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We present a new algorithm for carrying out large-curvature tunneling (LCT) calculations. The new algorithm,
called interpolated LCT (or ILCT) is based on interpolation by splines under tension. It is tested on five
hydrogen-atom transfer reactions. We find that the cost of LCT calculations can be reduced by more than an
order of magnitude.

1. Introduction

Tunneling plays a central role in the kinetics and dynamics
of hydrogen atom (neutral or charged) abstraction reactions,
especially at room temperature and below. The accuracy of
tunneling calculations depends on the potential energy surface
(PES). Furthermore, it can be limited by the availability of
information about different regions of the potential energy
surface. In particular, if only the stationary points are known,
the very simple Wigner1 and conservation-of-vibrational-energy
Eckart2,3 methods can be used to give a simple estimate of
tunneling probabilities. When the geometries along the minimum
energy path (MEP) in isoinertial coordinates, also called the
intrinsic reaction coordinate (IRC)4 or intrinsic reaction path,
is available, along with a quadratic expansion of the potential
in directions orthogonal to the path, the centrifugal dominant
small-curvature semiclassical adiabatic ground-state (CD-SC-
SAG) approximation5,6 (in short, SCT, small curvature tunnel-
ing) gives a more accurate description of the tunneling
probabilities by accounting for vibrational energy release in to
and out of the reaction coordinate and for corner cutting in the
limit of small reaction-path curvature.7,8 Finally, when the PES
is also known in a broader swath region on the concave side of
the reaction path, it is possible to calculate the tunneling
probabilities by the large-curvature tunneling (LCT) approxima-
tion,9,10 which may be especially required for bimolecular
reactions in which a light atom is transferred between two heavy
atoms,11-13 i.e., when the heavy-light-heavy mass combination
is present and the reaction path transforms from the reactant
Jacobi translation to the product Jacobi translation. In the LCT
approximation, tunneling proceeds along straight-line paths from
the entrance valley of the PES to the product valley. The LCT
approximation that was widely used from 1983 until recently
was the large-curvature ground-state approximation, version
35,14-19 (LCG3). However, it has been noted that this method
sometimes overestimates the tunneling probability at low energy
because of an inadequate treatment of anharmonicity.20 Recently

a new LCT approximation called LCG4, which includes a
nonquadratic correction in the vibrationally nonadiabatic region
of the straight tunneling paths, was proposed.20 This approxima-
tion has already been applied to gas-phase and enzyme
kinetics.21,22

In the LCT algorithms used so far, for each tunneling path,
the energy of a certain number of points is required in order to
perform numerical integration along the tunneling path. For
points in the vibrationally adiabatic region near the MEP, the
calculation of the energy is based on a quadratic expansion
around the MEP, along which the energy and first and second
derivatives with respect to all coordinates are available.
However, when the tunneling path enters the nonadiabatic zone,
additional energy calculations are required. Given the large
number of tunneling paths needed to converge the integral over
tunneling energies and the large number of points on each
tunneling path required to converge the numerical integration,
along the tunneling paths, the number of energy calculations in
the nonadiabatic region can be significant, making the original
LCT algorithm rather expensive from the computational point
of view.

In this paper, we propose an interpolation method that reduces
the computational cost along the tunneling paths in the large-
curvature tunneling calculations by minimizing the number of
points to be calculated in the nonadiabatic region of each
tunneling energy. We call it the interpolated large curvature
tunneling (ILCT) method in general, or ILCT-LCG4 in par-
ticular, to denote the new algorithm for treating anharmonicity.
The method is tested for five hydrogen abstraction reactions.

2. Method

In LCT calculations, for each energy, a tunneling path is
defined as a straight line in isoinertial coordinates between the
two reaction-coordinate turning points lying on the MEP, one
on the reactant side of the barrier top and one on the product
side. The transmission coefficient for variational transition state
theory5,15 is then obtained by combining the probability for
tunneling paths initiated by motion parallel to the reaction* To whom correspondence should be addressed.
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coordinate and vibrational motion normal to the reaction
coordinate, and these straight-line paths are used to calculate
tunneling amplitudes for the latter. The transmission coefficient
is then obtained from an appropriately normalized (uniformized)
sum over tunneling probabilities associated with accessible final
vibrational states into which tunneling occurs (in the exoergic
direction of reaction) and appropriately weighted averages over
the locations of the turning points that terminate the paths and
over the tunneling energy, which is the total energy of the
system. For a given pair of turning points and a given tunneling
energy, the tunneling amplitude for a particular straight-line path
is given byTtun ) exp(-θ), whereθ is the magnitude of the
imaginary part of the action integral (in atomic units) along the
path. The action integral is a one-dimensional definite integral
given by eq 20 of ref 5, in which the independent variable is
the progress coordinate for motion along the straight-line path,
and the integrand involves an effective potential. The present
paper is concerned with developing an efficient way to calculate
this action integral. This straight-line path is divided into three
zones. Zones I and III are in the reactant and product valleys,
respectively, and they are vibrationally adiabatic, and Zone II
describes the middle zone of the straight-line path and is
vibrationally nonadiabatic. For some PESs, region II does not
exist at all energies; the limits of the nonadiabatic region are
given elsewhere.15,17,20

In the interpolated method, ILCT, once the limits of the
nonadiabatic region for each tunneling energy are found (if this
region exists for that particular energy), the first step is the
calculation of the “effective” potential, Veff

II , for n points in
zone II of each tunneling path. In the LCT methods, this
potential is given by

whereV[x(s̃0, ê)] is the classical potential to be evaluated at
pointsêi, i ) 1, ...,n, in zone II of the straight path at a tunneling
energy corresponding to the reactant-valley turning points̃0;
Vanh

I,III (s̃0, êI,III ) is the LCG4 anharmonic correction to the
potential, andVcorr

I,III (s̃0, êI,III ) accounts for the zero-point energy
of the modes that are still within their vibrational turning points.
In the original algorithm used so far, a typical value ofn to get
convergence is 120. In the ILCT method, the minimum number
of points isn ) 3: the two limits of the nonadiabatic region
(ê1 ) êI and ê3 ) êIII ) and a middle point (ê2). In the more
general case,n - 2 equidistant points in isoinertial coordinates
along the segment of the tunneling path that lies in the
nonadiabatic zone are calculated, plus the two limit points. Thus,
the minimum number of nonadiabatic energies required for the
interpolated LCT calculation is three times the number of
tunneling paths that have a nonadiabatic zone, which is always
much lower than the cost of the original method. For higher
values ofn, the cost rises, but for all of the reactions tested, we
always significantly reduced the cost with respect to the original
algorithm. In the second step, the pointsV[x(s̃0, ê)] along each
tunneling path are fitted to spline-under-tension23,24function of
distance along the segment.

In the new algorithm, every time that the potential energy is
needed for any point along the nonadiabatic segments of the
tunneling path, this energy is calculated by means of the spline
fit to then calculated points, except in the case that the number

of quadrature points in the nonadiabatic region of the tunneling
path is less than the number of points (n) used to interpolation.
Because the spline fitting methods of interpolation reproduce
the input values, an increase of the parametern will eventually
lead to the same result as the original method. The use of spline
interpolation methods allows us to obtain a continuous function,
with continuous first and second derivatives, and the tension
on the splines reduces the likelihood of spurious oscillations in
the interpolated values. Splines also have the advantage that
they are applicable for any value ofn. The interpolation by
splines is carried out via the generally available splines-under-
tension program package TSPACK.24

In the previous LCT algorithm, the quadratures along each
tunneling path are calculated by a single Gauss-Legendre
quadrature. In the new algorithm, we retain this type of
quadrature (typically withn, the number of quadrature nodes,
set equal to 120), but instead of directly evaluating the potential
energy function at each quadrature node, we evaluate it only at
the spline nodes, and we interpolate it to the quadrature nodes.
All quadratures can be carried out by Gauss-Legendre quadra-
ture or repeated Gauss-Legendre quadrature. In the latter, the
integration interval is broken into equal-length subintervals, each
of which is integrated by standard Gauss-Legendre quadrature.
In the present paper, we used single high-order quadrature
instead of repetition, for example, a single 120-point quadrature
rather than three 40-point quadratures.

Therefore, our interpolation method allows inexpensive LCT
calculations whose accuracy can be increased at will by
increasing the numbern of points along each of the tunneling
paths on the grid of tunneling paths. Asn increases, the results
converge to the original algorithm. The question we need to
clarify is if we can obtain accurate results with low values of
n, so that we can significantly reduce the cost of a LCT
calculation without seriously affecting the quality of the LCT
transmission probabilities.

3. Applications

We have selected five hydrogen abstraction reactions of the
type A-H + B as our test set, where a hydrogen atom is
transferred between two heavy atoms or groups A and B. The
five reactions are described by analytical PESs:R1, OH + Cl
with the PES by Ramachandran, Senekowitsch, and Wyatt;25

R2, Br + HCl based on the PES by Kuntz, Nemth, Polanyi,
Rosner, and Young;26 R3, CH4 + O(3P) based on the PES by
Corchado, Espinosa-Garcı´a, Roberto-Neto, Chuang, and Tru-
hlar;27 R4, CH4 + Cl based on the PES by Corchado, Espinosa-
Garcı́a, and Truhlar;28 andR5, OH + CH4 based on the PES
by Espinosa-Garcı´a and Corchado.29 The new algorithm was
added to the POLYRATE program,30 which is used for the
present calculations. Note that the authors’s PESs can be found
on our web page, http//w3qf.unex.es/html/superficies.htm, which
is freely accessible to the scientific community.

To test how well the new algorithm works, we first calculated
converged tunneling probabilities using the standard number
of points usually implemented (n ) 120 for each tunneling path).
Then, we performed ILCT calculations using much less data.
The temperature chosen for our study was 200 K, because it is
well-known that tunneling is more important at low temperature.
In the ILCT calculation, we allowed the system to reach all of
the accessible vibrational excited states into which tunneling
proceeds. The maximum final vibrational quantum number is
np

max ) 0, 2, 1, 0, and 1 for reactions 1-5, respectively.
For a typical case, the CH4 + Cl reaction, Figure 1 shows

the contour diagram using skewed coordinates (Jacobi type for

Veff
II (s̃0, ê) ) V[x(s̃0, ê)] + Vcorr

I (s̃0, êI) +

Vanh
I (s̃0, êI) +

ê - êI

êIII - êI
{[Vcorr

III (s̃0, êIII ) - Vcorr
I (s̃0, êI)] +

[Vanh
III (s̃0, êIII ) - Vanh

I (s̃0, ê|)]}
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triatomic systems) where theY axis is the C-H distance and
theX axis is the distance from the chlorine atom to the center-
of-mass of the C-H bond. On this diagram, a straight-line LCT
tunneling path [adiabatic zones (dashed line) and diabatic zone
(solid line)] is shown.

4. Results and Discussion

First, we test the convergence of the transmission coefficient
calculated by the original algorithm with respect to the number
of points along the tunneling path (Figure 2) with each tunneling
energy and each final vibrational quantum number,np. The
choice of 120 points in this study to define each tunneling path
in the original algorithm is a compromise between accuracy
and computational cost. For the set of five reactions studied in
this paper, 200 points give a converged tunneling coefficient.
With respect to this number of points, using 120 points yields
an average error of only 2.9%. A reduction of the number of
points for each tunneling path to 100 almost doubles the average
error to 5.5%.

Table 1 lists the transmission coefficientκ and Table 2 the
total number of points in the nonadiabatic regions of the
tunneling calculations (for all tunneling energies and allnp) as

a function of the number of points,n, used for interpolation in
each nonadiabatic segment. The values in Table 2 provide an
estimate of the cost in the sense that, for any but the least
expensive potential energy functions, the additional cost of an
LCT over the cost of an SCT one is proportional to the number
of points in the nonadiabatic zone. The values without interpola-
tion are also included as benchmark values in both tables. Note
that the values in Table 2 refer to the calculation of an entire
transmission coefficient, involving multiple action integrals
corresponding to various turning points, final accessible vibra-
tional states, and tunneling energies. The results of Table 1 show
that when the number of points used for interpolation is very
small (3 and 4 points) the average error is large (19.8 and 10.1%,

Figure 1. Contour diagram of the analytical PES for the CH4+Cl
reaction using skewed coordinates (Jacobi type) where theY axis is
the C-H distance and theX axis is the distance from the chlorine atom
to the center-of-mass of the C-H bond. The contours are depicted in
increments of 1 kcal mol-1, and the zero of the energy is taken in the
reactants. The straight line between the MEP in the reactant and product
channels is the LCT tunneling path between the reaction coordinate
turning points for a total energy of 29.01 kcal mol-1. Dashed lines are
the adiabatic zones and solid line the diabatic zone.

Figure 2. Mean unsigned percentage error (left axis and full line) and
average percentage cost (right axis and dashed line) versus the number
of quadrature points along each tunneling path in the original algorithm.

TABLE 1: Comparison of Interpolated and Benchmark
Transmission CoefficientsK for Several Reactions at 200 K

n

reaction benchmarka 11 9 7 5 4 3

Cl + OH 47.34 47.32 47.43 47.29 47.08 46.77 46.02
Br + ClH 3.10 3.10 3.10 3.10 3.10 3.10 3.13
O(3P) + CH4 69.83 71.48 70.87 68.52 61.87 44.02 26.10
Cl + CH4 2.73 2.72 2.71 2.71 2.66 2.58 2.44
OH + CH4 16.48 16.68 16.68 16.75 17.09 17.64 20.12
MUPE(%)b 0.8 0.7 0.9 3.6 10.1 19.8

a n ) 120. b Mean unsigned percentage error with respect to then
) 120 benchmark calculation (which is carried out without interpola-
tion).

TABLE 2: Number of Nonadiabatic Energies Required for
Each Calculation in Table 1

n

reaction benchmarka 11 9 7 5 4 3

Cl + OH 5255 968 846 686 505 408 306
Br + ClH 3260 737 603 476 340 272 204
O(3P) + CH4 3340 770 630 490 350 280 210
Cl + CH4 847 220 180 140 100 80 60
OH + CH4 3446 957 801 630 460 368 279
average cost(%)b 100 24 20 15 11 9 7

a n ) 120. b Average cost with respect to then ) 120 converged
calculation, which is 100%. For the purposes of this table, average
cost is defined as average number of potential energy evaluations in
the nonadiabatic zone.
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respectively), but with a larger number of points (5-11), the
agreement between the interpolated and noninterpolated tun-
neling factor is sufficiently good for quantitative dynamics
calculation and provides an important computational cost saving.
Thus, when this last range ofn interpolated points is considered
(from 5 to 11 points for each tunneling path), the maximum
error in these calculations is always less than or equal to 11%.
This value corresponds to the CH4 + O(3P) reaction using only
5 interpolated points for each tunneling path. When this bad
value is excluded, the maximum error is less than 4%. The
results of Table 1 show thatn ) 9 is quite reliable compared to
the fully converged results, andn ) 7 is only slightly less
accurate. In fact, because the benchmarkn ) 120 calculation
is itself only converged to≈3% (see above), all calculations
with n e 7 are better converged with respect to the benchmark
than the benchmark itself is converged. One might, therefore,
use even larger numbers of Gauss-Legendre nodes in the future
because increasing the number of quadrature points usually has
a negligible increase in cost when the number of potential energy
function evaluations (i.e., the number of spline nodes) is not
increased. One could also consider using more repetitions of
lower Gauss-Legendre quadratures because there is no accuracy
advantage in using high-order formulas when the integrand has
only two continuous derivatives.

The emphasis in the previous paragraph was on using the
new method as a more efficient algorithm for fully converged
calculations. However, one can also consider using it for more
approximate implementations of the LCT procedure. This is
especially reasonable when one considers that semiclassical
methods for hydrogen tunneling tend to be accurate to only
about 15% at best, and the additional physical approximations
in full rate calculations employing the LCT approximation
appear to have an average error closer to 25%.31 Thus ILCT-n
calculations withn even as small as three can be a reasonable
choice when potential energy evaluations are expensive. Table
1 shows that ILCT-3 calculations have an average error of 20%,
whereas Figure 2 shows that the original algorithm has an
average error of 28% withn ) 30 (then ) 30 calculations
with the original algorithm were carried out with a single 30-
point Gauss-Legendre quadrature).

We note two possible directions for further improvements.
First, note that in the present implementation the selected points
in the nonadiabatic region of the tunneling path are equidistant.
A more complicated alternative would be an adaptative algo-
rithm, for example, one could first calculate these evenly spaced
points and then use these results to guide where to put the next
two points, and so forth. Second, one could consider a two-
dimensional interpolation in which the potential energy function
is interpolated not only as a function ofê for a given tunneling
energy and a given final vibrational quantum numbernp but
also as a function of tunneling energy (or, equivalently, as a
function of the reaction-coordinate turning point5 s̃0). In the latter
case, one would interpolate as a function ofê and s̃0 for each
final vibrational quantum numbernp.

5. Concluding Remarks

We have presented and tested an interpolation scheme for
carrying out large-curvature tunneling calculations. For a test
suite of five reactions, the mean unsigned percentage error
(MUPE) for each interpolated number of points is (in %): 3.6,
0.9, 0.7, and 0.8 for 5, 7, 9, and 11 interpolated points,
respectively, whereas the computational cost with respect to the
benchmark calculation (100%) is reduced from 24 to 11% when
the interpolated number of points pass from 11 to 5 (Table 2).

The new interpolated algorithm, in conjuntion with direct
dynamics, will provide a promising tool for the calculation of
transmission coefficients in large systems with the heavy-light-
heavy mass combination, for which the original algorithm based
on the calculation of the potential energy function at each
quadrature node is very expensive.
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