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We generalize the concept of Tully-Preston surface hopping to include largerjumps in the case that the
surfaces do not cross. Instead of identifying a complex hopping point, we specify a jump between two locales
in phase space. This concept is used here to find propensity rules for the accepting vibrational mode(s) in a
radiationless vibronic relaxation transition. A model inspired by the S2 f S0 vibronic relaxation transition of
the benzene molecule in which 30 modes of vibration compete for the electronic energy is studied within this
approach. For this model, we show that almost all of the energy must go to a single C-H local stretching.
The initial conditions for vibrations of this mode are a coordinate jump of the hydrogen atom toward the
ring. All of the other modes undergo an almost vertical transition, in which the energy that they take is
determined by their equilibrium displacement between the two surfaces. We observe that for a large energy
gap the masses and frequencies become the defining parameters for choosing the accepting mode.
Anharmonicities are very important when a competition between degenerate modes occurs. These conclusions
are demonstrated by the specific model considered here but apply in general to any weak internal conversion
process.

1. Introduction

Molecular electronic transitions may be radiative or nonra-
diative. In either case, the process may be Franck-Condon
enhanced or suppressed. The enhanced processes correspond
to a crossing of Born-Oppenheimer potential energy surfaces
in the classically accessible region, whereas Franck-Condon
suppressed events have no such crossing. Examples include
radiative processes in the wings of absorption or emission band
envelopes and radiationless events for nested potential energy
surfaces.

We focus here on intuition and procedures for realistic
polyatomic processes. For the case of surface crossing, or
avoided crossing, the Tully-Preston surface hopping1 picture
has been of considerable value, permitting both intuition and
simple procedures for calculating rates of electronic conversion.
Some extensions of this approach and insight can be found in
refs 2 and 3.

When the surfaces cross, trajectories can hop smoothly with
little or no change in position or momentum at the time of the
hop. But often surfaces do not cross. What then? Of course,
the rate for such cases is generally lower because of the implied
suppression of Franck-Condon (FC) factors. However, these
suppressed events may be “the only game in town” or may be
significant channels competing with others.4 Analytical continu-
ation is sometimes used in these cases to recognize a complex
jumping point in coordinate space,5,6 and quasiclassical models
are also useful,7 but we want a more direct procedure that is
applicable to many degrees of freedom. The approach we use
is surface jumping.8

Our paradigm in this paper is a radiationless transition
between nested surface potentials as shown in Figure 1b. This
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Figure 1. Two kinds of transitions: vertical and nonvertical. Panel a
shows radiationless vertical transition between crossing surfaces. The
transition takes place by continuous changes of the coordinates and
via the point of crossing between the surfaces. Panel b shows
radiationless nonvertical transition for nested surfacesssurface jumping.
The transfer of the energy must occur by a sudden change of position
or momentum. The direction of the jump is not obvious a priori. Our
purpose is to predict this direction. Panel c shows radiative vertical
transition equivalent to the radiationless case in panel a: most of the
energy goes to the emitted photon. The transition takes place by
continuous changes of the coordinates and via the point of crossing
between the dressed initial surface and the final accepting energy
surface. Panel d shows radiative nonvertical transition equivalent to
the radiationless case in panel b: such transitions occur in the blue
wing of an absorption band, where some of the energy of the absorbed
photon is transferred into vibrational energy via surface jumping.
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situation can also arise radiatively, if we consider, say, the upper
surface to be raised past the absorption maximum by the photon
energyhν as in Figure 1d. We have in mind a many-coordinate
example.

Perhaps it is not obvious that any useful classical picture can
emerge for this noncrossing situation, because the situation that
we describe is classically forbidden. However, other classically
forbidden processes have very useful classical descriptions, such
as barrier tunneling, which involves trajectories in imaginary
time or on the inverted potential energy surface.

Recently, some of us have outlined a procedure to recognize
the jumping points in phase space in the noncrossing regime.8,9

We demonstrated the method by applying it to a two-
dimensional harmonic oscillator, a model in which one can find
the jumping point analytically.8 The results were encouraging.
Identification of the jumping points was shown to allow for an
easy derivation of propensity rules for the distribution of the
electronic energy between competing vibrational modes. The
treatment was limited in two ways: first by the assumption of
harmonic potentials and second by the assumption of an allowed
transition with no derivative coupling between the states. Here,
we generalize the treatment to transitions between any two
multidimensional, nonharmonic potentials and establish the
numerical tools that are needed for the recognition of the
jumping points in the general case. We also generalize the
treatment so that it applies to internal conversion, that is,
electronically forbidden transitions induced by derivative cou-
plings, and study what is then the contribution of the promoting
mode.

Questions that we address in this paper are as follows: Where
will the jump between the two surfaces take place? What is the
best system of coordinates to describe the process? What is the
sensitivity of these predictions to the value of various param-
eters? The importance of the absolute value of the frequency
and the reduced mass of a mode in the determination of its
propensity as an accepting mode was previously discussed10,11

with implications for the isotope effect for nonradiative decay.11

Here, we supplement these early studies by considering the
transition in phase space.

As an example, we apply our approach to a model inspired
by a complex physical system, the 30 modes problem of the S2

f S0 transition of the benzene molecule. As detailed below,
the model imitates some properties of the benzene molecule
yet differs from it in some other features. While it is not a
complete description of the benzene molecule, much can be
learned from it nevertheless. Even for this simplified model of
the S2 f S0 transition, it is not trivial to determine which modes
or combination of the 30 vibrational modes of our system would
be first excited during the quantum jump. With the new surface-
jumping approach, we are able to do so with relative ease.

The outline of the paper is as follows: Surface jumping is
defined and analyzed in section II. In section III, we apply the
method to a model of an S2 f S0 transition inspired by the
benzene molecule and study the sensitivity of the results to
different conjectures regarding the surface potentials. Section
IV concludes and summarizes.

2. Franck-Condon Factors in Phase Space

2.1. Quantum-Mechanical Treatment in Coordinate Space.
The probability for an allowed transition from the vibronic state
i to a vibronic manifoldj, wherei, j refer to electronic states,
is given by

Here, µelec ) ∫ψj
/µ̂elecψi drb is the dipole transition moment

between the electronic statesψi andψj and µ̂elec is the dipole
moment operator. The integration drb is over all of the electronic
coordinatesrb. The nuclear wave function for the modeqk in
the electronic statei for vibrationally excited statenk is ønk

i ,
and separability is assumed. Separability is not necessary for
our approach, and we do not use it below for the final state,
but here, we use it for simplicity. The term∏k|〈øn′k

j |ønk

i 〉|2 in
this expression is the FC factor squared between two vibronic
states. The summation,∑{n′k}, is over a manifold of vibronic
states, of which the energy is equal to the energy of the initial
statei. Note that an excited initial state, as considered here, has
a finite energy width allowing for many final states with slightly
different energies. For internal conversion, an electronically
forbidden transition,µelec ) 0 at the equilibrium position.
Nevertheless, the transition can occur by nonadiabatic coupling
via the kinetic energy operator. The probability for internal
conversion from the vibronic statei to another vibronic mani-
fold j is

Here,Melec) 〈ψj|∂/∂qp|ψi〉 is the nonadiabatic interaction matrix
element whilep serves as the promoting vibration of the normal
modeqp. The promoting mode is the mode that couples between
the electronic surfaces via its kinetic energy operator and
therefore should have the correct symmetry to prevent the
electronic matrix elementMe from vanishing. The sum overp
takes into account all possible promoting modes. The last term
in eq 2 is the FC factor squared for the nuclei subspace, which
includes all of the nuclei coordinates except for the one that
serves as the promoting mode with a summation over all of the
possible divisions of the vibrational energy between the modes.
In both of these cases, the FC factors strongly influence the
transition probability and practically control the distribution of
the electronic energy that is released in the relaxation process
between the competing vibrational modes. It is useful to define
the nuclear integral,ΣIfF, as

for allowed transitions and as

for internal conversion via the promoting modep. Equations 3
and 4 were explicitly written for separable states. Generalization
to nonseparable states is straightforward as applied below. In
both of these cases, the nuclear integralΣIfF includes the
Franck-Condon factor, the nuclear part of the transition matrix
element if it exists, and the final density of nuclear states.

The rate of the transition is given by the Fermi golden rule:

whereκ2 is the electronic part of either eq 1 or eq 2 for allowed
transitions or internal conversion, respectively. It is often the
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∏
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∏
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∏
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Γ ) 2πκ
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p
ΣIfF (5)
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custom to replaceΣIfF by the Franck-Condon factor squared
multiplied by the final density of states on the accepting
electronic surface. We do not do so here because as we show
below a useful approximation follows from treating the final
density matrix as such. In this spirit, the rate can be written as
the trace over two density matrices. The rate of an allowed
transition is

while the rate of internal conversion is

The density matrices are

F̂′i is defined below, and

where ĤF is the nuclear Hamiltonian operator of the final
electronic surface.

The common way to determine which vibrations are most
likely to be excited is to calculate the different FC factors and
the densities of final states for all possible combinations of
different divisions of the energy quanta between the modes.12

This, however, would demand an enormous computational effort
and can be regarded as impossible for large molecules especially
when the energy that is transferred between the degrees of
freedom is large. Efficient ways to calculate FC factors are
limited to the harmonic approximation.13 Moreover, when the
potential energy surface cannot be treated as separable, the
eigenstates themselves are of mixed character and many will
share roughly the same FC intensity, without revealing the
mechanism or geometry of the jump between surfaces. Indeed,
this can happen even for separable surfaces, in that many
different final state FC factors could be comparable in size,
reflecting the fact that the “jump” was not along any one of the
separable coordinates.

2.2. Quantum-Mechanical Treatment in Phase Space.Our
approach to overcome the difficulties presented in the previous
section is to consider the transition in phase space. The donor
state is represented by its Wigner function, the acceptor state
by a classical energy hypersurface in phase space, and the
transition itself is determined by the overlap between the two.

In the Wigner representation, the total FC factors squared
multiplied by the final density of states are expressed as an
overlapintegral in phase space. Our method for the derivation
of propensity rules is based on recognizing the points in phase
space in which the nuclearintegrandpeaks. For weak transitions,
the integrand that we study tends to be exponentially small,
and the dominant region in phase space where this integrand
peaks may often be exponentially dominant over the rest of the
integral. For convenience, we use an abridged form (q,p) for
the nuclear positions and momenta for the set of normal modes
({qk},{pk}), k ) 1, ...,d.

In the Wigner phase-space representation,Γ takes the form

for an allowed transition. Here,FI(q,p) and FF(q,p) are the
Wigner functions of the initial and final states density matrices,
F̂I and F̂F, respectively, defined in the usual way:

The proof of eq 10 directly follows from eq 5 with the
definitions of eqs 8 and 9 for the initial and final density matrices
and eq 11 for their Wigner transform. Practically, we start with
the description in which each of theinitial vibrational wave
functions for each of the vibrational modes is characterized by
its quasi-distribution, that is, we assume a separable system,
for the excited electronic state. Consequently, the Wigner
function FI(q,p) is a simple product of these well-defined one-
dimensional quasi-distributions:

For allowed transitions, we derived eqs 10, and 12 above by
replacing the trace over the product of the initial and final
density matrices by a phase-space integral over their respective
Wigner functions. How do we generalize the approach to
forbidden transitions, such as internal conversion? The new
feature is that the nuclear integral as defined above in eq 4 now
contains a derivative with respect to the coordinate of the
promoting mode. Nevertheless, eq 10 easily generalizes to
include this case by replacing the Wigner transform of the initial-
state density matrix with the Wigner transform of an effective
density matrix defined for the derivative of the initial state wave
function. Thus, we include the derivative or any other transition
operator in a redefinition of the initial state. In addition, the
rate is obtained by a sum over all of the promoting modes
allowed by symmetry.

The result for internal conversion is

where the sum is over the promoting modes and

and [A]W stands for the Wigner transform ofA. Equations 15
and 16 follow from defining the density matrix:

For the final state Wigner function,FF(q,p), a formal
expression is obtained that substantially simplifies the calcula-
tion. For relaxation processes, the final state (usually a quasi-
continuum manifold of states) is defined by energy conservation
to be given by the density matrixδ(ĤF - E). We define∆(q,p)
to be the Wigner transform of this delta-function density and
get

Γ ) 2πκ
2

p
Tr[F̂fF̂i] (6)

Γ ) 2πκ
2
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for an allowed transition and

for internal conversion. In our search for the direction of the
surface jump, we look for the point(s) or region(s) in phase
space (q*,p*) where the integrand,∆(q,p)FI(q,p) or ∆(q,p)
FI

(p)′(q,p), peaks.
2.3. Surface Jumping.The Wigner function of the quasi-

continuum final state∆(q,p) can be expanded as an asymptotic
power series inp.14-17 A criterion for the validity of the
asymptotic series expansion is given by

whereσ is the width of the initial wave function on the excited
electronic surface,m is the reduced mass of the oscillator, and
|∇V| is the magnitude of the gradient of the surface potential at
the point of the transition. The zero order of this expansion,
which is in some sense a semiclassical approximation, gives

whereHF is the classical Hamiltonian for the final (accepting)
electronic state. Expansion to orderp2 gives an Airy function
instead of the delta function. Anexactcalculation of transition
probabilities and rates may require more care, but the relative
order of magnitudes of competing transitions as well as the
partition of energy between competing accepting modes can be
determined already at this semiclassical approximation level.18

We are looking for the phase-space point(s) (q*,p*) where
the integrand

Figure 2. Geometric representation of the method for finding the
direction of the quantum jump in two dimensions (Q1,Q2). The outer
dashed ellipse represents the constraintHF(Q1,Q2) ) E. The inner solid
ellipses represent the contours of the Wigner function on the upper
surface. Panel a shows the case of strong maximum. The value of the
Wigner function decreases rapidly with the distance from the jumping
point. The jumping point is well-defined. Panel b shows weak
maximum; the jumping point is not well-defined.

Γ ) 2πκ
2

p
∫dq dp ∆(q,p)FI(q,p) (18)

Γp )
2πκ

2

p
∑

p
∫dq dp ∆(q,p)FI

(p)′(q,p) (19)

( p2

2m|∇V|)
1/3

< σ (20)

∆(q,p) f δ(E - HF(q,p)) (21)

δ(E - HF(q,p))FI(q,p) (22)

Figure 3. (a,b) The C-H in-plane stretching normal modes. Modes
q2(a1g) andq13(b1u) are two nondegenerate modes. Modeq2 is the totally
symmetric C-H stretching. Modesq7(e2g) and q20(e1u) are two
degenerate modes. (c) Modesq6 and q8, which correspond to ring
deformations, are involved in a possible pseudo-Jahn-Teller effect on
S2. Both modes belong to the e2g representation for theD6h symmetry
and to the ag representation of theD2h symmetry. (d) Modesq14 and
q15 are two normal modes considered here to be involved in a possible
Duschinsky rotation. Both modes belong to the b2u representation;q14

is a ring stretching mode andq15 is a C-H bending mode.
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is maximal, that is, we maximize the initial Wigner function
FI(q,p) under the constraintE ) HF(q,p). (For internal conver-
sion,FI(q,p) is replaced byFI

(p)′(q,p) throughout this analysis).
The location of these points in phase space gives us the phase-
space jumping point(s), and from it, we deduce the accepting
modes and an estimation for the energy distribution between
competing modes. The value ofFI(q,p) at these points indicates
the expected strength of the transition, although we emphasize
again that predictions for absolute transition rates must be based
on calculation of theintegraland the electronic prefactors; here,
we are finding the dominant pathway for radiationless transition.

The geometric interpretation of the problem is demonstrated
in Figure 2. The solid inner ellipses represent the contours of
the Wigner function, here a Gaussian, in some two-dimensional
space. The outer dashed curve is the energy surface constraint
HF ) E. The geometric assignment is to find the points where
the highest contour of the surface,FI(q,p), meets the constraint
hypersurface,E ) HF(q,p). As demonstrated in Figure 2, the
strength of the extremal points can vary. Panel a shows the case
in which the point of maximum of the Wigner function under
the energy constraint is astrong maximum. In this case, there
is a very rapid decrease of the Wigner function as one moves
away from the extremum point on the energy constraint
hypersurface. We can refer to the point as atrue jumping point.
Panel b stands as an example for aweakextremum. In this
diagram, the Wigner function contour and the energy constraint
hypersurface have a very similar curvature. A decisive jumping
point is not well-defined.

2.4. Numerical Considerations.The identification of the
jumping point reduces in this formalism to the mathematical
problem of finding the maximum of a multidimensional
nonlinear objective function under a nonlinear constraint. Simple
geometric considerations show that at all of the extremum points
the contours of the constant initial Wigner function are tangent
to the constraint hypersurface

This condition gives a simple set of coupled algebraic equations
the roots of which define the local extrema. Note that direct
multidimensional local minimum finding can be converted by
various computational methods (like steepest decent) to a one-
dimensional search. It is considered therefore to be a much easier
computational problem than a multidimensional root search of
a system of nonlinear equations.19 However, numerical methods
for local minima finding under a constraint appear to have
difficulties in distinguishing between local minima, maxima,
and saddle points. We therefore analyze the transition in two
steps. We first use a code that takes the Wigner function and
the ground electronic surface potential and uses a standard
routine to find extremum points (q*,p*) of the Wigner function
under the energy constraint and the value of the Wigner function,
FI(q*,p*), at these points. We then study the Wigner function
on the constrained hypersurface at the vicinity of these points
using algebraic considerations. The eigenvalues of a tensor of
second derivatives in the subspace of the constrained phase space
are calculated and the nature of each extremal point, be it a
minimum, maximum, or saddle point, is determined. For some
cases, especially in the harmonic approximation, the problem
is also solvable analytically.8,46

3. Application to a 30-Dimensional Model of Internal
Conversion

The model considered here is motivated by the S2 f S0

transition in the benzene molecule.20-28 There are theoretical

and experimental indications that the benzene molecule is highly
distorted on the S2 surface and that this transition occurs via
conical intersections between S2 and S1 and between S1 and
S0, in particular when the initial conditions for the relaxation
are a vibrationally excited state on S2.27-31 We consider a
nonradiative transition from the vibrationless state of an S2

electronic term to a manifold of quasi-continuum states of the
S0(A1g) ground electronic state. In a future work, we will look
at the competition between two tunneling mechanisms: that
which is responsible for surface jumping considered here and
that which accounts for the barrier penetration required to arrive
at the conical intersection from a vibrationless initial state on
the excited electronic surface. Here, we construct our model
with no conical intersections. In the rest of the paper, after
presenting the model, we find the jumping point for the
transition, each time with a different conjecture for the potential
energy surfaces (PES). In this way, we learn about the possible
influences on the jump of different unknown parameters.

3.1. The Model. The following properties of benzene are
imitated by our model: It has one aromatic ring of six carbons
and six hydrogens. The configuration of the ground S0 electronic
state is hexagonal and belongs to theD6h symmetry group. The
molecule has 30 modes of vibrations, which we number
according to Wilson32 (some details are given below). The
vertical energy gap between the S0 and S2 state is 0.228 eV.33

The ground-state potential energy surface is taken from ref 34
(see below). The equilibrium position at S0 is q1

g ) 6.47 bohr,
q2

g ) 5.02 bohr, andqi ) 0 for all other normal modes by
symmetry. The equilibrium position at S2 is sometimes con-
sidered as free parameters and sometimes taken as in S1, q1

g )
6.63 bohr andq2

g ) 5.01 bohr.33 Harmonic frequencies on S2

are taken from ref 35.
Our model differs from benzene by the following proper-

ties: The potential energy surfaces that we use show no conical
intersection. The transition is assumed to be a direct transition
from S2 to S0 not going through S1. The model assumes a planar
molecule on the S2 surface.

Normal modes that have special importance in the rest of
the paper are depicted in Figure 3. Six in-plane C-H stretching
modes are each an orthogonal linear combination of the six local
C-H in-plane stretching modes,si:

We take the form of the ground-state potential energy surface
from ref 36 to be

(q2(a1g)
q7(e2g)
q13(b1u)
q20(e1u)
q7a(e2g)
q20a(e1u)

)) 1

x6(1 1 1 1 1 1

x2 - 1

x2
- 1

x2
x2 - 1

x2
- 1

x2
1 -1 1 -1 1 -1

x2
1

x2
- 1

x2
- x2 - 1

x2

1

x2

0 x6
2

-
x6
2

0 x6
2

-
x6
2

0 x6
2

x6
2

0 -
x6
2

-
x6
2

)
(s1

s2

s3

s4

s5
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) (24)

∇HF ) λ∇FI (23)
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where

Hereωk
g ) ω̃k

g[cm-1]/(2R∞), qk
g ) q̃k

g[cm]/a0, andmk ) m̃k/me,
are the frequencies, displacements, and reduced mass of the
modes of the ground electronic state, respectively, in atomic
units, whereR∞, a0, andme are the Rydberg constant, the Bohr
radius, and the electron mass. From here on, we use the
parameters in the atomic unit scale. The anharmonic force field
constants,φijk ) φ̃ijk[cm-1]/(2R∞), are taken from ref 34.

3.2. A Harmonic Approximation for Both PES. Taking
the initial state of S2 to be the ground-state wave function for
the normal modek of a harmonic oscillator, we have

where ωk
e and qk

e are the frequency and the equilibrium
configuration of thek normal mode of thee excited electronic
state, respectively. For S2, e ) 2. The total wave function is a
product of the wave functions of each of the modes. The Wigner
transform of a Gaussian wave function is another Gaussian; for
modek,

The initial total Wigner function is

The S2 f S0 is a forbidden transition. Therefore, when
calculating the transition rates or the jumping point, the initial
Wigner function,FI(q,p), should be replaced byFI

(p)′(q,p) as
defined and explained in section 2.2. TakingφI

p to be as in eq
27, we get

The integral over the nuclear degrees of freedom giving the
transition strength for internal conversion differs from the FC
factor squared for an allowed transition by an additional
polynomial in the integrand multiplying the Gaussian initial
Wigner function. With this additional factor, the transition
probability would vanish for a zero excitation of the promoting
mode, and therefore, the promoting mode must have, at least,
some minimal excitation.

The jumping point for an allowed transition is found by
maximizing FI(q,p), while the jumping point for internal
conversion is found by maximizingFI

(p)′(q,p), both under the
same constraint:HF(q,p) ) E. It can be shown that when surface
jumping occurs these two procedures give the same quantum
jump. For large excitations of the promoting mode, the behavior
of the Wigner function is dominated by the exponent and the
influence of the polynomial is negligible. For small excitations

of the promoting mode, there is, as mentioned above, a minimal
amount of energy that must be transferred to the promoting
mode of vibration, yet this hardly affects the quantum jump.
Thus, we maximizeFI(q,p) and notFI

(p)′(q,p). Therefore, we
look for minima of W defined in eq 29 under the constraint
HF(q,p) ) E.

We first consider a harmonic approximation for the Hamil-
tonian of the lower electronic surface:

Results of our calculations show that the extremum points
(q*,p*) of W under the constraintHF

h ) E form an 11-
dimensional subspace within the 60-dimensional phase space
of the problem. All of the points in this subspace include a small
position excitation of the C-C totally symmetric mode (around
2% of the total energy) and an arbitrary position or momentum
excitation of the six C-H in-plane stretching modes. The
Wigner functionFI(q,p) is highly peaked on this subspace with
all of the points having the same value of the (argument of the)
Wigner function, which is our measure of the level of propensity
for a transition at these points,W = 32. Second, inspection of
the C-H normal modes with the same high propensity show
that they have almost the same value ofmiωi

2 and could be
considered as degenerate oscillators. We conclude the follow-
ing: Within a harmonic approximation, the surface jumping is
restricted to an 11-dimensional hypersurface within the 60-
dimensional phase space of the problem. The surface, withW
= 32, represents all of the combinations of in-plane C-H
stretching modes subject to the demand of energy conservation.

3.3. Harmonic Excited PES and Anharmonic Ground
Electronic Potential. In this subsection, we repeat the analysis
of the previous subsection with the same initial harmonic state
on the excited electronic surface but this time with the most
recent anharmonic force field for the ground-state potential
surface:

Although adding the anharmonic force field in this asymmetric
fashion does not seem self-consistent, we do so first, and then,
in a following subsection, we check the possible effects of
anharmonicities of the excited surface.

In Table 1, we show the points found by the numerical
minimization of W under the constraintHF ) E. The points
that have the lowest value ofW, highest propensity, have an
almost 6-fold degeneracy withW= 17. These points correspond
to the same small position excitation of the totally symmetric
C-C stretching mode and different specific combinations of
the six C-H stretching modes position excitations.
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TABLE 1: Local Maximum or Jumping Points Obtained for
the S2 f S0 Transition Using the Potentials of Section 3.3a

q1 q2 q7 q13 q20 q7a q20a W

0.08 -0.31 -0.44 -0.31 -0.44 0 0 17.00
0.08 -0.31 -0.44 0.31 0.44 0 0 17.00
0.08 -0.32 0.22 0.31 -0.22 -0.38 -0.38 17.02
0.08 -0.32 0.22 -0.31 0.22 -0.38 0.38 17.02
0.08 -0.32 0.22 -0.31 0.22 0.38 -0.38 17.02
0.08 -0.32 0.22 0.31 -0.22 0.38 0.38 17.02

a The points are given in the normal-mode representation.
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The data in the literature led us to perform the analysis in
the normal modes of vibrations framework, yet to decode the
meaning of the points, we have transformed the coordinates from
normal modes to local modes using the inverse matrix of the
transformation, eq 24. In Table 2, we present the same points
as in Table 1 in local-mode coordinates. The physical meaning
of the points is now obvious. The six points with the highest
propensity refer to six equal points of local-mode excitation of
C-H stretching with an addition of a very small excitation of
the totally symmetric C-C stretching mode, which is the only
significantly displaced mode within the 30 modes of the
benzene.

3.4. Local vs Normal Coordinates.The best choice of
coordinates for the description of molecular spectroscopy
depends on the exact process that has to be described. Low-
energy vibrational excitations such as IR absorption spectros-
copy are usually described in terms of normal-mode oscillators,
while high-energy processes such as dissociation are best
described within a local-mode framework. It is clear that
dissociation of a molecule occurs by breaking one local mode
between two atoms; this is inconveniently described by high
excitation of several bonds between atoms in the normal-mode
description.

In our analysis, the excitation of a local C-H mode seems
to have its origin in the structure of the surface potential. When
the local coordinates are used, the surface potential for the six
in-plane C-H stretching modes has the form

Because of the symmetry of the problemV11 ) V22 ) Vii, V12

) V23 ) V34 ) Vi,i+1, etc. The use of this form reduces the
number of parameters that determine the third-order anharmonic
surface potential to only 12 parameters (instead of 56 in the
general normal description). This fact may encourage the attempt
to represent the surface potential that we took from ref 34 in
local modes. After this transformation of the coordinates, we
have found that all of the cross coefficients in the local-mode
formulation are very close to zero. We thus find that the potential
represents sixseparableanharmonic oscillators. This reduces
the number of parameters that describe the anharmonic potential
to only two. The separability of the potential leads to a
straightforward understanding of the reason for a local excitation
found in our calculations. It can be proven that in this case of
separate potentials with cubic anharmonicity the point with
highest propensity corresponds to a single local excitation. We
must note here also that the possibility of diagonalizing the
potential in local modes was suggested already 30 years ago to
understand the overtones of the C-H in-plane stretching in the
IR spectrum of the benzene.37,38A recent treatment of empirical
force constants in benzene using local modes for CH stretching
was given in ref 39. Here, we started with normal modes but
are forced by the results of our calculation to change to local
modes.

We summarize our conclusions so far as follows: Inclusion
of anharmonic effects for the ground electronic state reduces
the dimensionality of the transition from an 11-dimensional
hyperspace to small regions surrounding six degenerate points.
The points with the highest propensity describe a single
excitation of a local mode of C-H stretching and another
considerably smaller simultaneous excitation of the totally
symmetric C-C stretching mode.

3.5. Sensitivity to the Energy Gap between the Two
Surfaces. How sensitive are the results to the energy gap
between the two potential energy surfaces? What would have
changed if the energy gap was smaller or bigger? To answer
that, we have taken several different hypothetical values for the
energy gap and repeated the calculation for each such value,
while keeping all other parameters, such as the displacements
between the modes, fixed. The results are depicted in Figure 4,
which shows the magnitude of the jump in different directions
and the value of the Wigner function at the jumping point as a
function of the energy gap between the states. We have found
that most of the accepting modes undergo a vertical or an almost
vertical transition, which is insensitive to the available energy.
There is only one mode, here local C-H stretching, of which
the excitation depends on the energy gap. This mode is excited
by all of the available energy, given by the energy gap minus
the energy that is required for a vertical transition of the other
modes. The transition probability, estimated by the value ofF
(e-W) at the jumping point, decreases exponentially with an
increase of the energy gap between the surfaces. This feature
is ascribed to the fact the enlargement of the gap between the
surfaces leads to a larger quantum jump between them.

3.6. Influence of the Displacements between the Two
Surfaces.The benzene molecule is hexagonal in the ground
electronic state and, therefore, belongs to theD6h symmetry
group. The only modes that can have nonzero displacements
under this symmetry are the totally symmetric breathing modes,
that is,q1 andq2. If, however, the molecule is distorted on the
upper surface, S2, more modes become totally symmetric and
can in principle be displaced. The possibility of an extreme
change also in the frequency of these modes is not considered
here.40 How do the displacements, both for a symmetric and
for a distorted upper surface, influence the jumping point?

We first take the potentials from section 3.3, implement our
maximization procedure, and search for jumping points for
different displacements ofq1(C-C) and q2(C-H). Figure 5

TABLE 2: The Points of Table 1 in the Local-Mode
Representation

s1 s2 s3 s4 s5 s6 W

-0.76 0 0 0 0 0 17.00
0 0 0 -0.76 0 0 17.00
0 -0.76 0 0 0 0 17.02
0 0 -0.76 0 0 0 17.02
0 0 0 0 -0.76 0 17.02
0 0 0 0 0 -0.76 17.02

Figure 4. Results of the calculation for the S2 f S0 transition taking
the potentials of section 3.3 with the energy gap between the electronic
surfaces considered as a free parameter. The coordinate and the value
of the Wigner function at the jumping point are plotted vs the energy
gap between the surfaces. The value of the Wigner function at the
jumping point exponentially depends on the energy gap.

V ) ∑
i,j

Vijsisj + ∑
i,j,k

Vijksisjsk (33)
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displays the nonzero coordinates of the jumping point with the
highest propensity and the value of the Wigner function at this
point versus the displacement of the C-C bond length. From
the graph, it is easy to see that the main change of the excitation
is in the C-C totally symmetric direction. The dependence is
linear with a slope of almost 1.1. Changes of the C-H local
excitation and of the value of the Wigner function at the jumping
point are small and nonlinear. In Figure 6, we display the
coordinate of the jumping point with the highest propensity and
the value of the Wigner function at this point versus the
displacement of the C-H bond length. Again, the excitation of
the displaced mode, here the totally symmetric C-H stretching
normal mode, is linearly proportional to the displacement (as
in a vertical transition). The totally symmetric C-C is not
affected at all, while the local C-H stretching mode, which is
the mode that undergoes the jump, is again slightly, nonlinearly
affected. Note that in this framework the normal and local C-H
stretching act like almost different directions in space.

It is very likely that a distortion of the conformation of the
benzene molecule takes place in the excited state because of a
pseudo-Jahn-Teller (pseudo-JT) effect. Additional modes that

become totally symmetric under the new symmetry can have
nonzero displacements. Just as an example, we consider here
the case in which the molecule remains planar but belongs to
the D2h symmetry group. The modes that will have the most
significant distortion will be the modesq6 and q8, which
correspond to ring deformations (see Figure 3). In Figure 7, we
display the nonzero coordinates of the jumping point with the
highest propensity and the value of the Wigner function at this
point versus the difference between the angles of the benzene
ring, that is, a nonzero displacement ofq6. Again, we see that
the excitation of a displaced mode, hereq6, linearly depends
on the displacement. Excitations of the other modes do not
significantly change. Figure 8 plots the coordinates of the
jumping point with the highest propensity and the value of the
Wigner function at this point versus the difference between the
C-C bond lengths. This change of the bond lengths induces
displacements inq8 and q1 and as a result a change in the
coordinates of the jumping point. Even for a moderate change
in the symmetry, a noticeable amount of the energy is transferred
to the new modes that are displaced.

When one direction in phase space dominates the quantum
jump, excitations in other directions are proportional to the
displacement, as if in a vertical transition. A change of symmetry
can strongly influence the jumping point.

Figure 5. Results of the calculation for the S2 f S0 transition taking
the potentials of section 3.3 with the displacement of the C-C totally
symmetric mode considered as a free parameter. The coordinates and
the value of the Wigner function at the jumping point are plotted vs
the C-C displacement between the two surfaces. The excitations of
the local C-H and totally symmetric C-C stretching and the value of
the Wigner function,-ln F ) W, at the jumping point are displayed in
solid, dashed, and closed-circles lines, respectively. The excitation of
the displaced mode linearly depends on its displacement.

Figure 6. Results of the calculation for the S2 f S0 transition taking
the potentials of section 3.3 with the displacement of the C-H totally
symmetric mode considered as a free parameter. The coordinate and
the value of the Wigner function at the jumping point are plotted vs
the C-H displacement between the two surfaces.

Figure 7. Results of the calculation for the S2 f S0 transition taking
the potentials of section 3.3 and including a pseudo-JT deformation of
the benzene angles. The coordinate and the value of the Wigner function
at the jumping point are plotted vs the difference between the angles
of the benzene molecule. The excitations of the local C-H, totally
symmetric C-C stretching, andq6 modes and the value of the Wigner
function,-ln F ) W, at the jumping point are displayed in solid, dotted,
dashed, and closed-circles lines, respectively.

Figure 8. Results of the calculation for the S2 f S0 transition taking
the potentials of section 3.3 and including a pseudo-JT deformation of
the C-C bond lengths of the benzene.
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3.7. Two Anharmonic PES.Having shown in the previous
sections the separability in the subspace of C-H stretching
modes of the ground surface potential, we study in this
subsection the influence of the anharmonicity of the upper
surface on the jumping point within the effective one-
dimensional problem of a local C-H mode. Figure 9 displays
the one-dimensional ground and excited electronic surface
potentials in the local-mode representation. Relative to the
symmetric harmonic potential, the anharmonic potential is
softened on its dissociation part and has a sharper slope on its
close-approach part. Applying a harmonic approximation for
both surfaces gives the value of the Wigner function at the
jumping point ofW = 32. Taking the ground surface potential
to be anharmonic gives the value ofW = 17. Taking into
account the anharmonicities of the excited state makes both the
wave function and the Wigner function wider on the dissociation
side of the potential and narrower on the close-approach side.
Consequently, the value of the Wigner function at the jumping
point, W(q*,p*), gets a value between the two extremes of 32
e W e 17.

For a quantitative analysis of this property and to make the
calculation with an anharmonic potential that has a closed form
expression for the initial Wigner function, we use a Morse
approximation for the excited potential surface:

whereâ ) x2mωxe/p andω, m, xe, andD ) pω/(4xe) are the
harmonic oscillator frequency, the reduced mass of the mode,
the anharmonicity, and the dissociation energy of the excited
electronic state. The dissociation energy for the ground elec-
tronic state isDg ) 110.9 kcal/mol) 0.1701 hartree.41 Some
experimental data, like the acidity of the benzene molecule in
the excited electronic state,42 indicate a difference of less than
10% between the dissociation energy of the excited and ground
states. The dashed line in Figure 9 is the Morse potential for
the above values. From the graph, it is obvious that the high-
order Taylor series anharmonic force field and the Morse
potential approximations are very distinct approximations. We
prefer therefore to use in this subsection Morse potential for
both the ground and excited states.

The wave function of the Morse oscillator is a combination
of the associated Laguerre polynomials, and the Wigner function
is a combination of the modified spherical Bessel function of
the third kind (MacDonald function).43,44The Wigner function

of the ground vibrational state is

whereΓ is theΓ function. The order of the MacDonald function
that we study is zero because the momentum at the jumping
point is zero,p* ) 0, and we studyF(q,p*). Figure 10b displays
some examples of Wigner functions (withp ) 0) for the same
frequency,ω, but different anharmonicities,xe. The function is
a slightly deformed Gaussian in which the close-approach side
of the function decays more rapidly with the increase of the
anharmonicity. Figure 10a displays the projection of the jumping
point with the highest propensity on the various modes and the
value of the Wigner function at this point versus the anharmo-
nicity parameter,xe, of the upper surface, keeping the anhar-
monicity of the lower surface fixed. The values forWare within
the qualitative predicted range discussed above. The only
apparent (although small) change of the jumping point with the
change ofxe is on the C-H totally symmetric normal-mode
axis. The deformation of the Wigner function due to the
anharmonicityxe moves the center of the initial wave packet to
the dissociation side of the potential. This change of the center
of the wave packet leads to an effective positive displacement
of the wave packet, and the center of the wave packet on the

Figure 9. Local C-H stretching potentials. The harmonic, anharmonic,
and Morse potentials for the local C-H stretching of the S0 and S2

electronic states are shown in solid, dotted-dashed, and dashed lines,
respectively. The anharmonicity of the upper surface is plotted here as
if equal for the two electronic states but is considered as a free parameter
in the calculations.

Ve(q) ) D[1 - e-â(q-q0)]2 (34)

Figure 10. Panel a shows the results of the calculation for the S2 f
S0 transition taking the Morse potentials for both surfaces. The
coordinate and the value of the Wigner function at the jumping point
are plotted versus the anharmonicity,xe, of the upper electronic surface.
The excitations of the local C-H, totally symmetric C-C stretching,
and normal C-H stretching modes and the value of the Wigner
function,-ln F ) W, at the jumping point are displayed in solid, dotted,
dashed, and closed-circles lines. Panel b shows the Wigner function
for the Morse oscillator withω ) 3212cm-1 and different anharmo-
nicities,xe.

F(q,p) ) 2
πp

xe
-2

Γ(1/xe - 1)
e-2â(q-q0) K-2ip/(âp)(xe

-1 e-â(q-q0))

(35)
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ground electronic surface undergoes an almost vertical transition
to a point in space that is displaced with respect to the ground
configuration,although there is no real displacement between
the two surfaces.

Another interesting feature that arises from the reduction of
the problem to one-dimensional Morse potential regards the
direction of the sudden change in the local C-H stretch. One
may conclude that the wave packet lands on the ground
electronic surface at the close-approach side of the potential.

An increase of the Wigner function at the jumping point is
obtained with an increase of the anharmonicity of the lower
surface. For a fixed anharmonicity of the lower surface, a
decrease of the Wigner function at the jumping point is obtained
with an increase of the anharmonicity of the upper surface. The
anharmonicity on the upper surface gives correction to the two
extreme approximations of harmonic-harmonic and anhar-
monic-harmonic potentials. Anharmonicity can induce small
excitation of nondisplaced modes due to changes in the center
of the initial wave packet.

3.8. Duschinsky Rotation.Consider the impact of a possible
Duschinsky rotation that couplesq14 andq15. Figure 3 displays
diagrams of these two modes as they appear on the ground
electronic state. Suppose that the new normal modes on the
excited state are mixed according to

whereâ is the angle of rotation between the axes. According
to ref 45, these two modes are coupled in this way on the first
excited electronic surface. Here, we consider such a possible
coupling for the second excited surface. Other conjectures for
other mixing can be studied in a similar way.

The rotation in two dimensions and its influence on the
jumping point is demonstrated in Figure 11. The contours of
the initial Wigner function on the excited electronic surface and
the constraint on the lower surface,HF ) E, are plotted by solid
and dashed lines, respectively. The implementation of the
Duschinsky rotation is done by rotating the inner ellipse by the
angleâ. A larger difference between the widths of the Wigner
function would increase the effect of the rotation. The effect
has to be considered in position as well as in momentum space.
However, in our calculations, no momentum excitation is found.
We first examine the caseâ ) 90°, that is,q′14 ) q15 andq′15 )
-q14, and find a new couple of points with high propensity with

a large excitation ofq14 and small excitations of the totally
symmetric C-C and C-H stretching,q1 andq2. The value of
W at these points is 16.8, very close to the value of the points
with the highest propensity found without the Duschinsky
rotation. The new point that we have found for the extreme
rotation is used as an initial point for a local minimum search
for different angles of rotation. In Figure 12, we display this
local minimum, which is found in our calculations, and the value
of the Wigner function at this point versusâ, the rotation angle.

A new jumping point with significant propensity develops
only for angles of rotation above 65°. For smaller rotations,
the point that originates from a rotation exists as a local
minimum but has a very high value ofW, which makes the
probability of decaying through this channel negligible.

Duschinsky effect can cause, in general, a change of the
direction of the quantum jump, but for the model considered
here, the angles for rotation needed for this feature to appear
are nonphysical.

4. Summary and Conclusions

The mechanism of surface jumping complements the mech-
anism of Tully-Preston’s surface hopping by extending it to
Franck-Condon suppressed transitions. In this paper, the surface
jumping approach to nonvertical transitions was developed into
a general “ready to use” tool. The formalism was first extended
to include forbidden transitions, in particular, internal conver-
sion. This results in an additional factor in the FC integrand, a
polynomial of the position and momentum of the promoting
mode of vibration. In most cases, the influence of the polynomial
term on the direction of the jump can be neglected. More
generally, the maximization procedure with this additional term
is mathematically equivalent to the consideration of a decay
not from the ground vibrational state but from a vibrationally
excited state. This deserves further study in the future. A
numerical prescription for analyzing the jump was developed
for transitions between any general potential energy surfaces,
including, in particular, distorted and anharmonic surfaces. The
surface jumping method allows a simple determination of the
accepting modes even for systems with a very large dimension.

The surface jumping method for nonvertical transitions was
then applied to recognizing accepting modes in a complex model
inspired by the S2 f S0 transition in benzene. The transition
takes place through nonradiative internal conversion and a large

Figure 11. Geometric demonstration of the Duschinsky mode rotation
in two dimensions. The solid lines represent the contours of the Wigner
initial function on the excited electronic surface. The outer dashed
ellipse represents the constraint surface for the lower surfaceHF ) E.
Implementation of the Duschinsky rotation is done by rotating the inner
ellipse byâ.

(q′14

q′15
)) (cosâ sin â

-sin â cosâ )(q14

q15
) (36)

Figure 12. Results of the calculation for the S2 f S0 transition taking
the potentials of section 3.3 and including a Duschinsky mode rotation
betweenq14 and q15. The coordinates and the value of the Wigner
function at the jumping point are plotted vs the rotation angleâ. The
excitations of the local C-H, totally symmetric C-C stretching,q14,
andq15 modes and the value of the Wigner function,-ln F ) W, at
the jumping point are displayed in solid, dashed, dotted, dotted-dashed,
and closed-circles lines, respectively.
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energy of 0.228 hartree is released to the vibrational degrees of
freedom of the ground S0 state. We note that experiments have
determined the decay rate of the vibrationally excited S2 state
to the S0 electronic state to be at the scale of tens of femto-
seconds. This supports the suggestion that the decay occurs via
conical intersections between the S2, S1, and S0 surfaces. Here,
we have ignored the conical intersections and concentrated on
a direct quantum jumping process. Future work should address
the general question of competing tunneling mechanism, that
of surface jumping and that of tunneling through a barrier to
get to a conical intersection from an initial vibrationless state.
The model incorporates an exact, state of the art potential surface
for the ground electronic state but a simplistic treatment of the
excited electronic state. Dependence on the excited-state features
is tested by treating as free parameters the energy gap, displace-
ments, and anharmonicities. We observe that for a large energy
gap the masses and frequencies become the defining parameters
for choosing the accepting mode, while for smaller energy gaps
the displacements are more important. Anharmonicities are very
important when a competition between degenerate modes
occurs. These conclusions are demonstrated by the specific
model considered here but apply in general to any weak internal
conversion process.

For the model considered here, we found that the C-H modes
undergo the jump. We showed that the jump takes place in the
local C-H modes: Because the energy gap between the states
is large compared to the vibrational energy scale and the ratio
of the harmonic frequencies between the surfaces does not differ
very much from 1 (0.7< ωk

e/ωk
g < 1.2), the modes with the

largest frequency and smallest reduced mass are the modes that
undergo the jump. Thelocal C-H in-plane stretching modes
take almost all of the electronic energy, while all of the other
modes decay almost vertically.

This finding can be interpreted also within the well-known
“most probable escape path” principle of the tunnelling phe-
nomena. Because in tunneling the competition is between
channels with exponentially small probabilities, there is usually
only one channel that dominates. The picture of one mode that
undergoes quantum jump while the other modes decay vertically
was demonstrated in several ways in the paper, for example,
by altering the energy gap between the surfaces, by adding
anharmonicities, and by changing the displacement of various
modes.

Some of the issues to be considered in the future include
transitions from thermal distributions, rotations, and an imple-
mentation of the method to other molecules. Application to
dissociation, the coupling of the vibrational space of the
molecule to additional degrees of freedom of a medium, the
dynamics of the molecular wave packet after the quantum jump
between the surfaces takes place, and the calculation of the rate
using the phase-space method could also be studied within this
approach.
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