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S. Kallush," Bilha Segev,*" A. V. SergeeV! and E. J. Heller**

Department of Chemistry, Ben-Gurion Warsity of the Nege POB 653, Beer-Sha 84105, Israel, and
Departments of Chemistry and Physics, Hand University, Cambridge, Massachusetts 02138

Receied: Nawember 29, 2001; In Final Form: March 27, 2002

We generalize the concept of TuliPreston surface hopping to include larg@mpsin the case that the
surfaces do not cross. Instead of identifying a complex hopping point, we specify a jump between two locales
in phase space. This concept is used here to find propensity rules for the accepting vibrational mode(s) in a
radiationless vibronic relaxation transition. A model inspired by the-S, vibronic relaxation transition of

the benzene molecule in which 30 modes of vibration compete for the electronic energy is studied within this
approach. For this model, we show that almost all of the energy must go to a singflddCal stretching.

The initial conditions for vibrations of this mode are a coordinate jump of the hydrogen atom toward the
ring. All of the other modes undergo an almost vertical transition, in which the energy that they take is
determined by their equilibrium displacement between the two surfaces. We observe that for a large energy
gap the masses and frequencies become the defining parameters for choosing the accepting mode.
Anharmonicities are very important when a competition between degenerate modes occurs. These conclusions
are demonstrated by the specific model considered here but apply in general to any weak internal conversion

process.

1. Introduction

a) b)
Molecular electronic transitions may be radiative or nonra-
diative. In either case, the process may be Frar@éndon \ /
enhanced or suppressed. The enhanced processes correspond s
to a crossing of BorirOppenheimer potential energy surfaces
in the classically accessible region, whereas Frai@indon
suppressed events have no such crossing. Examples include
radiative processes in the wings of absorption or emission band " N
envelopes and radiationless events for nested potential energy
surfaces.

We focus here on intuition and procedures for realistic \ /
polyatomic processes. For the case of surface crossing, or vﬁ“
avoided crossing, the TulyPreston surface hoppihgicture

has been of considerable value, permitting both intuition and
simple procedures for calculating rates of electronic conversion.

Some extensions of this approach and insight can be found in hv hv
refs 2 and 3.

When the surfaces cross, trajectories can hop smoothly with
little or no change in position or momentum at the time of the

hop. But often surfaces do not cross. What then? Of course,
the rate for such cases is generally lower because of the implied
suppression of FranekCondon (FC) factors. However, these Figure 1. Two kinds of transitions: vertical and nonvertical. Panel a
suppressed events may be “the only game in town” or may be shows radiationless vertical transition between crossing surfaces. The
significant channels competing with othéranalytical continu- transition takes place by continuous changes of the coordinates and
ation is sometimes used in these cases to recognize a compleX8, i 20T T SRR, SEIC Lo g
jumping point in coordinate spaééand quaSICIaSSICaI mOdels_ The transfer of the energy must occur by a sudden chané;e of position
are also useful,but we want a more direct procedure that is o momentum. The direction of the jump is not obvious a priori. Our
applicable to many degrees of freedom. The approach we usepurpose is to predict this direction. Panel ¢ shows radiative vertical
is surface jumping. transition equivalent to the radiationless case in panel a: most of the
Our paradigm in this paper is a radiationless transition energy goes to the emitted photon. The transition takes place by

between nested surface potentials as shown in Figure 1b. Thiscontinuous changes of the coordinates and via the point of crossing
between the dressed initial surface and the final accepting energy

*To whom correspondence should be addressed. E-malil addresses:surface. Panel d shows radiative nonvertical transition equivalent to

bsegev@bgumail.bgu.ac.il or heller@physics.harvard.edu. the radiationless case in panel b: such transitions occur in the blue
T Ben-Gurion University of the Negev. wing of an absorption band, where some of the energy of the absorbed
*Harvard University. photon is transferred into vibrational energy via surface jumping.
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situation can also arise radiatively, if we consider, say, the upper i~ — 2 i1y

surface to be raised past the absorption maximum by the photon P Heted % |:| MW'X”“D]Z @)

energyhv as in Figure 1d. We have in mind a many-coordinate

example. Here, telec = fwj*ﬁe|ed/)i dr is the dipole transition moment
Perhaps it is not obvious that any useful classical picture can between the electronic statgs and y; andjicecis the dipole

emerge for this noncrossing situation, because the situation thatmoment operator. The integration id over all of the electronic

we describe is classically forbidden. However, other classically coordinates’. The nuclear wave function for the modg in

forbidden processes have very useful classical descriptions, suctthe electronic staté for vibrationally excited state is Xlnk’

as barrier tunneling, which involves trajectories in imaginary and separability is assumed. Separability is not necessary for

time or on the inverted potential energy surface. our approach, and we do not use it below for the final state,

Recently, some of us have outlined a procedure to recognizebut here, we use it for simplicity. The terffjGty [, 07 in
the jumping points in phase space in the noncrossing regjfme. this expression is the FC factor squared between two vibronic
We demonstrated the method by applying it to a two- States. The summatior},;ny, is over a manifold of vibronic
dimensional harmonic oscillator, a model in which one can find States, of which the energy is equal to the energy of the initial
the jumping point analyticall§. The results were encouraging. sta}tgl. Note that an excnepl initial state,.as conS|der¢d h(_are, has
Identification of the jumping points was shown to allow for an @ finite energy width allowing for many final states with slightly
easy derivation of propensity rules for the distribution of the different energies. For internal conversion, an electronically
electronic energy between competing vibrational modes. The forbidden transitionueiec = 0 at the equilibrium position.
treatment was limited in two ways: first by the assumption of I\I_everthe!ess_, the transition can occur by nona@abanc_ coupling
harmonic potentials and second by the assumption of an allowed"i@ the kinetic energy operator. The probability for internal
transition with no derivative coupling between the states. Here, COnversion from the vibronic stateto another vibronic mani-
we generalize the treatment to transitions between any two fold j is
multidimensional, nonharmonic potentials and establish the
numerical tools that are needed for the recognition of the pi = z|Mg'eJZZ|@jﬂ; Xlnmz z !_||5kj¢|Xinkm2 2)
jumping points in the general case. We also generalize the P T = e kep
treatment so that it applies to internal conversion, that is,
electronically forbidden transitions induced by derivative cou- Here,Meiec= [i|3/dgp|1'Lis the nonadiabatic interaction matrix
plings, and study what is then the contribution of the promoting element whilep serves as the promoting vibration of the normal
mode. modeq,. The promoting mode is the mode that couples between

Questions that we address in this paper are as follows: Whereth€ €lectronic surfaces via its kinetic energy operator and
will the jump between the two surfaces take place? What is the therefore should have the correct symmetry to prevent the
best system of coordinates to describe the process? What is th&!€ctronic matrix elemeritle from vanishing. The sum over
sensitivity of these predictions to the value of various param- [@kes into account all possible promoting modes. The last term
eters? The importance of the absolute value of the frequency' €d 2 is the FC factor squared for the nuclei subspace, which
and the reduced mass of a mode in the determination of itsmcludes all of the nuclei coordinates except for the one that
propensity as an accepting mode was previously discifs¥ed ~S€rves as _th_e_promotmg ”.‘Ode. with a summation over all of the
with implications for the isotope effect for nonradiative de&ay. possible divisions of the vibrational energy between the modes.

Here, we supplement these early studies by considering the,ltn bo-tth of th%s%lq?sesathe If[C ﬁ?ctorststlr?r?gl()j/' '?f'k‘jetf‘ce Te
transition in phase space. ransition probability and practically control the distribution o

the electronic energy that is released in the relaxation process

As an example, we apply our approach to a model inspired poyyeen the competing vibrational modes. It is useful to define
by a complex physical system, the 30 modes problem of the S o huclear integraly s, as

— S transition of the benzene molecule. As detailed below,

9
aqp

the model imitates some properties of the benzene molecule > = |—|||11',|Xi Eﬂz (3)
yet differs from it in some other features. While it is not a F {% JT
complete description of the benzene molecule, much can be
learned from it nevertheless. Even for this simplified model of for allowed transitions and as
the S — S, transition, it is not trivial to determine which modes
or combination of the 30 vibrational modes of our system would 19 Co
be first excited during the quantum jump. With the new surface- 2= Z@]ﬁ,‘a_ Xlnpmz 2 !_l M]fﬂxlﬂkmz )
jumping approach, we are able to do so with relative ease. » o {ne=rp} k=p

The outline of the paper is as follows: Surface jumping iS  for internal conversion via the promoting mogeEquations 3
defined and analyzed in section Il. In section Ill, we apply the and 4 were explicitly written for separable states. Generalization
method to a model of an,S~ S transition inspired by the o nonseparable states is straightforward as applied below. In
benzene molecule and study the sensitivity of the results to poth of these cases, the nuclear integEale includes the
different conjectures regarding the surface potentials. SectionFranck-Condon factor, the nuclear part of the transition matrix
IV concludes and summarizes. element if it exists, and the final density of nuclear states.
The rate of the transition is given by the Fermi golden rule:

2. Franck—Condon Factors in Phase Space
_ 271c”
2.1. Quantum-Mechanical Treatment in Coordinate Space. = TZHF ()
The probability for an allowed transition from the vibronic state
i to a vibronic manifoldj, wherei, j refer to electronic states, wherex?is the electronic part of either eq 1 or eq 2 for allowed
is given by transitions or internal conversion, respectively. It is often the
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custom to replac&, ¢ by the Franck-Condon factor squared  for an allowed transition. Hereg|(q,p) and pe(q,p) are the
multiplied by the final density of states on the accepting Wigner functions of the initial and final states density matrices,
electronic surface. We do not do so here because as we showp, and pr, respectively, defined in the usual way:

below a useful approximation follows from treating the final

density matrix as such. In this spirit, the rate can be written as _ (L)d ®d + zzH _ N -ipn/k 11
the trace over two density matrices. The rate of an allowed p(ap) = 27h, f—m 77@] 2P q ZDe (11)
transition is

The proof of eq 10 directly follows from eq 5 with the
2t definitions of egs 8 and 9 for the initial and final density matrices
= TTr[PfPi] (6) and eq 11 for their Wigner transform. Practically, we start with
the description in which each of thaitial vibrational wave
while the rate of internal conversion is functions for each of the vibrational modes is characterized by
5 its quasi-distribution, that is, we assume a separable system,
I“=27I—KTr[f) R @) for the excited electronic state. Consequently, the Wigner
h i function pi(q,p) is a simple product of these well-defined one-

) . dimensional quasi-distributions:
The density matrices are

_ k
p = |_| |X|nkmlnk| (8) r(a.p) |:|P| (%) (12)
k
For allowed transitions, we derived egs 10, and 12 above by
replacing the trace over the product of the initial and final
Py i ml | = S — density matrices by a phase-space integral over their respective
Pr %U'XW[@W' O(H: — E) © Wigner functions. How do we generalize the approach to
forbidden transitions, such as internal conversion? The new
where |3|F is the nuclear Hamiltonian operator of the final feature is that the nuclear integral as defined above in eq 4 now
electronic surface. contains a derivative with respect to the coordinate of the
The common way to determine which vibrations are most promoting mode. Nevertheless, eq 10 easily generalizes to
likely to be excited is to calculate the different FC factors and include this case by replacing the Wigner transform of the initial-
the densities of final states for all possible combinations of state density matrix with the Wigner transform of an effective
different divisions of the energy quanta between the mégles. density matrix defined for the derivative of the initial state wave
This, however, would demand an enormous computational effort function. Thus, we include the derivative or any other transition
and can be regarded as impossible for large molecules especiallypperator in a redefinition of the initial state. In addition, the
when the energy that is transferred between the degrees offate is obtained by a sum over all of the promoting modes
freedom is large. Efficient ways to calculate FC factors are allowed by symmetry.

pi is defined below, and

limited to the harmonic approximatidd.Moreover, when the The result for internal conversion is

potential energy surface cannot be treated as separable, the

eigenstates themselves are of mixed character and many will = XFp (13)
share roughly the same FC intensity, without revealing the p

mechanism or geometry of the jump between surfaces. Indeed, o

this can happen even for separable surfaces, in that many L= (“qq “d (P 14
different final state FC factors could be comparable in size, P h f“” qf“” P ee(dP)ei™ (GP) (14)
reflecting the fact that the “jump” was not along any one of the

separable coordinates. where the sum is over the promoting modes and

2.2. Quantum-Mechanical Treatment in Phase Spac®©ur © "
approach to overcome the difficulties presented in the previous P (@p) = ﬂ’a]p!pp)Dpl (OGP (15)
section is to consider the transition in phase space. The donor p

state is represented by its Wigner function, the acceptor state

by a classical energy hypersurface in phase space, and the . X

transition itself is determined by the overlap between the two. ﬁwp'pp) =[p"lw =
In the Wigner representation, the total FC factors squared

multiplied by the final density of states are expressed as an

overlapintegral in phase space. Our method for the derivation

of propensity rules is based on recognizing the points in phase

space in which the nucleartegrandpeaks. For weak transitions, 5 Ty

the integrand that we study tends to be exponentially small, pl= _|‘| | D3, |— (17)

and the dominant region in phase space where this integrand 99, kK aqy

peaks may often be exponentially dominant over the rest of the

(16)

O, jx'np
90, =,
and [Alw stands for the Wigner transform éf Equations 15
and 16 follow from defining the density matrix:

w

integral. For convenience, we use an abridged foqp) (for For the final state Wigner function,pr(q,p), a formal
the nuclear positions and momenta for the set of normal modesexpression is obtained that substantially simplifies the calcula-
{ad{pd), k=1, ....d. tion. For relaxation processes, the final state (usually a quasi-

In the Wigner phase-space representatiomakes the form continuum manifold of states) is defined by energy conservation
) to be given by the density matri{Hg — E). We defineA(q,p)
2L P he Wi form of this delta-funct i
. Lmdq ﬁwdp pe(@P) £(ap) (10) to be the Wigner transform of this delta-function density and

r= get
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Figure 2. Geometric representation of the method for finding the
direction of the quantum jump in two dimensior@,(Q.). The outer
dashed ellipse represents the constridi{€:,Q.) = E. The inner solid
ellipses represent the contours of the Wigner function on the upper
surface. Panel a shows the case of strong maximum. The value of the
Wigner function decreases rapidly with the distance from the jumping
point. The jumping point is well-defined. Panel b shows weak
maximum; the jumping point is not well-defined.
27ic?
== [dadp A(qp)e(ap) (18)
for an allowed transition and qzo

27kc°
r =—Z JdadpAa.p)e™ (a.p) (19)

for internal conversion. In our search for the direction of the
surface jump, we look for the point(s) or region(s) in phase
space @*,p*) where the integrandA(q,p)ei(a.p) or A(a,p)
o”"(ap), peaks.

2.3. Surface Jumping.The Wigner function of the quasi-

continuum final staté\(qg,p) can be expanded as an asymptotic
power series inf.2417 A criterion for the validity of the 8
asymptotic series expansion is given by

( h2 )1/3
<

2m[VV| 7 (20)
whereo is the width of the initial wave function on the excited
electronic surfacemis the reduced mass of the oscillator, and
|VV| is the magnitude of the gradient of the surface potential at
the point of the transition. The zero order of this expansion,
which is in some sense a semiclassical approximation, gives

A(0,p) — 6(E — He(a.p)) (21)

whereHe is the classical Hamiltonian for the final (accepting) q14 qlS

electronic state. Expansion to order gives an Airy function

instead of the delta function. Aexactcalculation of transition Figure 3. (a,b) The G-H in-plane stretching normal modes. Modes
probabilities and rates may require more care, but the relative gy(a,) andgis(byy) are two nondegenerate modes. Maglés the totally
order of magnitudes of competing transitions as well as the symmetric C-H stretching. Modesgr(&g) and gzo(€w,) are two
partition of energy between competing accepting modes can bedegenerate modes. (c) Modes and g, which correspond to ring
determined already at this semiclassical approximation fvel, deformations, are involved in a possible pseudo-Jafedler effect on

. - S,. Both modes belong to thegrepresentation for thBen, Symmetry
We are looking for the phase-space point() §*) where and to the grepresentation of thB,, symmetry. (d) Modesy4 and

the integrand qis are two normal modes considered here to be involved in a possible
Duschinsky rotation. Both modes belong to thefepresentationg4
o(E — H(a.p))p(a,p) (22) is a ring stretching mode argls is a C-H bending mode.

~
e}
~—~—
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is maximal, that is, we maximize the initial Wigner function and experimental indications that the benzene molecule is highly
pi(a,p) under the constrairt = Hg(q,p). (For internal conver- distorted on the Ssurface and that this transition occurs via
sion, pi(a,p) is replaced by"'(q,p) throughout this analysis). ~ conical intersections between 8nd § and between Sand
The location of these points in phase space gives us the phaseSo, in particular when the initial conditions for the relaxation
space jumping point(s), and from it, we deduce the accepting are a vibrationally excited state orp.8-3! We consider a
modes and an estimation for the energy distribution between nonradiative transition from the vibrationless state of an S
competing modes. The value pfq,p) at these points indicates electronic term to a manifold of quasi-continuum states of the
the expected strength of the transition, although we emphasizeSo(A1g) ground electronic state. In a future work, we will look
again that predictions for absolute transition rates must be basecat the competition between two tunneling mechanisms: that
on calculation of théntegral and the electronic prefactors; here, Wwhich is responsible for surface jumping considered here and
we are finding the dominant pathway for radiationless transition. that which accounts for the barrier penetration required to arrive
The geometric interpretation of the problem is demonstrated at the conical intersection from a vibrationless initial state on
in Figure 2. The solid inner ellipses represent the contours of the excited electronic surface. Here, we construct our model
the Wigner function, here a Gaussian, in some two-dimensional With no conical intersections. In the rest of the paper, after
space. The outer dashed curve is the energy surface constrainpresenting the model, we find the jumping point for the
He = E. The geometric assignment is to find the points where transition, each time with a different conjecture for the potential
the highest contour of the surfagg(q,p), meets the constraint  energy surfaces (PES). In this way, we learn about the possible
hypersurfaceE = Hg(q,p). As demonstrated in Figure 2, the influences on the jump of different unknown parameters.
strength of the extremal points can vary. Panel a shows the case 3.1. The Model. The following properties of benzene are
in which the point of maximum of the Wigner function under imitated by our model: It has one aromatic ring of six carbons
the energy constraint is strong maximumin this case, there  and six hydrogens. The configuration of the groug@I8ctronic
is a very rapid decrease of the Wigner function as one movesstate is hexagonal and belongs to By symmetry group. The
away from the extremum point on the energy constraint molecule has 30 modes of vibrations, which we number
hypersurface. We can refer to the point asu@ jumping point. according to Wilsof? (some details are given below). The
Panel b stands as an example fowaak extremum. In this vertical energy gap between the &d S state is 0.228 eV3
diagram, the Wigner function contour and the energy constraint The ground-state potential energy surface is taken from ref 34
hypersurface have a very similar curvature. A decisive jumping (see below). The equilibrium position a§ B g = 6.47 bohr,
point is not well-defined. a2 = 5.02 bohr, andy = 0 for all other normal modes by
2.4. Numerical Considerations.The identification of the symmetry. The equilibrium position at,$ sometimes con-
jumping point reduces in this formalism to the mathematical sjgered as free parameters and sometimes taken asdfi S

problem of finding the maximum of a multidimensional g g3 ponr andyg = 5.01 bohr3 Harmonic frequencies on,S
nonlinear objective function under a nonlinear constraint. Simple 4 taken fromzref 35,

geometric considerations show that at all of the extremum points our model differs from benzene by the following proper-

tgeﬂfg Tgﬁ;fr:tiwthﬁy;%rriﬁgégmal Wigner function are tangent _ties: The_ potential energy s_urfaces that we use show no co_n_ical
intersection. The transition is assumed to be a direct transition
VH = AVp, (23) from $ to S not going through § The model assumes a planar
molecule on the Ssurface.
This condition gives a simple set of coupled algebraic equations  Normal modes that have special importance in the rest of
the roots of which define the local extrema. Note that direct the paper are depicted in Figure 3. Six in-planetCstretching

multidimensional local minimum finding can be converted by modes are each an orthogonal linear combination of the six local
various computational methods (like steepest decent) to a one-c—H in-plane stretching modes;

dimensional search. It is considered therefore to be a much easier
computational problem than a multidimensional root search of
a system of nonlinear equatiofddowever, numerical methods

for local minima finding under a constraint appear to have q (ag)
difficulties in distinguishing between local minima, maxima, 231

and saddle points. We therefore analyze the transition in two q7(%9)

steps. We first use a code that takes the Wigner function and sy | 1
the ground electronic surface potential and uses a standard d,q(e;) | NG
routine to find extremum pointg, p*) of the Wigner function U729

under the energy constraint and the value of the Wigner function, oo €10)

oi(g*, p¥), at these points. We then study the Wigner function | 2%

on the constrained hypersurface at the vicinity of these points

using algebraic considerations. The eigenvalues of a tensor of

second derivatives in the subspace of the constrained phase space

are calculated and the nature of each extremal point, be it a

minimum, maximum, or saddle point, is determined. For some

cases, especially in the harmonic approximation, the problem

is also solvable analyticall§/#6
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3. Application to a 30-Dimensional Model of Internal
Conversion

The model considered here is motivated by the—S & We take the form of the ground-state potential energy surface
transition in the benzene molecdfe28 There are theoretical ~ from ref 36 to be
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V(d) 12_30w( 9 g)2+1 Zgo ¢ +0(q")

=- w - = inr

q 22 k) W — Ok 6.4 ikl il k q
(25)

where

=y oim(g — o)

Herew{ = &Jlcm J/(2R.), g = gilcm]/ag, andm, = mM/m,

(26)
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TABLE 1: Local Maximum or Jumping Points Obtained for
the S, — S Transition Using the Potentials of Section 3.8

Qo 02 g Oi3 O20 Qra O20a w

0.08 —-0.31 —-0.44 -0.31 —-0.44 0 0 17.00
0.08 —-0.31 -—-0.44 0.31 0.44 0 0 17.00
0.08 -0.32 0.22 0.31 —0.22 -0.38 —-0.38 17.02
0.08 -0.32 0.22 —-0.31 0.22 —0.38 0.38 17.02
0.08 —0.32 0.22 —-0.31 0.22 0.38 —0.38 17.02
0.08 —-0.32 0.22 0.31 —0.22 0.38 0.38 17.02

2 The points are given in the normal-mode representation.

are the frequencies, displacements, and reduced mass of the . . . o
modes of the ground electronic state, respectively, in atomic of the promoting mode, there is, as mentioned above, a minimal

units, whereR.,, ap, andm are the Rydberg constant, the Bohr

amount of energy that must be transferred to the promoting

radius, and the electron mass. From here on, we use themode of vibration, yet this hardly affects the quantum jump.
parameters in the atomic unit scale. The anharmonic force field Thus, we maximizep,(q,p) and notp(p)'(q,p). Therefore, we

constantsgix = gix[cm~1/(2R.), are taken from ref 34.

3.2. A Harmonic Approximation for Both PES. Taking
the initial state of $to be the ground-state wave function for
the normal modé of a harmonic oscillator, we have

e\1/4
#0) = (m““k) exr{

where oy and qg; are the frequency and the equilibrium
configuration of thek normal mode of the excited electronic
state, respectively. ForSe = 2. The total wave function is a

1 M@y

S @—d’l @)

look for minima of W defined in eq 29 under the constraint
He(a.p) = E.

We first consider a harmonic approximation for the Hamil-
tonian of the lower electronic surface:

12 [pd

HE = 521 o + mdod(a — @)’ (31)
k=

Results of our calculations show that the extremum points
(g*,p*) of W under the constrainHE = E form an 11-

product of the wave functions of each of the modes. The Wigner dimensional subspace within the 60-dimensional phase space
transform of a Gaussian wave function is another Gaussian; forof the problem. All of the points in this subspace include a small

modek,
e 2
K 1 mxwk 2

P)=—exp— —— 28
£1 (TP h F{ A (G— o) — kaeh (28)

The initial total Wigner function is

30 . ( 1 )30 W

, = . =|— 67 29
p.(a,p) Dp.(qk P =|— (29)

The S — & is a forbidden transition. Therefore, when
calculating the transition rates or the jumping point, the initial
Wigner function, pi(q,p), should be replaced by,(p)'(q,p) as
defined and explained in section 2.2. Takigiyto be as in eq
27, we get

2

P
peh)pl(q,p)- (30)

Dp

P (@,p) = o) +

myo p(mp M

The integral over the nuclear degrees of freedom giving the
transition strength for internal conversion differs from the FC
factor squared for an allowed transition by an additional

polynomial in the integrand multiplying the Gaussian initial
Wigner function. With this additional factor, the transition
probability would vanish for a zero excitation of the promoting

position excitation of the €C totally symmetric mode (around
2% of the total energy) and an arbitrary position or momentum
excitation of the six GH in-plane stretching modes. The
Wigner functionp(q,p) is highly peaked on this subspace with
all of the points having the same value of the (argument of the)
Wigner function, which is our measure of the level of propensity
for a transition at these pointg/ = 32. Second, inspection of
the C-H normal modes with the same high propensity show
that they have almost the same valuenaf? and could be
considered as degenerate oscillators. We conclude the follow-
ing: Within a harmonic approximation, the surface jumping is
restricted to an 11-dimensional hypersurface within the 60-
dimensional phase space of the problem. The surface, With
= 32, represents all of the combinations of in-planeHC
stretching modes subject to the demand of energy conservation.

3.3. Harmonic Excited PES and Anharmonic Ground
Electronic Potential. In this subsection, we repeat the analysis
of the previous subsection with the same initial harmonic state
on the excited electronic surface but this time with the most
recent anharmonic force field for the ground-state potential
surface:

30(p,2

k
He = -Z — + mw)a, — o)’
m

1
+—Z ¢ rirr. (32)
2k: 6“ ijkli'jtk

Although adding the anharmonic force field in this asymmetric

mode, and therefore, the promoting mode must have, at leastfashion does not seem self-consistent, we do so first, and then,

some minimal excitation.

The jumping point for an allowed transition is found by
maximizing pi(q,p), while the jumping point for internal
conversion is found by maximizingl(p)'(q,p), both under the

in a following subsection, we check the possible effects of
anharmonicities of the excited surface.

In Table 1, we show the points found by the numerical
minimization of W under the constraintls = E. The points

same constraintHg(q,p) = E. It can be shown that when surface that have the lowest value &¥, highest propensity, have an
jumping occurs these two procedures give the same quantumalmost 6-fold degeneracy witW = 17. These points correspond
jump. For large excitations of the promoting mode, the behavior to the same small position excitation of the totally symmetric
of the Wigner function is dominated by the exponent and the C—C stretching mode and different specific combinations of
influence of the polynomial is negligible. For small excitations the six C-H stretching modes position excitations.
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TABLE 2: The Points of Table 1 in the Local-Mode N B S 2
Representation 00d e, e e e e e e e e - .- = 1
122
St S S S S S W
—0.76 0 0 0 0 0 17.00 =27 —e—.np=w 1%
0 0 0 —0.76 0 0 17.00 5 1 dnp=W
0 -076 0 0 0 0 17.02 = s
0 0 —0.76 0 0 0 17.02 g = = Totally symmetric CC 16
0 0 0 0 —-0.76 0 17.02 % —Local CH
0 0 0 0 0 -0.76  17.02 & 087 Normal O i
The data in the literature led us to perform the analysis in  -0s- 12
the normal modes of vibrations framework, yet to decode the 1
meaning of the points, we have transformed the coordinates from , : . : . : . : :
normal modes to local modes using the inverse matrix of the 0.10 0.15 0.20 0.25 0.30 035

transformation, eq 24. In Table 2, we present the same points Energy [Hartree]
as in Table 1 in local-mode coordinates. The physical meaning Figure 4. Results of the calculation for the S+ S transition taking
of the points is now obvious. The six points with the highest the potentials of section 3.3 with the energy gap between the electronic
propensity refer to six equal points of local-mode excitation of surfaces considered as a free parameter. The coordinate and the value
C—H stretching with an addition of a very small excitation of ©f the Wigner function at the jumping point are plotted vs the energy
the totally symmetric &C stretching mode. which is the onl gap between the surfaces. The value of the Wigner function at the

1€ totally sym ng ’ Y jumping point exponentially depends on the energy gap.
significantly displaced mode within the 30 modes of the

benzene. . . We summarize our conclusions so far as follows: Inclusion
3.4. Local vs Normal Coordinates.The best choice of  of anharmonic effects for the ground electronic state reduces
coordinates for the description of molecular Spectroscopy the dimensionality of the transition from an 11-dimensional
depends on the exact process that has to be described. Lownyperspace to small regions surrounding six degenerate points.
energy vibrational excitations such as IR absorption spectros-The points with the highest propensity describe a single
copy are usually described in terms of normal-mode oscillators, excitation of a local mode of €H stretching and another
while high-energy processes such as dissociation are besionsiderably smaller simultaneous excitation of the totally
described within a local-mode framework. It is clear that symmetric G-C stretching mode.
dissociation of a molecule occurs by breaking one local mode "3 5. Sensitivity to the Energy Gap between the Two
between two atoms; this is inconveniently described by high syrfaces. How sensitive are the results to the energy gap
excitation of several bonds between atoms in the normal-modepeanyeen the two potential energy surfaces? What would have
description. _ o changed if the energy gap was smaller or bigger? To answer
In our analysis, the excitation of a loca-G mode seems  that, we have taken several different hypothetical values for the
to have its origin in the structure of the surface potential. When energy gap and repeated the calculation for each such value,
the local coordinates are used, the surface potential for the sixyhile keeping all other parameters, such as the displacements

in-plane C-H stretching modes has the form between the modes, fixed. The results are depicted in Figure 4,
which shows the magnitude of the jump in different directions
V= ZVij§§ + ZVUKS%S( (33) and the value of the Wigner function at the jumping point as a

] i function of the energy gap between the states. We have found

that most of the accepting modes undergo a vertical or an almost
Because of the symmetry of the probléfm = V2, = Vi, Vi vertical transition, which is insensitive to the available energy.
= Va3 = V34 = Vij11, etc. The use of this form reduces the There is only one mode, here locat-El stretching, of which
number of parameters that determine the third-order anharmonicthe excitation depends on the energy gap. This mode is excited
surface potential to only 12 parameters (instead of 56 in the by all of the available energy, given by the energy gap minus
general normal description). This fact may encourage the attemptthe energy that is required for a vertical transition of the other
to represent the surface potential that we took from ref 34 in modes. The transition probability, estimated by the valug of
local modes. After this transformation of the coordinates, we (e”W) at the jumping point, decreases exponentially with an
have found that all of the cross coefficients in the local-mode increase of the energy gap between the surfaces. This feature
formulation are very close to zero. We thus find that the potential is ascribed to the fact the enlargement of the gap between the
represents siseparableanharmonic oscillators. This reduces surfaces leads to a larger quantum jump between them.
the number of parameters that describe the anharmonic potential 3.6. Influence of the Displacements between the Two
to only two. The separability of the potential leads to a Surfaces.The benzene molecule is hexagonal in the ground
straightforward understanding of the reason for a local excitation electronic state and, therefore, belongs to Erg symmetry
found in our calculations. It can be proven that in this case of group. The only modes that can have nonzero displacements
separate potentials with cubic anharmonicity the point with under this symmetry are the totally symmetric breathing modes,
highest propensity corresponds to a single local excitation. We that is,q: andgy. If, however, the molecule is distorted on the
must note here also that the possibility of diagonalizing the upper surface, £ more modes become totally symmetric and
potential in local modes was suggested already 30 years ago tacan in principle be displaced. The possibility of an extreme
understand the overtones of the-B in-plane stretching inthe  change also in the frequency of these modes is not considered
IR spectrum of the benzerdé38A recent treatment of empirical  here?® How do the displacements, both for a symmetric and
force constants in benzene using local modes for CH stretchingfor a distorted upper surface, influence the jumping point?
was given in ref 39. Here, we started with normal modes but  We first take the potentials from section 3.3, implement our
are forced by the results of our calculation to change to local maximization procedure, and search for jumping points for
modes. different displacements af;(C—C) and g(C—H). Figure 5
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Figure 5. Results of the calculation for the: S- S transition taking Figure 7. Results of the calculation for the S- S transition taking

the potentials of section 3.3 with the displacement of theQQotally the potentials of section 3.3 and including a pseudo-JT deformation of
symmetric mode considered as a free parameter. The coordinates anghe benzene angles. The coordinate and the value of the Wigner function
the value of the Wigner function at the jumping point are plotted vs at the jumping point are plotted vs the difference between the angles
the C-C displacement between the two surfaces. The excitations of of the benzene molecule. The excitations of the localHC totally

the local C-H and totally symmetric €C stretching and the value of  symmetric G-C stretching, andis modes and the value of the Wigner
the Wigner function—In p = W, at the jumping point are displayed in  function,—In p = W, at the jumping point are displayed in solid, dotted,

solid, dashed, and closed-circles lines, respectively. The excitation of dashed, and closed-circles lines, respectively.
the displaced mode linearly depends on its displacement.
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Figure 6. Results of the calculation for the; S+ S transition taking the potentials of section 3.3 and including a pseudo-JT deformation of
the potentials of section 3.3 with the displacement of theHQotally the C-C bond lengths of the benzene.
symmetric mode considered as a free parameter. The coordinate and
the value of the Wigner function at the jumping point are plotted vs become totally symmetric under the new symmetry can have
the G-H displacement between the two surfaces. nonzero displacements. Just as an example, we consider here
the case in which the molecule remains planar but belongs to
displays the nonzero coordinates of the jumping point with the the Dy, symmetry group. The modes that will have the most
highest propensity and the value of the Wigner function at this significant distortion will be the modesgs and gs, which
point versus the displacement of the-C bond length. From  correspond to ring deformations (see Figure 3). In Figure 7, we
the graph, itis easy to see that the main change of the excitationdisplay the nonzero coordinates of the jumping point with the
is in the C-C totally symmetric direction. The dependence is highest propensity and the value of the Wigner function at this
linear with a slope of almost 1.1. Changes of theKClocal point versus the difference between the angles of the benzene
excitation and of the value of the Wigner function at the jumping ring, that is, a nonzero displacementogf Again, we see that
point are small and nonlinear. In Figure 6, we display the the excitation of a displaced mode, hegg linearly depends
coordinate of the jumping point with the highest propensity and on the displacement. Excitations of the other modes do not
the value of the Wigner function at this point versus the significantly change. Figure 8 plots the coordinates of the
displacement of the €H bond length. Again, the excitation of  jumping point with the highest propensity and the value of the
the displaced mode, here the totally symmetriekCstretching ~ Wigner function at this point versus the difference between the
normal mode, is linearly proportional to the displacement (as C—C bond lengths. This change of the bond lengths induces
in a vertical transition). The totally symmetric<C is not displacements imgg and g, and as a result a change in the
affected at all, while the local €H stretching mode, which is  coordinates of the jumping point. Even for a moderate change
the mode that undergoes the jump, is again slightly, nonlinearly in the symmetry, a noticeable amount of the energy is transferred
affected. Note that in this framework the normal and local-C to the new modes that are displaced.
stretching act like almost different directions in space. When one direction in phase space dominates the quantum
It is very likely that a distortion of the conformation of the jump, excitations in other directions are proportional to the
benzene molecule takes place in the excited state because of displacement, as if in a vertical transition. A change of symmetry
pseudo-JahnTeller (pseudo-JT) effect. Additional modes that can strongly influence the jumping point.
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in the calculations.

€

3.7. Two Anharmonic PES.Having shown in the previous
sections the separability in the subspace efHCstretching
modes of the ground surface potential, we study in this
subsection the influence of the anharmonicity of the upper 015"
surface on the jumping point within the effective one-
dimensional problem of a local-€H mode. Figure 9 displays
the one-dimensional ground and excited electronic surface
potentials in the local-mode representation. Relative to the
symmetric h_arm_onlc _po_tentlal, the anharmonic potential is 0 e 5 RV My —
softened on its dissociation part and has a sharper slope on its q [Bohr]
close-approach .part. Applying a harmomc apprOXImatlon for Figure 10. Panel a shows the results of the calculation for the-S
both surfaces gives the value of the Wigner function at the g "yransition taking the Morse potentials for both surfaces. The
jumping point of W = 32. Taking the ground surface potential  coordinate and the value of the Wigner function at the jumping point
to be anharmonic gives the value W = 17. Taking into are plotted versus the anharmonicity,of the upper electronic surface.
account the anharmonicities of the excited state makes both theThe excitations of the local €H, totally symmetric C-C stretching,
wave function and the Wigner function wider on the dissociation @hd normal G&H stretching modes and the value of the Wigner
side of the potential and narrower on the close-approach Side_](‘juncglog,—lndp|=W,dat Fhﬁlunr.p'”g point ?rbe d'hSp'ayeﬁ' in solid, d?nedz
Consequently, the value of the Wigner function at the jumping ashed, and clossd-eireies mfs' Pane 1 shows the Wigner Un_Ct'on

i for the Morse oscillator withy = 3212cmt and different anharmo
point, W(g*,p*), gets a value between the two extremes of 32 pcities, xe.
<W=<17.

For a quantitative analysis of this property and to make the
calculation with an anharmonic potential that has a closed form 2 Xe—Z
expression for the initial Wigner function, we use a Morse  p(Q.p) = =
approximation for the excited potential surface: mh T(1x, — 1)

w(q)
¥

0.7

0.05

of the ground vibrational state is

- — 71 - —
e 2B(d—a0) K*Zip/(ﬂh)(xe e B qo))

(35)

V(@) =D[1 - _ﬁ(q_qO)]z (34) wherer is thel function. The order of the MacDonald function
that we study is zero because the momentum at the jumping
wheref = /2mwxJ/h andw, m, X, andD = hw/(4xe) are the pointis zerop* = 0, and we study(q,p*). Figure 10b displays
harmonic oscillator frequency, the reduced mass of the mode,some examples of Wigner functions (wjph= 0) for the same
the anharmonicity, and the dissociation energy of the excited frequencyw, but different anharmonicitiege. The function is
electronic state. The dissociation energy for the ground elec- a slightly deformed Gaussian in which the close-approach side
tronic state isDg = 110.9 kcal/mol= 0.1701 hartreé* Some of the function decays more rapidly with the increase of the
experimental data, like the acidity of the benzene molecule in anharmonicity. Figure 10a displays the projection of the jumping
the excited electronic statéjndicate a difference of less than  point with the highest propensity on the various modes and the
10% between the dissociation energy of the excited and groundvalue of the Wigner function at this point versus the anharmo-
states. The dashed line in Figure 9 is the Morse potential for nicity parameterx., of the upper surface, keeping the anhar-
the above values. From the graph, it is obvious that the high- monicity of the lower surface fixed. The values tare within
order Taylor series anharmonic force field and the Morse the qualitative predicted range discussed above. The only
potential approximations are very distinct approximations. We apparent (although small) change of the jumping point with the
prefer therefore to use in this subsection Morse potential for change ofxe is on the C-H totally symmetric normal-mode
both the ground and excited states. axis. The deformation of the Wigner function due to the
The wave function of the Morse oscillator is a combination anharmonicityxe moves the center of the initial wave packet to
of the associated Laguerre polynomials, and the Wigner function the dissociation side of the potential. This change of the center
is a combination of the modified spherical Bessel function of of the wave packet leads to an effective positive displacement
the third kind (MacDonald functiorf#44The Wigner function of the wave packet, and the center of the wave packet on the
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Figure 11. Geometric demonstration of the Duschinsky mode rotation g re 12, Results of the calculation for the S- S transition taking
in two dimensions. The solid lines represent the contours of the Wigner o potentials of section 3.3 and including a Duschinsky mode rotation
initial function on the excited electronic surface. The outer dashed betweengus and cus. The coordinates and the value of the Wigner
ellipse represents the constraint surface for the lower suHace E. function at the jumping point are plotted vs the rotation argyl@he
Im_plementatlon of the Duschinsky rotation is done by rotating the inner o, citations of the local €H, totally symmetric G-C stretching s,
ellipse byf. and gis modes and the value of the Wigner functierin p = W, at
the jumping point are displayed in solid, dashed, dotted, dotted-dashed,
and closed-circles lines, respectively.

ground electronic surface undergoes an almost vertical transition
to a point in space that is displaced with respect to the ground
configuration,although there is no real displacement between , large excitation o4 and small excitations of the totally
the two surfaces. _ _ symmetric CG-C and C-H stretching,q; andgp. The value of
Another interesting feature that arises from the reduction of \y ot these points is 16.8, very close to the value of the points
the problem to one-dimensional Morse potential regards the ith the highest propensity found without the Duschinsky
direction of the sudden change in the locatK stretch. One  yotation. The new point that we have found for the extreme
may conclude that the wave packet lands on the ground rotation is used as an initial point for a local minimum search
electronic surface at the close-approach side of the potential.for different angles of rotation. In Figure 12, we display this
An increase of the Wigner function at the jumping point is  jocal minimum, which is found in our calculations, and the value
obtained with an increase of the anharmonicity of the lower of the Wigner function at this point versgsthe rotation angle.
surface. For a fixed anharmonicity of the lower surface, a A new iumping point with Significant propensity deveiops
decrease of the Wigner function at the jumping point is obtained only for angles of rotation above 85For smaller rotations,
with an increase of the anharmonicity of the upper surface. The the point that originates from a rotation exists as a local
anharmonicity on the upper surface gives correction to the two minimum but has a very high value &, which makes the
extreme approximations of harmoribarmonic and anhar-  probability of decaying through this channel negligible.

monic—harmonic potentials. Anharmonicity can induce small Duschinsky effect can cause, in general, a change of the
excitation of nondisplaced modes due to changes in the centergirection of the quantum jump, but for the model considered
of the initial wave packet. here, the angles for rotation needed for this feature to appear

3.8. Duschinsky Rotation.Consider the impact of a possible  gre nonphysical.
Duschinsky rotation that coupleg, andq;s. Figure 3 displays
diagrams of these two modes as they appear on the groundt. Summary and Conclusions
electronic state. Suppose that the new normal modes on the

: . . The mechanism of surface jumping complements the mech-
excited state are mixed according to

anism of Tully—Preston’s surface hopping by extending it to

) . Franck-Condon suppressed transitions. In this paper, the surface
(q,l“): (COS_"B sinf3 )(ql“) (36) jumping approach to nonvertical transitions was developed into
15 —sinp cosp J\ts a general “ready to use” tool. The formalism was first extended
) . . toinclude forbidden transitions, in particular, internal conver-
where/ is the angle of rotation between the axes. According gjon. This results in an additional factor in the FC integrand, a
to rgf 45, these two modes are coupled in .th|s way on the flist polynomial of the position and momentum of the promoting
excited electronic surface. Here, we consider such a possibleqmqde of vibration. In most cases, the influence of the polynomial
coupling for the second excited surface. Other conjectures for term on the direction of the jump can be neglected. More
other mixing can be studied in a similar way. generally, the maximization procedure with this additional term

The rotation in two dimensions and its influence on the is mathematically equivalent to the consideration of a decay
jumping point is demonstrated in Figure 11. The contours of not from the ground vibrational state but from a vibrationally
the initial Wigner function on the excited electronic surface and excited state. This deserves further study in the future. A
the constraint on the lower surfad#; = E, are plotted by solid ~ numerical prescription for analyzing the jump was developed
and dashed lines, respectively. The implementation of the for transitions between any general potential energy surfaces,
Duschinsky rotation is done by rotating the inner ellipse by the including, in particular, distorted and anharmonic surfaces. The
anglep. A larger difference between the widths of the Wigner surface jumping method allows a simple determination of the
function would increase the effect of the rotation. The effect accepting modes even for systems with a very large dimension.
has to be considered in position as well as in momentum space. The surface jumping method for nonvertical transitions was
However, in our calculations, no momentum excitation is found. then applied to recognizing accepting modes in a complex model
We first examine the cage= 90°, that is,q14 = 15 andqis = inspired by the 8— S transition in benzene. The transition
—014, and find a new couple of points with high propensity with takes place through nonradiative internal conversion and a large
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