a F

number of data points 49 19 18 18 (16) 12
range expt values, ppm 231.9 12.2 692.2 1647.0 (904.0) 703.7

VWN
average abs. error, ppm 7.4 0.36 39.1 106.7 (93.1) 20.7
RMS error, ppm 9.2 0.46 86.3 138.7 (135.3) 27.7
RMS/range, percent 4.9 3.7 12.4 8.4 (15.0) 3.9
correlation slope 1.095 1.120 1.316 1.254 (1.347) 1.119

BP86
average abs. error, ppm 4.7 0.26 31.3 83.6 (74.2) 14.8
RMS error, ppm 6.6 0.32 69.2 106.7 (105.4) 20.7
RMS/range, percent 2.8 2.6 9.9 6.4 (11.7) 2.9
correlation slope 1.036 1.073 1.237 1.184 (1.256) 1.074

revPBE
average abs. error, ppm 4.2 0.25 30.9 80.4 (72.7) 13.5
RMS error, ppm 6.3 0.32 68.2 103.8 (103.6) 18.7
RMS/range, percent 2.7 2.6 9.9 6.3 (11.5) 2.7
correlation slope 1.023 1.071 1.224 1.173 (1.245) 1.064

SIC-VWN
average abs. error, ppm 5.0 0.27 13.6 46.1 (41.4) 11.3
RMS error, ppm 7.1 0.44 21.3 70.1 (53.1) 14.5
RMS/range, percent 3.0 3.6 3.0 4.2 (5.9) 2.1
correlation slope 1.035 1.075 1.032 0.960 (1.078) 1.073

SIC-BP86
average abs. error, ppm 5.3 0.17 12.8 53.3 (37.1) 9.6
RMS error, ppm 6.6 0.24 17.0 79.4 (45.6) 12.3
RMS/range, percent 2.8 1.9 2.5 4.8 (5.0) 1.7
correlation slope 0.963 1.022 0.937 0.867 (0.979) 0.952

SIC-revPBE
average abs. error, ppm 5.1 0.16 13.5 54.0 (37.4) 10.1
RMS error, ppm 6.5 0.22 17.7 79.8 (45.1) 13.1
RMS/range, percent 2.8 1.6 2.6 4.8 (5.0) 1.9
correlation slope 0.965 1.025 0.937 0.865 (0.979) 0.947

a Excluding ozone.

δ(X) ) σ(PH3,calcd)- σ(X) - 266.1 ppm (23)
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shift calculations. The differences in the absolute shieldings at
the optimized and experimental geometries are particularly
severe for PI3, where the shieldings of two structures differ by
86 (SIC-revPBE) to 137 (VWN) ppm. This should be compared
to the total experimental chemical shift range of 1046 ppm, for
this reference set. Substantial differences between experi-
mental and optimized geometries are obtained for PF3, PCl3,
and PBr3 as well (see Table 5). For this reason, all comparisons
involving chemical shifts of phosphorus (III) halides were
performed at the experimental geometries. The differences in
the absolute31P shielding of PH3 between the experimental and
optimized geometry are much less pronounced (9.8 ppm for
VWN and 6.9 ppm for SIC-revPBE). At the same time, any
deficiency in the calculated absolute shielding in this molecule
gets amplified disproportionately in the final average error. For
this reason, the experimental geometry was used for PH3 as
well.

As reported previously,16 31P chemical shifts calculated with
standard LDA and GGA functionals are systematically too
deshielded. Larger errors are obtained for strongly deshielded
molecules (“P2H2”, PN, PCl3, PBr3, and PI3), so that the
correlation slope is far from 1.0 (Figures 1 and 2). For 13 (out
of 18) molecules, VWN results deviate from experiment by more
than 52 ppm or 5% of the experimental range. For revPBE, six
of the calculated chemical shifts (P4, PF6

-, PI3, PBr3, PN, and
“P2H2”) are outside of the 5% relative error range. The largest
deviations from experiment are seen for PI3 (VWN, 387;
revPBE, 309; expt, 176 ppm) and PN (VWN, 406; revPBE,
347; expt, 275 ppm). Once the self-interaction error is accounted
for, the deviations from experiment drop substantially (Figures
3 and 4). For SIC-VWN, only three molecules (PI3, P(OCH3)3,
and P(iso-C3H7)3) show deviations in excess of 52 ppm (two
more31P chemical shifts, in PBr3 and PF6-, are too deshielded
by 52 ppm). With SIC-revPBE, all calculated31P chemical

TABLE 5: Calculated SIC-DFT 31P NMR Chemical Shifts (in ppm), in Comparison with Other Theoretical Techniques and
the Experiment

molecule expt.a VWNb revPBEb SIC-VWNb SIC-revPBEb WAHc B3LYPc MP2c

P4 -552. -472.3 -487.2 -508.2 -526.3 -512.9 -532.5 -549.1
PN 275. 406.4 347.3 318.8 270.8 307.8 342.7 202.2
PH3

d -266. -266.1 -266.1 -266.1 -266.1 -266.1 -266.1 -266.1
PH3 (-256.2) (-256.4) (-257.9) (-259.1)
PF3

d 106. 163.4 120.9 127.0 108.5 95.8 115.7 109.7
PF3 (201.2) (158.2) (158.1) (137.7)
PCl3d 217. 312.7 255.9 249.4 200.4 222.0 259.6 224.9
PCl3 (387.6) (327.1) (314.5) (257.3)
PBr3d 226. 372.2 309.3 277.9 198.4
PBr3 (493.2) (423.1) (377.5) (281.1)
PI3d 176. 387.1 309.2 243.3 143.4
PI3 (524.5) (440.2) (353.1) (229.5)
Si(PH2)4 -205. -167.4 -194.5 -197.8 -218.3 -225.1 -226.0 -243.1
P(CH3)3 -63. -8.6 -36.0 -35.7 -60.9 -73.2 -58.4 -75.0
P(iso-C3H7)3 20. 103.7 60.9 77.0 42.6 11.4 27.3 10.6
OP(CH3)3 36. 72.7 34.6 45.6 24.8 -4.0 14.0 18.7
P(OCH3)3 140. 209.1 166.9 199.7 173.2 100.1 128.4 129.3
OP(OCH3)3 0. 70.6 33.6 39.9 28.0 -33.7 -16.7 -5.0
PF6

1- -145. -56.1 -86.2 -93.3 -102.1 -121.1 -120.2 -119.5
PH4

1+ -105. -99.1 -114.0 -123.3 -130.5 -153.2 -128.9 -127.6
P(CH3)4

1+ 25. 96.0 50.3 57.3 30.1 1.8 22.1 12.5
Cr(CO)5PH3 -130. -111.3 -121.2 -109.5 -118.2 -149.8 -123.0 -176.7
trans-“P2H2” e (494.) 678.1 587.3 540.3 456.2 735.f

cis-“P2H2” 652.3 565.2 516.2 436.0

a Experimental values for the31P chemical shifts in PBr3 and PI3 are from ref 104 (somewhat different values are available in ref 105). “ P2H2”
(1,2-bis(tri-tertbutylphenyl)diphosphene) is from ref 99. The rest of the experimental values are cited from ref 16.b This work. c Cited from ref 16.
d Experimental geometry.e The experimental value corresponds to Ar- P ) P - Ar, with Ar ) tris-tert-butylphenyl.99 Calculations were performed
on P2H2. f Cited from ref 6.

Figure 1. Residual errors in the calculated VWN31P NMR chemical
shifts.

Figure 2. Residual errors in the calculated revPBE31P NMR chemical
shifts.
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shifts fall within the 52 ppm error band, so that both “simple”
and “difficult” cases are treated uniformly. The correlation slope
is also much improved for both self-interaction corrected
functionals (Table 6).

These visual observations are corroborated by the statistical
analysis of the calculated chemical shifts, given in Table 6. For
the complete reference set of 1831P chemical shifts, the VWN
rms error of 98 ppm is reduced to 40 ppm with SIC-VWN.
For the gradient-corrected revPBE functional, the rms residual
error is reduced from 54 (revPBE) to 23 ppm (SIC-revPBE),
or just 2.2% of the total experimental range for this data set.
Excluding the three worst outliers (PI3, PBr3, and “P2H2”)
reduces VWN and revPBE rms errors by one-third, to respec-
tively 69 and 36 ppm (the bottom half of Table 6). Because
these molecules do not present any particular difficulty for self-
interaction corrected functionals, SIC-VWN and SIC-revPBE
rms errors remain almost the same (SIC-VWN, 36 ppm; SIC-
revPBE, 21 ppm).

It is instructive to examine the performance of the SIC
functionals for the series of phosphorus(III) halides PX3 (X )
F, Cl, Br, and I) in a little more detail. The experimental
chemical shifts curve (Figure 5) exhibits a characteristic “hump”,
with the most deshielded values observed for the two middle
members of the series (PCl3, 217 ppm; PBr3, 226 ppm). At the
same time, the two extreme members of the series are more

shielded (PF3, 106 ppm; PI3, 176 ppm). These trends are
reproduced qualitatively incorrectly by both local (VWN) and
gradient-corrected (revPBE) functionals. In either case, the
phosphorus nucleus is predicted to grow progressively more
deshielded for heavier halogen substituents (the two upper
curves in Figure 5). Once the self-interaction error is accounted
for, even the simple SIC-VWN functional leads to a qualita-
tively correct trend, with PI3 being more shielded than PBr3.
Finally, when the SIC is combined with a GGA functional (the
bottom curve in Figure 5), calculated NMR chemical shifts come
into an almost quantitative agreement with experiment.

For other halogen-substituted series, such as HX,96,97CX4,98

PX4
+,14 or POX3,15 the nonmonotonic dependence of the

chemical shifts, on the halogen substituent, has been rationalized
in term of increasing spin-orbit (SO) effects for heavier halogen
atoms. Although it appears that the SO contributions are much
less important for phosphorus(III), compared to those for
phosphorus(V),15 it might have be interesting to examine the
effect of the spin-orbit corrections on the calculated SIC-DFT
chemical shifts in the PX3 series as well. Unfortunately, our
current program does not support spin-orbit calculations within
the SIC approach. Such corrections are known to be sensitive
to the structure of the core tails of the valence orbitals, close to
the heavy nucleus.15 Because this region is heavily affected by
the SIC,45-47 SIC and spin-orbit corrections cannot be expected
to be additive. Therefore, the question of the relative importance
of the SIC and the spin-orbit corrections, for the NMR chemical
shifts of the PX3 series, will have to remain open for future
investigations.

In addition to judging SIC functionals, relative to the standard
LDA and GGA DFT approaches, it is also important to examine
their performance in comparison to other theoretical techniques.
For the smaller, 15 point data set,31P NMR chemical shifts,
calculated using other DFT and ab initio approaches, are
available in the literature.16 Table 6 provides a statistical
evaluation of these literature results. The lowest rms error is
obtained for the hybrid B3LYP DFT approach (25 ppm), closely
followed by ab initio MP2 (27 ppm) and the empirically
corrected WAH approach (28 ppm). Other DFT and noncorre-
lated ab initio approaches perform significantly worse for the
31P NMR chemical shifts.6,16 These average errors are signifi-
cantly higher that the SIC-revPBE result for the same data set
(21 ppm), which also exhibits a correlation slope closer to unity
and the smallest intercept among all methods. Once the
“difficult” molecules are included in the reference set, the
difference between SIC-GGA, and other techniques, would
likely increase. Thus, the MP231P chemical shift of 735 ppm
has been reported for P2H2,6 241 ppm above the experimental
value of 494 ppm (measured for an aryl-substituted derivative99).

Finally, it is interesting to examine the performance of the
self-interaction corrected functionals for chemical shift anisotro-
pies. Unfortunately, relatively few experimental31P chemical
shift anisotropies for small, well-characterized molecules are
available in the literature. Some of these values are collected
in Table 7, together with results from the VWN, revPBE, SIC-
VWN, and SIC-revPBE calculations. The ab initio MP2 results
from the literature6 are given for comparison. Given the small
sample size, one should not attach too much significance to the
average errors. Still, it appears that the SIC results follow the
trend observed for the isotropic shifts. SIC-VWN performs
similar to a standard GGA functional (revPBE), whereas SIC-
revPBE offers a substantial improvement over both functionals.
In fact, the ratio of the SIC-revPBE rms error for the shielding
tensor anisotropies (41 ppm) to the total range of the experi-

Figure 3. Residual errors in the calculated SIC-VWN 31P NMR
chemical shifts.

Figure 4. Residual errors in the calculated SIC-revPBE31P NMR
chemical shifts.
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mental anisotropies (2.3%) is almost identical to the similar ratio
for the isotropic chemical shifts (2.2%). In comparison, ab initio
MP2 ∆σ values exhibit substantial deviations from the experi-
ment (rms error of 86 ppm) and are, in fact, comparable in
quality to VWN LDA results for this property. Therefore, it
appears that the excellent performance of MP2 for the isotropic
31P chemical shifts arises in part from a cancellation of errors
between individual components of the shielding tensors.

7. Summary and Outlook

In this work, we examined the origin of the orbital localization
requirement, which is commonly postulated43,44 in effective
potential treatments of the PZ SIC. We show that the localization
requirement arises from the off-diagonal Lagrangian multipliers
of the coupled PZ eigenequations, which cannot be removed
due to the orbital dependence of the PZ-SIC energy expression.
As a consequence, orbital localization constitutes an essential
component of any effective potential treatment of the PZ SIC.
We also demonstrate that the ideal, energy-minimizing localiza-
tion transformation is identical to the previously reported46

energy-minimizing conditions for the solutions to the coupled
PZ eigenequations. Due to the structure of this condition, it is
approximately satisfied byanyset of spatially localized orbitals,
so that inexpensive localization transformations, such as Foster-
Boys79 and Pipek-Mezey100 can be substituted for the exact
conditions, with minimal loss of accuracy.

Further, we report a KLI-OEP implementation of the PZ
SIC correction for gradient-corrected approximate exchange-
correlation functionals within ADF. Additionally, we examine
several possible approaches toward implementing frozen elec-
tron cores within the SIC-KLI -OEP technique. Molecular
atomization energies are relatively insensitive to the choice of
the frozen core treatment, so that all-electron results can be
reproduced to within 2%, if the frozen core orbitals are simply
ignored in the KLI potential expression. At the same time,
Kohn-Sham orbital energies and NMR shielding constants are
more sensitive to the choice of the frozen core treatment.
Approximating all-electron results for these properties to within
2% requires that the frozen core orbitals are treated on an equal
footing with the localized valence orbitals, during the evaluation
of the KLI effective potential.

As the first application of the SIC-GGA functionals, we
examine their performance for the previously studied C, H, N,
O, and F NMR data set.43 Different GGA functionals (BP86
and revPBE) lead to essentially identical results for the
individual chemical shifts, when combined with the SIC. For
this data set, SIC-revPBE provides a small but significant
improvement for C, N, and F (rms errors: 6.5, 17.7, and 13.1
ppm, respectively), compared to the LDA-based SIC-VWN
(rms errors: 7.1, 21.3, and 14.5 ppm). A similar improvement
is obtained for17O chemical shifts once ozone is excluded from
the statistics (SIC-VWN, 53.1; SIC-revPBE, 45.1 ppm). For
the hydrogen chemical shifts, SIC-revPBE reduces the residual
error by a factor of 2, compared to SIC-VWN (0.22 vs 0.44
ppm).

We further apply the SIC-revPBE functional to31P NMR
chemical shifts, which are known to present a challenge for
standard DFT techniques.16 For this nucleus, the LDA-based
SIC-VWN functional presents only a minor advantage over

TABLE 6: Statistical Evaluation of the Results for the 31P NMR Chemical Shifts

molecule VWN revPBE SIC-VWN SIC-revPBE WAH B3LYP MP2

All Results in Table 4 (18 Data Points)
average abs. error, ppm 80.1 40.1 33.0 19.0
RMS error, ppm 97.7 54.4 39.8 23.1
correlation slope 1.156 1.069 1.036 0.950
correlation intercept, ppm 78.0 39.2 32.5 1.0

Excluding PBr3, PI3, and “P2H2” (15 Data Points)
average abs. error, ppm 60.1 28.9 31.0 16.3 23.6 18.7 19.1
RMS error, ppm 69.2 36.3 35.7 20.5 27.7 25.2 27.1
correlation slope 1.076 1.008 1.025 0.980 0.970 1.036 0.970
correlation intercept, ppm 63.3 27.8 29.6 6.0 -11.5 7.2 -15.1

Figure 5. Correlation between calculated and experimental31P NMR
chemical shifts in phosphorus(III) halides (PX3; X ) F, Cl, Br, and I).

TABLE 7: Calculated Anisotropies of the 31P Shielding Tensors (∆σ ) σ| - σ⊥, ppm), in Comparison with the Experiment and
ab Initio Theoretical Results

molecule expt. VWN revPBE SIC-VWN SIC-revPBE MP2a

P4 -405.( 15.b -453.7 -429.4 -443.2 -416.1 -460.4
PN 1376.c 1578.5 1500.5 1464.6 1368.1 1222.9
PH3 -56.0( 1.5b -79.6 -63.2 -49.1 -41.5 -59.9
PF3 181.( 5d 247.7 237.6 275.1 262.8 275.2
P(CH3)3 7.63( 0.5e -24.6 -21.1 -22.1 -27.2 -29.0
OP(CH3)3 173.6( 0.5e 272.5 257.0 229.3 219.3

average abs. error, ppmf 75.8 48.3 51.5 30.0 68.7
RMS error, ppmf 99.4 63.5 61.8 40.7 85.7

a MP2 ab initio results are quoted from ref 6.b Cited from ref 106.c Cited from ref 6.d Reference 107. An alternative value of+222.( 2. ppm
was reported by the same authors previously.108 e Reference 109.f Statistical averages exclude OP(CH3)3.
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standard GGAs (revPBE rms error, 54 ppm; SIC-VWN, 40
ppm, on an 18-point data set). Most of this advantage is derived
from the three “difficult” molecules in the data set (PBr3, PI3,
and P2H2). At the same time, SIC-revPBE leads to an rms error
of 23 ppm, or just 2.2% of the chemical shift range in the data
set, with individual chemical shifts deviating from the experi-
ment by less than 5% of the experimental shift range. Similar
accuracy is maintained for SIC-revPBE NMR chemical shift
anisotropies. Moreover, SIC-revPBE reproduces chemical shift
trends in the PX3 (X ) F, Cl, Br, and I) series almost
quantitatively. The same series is described qualitatively incor-
rectly by the standard LDA and GGA functionals.

In cases where comparison with other theoretical techniques
is possible, SIC-revPBE31P NMR chemical shifts appear to
be superior to other theoretical approaches, including B3LYP
hybrid DFT calculations, ab initio MP2, and the empirically
corrected WAH scheme. Overall, SIC-GGA appears to be the
method of choice for the calculations of31P NMR shielding
tensors in molecules with more than a few atoms.

Given the demonstrated success of self-interaction corrected
DFT in prediction of the NMR shieldings of some of the
“difficult” main group elements, as well as the increased
applicability of the present computational implementation of
the technique, several possible directions for future work are
indicated. These include applications to other magnetic nuclei,
calculations of reaction energies and barriers, as well as the
properties accessible through time-dependent DFT. Additionally,
a consistent implementation of the orbital localization condition
(13) appears to be desirable, not in the least to quantify the
magnitude of the error introduced because of the surrogate
localization conditions used presently. Other methodological
developments may include incorporation of SIC within a spin-
orbit coupling scheme, as well as support for a more robust
relativistic treatment, such as ZORA.101,102In this respect, it is
interesting to note that the time-independent relativistic extension
of the KLI-OEP potential is formally identical to the corre-
sponding nonrelativistic expression,103 so that scalar ZORA
support can be incorporated within the existing program with a
minimal effort. Work along these lines is currently in progress.
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