Structures, Rotational Barriers, Thermochemical Properties, and Additivity Groups for 2-Propanol, 2-Chloro-2-propanol and the Corresponding Alkoxy and Hydroxyalkyl Radicals

Hongyan Sun and Joseph W. Bozzelli*

Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102

Received: December 7, 2001; In Final Form: February 5, 2002

Structures, internal rotational barriers, and thermochemical properties of 2-propanol, 2-chloro-2-propanol, isopropoxy radical, 1-chloro-1-methylethoxy, 2-hydroxypropyl, and 2-chloro-2-hydroxypropyl were computed by ab initio and density functional calculations. Molecular structures and vibration frequencies were determined at the B3LYP/6-31G(d,p) density functional level, with single-point calculations for the energy at the B3LYP/ 6-311+G(3df,2p) and CBSQ//B3LYP/6-31G(d,p) levels. The S_{298}° and $C_p(T)$'s ($0 \le T \le 5000$ K) from vibrational, translational, and external rotational contributions were calculated using statistical mechanics based on the vibrational frequencies and structures obtained from the density functional study. Potential barriers for the internal rotations were calculated at the B3LYP/6-31G(d,p) level, and hindered rotational contributions to S_{298}^{o} and $C_p(T)$'s were calculated by using direct integration over energy levels of the internal rotational potentials. The $\Delta H_{f,298}^{\circ}$ values for the above species were calculated using several isodesmic reactions for each species, and bond energies were also determined. The C/C2/Cl/O group value was derived for use in Benson-type group additivity. Hydrogen bond increment groups for C₂CO[•], C₂CClO[•], C[•]C(C)OH, and C[•]C-(C)ClOH were also developed. The recommended ΔH_{f298}° values for (CH₃)₂CHOH, (CH₃)₂CHO[•], C[•]H₂- $(CH_3)CHOH, (CH_3)_2CCIOH, (CH_3)_2CCIO^{\bullet}, and C^{\bullet}H_2CCI(OH)CH_3 are -69.19 \pm 2.2, -11.85 \pm 1.9, -14.95$ $\pm 2.8, -79.83 \pm 2.1, -25.88 \pm 2.0, \text{ and } -29.00 \pm 2.8 \text{ kcal/mol, respectively. The radical (CH₃)₂CClO• has$ low stability with a short atmospheric lifetime. Bond energies for the methyl hydrogens and the hydroxyl hydrogen are 102 and 105 kcal/mol in 2-propanol and 103 and 106 kcal/mol in 2-chloro-2-propanol. The recommended HBI values for oxy(chloro)alkanes are presented for use in group additivity.

Introduction

The thermochemistry of chloromethanols, chloroethanols, and the corresponding (chloro)alkoxy and hydroxy(chloro)alkyl radicals derived from H atom loss has been reported in our previous studies,^{1,2} in which group additively values were derived for primary carbons with oxygen, carbon, chlorine, and hydrogen substituents. This study completes the thermochemistry for this series of oxygen and chlorine substituents on alkyl carbons, specifically secondary carbon groups with oxygen and chlorine bonds. These thermochemical parameters are important in evaluating thermochemical stability of reaction paths in the atmosphere and in combustion environments. These values also provide a base for estimation of equilibria and energies for simple dissociation reactions.

There are, to our knowledge, no estimates of thermochemical properties of secondary chlorohydroxy or chloroether alkanes. Wallington et al.^{3,4} studied the stability and infrared spectra of mono-, di-, and trichloromethanol, and reported that the chlorinated methanols decayed with first-order kinetics to HCl and the corresponding carbonyl compound via a heterogeneous mechanism. They also found the rate constants for the decompositions of mono-, di-, and trichloromethanol to be $(3.4 \pm 0.2) \times 10^{-3}$, $(5.5 \pm 0.3) \times 10^{-3}$, and $(9.9 \pm 0.2) \times 10^{-3}$ s⁻¹, respectively. The lower limit for the homogeneous gas-phase lifetime of mono- and dichloromethanol was found to be 660 and 110 s, and the rate of homogeneous decomposition of

trichloromethanol was slower having at least 31 kcal/mol of activation energy with an estimated lifetime on the order of days.

There is some data in the literature on chloroalkoxy radicals. Wu and Carr^{5,6} reported that the rate constant of the unimolecular three-center elimination of HCl from CH₂ClO[•] at 10 Torr can be expressed by an Arrhenius form: $k(T) = (7.7 \pm 2.3)$ $e^{-(4803 \pm 772)/T} \times 10^{9} s^{-1}$, with the activation energy ca. 9.5 kcal/ mol, and a lifetime for CH₂ClO[•] of less than 1 μ s. Wallington⁷ and Kaiser⁸ reported the evidence for the three-center elimination of HCl from CH₃CHClO• by experiment. Hou et al.⁹ studied the decomposition and isomerization of CH₃CHClO• radical by ab initio G2(MP2, SVP) calculation and provided theoretical support for the above experimental result. They reported that the three-center elimination of HCl is the most favorable path for the decomposition of chloroethoxy, and that the critical transition state for this channel lies 7.4 kcal/mol above CH3-CHClO[•]. The Cl elimination path is slightly higher, 8.2 kcal/ mol. Their estimated total rate of decomposition of chloroethoxy under typical tropospheric conditions is 3×10^5 s⁻¹, and the lifetime of CH₃CHClO[•] is $3.3 \ \mu s$.

Schneider et al.¹⁰ investigated the bond strength trends in the series of halogenated methanols using ab initio molecular orbital theory and found that the O–H bond strength is increased with the degree of halogenation in a manner that coincides with the effectiveness of negative hyperconjugation between the methyl and hydroxyl groups. These phenomena were also observed by Sun and Bozzelli.^{1,2} Khatoon et al.¹¹ studied the reactions of 2-C₃H₇OD with Cl atoms in a discharge flow reactor and a Laval

^{*} To whom correspondence should be addressed. E-mail: bozzelli@ njit.edu.

nozzle reactor at room temperature and at pressures of a few millibar and reported that abstraction from the alkyl structure was the thermodynamically favored route, forming mainly secondary radicals. In our previous study on ethanol and chloroethanols, we determined that the carbon-hydrogen bond energy on the β -carbon of ethanol and chloroethanols is increased relative to normal primary bonds. This suggests that the bond energies on the methyl carbons of 2-propanol are higher than normal primary C—H (101.6 kcal/mol) bonds and thus may be comparable in strength to the hydroxyl O—H bonds (104 kcal/mol), this is in agreement with Khatoon et al.'s results.

This study determines the thermochemical properties and internal rotation barriers in 2-propanol, 2-chloro-2-propanol, and the corresponding (chloro)alkoxy and hydroxy(chloro)alkyl radicals derived from H atom loss using density functional and ab initio calculation methods. The stabilities of the (chloro)-alkyl and (chloro)alkoxy radicals are also discussed. The group value for the secondary carbon, a chloro-oxy-dialkyl central group, was derived. This is the final central atom group in our calculations for the series of oxy-chlorocarbon groups, and there is no tertiary carbon in this series. Several hydrogen bond increment (HBI)¹² group values for the corresponding radicals are also derived, and evaluation of mono-, di-, tricarbon (chloro)-alcohol HBI values for use in group additivity.¹³

Calculation Methods

All of the density functional and ab initio calculations were performed using the Gaussian 94¹⁴ and Gaussian 98¹⁵ program suites. The geometry optimization, harmonic vibration frequencies, and zero-point vibrational energies (ZPVE) were computed at the B3LYP/6-31G(d,p) level. The optimized geometry parameters were used to obtain total electronic energies at the B3LYP/6-31G(d,p), B3LYP/6-311+G(3df,2p), and CBSQ//B3LYP/6-31G(d,p) (abbreviated as CBSQ//B3**) single-point levels of calculation.^{16–18} Total energies were corrected by ZPVEs, which were scaled by 0.9806 as recommended by Scott et al.¹⁹ Thermal correction was taken into account using the B3LYP structure and vibrations. Restricted and open-shell calculations were used for the stable molecules and radicals, respectively.

The selection of a calculation method was fully discussed in the previous studies.^{1,20} Here, we only give a brief summary: B3LYP/6-31G(d,p) includes polarized functions on both the hydrogen and heavy atoms and was reported to yield accurate geometries and reasonable energies when used with isodesmic or homodesmic working reactions.^{21,22} Byrd et al.²² and Curtiss et al.²³ reported that B3LYP/6-31G(d,p) provides accurate structures for compounds with elements up to atomic number 10. B3LYP/6-311+G(3df,2p) has a larger basis set with diffuse functions allowing more overlap of the Cl electrons. CBSQ// B3LYP/6-31G(d,p) employs an improved geometry and ZPE at the B3LYP/6-31G(d,p) level with a correction for spin contamination for the open-shell systems.

Contributions of vibration, translation, and external rotation to entropies and heat capacities were calculated from scaled vibrational frequencies and moments of inertia of the optimized structures. Contributions from hindered rotors to S_{298}° and $C_p(T)$'s were determined using direct integration over energy levels of the intramolecular rotational potential curves, which can be represented by a truncated Fourier series expansion.²⁴ The number of optical isomers and spin degeneracy of unpaired electrons were also incorporated for calculation of S_{298}° .

 TABLE 1: Geometrical Parameters Optimized at the

 B3LYP/6-31G(d,p) Level

Molecule		Bond Length*		^a Bond Angle ⁶ Dihedral Angle ⁶				Frequencies ^d Moments of Inertia [®]		
	-	_		11		iou i	Huon	ienta or	mercia	
711 511				R	-H ₃) ₂ CH	OH				
	r21	1.5300	a321	112.63	d4213	234.60) 236	1090	1512	
10 1210	r32	1.5300	a421	111.11	d5123	299.70) 274	1151	1522	
	r42	1.4296	a512	111.42	d6123	179.02	309	1194	3029	
- CHI	r51	1.0952	a612	110.34	d7123	59.34	357	1319	3033	
	r61	1.0935	a712	110.66	d8213	120.63	427	1368	3053	
100	r71	1.0978	a821	108.76	d9321	60.29	472	1412	3096	
	r82	1.0969	a932	111.42	d10321	300.65	819	1422	3107	
and and	193	1.0952	a1032	110.66	d11321	180.97	924	1430	3128	
	r103	1.0978	a1132	110.34	d12421	63.13	941	1498	3130	
	r113	1.0935	a1242	107.19			975	1499	3790	
	r124	0.9675								
				_	(CH-)-C	HO.	12.91	226.57	381.05	
	r21	1.5381	a321	113.77	d4213	230.45	203	1051	1509	
	r32	1.5381	a421	112.55	d5123	302.02	244	1089	1518	
	r42	1.3749	a512	111.15	d6123	181.06	355	1169	2851	
CIZC.	r51	1.0944	a612	110.23	d7123	61.70	392	1204	3046	
	r61	1.0927	a712	109.94	d8213	119.13	450	1263	3052	
	r71	1.0948	a821	107.62	d9321	57.98	809	1394	3120	
	r82	1.1151	a932	111.15	d10321	298.30	895	1419	3126	
	r93	1.0944	a1032	109.94	d11321	178.94	916	1494	3139	
	r103	1.0948	a1132	110.23			988	1499	3141	
Ten M	r113	1.0928					106.33	225.22	222.01	
							196.32	225.23	3/3.91	
	-01	1.4022		C	H2CH(O	H)CH ₃	172	0/2	1602	
14.02	121	1.4923	a521	112.96	d4213	234.09	130	962	1507	
	132	1.5529	8421	121.71	d6123	167.24	220	1034	2079	
20.0	r42	1.4555	a512	121.71	d0123	107.34	339	1145	2978	
	101	1.0850	a012	119.25	0/213	120.60	303	1108	3039	
20	101	1.0851	a/21	109.51	40221	00.20	423	1258	3108	
GH 101	1/2	1.1026	a832	111.07	09321	300.40	445	1340	2120	
	183	1.0955	1022	110.09	411421	180.39	000	1408	2267	
10 30	193	1.0903	a1032	106.55	011421	29574	010	1415	3207	
T Pro	r114	0.9678	61146	100.35			310	1405	2100	
3 9 9							200.67	216.75	369.84	
				(0	HARCO	OH				
all and	121	1 5188	a321	114.74	d4213	242 73	744	946	1493	
10.00	132	1.5243	3421	107.22	45213	125.94	278	1014	1509	
98	r42	1 8995	3521	107 59	d6521	182 02	203	1025	1514	
	152	1 3843	3652	108 68	47123	297 86	305	1131	3052	
	165	0.9678	a712	108.68	d8123	178.93	362	1161	3064	
C11	:71	1.0950	a812	109.98	40123	57.89	400	1276	3125	
1010	-81	1.0911	-9012	110 86	d10321	62.23	440	1284	2143	
Carlos Lines	+01	1.0000	a1032	108.64	d11321	302.12	475	1474	3154	
	+103	1.0953	a1132	111.27	412321	181 60	552	1436	3171	
- / -	1113	1.0915	a1232	110.83	412521	101.07	829	1491	3798	
1200	r123	1.0940		110.05						
		1.169.16					376.92	593.8	7 617.63	
		1 5 100		((CH ₃) ₂ C(210*	224		1.100	
110	121	1.5489	4321	106.22	d6201	122.30	220	911	1489	
ZHN ZHN	132	1.5481	8421	100.52	17102	180,04	202	959	1490	
10	142	1.9094	4521	109.59	d/123	170.20	270	1001	1312	
	152	1.5178	a032	109.89	d0123	50 54	298	11009	2022	
Bit	10.5	1.0904	a/12	108.75	d10221	59.34 60.44	333	1201	3150	
64	1/1	1.0930	a012	109.92	d11221	200.47	200	1201	3159	
	101	1.00004	a912	108.83	u11521	500.47	540	1301	3102	
401	107	1.0909	a1122	108.00			914	1417	3170	
	r113	1.0909	41132	243.91			015	1477	3178	
							358.27	582.35	624.68	
				C.I	I2CCI(O	H)CH ₃				
ZH	r21	0.9680	a312	108.83	d4312	65.07	168	673	1474	
1.111.14	r31	1.3674	a431	106.26	d5312	175.58	257	823	1500	
	r43	2.0598	a531	111.24	d6531	168.51	266	962	1513	
403	r53	1.4455	a653	119.88	d7531	336.79	277	1025	3053	
70	r65	1.0819	a753	119.10	d8312	312.39	350	1062	3129	
	r75	1.0826	a831	114.88	d9831	55.75	398	1177	3165	
50	r83	1.5182	a983	110.78	d10831	176.09	425	1316	3191	
	r98	1.0930	a1083	111.07	d11831	296.16	474	1406	3308	
1 90.0	r108	1.0905	a1183	108.46			478	1430	3801	
64	r118	1.0958						-		
							366.93	606.51	628.91	

^{*a*} Bond length in Å. ^{*b*} Bond angle in deg. ^{*c*} Dihedral angle in deg. ^{*d*} Frequencies in cm⁻¹. ^{*e*} Moments of inertia in amu bohr².

The $\Delta H_{f,298}^{\circ}$ were calculated using total energies and isodesmic reactions with group balance if possible. Isodesmic reactions are hypothetical reactions in which the number of electron pairs and the bonds of the same type are conserved on both sides of the equation so that only the relationship among the bonds is altered. The calculated energy of the reactions will reflect the deviation from additivity of bond energy that describes the altered relationship among the bonds. Isodesmic working reactions provide higher accuracy even at lower calculation levels because the nature of bonds is conserved and the inherent errors associated with the computation tend to appear in both reactants and products and are partially cancelled.

Figure 1. Potential barriers for internal rotation about the C–C bond of $(CH_3)_2CHOH$, $(CH_3)_2CCHO+$, $(CH_3)_2CHO+$, $(CH_3)_2CCIO+$, $C+H_2CH(OH)-CH_3$, and $C+H_2CCI(OH)CH_3$. Points are calculated values at the B3LYP/6-31G(d,p) level of theory. Lines are Fourier expansion with the coefficients listed in the Supporting Information (Table S2).

Accuracy near 0.5 kcal/mol by this enthalpy estimation method was illustrated in several previous studies.^{1,2}

Results and Discussion

Geometries. The optimized geometric parameters along with vibrational frequencies and moments of inertia for six target species are presented in Table 1. The lowest energy conformations of (CH₃)₂CClOH, (CH₃)₂CClO[•], and C[•]H₂CCl(OH)CH₃ exhibit the anomeric effect, that is, a delocalization of the lone pair electron on the oxygen with the antibonding σ^* orbital of the C-Cl bond. Due to the anomeric effect, the C-O bond length decreases significantly with chlorine substitution (1.4296 Å in (CH₃)₂CHOH, 1.3843 Å in (CH₃)₂CClOH; 1.3749 Å in (CH₃)₂CHO•, 1.3178 Å in (CH₃)₂CClO•; 1.4354 Å in C•H₂CH-(OH)CH₃, 1.3674 Å in C•H₂CCl(OH)CH₃). The anomeric effect can also be seen in the C-Cl bond length, which is longer than a normal C-Cl bond (1.8995 Å in (CH₃)₂CClOH, 1.9094 Å in (CH₃)₂CClO[•], 2.0598 Å in C[•]H₂CCl(OH)CH₃) as predicted by the DFT calculations. The C-Cl bond in C•H₂CCl(OH)CH₃ is 0.1 Å longer than in the other two chloro species due to hyperconjugation between the -CH2• center and the $\sigma^*(C-Cl)$ molecular orbital in its lowest energy conformer. Because $p-\pi$ orbital overlap implies transfer of electron density, the C-Cl bond becomes weaker and longer, while the C-C bond gets stronger and shorter. The C-C bond length in $C^{\bullet}H_2CCl(OH)CH_3$ is 1.44 Å, which is shorter than the normal 1.53 Å. The MP2(full)/6-31G(d,p) geometry optimization predicts tight structures for these species and gives the C-Cl bond length 1.8299, 1.8294, and 1.8640 Å, respectively; these data also suggest that an anomeric effect and hyperconjugation exist in these species.

The DFT calculations predict a nonplanar structure for the $-C^{\bullet}H_2$ group in 2-hydroxypropyl and 2-chloro-2-hydroxypropyl radicals, in which the inversion frequencies for the methylene group are 566.0 and 672.8 cm⁻¹, respectively. The density functional optimized geometry for (CH₃)₂CHOH gives the \angle H_c-C-O-H_o dihedral angle 180.0°, indicating that there is a mirror plane between the two methyl groups, that is, *C_s* symmetry in (CH₃)₂CHOH. The density functional structure also

predicts C_s symmetry in (CH₃)₂CHO[•]. The symmetry number is assigned as 18 for (CH₃)₂CHOH and (CH₃)₂CHO[•] on the basis of these data.

Rotational Barriers. Potential energy as a function of torsion angle was determined by scanning the dihedral angles from 0° to 360° at 15° increments and allowing the remaining molecular structural parameters to be optimized at the B3LYP/6-31G(d,p) level. C•H₂CCl(OH)CH₃ is an exception; here, the C–Cl bond length was constrained when scanning the H_c–C–C–O and C–C–O–H dihedral angles in C•H₂CCl(OH)CH₃. This is a result of the weak C–Cl bond in this radical; it requires only 18 kcal/mol for β -scission to form 2-hydroxypropene + Cl atom. The barrier of a given rotation was then calculated as the difference between the highest points on the potential energy surface and the corresponding most stable conformer. The geometries at the points of minima and maxima were fully optimized when possible.

The calculated rotational barriers about the $CH_3-C_{sp^3}$ bond of the six target species are shown in Figure 1. All of the curves for $C_{sp^3}-C_{sp^3}$ torsion potential are symmetric and show a threefold symmetry with barriers between 2.72 and 4.26 kcal/ mol. The barriers for the $CH_3-C_{sp^3}$ torsion of chloro-substituted species are higher than those of nonchlorinated species, and the barriers for stable parent are higher than those of the corresponding radicals probably due to reduced steric effect by the radical carbon groups. Two $C_{sp^3}-C_{sp^3}$ rotational curves for ($CH_3)_2CCIOH$ are shown in Figure 1, and one is 0.55 kcal/mol higher than the other because the hydroxyl H atom orients toward one methyl group resulting in a steric interaction.

Figure 2 shows the twofold rotational barriers about the CH₂– C_{sp^3} bond for C*H₂CCl(OH)CH₃ and C*H₂CH(OH)CH₃. The H–OH eclipsed conformer of C*H₂CCl(OH)CH₃ has the lowest energy because of the interaction between the H atom in the –CH₂ group and the O atom (interatomic distance is 2.528 Å). The barrier height for C*H₂CCl(OH)CH₃ is 3.6 kcal/mol higher than that of C*H₂CH(OH)CH₃, probably still because of the electrostatic interaction between the Cl atom and the H atom on the –C*H₂ group (the interatomic distance is 2.83 Å) on the barrier top.

Figure 2. Potential barriers for internal rotation about the C–C bond of C⁺H₂CH(OH)CH₃ and C⁺H₂CCl(OH)CH₃. Points are calculated values at the B3LYP/6-31G(d,p) level of theory. Lines are Fourier expansion with the coefficients listed in the Supporting Information (Table S2).

Figure 3. Potential barriers for internal rotation about the C–O bond of $(CH_3)_2CCIOH$, $(CH_3)_2CCIOH$, $C^+H_2CH(OH)CH_3$, and $C^+H_2CCI(OH)-CH_3$. Points are calculated values at the B3LYP/6-31G(d,p) level of theory. Lines are Fourier expansion with the coefficients listed in the Supporting Information (Table S2).

The calculated rotational barriers about the C–O bond of $(CH_3)_2CCIOH$, C•H₂CCl(OH)CH₃, $(CH_3)_2CHOH$, and C•H₂CH-(OH)CH₃ are shown in Figure 3. There are three conformers in $(CH_3)_2CHOH$; two are the H₀–H_α gauche conformers (subscript "o" stands for oxygen atom), and one is the H₀–H_α anti conformer. The energy for the H₀-H_α anti conformer is only 0.08 kcal/mol lower than that of the H₀-H_α gauche conformer, so the three conformers should be equally populated at room temperature. For C•H₂CH(OH)CH₃, there are two H₀–CH₂ gauche conformer. The energy for the H₀–CH₂ anti conformer. The energy for the H₀–CH₂ gauche conformer is 1.16 kcal/mol higher than that of H₀–CH₂ gauche conformer. For C•H₂CCl(OH)CH₃, the

TABLE 2: $\Delta H^{\circ}_{\rm f,298}$ for Standard Species Used in the Reactions

	$\Delta H_{\rm f298}^{\rm o}$		$\Delta H_{\rm f298}^{\rm o}$
species	(kcal/mol)	species	(kcal/mol)
CH ₄	-17.89 ± 0.07	CH ₃ O•	4.10 ± 1.0
	$(Cox)^{25}$	-	(Tsang) ²⁶
C_2H_6	-20.24 ± 0.12	C ₂ H ₅ O•	-3.90 ± 1.27
	(Cox) ²⁵		(Sun) ¹
C_3H_8	-25.02 ± 0.12	C•H ₂ OH	-3.97 ± 0.22
	(Pedley) ²⁷		(Sun) ¹
CH ₃ Cl	-19.57 ± 0.12	CH ₃ C•HOH	-13.34 ± 0.84
	(Pedley) ²⁷		(Sun) ¹
C ₂ H ₅ Cl	-26.79 ± 0.26	C•H ₂ CH ₂ OH	-5.70 ± 0.85
	(Pedley) ²⁷		$(Sun)^2$
(CH ₃) ₂ CHCl	-35.00 ± 0.56	$(CH_3)_2C^{\bullet}OH$	-25.6 ± 3
	(Stull) ²⁸		(Holmes) ²⁹
CH ₃ OH	-48.07 ± 0.05	Cl•	28.92 ± 2
	$(Cox)^{25}$		(Stull) ⁵⁰
C_2H_5OH	-56.21 ± 0.10	H•	52.10 ± 0.001
a a.a	(Pedley) ²⁷		(Stull) ³⁰
CH ₂ CIOH	-58.07 ± 0.69	OH•	8.89 ± 0.09
GU .	(Sun) ⁴		(Ruscic) ⁵¹
CH ₃ •	34.82 ± 0.2	$CH_2 = CHCH_3$	4.78 ± 0.19 (Pedley) ²⁷
с ц.	(300)		-30.50 ± 0.55
$C_2 \Pi_5$	$(Marshall)^{32}$	syn-cn ₂ –chon	-30.39 ± 0.33 (Pedlev) ²⁷
CH ₂ Cl•	27.7 ± 2.0	$CH_2 = C(OH)CH_3$	-39.91
-	(Holmes)33	2 () 3	(Turecek)34
CH ₃ CHCl•	19.3 ± 2.0	CH ₃ CHO	-39.70 ± 0.12
	(Holmes)33		(Pedley) ²⁷
(CH ₃) ₂ C•H	22.0 ± 0.5	CH ₃ COCH ₃	-52.23 ± 0.14
	(Tsang) ²⁶		(Wiberg)35
$(CH_3)_2C^{\bullet}Cl$	7.15 ± 0.72	CH ₃ C(O)Cl	-58.03 ± 0.19
	(Seetula) ³⁶		(Pedley) ²⁷

 H_0-CH_2 gauche conformer is 0.29 kcal/mol higher than that of the H_0-CH_2 anti conformer. The maxima on the potential curves of $(CH_3)_2CCIOH$ and $C^{\bullet}H_2CCl(OH)CH_3$ correspond to the structures in which the hydroxyl H atom is anti to the Cl atom on the α -carbon due to anomeric effects. This phenomenon is similar to those in the chloromethanol and chloroethanol observed in our previous study.^{1,2}

Enthalpy of Formation. The total electronic energies at 0 K determined at the B3LYP/6-31G(d,p), B3LYP/6-311+G(3df,-2p), and CBSQ//B3LYP/6-31G(d,p) levels, scaled ZPVEs, and thermal corrections to 298.15 K for six target species are listed in the Supporting Information (Table S1). The spin expectation values, $\langle S^2 \rangle$, range from 0.760 to 0.786 for the target radicals and suggest no significant error for pure doublet radicals due to spin contamination.

The $\Delta H_{f,298}^{\circ}$ values are estimated using total energies and isodesmic reactions. The accuracy of the enthalpies of formation obtained theoretically is controlled by several factors: the level of sophistication applied to calculate the electronic energy, the reliability of the $\Delta H_{f,298}^{\circ}$ of the reference compounds, the uncertainty of the ZPVEs and the thermal corrections, and the choice of the isodesmic reactions. The $\Delta H_{f,298}^{o}$ and their uncertainties for standard species used in the reactions are listed in Table 2. The uncertainty of ZPVEs and thermal correction is small relative to other errors. Scott and Radom¹⁹ report rms errors of ± 0.1 kcal/mol for ZPVE after scaling by 0.9806 for B3LYP/6-31G(d) and rms errors of ± 0.01 kcal/mol for thermal correction from 0 to 298 K in DFT. We assume that the uncertainty from ZPVEs and the thermal correction in our calculation has the same error ranges and assign the cumulative ZPVEs and the thermal energy uncertainties to be 0.44 kcal/ mol in an isodesmic reaction. The reaction enthalpies and $\Delta H_{f,298}^{\circ}$ values for six target species obtained from eight isodesmic reactions are tabulated in Table 3. The results for

TABLE 3: Reaction Enthalpies at 298 K and Calculated Enthalpies of Formation^a

	B3	LYP	B3	LYP	CBSQ//B3LYP	
	/6-31	G(d,p)	/6-311+	G(3df,2p)	/6-31	G(d,p)
reaction series	$\Delta H_{\rm rxn}^{\circ}$	$\Delta H^{\circ}_{ m f,298}$	$\Delta H^{\circ}_{ m rxn}$	$\Delta H^{\circ}_{\mathrm{f},298}$	$\Delta H_{\rm rxn}^{\circ}$	$\Delta H^{\circ}_{\mathrm{f},298}$
1.1 (CH ₃) ₂ CHOH + CH ₄ \rightarrow CH ₃ OH + C ₃ H ₈	9.26	-64.47	8.33	-63.54	10.12	-65.33
$1.2 (CH_3)_2 CHOH + CH_4 \rightarrow C_2 H_5 OH + C_2 H_6$	5.40	-63.87	5.07	-63.54	7.16	-65.63
1.3 $(CH_3)_2CHOH + C_2H_6 \rightarrow C_2H_5OH + C_3H_8$	3.79	-64.69	3.35	-64.25	4.40	-65.30
1.4 (CH ₃) ₂ CHOH + C ₂ H ₆ \rightarrow CH ₃ OH + <i>i</i> -C ₄ H ₁₀	6.86	-66.77	5.63	-65.54	5.06	-64.97
1.5 $(CH_3)_2CHOH + CH_3Cl \rightarrow CH_3OH + CH_3CHClCH_3$	2.76	-66.27	1.62	-65.13	1.08	-64.59
1.6 $(CH_3)_2CHOH + CH_3Cl \rightarrow CH_2ClOH + C_3H_8$	0.06	-63.58	0.04	-63.56	1.86	-65.38
1.7 (CH ₃) ₂ CHOH + CH ₃ Cl \rightarrow CH ₃ CHClOH + C ₂ H ₆	-5.44	-63.86	-5.15	-64.15	-4.05	-65.25
1.8 (CH ₃) ₂ CHOH + C ₂ H ₅ Cl \rightarrow CH ₃ CHClOH + C ₃ H ₈	-3.07	-63.79	-2.75	-64.11	-1.82	-65.04
average value and deviation ^b					-65.19	0 ± 0.31
2.1 $(CH_3)_2CHO^{\bullet} + CH_4 \rightarrow C_3H_8 + CH_3O^{\bullet}$	8.28	-11.31	7.65	-10.68	8.86	-11.89
2.2 (CH ₃) ₂ CHO• + C ₂ H ₆ \rightarrow C ₃ H ₈ + C ₂ H ₅ O•	2.61	-11.29	2.26	-10.94	3.20	-11.88
2.3 $(CH_3)_2CHO^{\bullet} + CH_3OH \rightarrow (CH_3)_2CHOH + CH_3O^{\bullet}$	-0.99	-12.02	-0.68	-12.33	-1.26	-11.75
2.4 (CH ₃) ₂ CHO• + C ₂ H ₅ OH \rightarrow (CH ₃) ₂ CHOH + C ₂ H ₅ O•	-1.18	-11.79	-1.09	-11.88	-1.20	-11.77
2.5 (CH ₃) ₂ CHO• + CH ₃ OH \rightarrow CH ₃ CH ₂ CH ₂ OH + CH ₃ O•	2.85	-11.64	2.90	-11.69	3.13	-11.92
2.6 (CH ₃) ₂ CHO• + C ₂ H ₅ OH \rightarrow CH ₃ CH ₂ CH ₂ OH + C ₂ H ₅ O•	2.66	-11.41	2.49	-11.24	3.19	-11.94
2.7 $(CH_3)_2CHO^{\bullet} + CH_2CIOH \rightarrow (CH_3)_2CHOH + CH_2CIO^{\bullet}$	-0.69	-11.56	-1.07	-11.18	-0.50	-11.75
2.8 $(CH_3)_2CHO^{\bullet} + CH_3CHClOH \rightarrow (CH_3)_2CHOH + CH_3CHClO^{\bullet}$	0.20	-11.55	0.06	-11.41	0.58	-11.93
average value and deviation ^b					-11.85	5 ± 0.08
3.1 $C^{\bullet}H_2CH(OH)CH_3 + CH_4 \rightarrow (CH_3)_2CHOH + CH_3^{\bullet}$	4.04	-16.52	3.83	-16.31	2.55	-15.03
3.2 C•H ₂ CH(OH)CH ₃ + C ₂ H ₆ \rightarrow (CH ₃) ₂ CHOH + C ₂ H ₅ •	-0.72	-15.43	-0.87	-15.28	-1.11	-15.04
3.3 $C^{\bullet}H_2CH(OH)CH_3 + CH_3OH \rightarrow (CH_3)_2CHOH + C^{\bullet}H_2OH$	-6.54	-14.54	-5.83	-15.25	-6.01	-15.07
3.4 C•H ₂ CH(OH)CH ₃ + C ₂ H ₅ OH \rightarrow (CH ₃) ₂ CHOH + CH ₃ C•HOH	-8.55	-13.86	-7.86	-14.55	-7.33	-15.08
3.5 C•H ₂ CH(OH)CH ₃ + C ₂ H ₅ OH \rightarrow (CH ₃) ₂ CHOH + C•H ₂ CH ₂ OH	0.95	-15.72	0.37	-15.14	0.27	-15.04
3.6 $C^{\bullet}H_2CH(OH)CH_3 + CH_2CIOH \rightarrow (CH_3)_2CHOH + C^{\bullet}HCIOH$	-7.32	-14.26	-6.41	-15.17	-6.59	-14.99
3.7 $C^{+}H_2CH(OH)CH_3 + CH_3CHClOH \rightarrow (CH_3)_2CHOH + C^{+}H_2CHClOH$	-1.13	-14.07	-0.63	-13.44	0.87	-14.94
3.8 C•H ₂ CH(OH)CH ₃ + CH ₃ CHClOH \rightarrow (CH ₃) ₂ CHOH + CH ₃ C•ClOH	-8.78	-13.67	-8.08	-14.37	-7.43	-15.02
average value and deviation ^b					-15.03	3 ± 0.05
$4.1 (CH_3)_2 CClOH + CH_4 \rightarrow (CH_3)_2 CHOH + CH_3 Cl$	11.21	-78.08	10.36	-77.23	13.03	-79.90
$4.2 (CH_3)_2 CCIOH + CH_4 \rightarrow CH_2 CIOH + C_3 H_8$	11.27	-76.47	10.40	-75.60	14.88	-80.08
$4.3 (CH_3)_2 CCIOH + CH_4 \rightarrow CH_3 CHCIOH + C_2H_6$	5.76	-76.74	5.21	-76.19	8.97	-79.95
4.4 (CH ₃) ₂ CClOH + C ₂ H ₆ \rightarrow (CH ₃) ₂ CHOH + CH ₃ CH ₂ Cl	7.22	-78.96	6.24	-77.98	8.02	-79.76
4.5 $(CH_3)_2CCIOH + C_2H_6 \rightarrow CH_3CHCIOH + C_3H_8$	4.15	-77.56	3.49	-76.90	6.20	-79.61
4.6 (CH ₃) ₂ CClOH + CH ₃ OH \rightarrow (CH ₃) ₂ CHOH + CH ₂ ClOH	2.00	-77.18	2.07	-77.25	4.76	-79.94
4.7 (CH ₃) ₂ CCIOH + CH ₃ OH \rightarrow CH ₃ CHCIOH + C ₂ H ₅ OH	0.29	-76.96	0.23	-76.90	3.25	-79.92
4.8 (CH ₃) ₂ CCIOH + CH ₂ CIOH \rightarrow 2CH ₃ CHCIOH	-1.35	-77.84	-1.70	-77.49	0.29	-79.48
average value and deviation" $5.1 \text{ (CL}) \text{ CL}(0) + \text{ CL}(0)$	5 5 1	22 68	5 1 1	22.25	- /9.83	0 ± 0.20
5.1 $(CH_3)_2CCIO^{\circ} + CH_4 \rightarrow CH_3CHCIO^{\circ} + C_2H_6$ 5.2 $(CH_3)_2CCIO^{\circ} + CH_3 \rightarrow CH_3CHCIO^{\circ} + C_2H_6$	5.54 10.16	-22.08	5.11	-22.23	8.90 12.79	-20.10
5.2 (CH ₃) ₂ CClO $+$ CH ₄ \rightarrow CH ₂ ClO $+$ C ₃ H ₈ 5.2 (CH ₃) CClO [•] $+$ C H \rightarrow CH CHClO [•] $+$ C H	2.02	-22.42	9.10	-21.42	6 10	-20.04
5.5 (CH ₃) ₂ CCIO + C ₂ H ₆ \rightarrow CH ₃ CHCIO + C ₃ H ₈ 5.4 (CH) CCIO• + C H \rightarrow CH CHCIO• + iso C H	5.92 3.14	-23.49 -24.08	5.59 2.42	-22.90	0.19	-25.70 -25.74
5.4 (CII _{3/2} CCIO + C ₃ II ₈ · CII ₃ CIICIO + ISO-C ₄ II ₁₀ 5.5 (CII) CCIO + CII OII \rightarrow CII OI + (CII) CCIOII	_1.14	-26.24	-0.84	-26.81	_1.85	-25.80
$5.5 (CH_3)_2 CCIO + CH_3OH + CH_3O + (CH_3)_2 CCIOH$ $5.6 (CH_3)_2 CCIO + C_2 H_2OH \rightarrow C_2 H_2O + (CH_3)_2 CCIOH$	-1.41	-26.00	-1.25	-26.36	-1.70	-25.80
$5.0 (CH_3)_2 CCIO + C_2H_5OH + C_2H_5O + (CH_3)_2 CCIOH$ $5.7 (CH_3)_2 CCIO + CH_2CIOH \rightarrow CH_2CIO + (CH_3)_2 CCIOH$	-1.01	-25.00	-1.23	-25.50	-1.19	-25.81 -25.70
$5.8 (CH_3)_2 CCIO + CH_2 CIOH \rightarrow CH_2 CIO + (CH_3)_2 CCIOH$	-0.23	-25.76	-0.10	-25.89	-0.02	-25.07
average value and deviation ^b	0.23	25.70	0.10	25.69	-25.88	25.97 3 ± 0.14
$6 \downarrow C^{+}H_{2}CCl(OH)CH_{2} + CH_{4} \rightarrow (CH_{2})_{2}CClOH + CH_{2}^{+}$	5 47	-32 59	4 74	-31.86	1 99	-29.10
$6.2 C^{\bullet}H_{2}CCl(OH)CH_{3} + C_{2}H_{4} \rightarrow (CH_{3})_{2}CClOH + C_{4}H_{4}^{\bullet}$	0.71	-31.50	4.74 0.04	-30.83	-1.67	-29.10
$6.2 CH_2CCI(OH)CH_3 + CH_2CI \rightarrow (CH_2)_2CCIOH + CH_2CI^{\bullet}$	-0.57	-31.96	-1.39	-31.13	-340	-29.13
$6.5 C H_2 CCl(OH)CH_3 + CH_3OH \rightarrow (CH_3)_2 CClOH + CH_2OH$	-5.11	-30.61	-4.92	-30.80	-6.58	-29.14
$6.5 C^{\circ}H_{2}CCl(OH)CH_{3} + C_{2}H_{5}OH \rightarrow (CH_{3})_{2}CClOH + CH_{2}C^{\circ}HOH$	-7.12	-29.93	-6.95	-30.10	-7.90	-29.15
$6.6 \text{ C}^{\text{H}_2\text{CCl}(\text{OH})\text{CH}_3 + \text{C}_2\text{H}_5\text{OH} \rightarrow (\text{CH}_3)_2\text{CClOH} + \text{C}^{\text{H}_3\text{C}}\text{H}_3\text{OH}$	2.38	-31.79	1.28	-30.68	-0.30	-29.11
$6.7 \text{ C}^{\circ}\text{H}_2\text{CCl}(\text{OH})\text{CH}_3 + \text{CH}_2\text{ClOH} \rightarrow (\text{CH}_3)_2\text{CClOH} + \text{C}^{\circ}\text{HClOH}$	-5.89	-30.32	-5.50	-30.72	-7.16	-29.06
6.8 C'H ₂ CCl(OH)CH ₃ + CH ₃ CHClOH \rightarrow (CH ₃) ₂ CClOH + CH ₃ C'ClOH	-7.35	-29.73	-7.17	-29.92	-8.00	-29.09
average value and deviation ^b					-29.11	± 0.03

^{*a*} Reaction enthalpies include thermal correction and zero-point energy. Units in kcal/mol. ^{*b*} Average value is calculated at the CBSQ//B3** level, and the deviation is between the working reactions.

 $\Delta H_{\rm f,298}^{\circ}$ values in Table 3 show good consistency for six target species over eight working reactions and the three calculation methods. DFT calculations show good agreement with the high-level ab initio calculations, indicating the errors inherent in computations for different types of molecule are cancelled to a significant extent and lead to reliable results. Ab initio calculations show remarkable consistency at the CBSQ//B3** level at which the standard deviation is within 0.3 kcal/mol. The $\Delta H_{\rm f,298}^{\circ}$ values for target radicals are based on the $\Delta H_{\rm f,298}^{\circ}$ values of the parent molecules in this work. The calculated $\Delta H_{\rm f,298}^{\circ}$ for (CH₃)₂CHOH in this work is -69.19 kcal/mol, which is similar to the results of Atkinson et al.,³⁷ -69.15;

Frenkel et al.,³⁸ –69.18; Snelson et al.,³⁹ –69.19; and Cohen,⁴⁰ –69.20 kal/mol. The $\Delta H^{\circ}_{\rm f,298}$ for (CH₃)₂CHO• is calculated to be –11.87 kal/mol at the CBSQ//B3** level, which shows agreement with Ramond et al.'s value, –11.0 ± 1.2 kcal/mol,⁴¹ which derived from the $\Delta H^{\circ}_{\rm f,298}$ of (CH₃)₂CHOH and electron affinities.

The recommended $\Delta H^{\circ}_{f,298}$ values for (CH₃)₂CHOH, (CH₃)₂-CHO[•], C[•]H₂(CH₃)CHOH, (CH₃)₂CClO⁺, and C[•]H₂CCl(OH)CH₃ are -69.19 ± 2.2, -11.85 ± 1.9, -14.95 ± 2.8, -79.83 ± 2.1, -25.88 ± 2.0, and -29.00 ± 2.8 kcal/ mol, respectively, which are the average values from eight reactions for each species at the CBSQ//B3** calculation level,

TABLE 4:	Bond	Energy	Calcu	lations
----------	------	--------	-------	---------

reaction series	bond energy (kcal/mol)								
RO—H									
$(CH_3)_2CHOH \rightarrow (CH_3)_2CHO^{\bullet} + H^{\bullet}$	105.44								
$(CH_3)_2CClOH \rightarrow (CH_3)_2CClO^{\bullet} + H^{\bullet}$	106.05								
R_{β} —H									
$(CH_3)_2CHOH \rightarrow C^{\bullet}H_2CH(OH)CH_3 + H^{\bullet}$	102.34								
$(CH_3)_2CClOH \rightarrow C^{\bullet}H_2CCl(OH)CH_3 + H^{\bullet}$	102.93								
R-Cl									
$(CH_3)_2CCIOH \rightarrow (CH_3)_2C^{\bullet}OH + Cl^{\bullet}$	83.15								
R—ROH									
$(CH_3)_2CHOH \rightarrow CH_3C^{\bullet}HOH + CH_3^{\bullet}$	86.67								
$(CH_3)_2CCIOH \rightarrow CH_3C^{\bullet}CIOH + CH_3^{\bullet}$	88.76								
R—OH	R—OH								
$(CH_3)_2CHOH \rightarrow (CH_3)_2C^{\bullet}H + OH^{\bullet}$	96.15								
$(CH_3)_2CClOH \rightarrow (CH_3)_2C^{\bullet}Cl + OH^{\bullet}$	95.94								

 TABLE 5: Comparison for the Bond Energy Derived from Monochloroalcohols

		bond energy (kcal/mol)									
species	RO-H	R-OH	R-Cl	R-ROH	$R_{\alpha}\!\!-\!\!H$	R_{β} —H					
CH ₃ OH	104.28	92.33	а	а	96.21	а					
CH ₂ ClOH	105.04	95.20	83.02	a	95.71	а					
CH ₃ CH ₂ OH	104.32	94.35	а	86.97	94.88	102.52					
CH ₃ CHClOH	105.94	97.21	84.21	88.99	94.84	103.22					
(CH ₃) ₂ CHOH	105.44	96.15	а	86.67	91.69	102.34					
(CH ₃) ₂ CClOH	106.05	95.94	83.15	88.76	а	102.93					

^a Bond does not exist.

at which the statistical distribution of rotational conformers is included. The error limits of $\Delta H_{\rm f,298}^{\circ}$ were calculated by adding the deviations between the working reactions, the errors from

 TABLE 6: Ideal Gas-Phase Thermodynamic Properties^a

ZPVEs and thermal corrections, and the maximum uncertainties in the $\Delta H_{f,298}^{\circ}$ of reference species.

RO–H, R–OH, R–H, and R–Cl bond dissociation energies in Table 4 were calculated using the $\Delta H^{\circ}_{f,298}$ values above and the $\Delta H^{\circ}_{f,298}$ of reference radicals in Table 2. These bond energies are very similar to those derived from chloromethanol and α -chloroethanol in previous work,^{1,2} and a comparison for these bond energies derived from monochloroalcohols is listed in Table 5. Bond energies on 2-propanol for the methyl hydrogens are 102 kcal/mol, and the hydroxyl hydrogen bond energy is 105 kcal/mol. Bond energies in 2-chloro-2-propanol are 103 kcal/mol for the methyl hydrogens and 106 kcal/mol for the hydroxyl hydrogen.

Entropy and Heat Capacity. S_{298}° and $C_p(T)$'s (300 $\leq T \leq$ 1500 K) calculation results using the B3LYP/6-31G(d,p) geometries and harmonic frequencies are summarized in Table 6. The torsion frequencies are omitted in the calculation of S_{298}° and $C_p(T)$; but we replace their contributions with values from analysis of the internal rotations. TVR represents the sum of the contributions from translation, vibration, and external rotation for S_{298}° and $C_p(T)$'s and was calculated using the program "SMCPS".⁴² I.R. represents the contributions from hindered internal rotations about C-C and C-O bonds for S_{298}° and $C_p(T)$ and was calculated by the program "ROTA-TOR".43 This calculation is based on an optimized 3D atom coordinate for the lowest energy conformer, the respective connection to atoms of the bond about which rotation is occurring, and the coefficients of the Fourier expansion components from rotational potential curves. The coefficients of the Fourier expansion components are listed in the Supporting Information (Table S2). An example of input and output data

species		$\Delta H^{\circ}_{\mathrm{f},298}{}^{b}$	$S_{298}^{\circ c}$	$C_p 300^{\circ}$	$C_{p}400^{c}$	$C_{p}500^{c}$	$C_{p}600^{c}$	$C_{p}800^{c}$	$C_{p}1000^{c}$	$C_{p}1500^{c}$
(CH ₃) ₂ CHOH (18) ^h	TVR^d		60.44	15.86	20.86	25.64	29.83	36.56	41.65	49.75
	I.R. ^e		4.21	2.23	2.25	2.16	2.02	1.69	1.40	0.89
	I.R. ^e		4.22	2.04	2.14	2.09	1.98	1.74	1.56	1.29
	$I.R.^{f}$		4.02	1.58	1.45	1.34	1.26	1.16	1.11	1.05
	total ^g	-65.19 ± 2.2	72.89	21.71	26.70	31.23	35.09	41.15	45.71	52.98
$(CH_3)_2CClOH(9)^h$	TVR^d		67.81	19.56	24.65	29.23	33.12	39.23	43.77	50.99
	I.R. ^e		4.16	2.04	2.14	2.11	2.01	1.78	1.59	1.31
	I.R. ^e		3.99	1.97	2.13	2.16	2.10	1.90	1.71	1.39
	$I.R.^{f}$		2.46	1.71	1.98	2.10	2.13	2.04	1.89	1.56
	total ^g	-79.83 ± 2.1	78.43	25.27	30.91	35.60	39.37	44.95	48.96	55.26
$(CH_3)_2 CHO^{\bullet}(18)^h$	TVR^d		61.94	16.19	21.08	25.61	29.51	35.69	40.30	47.50
	I.R. ^e		4.52	2.23	2.13	1.96	1.79	1.53	1.36	1.08
	$I.R.^{f}$		4.52	2.23	2.13	1.96	1.79	1.53	1.36	1.08
	total ^g	-11.85 ± 1.9	70.98	20.66	25.34	29.52	33.09	38.75	43.02	49.66
$(CH_3)_2 CClO^{\bullet}(9)^h$	TVR^d		70.57	20.45	25.19	29.37	32.88	38.33	42.36	48.66
	I.R. ^e		5.31	2.19	2.23	2.15	2.02	1.75	1.53	1.14
	$I.R.^{f}$		5.31	2.19	2.23	2.15	2.02	1.75	1.53	1.14
	total ^g	-25.88 ± 2.0	81.18	24.84	29.65	33.67	36.92	41.84	45.42	50.93
$C^{\bullet}H_2CH(OH)CH_3(3)^h(2)^i$	TVR^d		67.05	16.54	21.14	25.3	28.84	34.43	38.65	45.45
	I.R. ^e		4.64	1.74	1.54	1.39	1.29	1.18	1.12	1.05
	I.R. ^e		4.24	2.07	2.15	2.09	1.97	1.73	1.54	1.28
	$I.R.^{f}$		3.49	2.19	1.97	1.75	1.58	1.36	1.24	1.11
	total ^g	-14.95 ± 2.8	81.19	22.54	26.79	30.53	33.69	38.70	42.55	48.90
$C^{\bullet}H_2CCl(OH)CH_3(3)^h(2)^i$	TVR^d		73.44	20.21	24.81	28.72	31.95	36.94	40.65	46.61
	I.R. ^e		4.07	2.01	2.16	2.17	2.10	1.89	1.69	1.38
	I.R. ^e		2.89	2.00	2.33	2.49	2.51	2.33	2.08	1.61
	$I.R.^{f}$		3.44	2.16	2.20	2.19	2.16	2.06	1.93	1.65
	total ^g	-29.00 ± 2.8	85.15	26.38	31.49	35.57	38.72	43.22	46.35	51.25

^{*a*} Thermodynamic properties are referred to a standard state of an ideal gas at 1 atm. Torsional frequencies are excluded from the calculations of entropies and heat capacities. Instead, a more exact contribution from hindered rotations about the C–C and C–O bond is included. ^{*b*} Units in kcal/mol. ^{*c*} Units in cal/(mol K). ^{*d*} The sum of contributions from translations, vibrations, and external rotations. ^{*e*} Contribution from internal rotation about the C–C bond. ^{*f*} Contribution from internal rotation about the C–O bond. ^{*s*} Symmetry number is taken into account (–*R* ln(symmetry number)). ^{*h*} Symmetry number. ^{*i*} Optical isomer number. The –CH₂ group is not planar, and the standard entropies include the entropy of mixing of rotational conformations.

TA	BLE	7:	Ideal	Gas-Phase	Thermod	lynamic	Prop	erties
----	-----	----	-------	-----------	---------	---------	------	--------

				1					
	C_p°	S°	$H^{\circ}(T) - H^{\circ}(0 \text{ K})$	C_p°	S°	$H^{\circ}(T) - H^{\circ}(0 \text{ K})$	C_p°	S°	$ \begin{array}{l} H^{\circ}(T) - \\ H^{\circ}(0 \text{ K}) \end{array} $
$T(\mathbf{K})$	(cal/(mol K))	(cal/(mol K))	(kcal/mol)	(cal/(mol K))	(cal/(mol K))	(kcal/mol)	(cal/(mol K))	(cal/(mol K))	(kcal/mol)
		(CH ₃) ₂ CHOH			(CH ₃) ₂ CHO•		С	H ₂ CH(OH)CH ₃	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50	9.39	49.17	0.40	9.53	48.36	0.40	9.23	55.44	0.40
100	11.94	55.80	0.81	11.86	54.86	0.81	11.95	62.59	0.81
150	14.62	60.93	1.26	13.96	59.72	1.27	15.19	68.14	1.27
200	10.95	05.30	1.80	10.07	03.88	1.82	17.91	/3.00	1.85
300	21.02	72.09	3.15	20.57	70.98	3.19	22.40	81.33	3.25
400	26.70	79.91	5.00	25.34	77.64	5.08	26.79	88.52	5.15
500	31.23	86.34	7.33	29.52	83.72	7.42	30.53	94.98	7.48
600	35.09	92.37	10.11	33.09	89.40	10.18	33.69	100.87	10.19
700	38.35	98.02	13.27	36.13	94.72	13.30	36.38	106.30	13.23
800	41.15	103.33	16.78	38.75	99.71	16.73	38.70	111.33	16.54
900	43.58	108.32	20.57	41.03	104.40	20.43	40.75	116.02	20.10
1000	45.71	113.03	24.62	43.02	108.83	24.35	42.55	120.42	23.87
1200	47.57	117.49	28.89	44.75	115.01	28.48	44.15	124.50	27.82
1200	49.20	121.72	33.30	40.23	120.73	32.78	45.50	120.40	36.20
1400	51.88	129.55	42.78	48.68	124.30	41.81	47.92	135.68	40.58
1500	52.98	133.19	47.69	49.66	127.70	46.51	48.90	139.02	45.08
1600	53.95	136.67	52.72	50.52	130.95	51.31	49.76	142.20	49.67
1700	54.81	139.99	57.85	51.26	134.05	56.19	50.53	145.24	54.35
1800	55.56	143.17	63.07	51.90	137.01	61.16	51.21	148.15	59.10
1900	56.23	146.22	68.37	52.47	139.85	66.19	51.81	150.94	63.92
2000	56.83	149.15	73.74	52.96	142.58	71.28	52.35	153.61	68.80
2500	58.98	162.21	101.41	54.68	154.72	97.45	54.31	165.52	93.91
3500	61.08	1/3.21	150.02	55.04 56.22	104.95	124.42	55.49 56.23	175.54	119.83
4000	61.61	190.97	188 76	56.58	181 37	179.66	56.71	191.69	172.99
4500	61.97	198.33	218.59	56.83	188.18	207.66	57.03	198.39	199.96
5000	62.22	204.94	248.61	57.00	194.30	235.82	57.24	204.41	227.10
		(CH ₃) ₂ CClOH			(CH ₃) ₂ CClO•		С	H ₂ CCl(OH)CH ₃	
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
50	8.19	53.18	0.40	9.48	53.55	0.40	9.11	56.70	0.40
100	11.08	59.57	0.82	13.16	61.21	0.84	12.43	64.48	0.83
150	15.18	64.83	1.34	16.64	67.22	1.42	16.55	70.50	1.37
200	18.8/	69./1 78.42	2.00	19.55	/2.41	2.13	20.22	/5.86	2.05
298.13	25.10	78.43	3.00	24.74	01.10 81.33	3.09	26.27	85.31	3.19
400	30.91	86.64	5.91	29.65	89.14	6.22	31.49	93.64	6.08
500	35.60	94.04	8.61	33.67	96.19	8.95	35.57	101.13	8.76
600	39.37	100.87	11.73	36.92	102.62	12.07	38.72	107.90	11.80
700	42.42	107.17	15.21	39.59	108.51	15.51	41.20	114.06	15.13
800	44.95	112.99	19.00	41.84	113.94	19.22	43.22	119.69	18.72
900	47.11	118.41	23.04	43.76	118.98	23.16	44.90	124.88	22.51
1000	48.96	123.47	27.32	45.42	123.67	27.31	46.35	129.68	26.49
1200	51.08	128.21	31.79	40.80	128.07	31.03 36.10	47.00	134.10	30.03
1200	53 22	136.87	41 23	49.11	136.09	40.70	49.66	142.28	39.33
1400	54.30	140.85	46.16	50.12	139.76	45.42	50.50	145.99	43.85
1500	55.26	144.63	51.21	50.93	143.25	50.24	51.25	149.50	48.46
1600	56.10	148.22	56.35	51.64	146.56	55.15	51.91	152.82	53.16
1700	56.84	151.64	61.59	52.25	149.70	60.13	52.49	155.99	57.94
1800	57.49	154.91	66.91	52.78	152.70	65.19	53.00	159.00	62.79
1900	58.08	158.03	72.30	53.25	155.57	70.30	53.46	161.88	67.69
2000	58.59 60.47	101.02	105 74	55.00	158.31	/5.4/	55.8/ 55.25	104.03	12.00
2000	61 58	174.31	134 56	55.00	180 56	129 10	56.23	186 99	124.18
3500	62.27	194.99	163.91	56.38	189.22	156.70	56.77	195.70	150.75
4000	62.69	203.33	193.60	56.69	196.77	184.59	57.10	203.31	177.61
4500	62.96	210.73	223.52	56.90	203.45	212.68	57.29	210.04	204.67
5000	63.13	217.37	253.62	57.05	209.46	240.91	57.40	216.08	231.88

for the "SMCPS" and "ROTATOR" programs is also provided in the Supporting Information (Appendix).

The entropy correction, $\Delta S_{\text{mixing}} = -R\sum n_i \ln(n_i)$, for rotational conformers was included in the entropy calculation,¹³ where ΔS_{mixing} represents the entropy of mixing of rotational conformers or optical conformers and n_i is the Boltzmann equilibrium

mole fraction of the *i*th form. Here, Boltzmann mole fractions at different temperatures were calculated on the basis of the energy difference for rotational conformers at 0 K. C $^{\bullet}H_2$ CH-(OH)CH₃ and C $^{\bullet}H_2$ CCl(OH)CH₃ have an optical isomer number of two because of the different constituents on the central carbon. The thermochemical parameters for heat capacity, entropy, and

TABLE 8: Reduced Vibrational Frequencies (cm⁻¹)

species	vib 1	deg 1 ^a	vib 2	deg 2 ^a	vib 3	deg 3 ^a	mean vib.	total deg ^a
(CH ₃) ₂ CHOH	478.0	9.687	1455.2	12.346	3561.9	6.467	1221.3	28.5
(CH ₃) ₂ CClOH	403.5	10.160	1220.0	12.217	3256.9	6.123	1015.5	28.5
(CH ₃) ₂ CHO•	498.6	9.322	1465.8	10.910	3369.7	5.767	1197.7	26.0
$(CH_3)_2$ CCIO•	453.8	11.775	1442.4	9.599	3620.2	4.626	1006.4	26.0
C•H ₂ C _H (OH)CH ₃	374.6	8.498	1287.5	10.108	3219.2	6.894	1093.1	25.5
C•H ₂ CCl(OH)CH ₃	355.4	10.037	1143.2	10.722	3344.3	4.741	881.2	25.5

 ΔH°_{rxn} (kcal/mol)

28.62

19.18

6.97

 ΔH°_{rxn} (kcal/mol)

18.01

2.57

2.67

^a Deg stands for degeneracy number of the frequency.

SCHEME 1

C⁺H₂CH(OH)CH₃ → CH₂=CHCH₃ + OH[•] C⁺H₂CH(OH)CH₃ → syn-CH₂=CHOH + CH₃[•] (CH₃)₂CHO[•]→ CH₃CHO + CH₃[•]

SCHEME 2

$C^{\bullet}H_2CCl(OH)CH_3 \rightarrow CH_2=C(OH)CH_3 + C_2$	ľ
$(CH_3)_2CClO^{\bullet} \rightarrow CH_3COCH_3 + Cl^{\bullet}$	
$(CH_3)_2CClO^{\bullet} \rightarrow CH_3C(O)Cl + CH_3^{\bullet}$	

enthalpy corrections ($0 \le T \le 5000$ K) for the six target species in this work are listed in Table 7. The thermochemical properties of 2-propanol in Table 7 show agreement with the values calculated by Chao³⁸ at TRC using the methods of statistical thermodynamics based on spectral data.

A reduced set of vibrational frequencies for each of the six target species was derived from the heat capacity data, which include contribution from internal rotations,⁴⁴ and these data are listed in Table 8. The reduced vibrational frequency sets can be used to derive the molar partition function, $Q_{\rm vib}$, for vibration.¹³ This $Q_{\rm vib}$ will contribute to the total partition function for the calculation of thermodynamic properties such as Gibbs free energy, Helmhotz free energy, internal energy, enthalpy, entropy, and heat capacities. The reduced set of vibrational frequencies can also be used to estimate molecular density of states, $\rho(E)$, for Rice–Ramsperger–Kassel–Marcus (RRKM) analysis.⁴⁴

The results for heat capacity, entropy, and enthalpy corrections in Table 7 were also fitted by analytical equations: $C_p = C_{p,0} + a(1 - e^{-bT})$, $S = S_0 + aT^b$, and $H = H_0 + aT$, respectively; the coefficients and variances for the fitting equations are listed in Supporting Information (Table S3).

Relative Stability of the Alkyl and Alkoxy Radicals. The C–Cl bond is usually ca. 10 kcal/mol weaker than the C–C or C–H bonds and this should lead to interesting stabilities for the intermediate chloro-radicals in the atmosphere. Scheme 1 shows the ΔH_{rxn}° and E_a for the two nonchlorinated alkyl radicals undergoing β -scission to eliminate a methyl or a OH radical; the isopropoxy radical dissociation to CH₃CHO and methyl has a lower ΔH_{rxn}° value with the transition state lying 13.22 kcal/mol above (CH₃)₂CHO• calculated at the CBSQ//B3** level.

Scheme 2 shows the ΔH_{rxn}° and E_a for Cl elimination from one secondary chlorocarbon radical where ΔH_{rxn}° is 18 kcal/ mol, but the chloroisopropoxy radical has a similar bond strength for C—Cl and C—CH₃. The $\Delta H_{f,298}^{\circ}$ values used in Schemes 1 and 2 are listed in Table 2. The alkylalkoxy and chloroalkoxy radical systems are both unstable with short atmospheric lifetimes. We note that there is no barrier (above the ΔH_{rxn}°) for the Cl elimination reaction of C•H₂CCl(OH)CH₃ and its halflife at 298 K can be qualitatively estimated to be ~1.1 s, which is sufficient time for the radical to undergo association with O₂ under atmospheric and low-temperature combustion conditions. Wu and Carr^{5,6} reported that the lifetime for CH₂ClO• is less than 1 μ s. Hou et al.⁹ reported that the three-center elimination of HCl is the most favorable channel for CH₃CHClO• decomposition and estimated the lifetime of CH₃CHClO• under the typical tropospheric conditions to be 3.3 μ s. The stability of these chloroalkoxy radicals is low, but these intermediate radicals are formed by OH• radical addition to chloroolefins in the atmosphere and by OH•, O•, and HO₂• addition to unsaturated chlorocarbons in combustion environments. The thermochemical properties of these radicals are important in describing the reaction paths and the products of the first- and seconddissociation reactions.

E_a (kcal/mol)

29.02 (CBSQ)

13.22 (CBSQ)

E_a (kcal/mol)

18.01

2.57 10.75 (CBSQ)

28.62

Group Additivity Values and HBI Group Values. The method for derivation of central group and hydrogen bond increment (HBI) groups has been illustrated in previous studies.^{1,2} The C/C₂/Cl/O group value in Table 9 was derived from the thermodynamic property data of (CH₃)₂CClOH. The group values for $\Delta H^{\circ}_{f,298}$ and $C_p(T)$ of C/C₂/Cl/O were calculated on the basis of the reaction

$$(CH_{3}CCl(OH)CH_{3}) = (C/C_{3}/Cl/O) + 2(C/C/H_{3}) + (O/C/H)$$

and S_{298}° of C/C₂/Cl/O was calculated by considering symmetry correction:

$$(CH_3CCl(OH)CH_3) = (C/C_2/Cl/O) + 2(C/C/H_3) + (O/C/H) - R \ln(s)$$

where R = 1.987 cal/(mol K) and *s* stands for symmetry number. The thermochemical properties for the C/C/H₃ and O/C/H groups were taken from the literature.⁴⁵ $\Delta H_{f,298}^{\circ}$ in the HBI implementation group is the bond enthalpy of the R—H cleavage reaction at the indicated site. ΔS_{298}° and $\Delta C_p(T)$ in HBI groups are the differences in respective properties of the molecule and the radical such that, when HBI increment groups for ΔS_{298}° and $\Delta C_p(T)$ are added to the parent, the result is the corresponding value for the radical. Entropy values are intrinsic, that is, the correction for spin degeneracy of the electronic state and gain and loss of an optical isomer are included when appropriate, but symmetry for either parent or radical is not included in HBI groups.

Table 9 lists chloro-oxy-alkyl central group data from mono-, di-, and tricarbon chloroalcohols by this work and previous

TABLE 9: Central Group and Hydrogen Bond Increment (HBI) Group Values

		: 0		. ,	-						
central group	$\Delta H^{\circ}_{\mathrm{f},298}{}^{b}$	$S_{298}^{\circ}{}^{c}$	$C_{p}300^{c}$	$C_{p}400^{c}$	$C_{p}500^{c}$	$C_{p}600^{c}$	$C_{p}800^{c}$	$C_{p}1000^{c}$	$C_{p}1500^{c}$		
		M	onocarbon Ch	loro-oxy-hydi	rocarbon Cent	ral Group					
C/Cl/H ₂ /O	-20.17	36.55	8.88	11.18	13.02	14.35	16.09	17.27	19.19		
$C/Cl_2/H/O$	-27.98	41.93	12.61	15 71	17.73	18.80	19.62	19.94	20.60		
$C/Cl_2/\Omega$	-28.06	50.54	16 34	18.45	19.65	20.28	20.82	21.06	21.46		
0/019/0	20.00	50.54	10.54	10.45	19.05	20.20	20.02	21.00	21.40		
]	Dicarbon Chlo	oro-oxy-hydro	carbon Centra	al Group					
C/C/Cl/H/O	-20.53	16.54	8.63	10.81	12.34	13.29	14.35	14.93	15.86		
C/C/Cl ₂ /O	-27.62	19.47	12.51	15.41	17.29	18.21	18.56	18.25	17.66		
		7	Fricarbon Chlo	oro-oxy-hydro	ocarbon Centra	al Group					
$C/C_2/C_1/O_1$	-21.53	-15.82	8.59	10.73	11.98	12.56	12.89	12.81	12.66		
	21100	10102	0107	10170	1100	12100	12:07	12:01	12100		
HBI group ^a	bond energy ^{b}	$S_{298}^{\circ}{}^{c}$	$C_{p}300^{c}$	$C_{p}400^{c}$	$C_{p}500^{c}$	$C_{p}600^{c}$	$C_{p}800^{c}$	$C_{p}1000^{c}$	$C_{p}1500^{c}$		
Alkoxy Group											
CH ₃ O [•]	104.28	-2.80	-0.88	-0.83	-1.02	-1.28	-1.79	-2.26	-3.16		
CCO•	103.65	-0.90	-0.52	-0.85	-1.24	-1.59	-2.11	-2.52	-3.32		
C_2CO^{\bullet}	105.44	-1.90	-1.05	-1.36	-1.71	-2.00	-2.40	-2.69	-3.32		
CCIO	105.04	0.04		lloroalkoxy H	BI Group	2.20	2 (0	2.02	2.62		
CCIO•	105.04	-0.94	-1.00	-1.41	-1.85	-2.20	-2.69	-3.02	-3.63		
CCCIO.	105.94	-1.59	-0.99	-1.68	-2.14	-2.46	-2.86	-3.12	-3.66		
CCCl ₂ O*	105.97	2.16	-0.79	-2.20	-3.35	-4.05	-4.48	-4.45	-4.37		
C_2CCIO^*	106.11	2.75	-0.44	-1.26	-1.93	-2.45	-3.11	-3.54	-4.32		
			Di-, Tr	ichlorometho:	xy HBI Group)					
CCl ₂ O•	110.33	1.17	-1.33	-2.50	-3.28	-3.63	-3.71	-3.65	-3.81		
CCl ₃ O [•]	109.01	0.80	-0.84	-1.30	-1.67	-1.95	-2.40	-2.77	-3.50		
				. J	DIC						
CHI OII	06.01	0.15	Hy	droxyalkyl H	BI Group	0.67	1 77	2 (9	4.10		
C'H ₂ OH	96.21	-2.15	0.44	0.34	-0.10	-0.67	-1.//	-2.68	-4.10		
ССЮН	94.88	2.14	-0.50	-0.93	-1.41	-1.8/	-2.67	-3.31	-4.38		
			Hydrox	y-α-chloroall	cyl HBI Group)					
C*ClOH	95.71	0.10	0.70	0.72	0.19	-0.58	-2.04	-3.08	-4.47		
C•Cl ₂ OH	97.44	2.26	-0.25	-1.97	-3.22	-3.90	-4.44	-4.64	-5.03		
CC•ClOH	94.84	-1.96	0.12	-0.14	-0.54	-1.09	-2.26	-3.19	-4.52		
			TTerducer	ρ (ablama) at							
CICOLI	102.52	0.00	Hydroxy	y-p-(chioro)et	INVITABLE Grou	р 1 41	2.49	2.26	4.40		
	102.32	0.09	0.75	0.00	-0.72	-1.41	-2.40	-3.20	-4.42		
	103.22	0.93	1.1/	0.05	0.00	-0.0/	-1.80	-2.19	-4.20		
C CCI2OH	104.03	2.73	0.88	0.16	-0.78	-1.04	-2.89	-3.08	-4.69		
			Hydroxy	$-\beta$ -(chloro)pro	opyl HBI Grou	up					
C°C(OH)C	102.26	4.74	0.83	0.10	-0.70	-1.40	-2.45	-3.16	-4.09		
C•CCl(OH)C	102.81	4.54	1.11	0.59	-0.03	-0.65	-1.74	-2.62	-4.01		

^a H atoms are assumed to fill valence. ^b Units in kcal/mol. ^c Units in cal/(mol K).

TABLE 10: Recommended Hydrogen Bond Increment Group Values

HBI group ^a	bond energy ^b	$S^{o}_{298}{}^{c}$	$C_{p}300^{c}$	$C_{p}400^{c}$	$C_{p}500^{c}$	$C_{p}600^{c}$	$C_{p}800^{c}$	$C_{p}1000^{c}$	$C_{p}1500^{c}$
CCO•	104.55	-1.40	-0.79	-1.11	-1.48	-1.80	-2.26	-2.61	-3.32
CCC10•	106.03	0.58	-0.72	-1.47	-2.04	-2.46	-2.99	-3.33	-3.99
$CCCl_2O^{\bullet}$	106.00	1.37	-0.75	-1.84	-2.69	-3.25	-3.73	-3.89	-4.18
CC•OH	100.44	1.76	-0.63	-1.38	-2.05	-2.56	-3.20	-3.60	-4.28
CC•ClOH	97.64	-0.10	-0.25	-0.76	-1.30	-1.83	-2.73	-3.40	-4.40
C•COH	102.39	2.42	0.79	0.08	-0.71	-1.41	-2.47	-3.21	-4.26
C•CCIOH	103.02	2.74	1.14	0.62	-0.02	-0.66	-1.80	-2.71	-4.11
C•CCl ₂ OH	103.52	2.73	1.01	0.39	-0.40	-1.15	-2.35	-3.19	-4.40

^a H atoms are assumed to fill valence. ^b Units in kcal/mol. ^c Units in cal/(mol K).

work.^{1,2} The HBI group values for C₂CO•, C₂CClO•, C•C(OH)C, and C•CCl(OH)C derived from this work are also listed in Table 9 for comparison with other HBI groups from C₁–C₂ chloroalcohols.^{1,2} It can be seen from Table 9 that the enthalpy and heat capacity for HBI groups with similar chemical environments are similar; this suggests that these HBI groups can be used to predict accurate thermochemical properties of other radicals with similar chemical environments. The entropies are however slightly different even in the same series. For example, in the alkoxy series, the HBI values for the entropy of CH₃O•, CCO•, and C₂CO• are -2.80, -0.90, and -1.90 cal/(mol K), respectively, while bond energies and heat capacities remain similar. This is a result of the nature of intrinsic entropy in the different molecules. A complete set of recommended HBI values with average entropy for use in general group additivity applications is listed in Table 10.

Summary

Thermodynamic properties of 2-propanol, 2-chloro-2-propanol and the corresponding (chloro)alkoxy and hydroxy-(chloro)alkyl radicals were calculated using density functional and ab initio methods with eight isodesmic reaction schemes. $\Delta H_{f,298}^{\circ}$'s determined by widely varied isodesmic reactions show remarkable precision at the CBSQ//B3** level. The statistical distribution of rotational conformers were taken into account for $\Delta H_{f,298}^{\circ}$, S_{298}° and $C_p(T)$'s ($0 \le T \le 5000$ K) were determined with B3LYP/6-31G(d,p) optimized geometries and

frequencies, and hindered internal rotational contributions to S_{298}° and $C_p(T)$ were calculated by intramolecular torsion potential curves. Thermodynamic properties of the C/C₂/Cl/O group were determined for group additivity application. The HBI group values for C₂CO[•], C₂CClO[•], C[•]C(C)OH, and C[•]C-(C)ClOH were also derived, and a complete set of oxy(chloro)alkanes HBI values for use in general group additivity applications are recommended. The radical (CH₃)₂CClO• has low stability because of the low ΔH°_{rxn} value to bond scission, and its lifetime is short. This completes a series of publications on the thermochemical properties of oxychloro hydrocarbon groups for saturated alkanes with previous data in refs 1 and 2.

Acknowledgment. This research is supported by the USEPA Northeast Regional Research Center and the USEPA Airborne Organics Research Center. We acknowledge Chad Sheng for the "SMCPS" and FORTRAN version of the "ROTATOR" computer codes. We also acknowledge a reviewer for helpful comments.

Supporting Information Available: Tables S1 and S2 providing the total electronic energies and the coefficients of truncated Fourier series representation expansions for internal rotation potentials for six target species, Table S3 providing the coefficients and variances of equations for fitting heat capacities, entropies, and enthalpy of corrections, an appendix containing examples illustrating the use of "SMCPS" and "ROTATOR" programs. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) Sun, H.; Bozzelli, J. W. J. Phys. Chem. A 2001, 105, 4504.
- (2) Sun, H.; Bozzelli, J. W. J. Phys. Chem. A 2001, 105, 9543.
- (3) Wallington, T. J.; Schneider, W. F.; Barnes, I.; Becker, K. H.;
- Sehested, J.; Nielsen, O. J. Chem. Phys. Lett. 2000, 322, 97. (4) Tyndall, G. S.; Wallington, T. J.; Hurley, M. D.; Schneider, W. F.
- J. Phys. Chem. 1993, 97, 1576.
 - (5) Wu, F.; Carr, R. W. J. Phys. Chem. A 2001, 105, 1423.
 (6) Wu, F.; Carr, R. W. Chem. Phys. Lett. 1999, 305, 44.
- (7) Shi, J.; Wallington, T. J.; Kaiser, E. W. J. Phys. Chem. 1993, 97, 6184
- (8) Maricq, M. M.; Shi, J.; Szente, J. J.; Rimai, L.; Kaiser, E. W. J. Phys. Chem. 1993, 97, 9686.
- (9) Hou, H.; Wang, B.; Gu, Y. J. Phys. Chem. A 2000, 104, 1570.
- (10) Schneider, W. F.; Nance, B. I.; Wallington, T. J. J. Am. Chem. Soc. 1995, 117, 478.
- (11) Khatoon, T.; Edelbuettel-Einhaus, J.; Hoyermann, K.; Wagner, H. G. Ber. Bunsen-Ges. Phys. Chem. 1989, 93, 626.
- (12) Lay, T. H.; Bozzelli, J. W.; Dean, A. M.; Ritter, E. R. J. Phys. Chem. 1995, 99, 14514.
- (13) Benson, S. W. Thermochemical Kinetics, 2nd ed.; Wiley Interscience: New York, 1976.
- (14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, revision D.4; Gaussian, Inc.: Pittsburgh, PA, 1995.

(15) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.9; Gaussian, Inc.: Pittsburgh, PA, 1998

(16) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785-789. (17) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.

(18) Montgomery, J. A.; Ochterski, J. W.; Petersson, G. A. J. Chem. Phys. 1994, 101, 5900.

- (19) Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.
- (20) Sun, H.; Chen, C.-J.; Bozzelli, J. W. J. Phys. Chem. A 2000, 104, 8270.
- (21) Durant, J. L. Chem. Phys. Lett. 1996, 256, 595.
- (22) Byrd, E. F. C.; Sherrill, C. D.; Head-Gordon, M. J. Phys. Chem. A 2001, 105, 9736.
- (23) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys. 1997, 106, 1063.
- (24) Lay, T. H.; Krasnoperov, L. N.; Venanzi, C. A.; Bozzelli, J. W.; Shokhirev, N. V. J. Phys. Chem. 1996, 100, 8240.
- (25) Cox, J. D.; Pilcher, G. Thermochemistry of Organic & Organometallic Compounds; Academic Press: London, New York, 1970.
- (26) Tsang, W., Martinho Simoes, J. A., Greenberg, A., Liebman, J. F., Eds. Heats of Formation of Organic Free Radicals by Kinetic Methods in Energetics of Organic Free Radicals; Blackie Academic and Professional: London, 1996.
- (27) Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds, 2nd ed.; Chapman and Hall: London, New York, 1986
- (28) Stull, D. R.; Westrum, E. F.; Sinke, G. C. The Chemical Thermodynamic of Organic Compounds; Robert E. Kireger Publishing Company: Malabar, FL, 1987.
- (29) Holmes, J. L.; Lossing, F. P.; Mayer, P. M. J. Am. Chem. Soc. 1991, 113, 9723.
- (30) Stull, D. R.; Prophet, H. JANAF Thermochemical Tables, 2nd ed.; U.S. Government Printing Office: Washington, DC, 1970.
- (31) Ruscic, B.; Feller, D.; Dixon, D. A.; Peterson, K. A.; Harding, L. B.; Asher, R. L.; Wagner, A. F. J. Phys. Chem. A 2001, 105, 1.
 - (32) Marshall, P. J. Phys. Chem. A 1999, 103, 4560.
 - (33) Holmes, J. L.; Lossing, F. P. J. Am. Chem. Soc. 1988, 110, 7343.
 - (34) Turecek, F.; Cramer, C. J. J. Am. Chem. Soc. 1995, 117, 12243.
- (35) Wiberg, K. B.; Crocker, L. S.; Morgan, K. M. J. Am. Chem. Soc. 1991, 113, 3447.
- (36) Seetula, J. A. Phys. Chem. Chem. Phys. 2000, 2, 3807.
- (37) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data 1997, 26, 1329.
- (38) Frenkel, M.; Kabo, G. J.; Marsh, K. N. Thermodynamics of Organic Compounds in the Gas State; Thermodynamic Research Center, Texas A&M university: College Station, TX, 1994.
- (39) Snelson, A.; Skinner, H. A. Trans. Faraday Soc. 1961, 57, 2125. (40) Cohen, N. J. Phys. Chem. Ref. Data 1995, 25, 1411.
- (41) Ramond, T. M.; Davico, G. E.; Schwartz, R. L.; Lineberger, W. C. J. Chem. Phys. 2000, 112, 1158.
- (42) Sheng, C. Representative Hydrocarbon Oxidation Model and Detailed Mechanism for Combustion of a Complex Solid Fuel in a Pilot Scale Incinerator. Ph.D. Dissertation, New Jersey Institute of Technology, Newark, NJ, 2002.
- (43) Shokhirev, N. V.; Krasnoperov, L. N. ROTATOR; http://www. chem.arizona.edu/faculty/walk/nikolai/programs.html#programs, 1999.
- (44) Bozzelli, J. W.; Chang, A. Y.; Dean, A. M. Int. J. Chem. Kinet. 1997, 29, 161.
 - (45) Cohen, N. J. Phys. Chem. Ref. Data 1996, 25, 1411.