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Using three formulations of the master equation (ME), we have investigated theoretically the dissociation of
methane in the low-pressure limit. The three forms of the ME are as follows: (1) A one-dimensional model
in which E, the total energy, is the independent variable @Emodel). (2) The two-dimensional strong-
collision-in-J model of Smith and Gilbertliit. J. ChemKinet 1988 20, 307—329) in whiche, the energy

in the active degrees of freedom, ahdhe total angular momentum quantum number, are the independent
variables (the:,J model). (3) A two-dimensional variant of tke] model in whichE andJ are the independent
variables (theE,J model). The third form of the ME is the most physically realistic, and for this model we
investigate the dependence of values of the energy transfer momagtg)(—[AEL] and [AE2(¥?) deduced

from experiment on assumed forms of the energy transfer fundBE'), and on temperature. All three
moments increase as the temperature risé&EClincreases from 20625 cnt! at 300 K to 116-120 cnt?

at 4000 K. The variation in the energy transfer moments with the forP(BfE') depends on the particular
moment and the temperature, but generally the variation is not greater than 25%. For the same input to the
models, theE andE,J models give similar values of the rate coefficient at high temperature, implying that
the rotational degrees of freedom behave increasingly as if they are active as temperature is incre@sed. For
> 3000 K, the dissociation perturbs the equilibrium energy distribution of the molecule so much that the
detailed-balance condition begins to fail; i.(T)/k(T) = Ke((T), whereko(T) andk(T) are the dissociation

and recombination rate coefficients algl(T) is the equilibrium constant.

Introduction we seek answers to these questions. We have chosen to limit

. o o ) ) our discussion to the reaction
Dissociation/recombination reactions play an important role .
in combustion chemistry. However, predicting (or even estimat- CH, + Ar=CH;+ H+ Ar

ing) their rate coefficients is ultimately limited by knowledge pecause its rate coefficient is known fairly accurately at high
pf collisional energy transfer. The problem is par.ticularly temperaturé-2” and because methane has no properties that
important for small molecules at high temperature (an important 4ye |ikely to make its dissociation (or the reverse recombination)
regime for combustion), where dissociation (or recombination) particularly unusual. Consequently, one might hope that some
occurs at or near the low-pressure limit. Conversely, becausegt gur conclusions might be generalizable to other small-
low-pressure rate coefficients are so sensitive to collisional yglecule dissociations.
energy transfer, they have become an important source of |n the present work, as part of the analysis, we also derive
information on quantities such aaE4(the average energy  and discuss a new approximate solution to the two-dimensional
transferred in a deactivating collisiofpEL{the average energy  master equation ifE andJ, the total energy and total angular
transferred in all collisions), and\E?Y (the root-mean-squared  momentum quantum number of the molecule, respectively. This
(RMS) energy transferred in all collision§)This remains the  solution is closely related, at least mathematically, to the solution
case even though important information about these quantities,of the 2-D ME of Smith and Gilbe?t in € andJ, wheree is the
as well as information on the energy transfer function itself, energy in the active degrees of freedom of the dissociating
P(E,E'), can now be obtained from more direct experim&ns  molecule. Both solutions depend on reducing the 2-D ME to
and from classical trajectory calculatiolis24 at least in certain an equivalent 1-D equation by making assumptions about the
cases. J-dependence of the energy transfer function. The present model
To extract information about collisional energy transfer from appears to capture most of the two-dimensional effects important
dissociation/recombination rate coefficients, one must solve thein thermal dissociation/recombination reactions without intro-
master equation (ME). But what constitutes an adequate ducing the complexity of solving a full two-dimensional master
formulation of the master equation? How sensitive are the equatior?® 33
calculated results for the rate coefficient to the assumed form
of P(E,E)? How can one include the effects of molecular
rotation in the analysis in a straightforward, yet meaningful, = The Master Equation. In the present investigation we solve
way? The present investigation is an exploratory one in which three forms of the master equation for thermal dissociation. The

Theory
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three differ in the way they treat molecular rotation. In the
following we describe the reduction of the two-dimensional
master equation it andJ to an equivalent one-dimensional
model inE. Then we discuss modifications to this model that
result in the other two models used in the analysis.

The E,J Model. The two-dimensional master equation for
the irreversible dissociation of a molecule immersed in an inert
gas is

dn(E,J,1)
dt

= zZ S IPEJE I)n(E I 1) —
P(E',J;E,J) n(E,J)] dE' — k(E) n(EJD (1)

where ng,J,t) dE is the number density of molecules with total
energy betweelt and E + dE and total angular momentum
guantum number equal th t is the time;Z is the collision rate
of the molecule with the bath gak(E,J) is the unimolecular
(RRKM) rate coefficient; andP(E,J;E',J') is the probability of
a molecule with energy betweé&andE' + dE' and with total
angular momentum quantum numb#rbeing transferred by
collision to a state with energy betweé&and E + dE and
with total angular momentum quantum number equallto
Letting n(E,J,t) = n(t) x(E,J,t), wherex(E,J,t) is the normalized
population distribution, the left-hand side of eq 1 becomes

dn(EJt) dn(t) dx(E,J,1)

dt =xEJY dt dt

+ n(t) (2)

If we consider only the regime where the thermal rate coefficient
is well defined, the population distribution is in steady state,
i.e., &(E,J,t)/dt = 0, and ah(t)/dt = —k(T,p) n(t). Using these
results in eq 1 and simplifying, one obtains

—K(T,p) X(E,J) = ZZ JTPEJE ) X(E ) dE —

ZX(E,J) — K(EJ) X(E,J) (3)

By assuming thaP(E,J;E'J’) can be written a®(E,E") ¢(E,J)
(i.e., thed. distribution after the collision is independent of the
angular momentum of the molecule before collision), one can
derive from eq 3 an equivalent 1-D model that is analogous to
that derived by Smith and Gilbé&ftin the €,J formulation of

the master equation. In the present model we assume(Ba)

is given by

@(EJ) = (23 + 1)p(E.J)/p(E) “4)

and

p(E) = Z(ZJ + 1e(EJ) (®)

wherep(E,J) is the density of states of the molecule at energy
E and angular momentum quantum numbeEquations 4 and
5 imply that rotational energy is transferred just like vibrational
energy and that thé distribution after the collision is simply
proportional to the volume of phase space available at&hy
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Summing over) and definingk(E) andk(E) as

X(E) = ZX(E.J) (7)
and
Zk(E,J) x(E,J)
k(E) = - (8)
X(E)

eq 6 becomes

—k(T,p) X(E) = Z [ P(EE) X(E) dE' — ZXE) — KE)X(E)
9)

Equation 9 has the same form as a one-dimensional master
equation in the total energl, except that calculating(E)
requires the solution of the full two-dimensional master equa-
tion.28 To eliminate this problem, we follow the lead of Smith
and Gilbert.

Solving eq 6 forx(E,J), we get

X(EJ) =5 k(ZEqu)E f)k(T 5o PEE)XE) 8 (10)
Using eq 10 and simplifyingg(E) can be written as
ZK(E,J) Y(E.J)
k(E) = (11)
ZV(E,J)
where
YE) =5 LED 12)

Z+Kk(EJ) — k(T,p)

The form ofk(E) given by eq 11 highlights the fact that the
only dependence &(E) on the solution to the master equation
is throughk(T,p) in the denominator of/(E,J). As noted by
Smith and Gilbert, it is normally a good approximation to take
k(T,p) < Z+ k(E,J) (13)

This approximation decouples the calculatiork() from the
solution of eq 9, the desired result. An alternative to making
the assumption (13) is to develop an iteration scheme for solving
egs 9 and 11 simultaneously, but this does not appear to be
necessary.

The E Model. The most direct way of deriving this model
is to start with theE,J model and to make the further assumption
that

X(E,J) = X(E) ¢(E,J) (14)

combination. This approximation appears to be reasonablyi.e., theJ distribution of the population at arfyis proportional

consistent with results from classical trajectory calculafi®rs
in that a collision usually results in comparable quantities of
vibrational and rotational energy being transferred.

Using the approximation above in eq 3, one obtains

—K(T,p) X(E.J) = Z(p(E,J)Z [ PEE)XE J) dE —
ZX(E.J) — K(EJ) X(E.J) (6)

to the available phase space at tBandJ. Thenx(E) becomes
X(E), and using the RRKM expression f&(E,J),

N*(E,J)

E) =1 Ey

(15)

where h is Planck’s constant and(E,J) is the sum of states

at the transition state with energy less than or equdt &nd
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angular momentum quantum number equal&(E) can be
written as
Z(ZJ + 1)N*(E,J)
_ 1
k(E) = -
h p(E)

If (and only if) there is a single transition state for alleq 16
becomes

(16)

_1N(E)
h' p(E)

whereN*(E) is the sum of states (vibrational and rotational)
for that transition state with energy less than or equél. tote

k(E) (17)

that, in either eq 16 or eq 17, the threshold energy for reaction

(i.e., the lowest energy for whiclk(E) = 0) necessarily
corresponds td = 0, because conservation of angular momen-

tum in a rotating molecule always ties up some energy that
cannot be used for dissociation. Consequently, in this model, it

does not matter whether we resolve theependence of the

rate constants correctly in the low pressure limit, where only
the threshold energies are of concern. However, this is not the

case at higher pressures.
Because the threshold energy corresponds to that fo0,

no matter how much energy we put in rotation, and because
the sums and densities of states include all the rotational degrees
of freedom, this model is completely equivalent to assuming
that all rotational degrees of freedom are “active”. This statement

is true whether or not the reaction is in the low-pressure limit.
The €,J Model. This model is a slightly more general version

of that described by Smith and Gilbert. It is what they call a
strong-collision-ind model. First, define the energy in the active
degrees of freedom of the molecule to be

e=E—-BJJ+1) (18)
whereB is the appropriate rotational constant of the molecule.
In the present case, because methane is a sphericalitfhe

vibrational energy, and the energy in the inactive degrees of
freedom is the rotational energy. Stated more succinctly, there
are no active rotational degrees of freedom in methane. One

can then write a master equation, witandJ as the independent
variables, that is identical in form to eq 1. Making the
assumption that

P(e,J;e',J) = P(e,e") D(€,d) (19)

results in the same simplifications that were obtained above in

the E,J model. Taking®(e,J) to be

D(e,d)= (2 + 1)p(e,J)e*ﬁEJ/Z(2J + 1)p(e,d)e ™™ (20a)

whereE; = BJ(J + 1), 8 = (ks T) 1, ks is Boltzmann’s constant,
and p(e,J) is the density of states of the inactive degrees of
freedom with angular momentum quantum numberesults

in “strong collisions inJ”. This model assumes that the post-
collision J distribution is thermally equilibrated at the bath gas
temperature, independent &for J. Clearly, in both theE,J
ande,J models, one could use different forms fo(E,J) and

Miller et al.

It is worthwhile to comment about the density of staiésJ)
used in eq 20a. In general(e,J) has the form

2)+1

p(ed) = Puinle — (Ey — BIJ + 1))

=

whereE,; is the tth eigenvalue of the rotational Hamiltonian
for angular momentum quantum number equal,tandpyip iS

the vibrational density of states. For a symmetric top, one can
replace the sum overby a sum over theK” quantum number.
For a spherical top such as methaBg,= BJ(J + 1) for all 7.
Consequently,

p(e,d) = (23 + 1)pyip(€)
and ®(e,J) assumes the particularly simple form

2+ 1y%e ™

D(e,J) = (20b)

Z(ZJ + 1%

The density of states(¢), used in the detailed balance equation
to determine the activating wing &E,E')from the deactivating
wing, is

p(e) = Z(ZJ + 1)p(e,J)e‘ﬂEJ/Z(2J + 1)e 5

The Energy Transfer Function P(E,E"). In the present work
we investigate the effects of three different forms of the energy
transfer function. In all cases a functional form is assumed for
the deactivating collisions, i.e., f& < E', and the activating
wing of P(E,E') is determined from detailed balance. The
functional forms used are the following:

exponential
P(EE) = — exp(—AEo), E<FEF 21
EE) =5 gy OXPCAE) (21)
Gaussian
P(EE) = exp[-(AE/a)?, E<E (22)

Cu(E)
double exponential

1

P(E,E’)=C )
N

[(1 — f) exp—AE/a,) + f exp(—AE/a)],
E<FE (23)

In these expressiorSy(E') is a normalization constanAE =

E' — E, and thea’s andf are parameters in the model. We are
interested in three different moments(E,E'), all evaluated
at E' = Ey, the dissociation threshold energy:

AEC= [('(E - E)P(EFE) dE (24)

[AE*C= [(E— EY’P(EE) dE (25)

d(e,J)and get different results. However, in both cases the
distributions assumed appear to be the only ones that are
consistent with detailed balance; i.e., they lead to rotational For thee,J model the same functional forms Bfe,¢’) and the
equilibrium at very long times. same moments[Aeql) [Ael) and [Ae2[) are of interest. In

AEL= [ (E — EPEE) dE/ [, PEE) dE (26)
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practice, we typically adjust the parameter®{f,E') until we
obtain the desired (experimental) rate coefficient from a master
equation calculation; then we calculate from eqs-28 what
that rate constant and energy transfer function imply about the
moments ofP(E,E).

It is common practice in analyzing thermal dissociation/
recombination experiments to assume the exponential-down
model for P(E,E') described above. This is at least partially a
matter of expedience, sincex [AEqfor this model. However,
since the classical trajectory analysis of-H&O, collisional
energy transfer by Brown and Millé?, virtually all classical
trajectory calculatiorl§-16.18-20.34and direct experimerftg234
have concluded that the double exponential is a more realistic
form for P(E,E'). One goal of the present investigation is to
quantify the effect of the form dP(E,E’) on the values of the
moments ofAE deduced from thermal dissociation experiments.
In applying the double-exponenti&(E,E'), we consider two
specific cases: one in whidh= 0.1 ando, = 1004, and another
in which f = 0.25 anda, = 5a4. The first is crudely based on
the trajectory results of Brown and Miller; the second is simi-
larly based on those of Lendvay and Schétwe call these
the 0.1/10 model and the 0.25/5 model, respectively. It should
be understood that the two terms in the double exponential
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Figure 1. High-temperature rate coefficients. The master-equation
calculations were done witlAE4(}= 410 cn1?, independent of, for

the E,J and E models. A constant value diAe;0= 35 cnt! was
assumed for the,J ME calculations.

as the bin width,0E, was reduced, a desirable property for
ensuring accuracy. The two methods of state counting give very
similar results anyway. Most of the calculations reported here
were done WithdE (or d¢) = 25 cnTl. However, adE of 10
cm~! was employed in some cases. Such small valuestof

function must be of comparable importance in determining were necessary to resolve satisfactorily the fast exponential in
[AE4C) otherwise the double exponential simply reduces to a the double-exponential energy transfer functions in some cases
single exponential, which could be either the fast or the slow and even théAesTdeduced from the single-exponential function
decay, depending on the values of the parameters used in thdn the €,J model. Numerical values of molecular constants are

model. Both terms are important in the two models considered
here.

In writing down eq 1 we implicitly assumed thigte,J;E’,J"),
the rate coefficient for energy transfer, was factorable into a
collision rate, Z(E',J), and a probability density function,
P(E,J;E',J). We will go even further, as is common practice,
and assume thaZ = Z; where Z; is the Lennard-Jones
collision rate. All of these assumptions are somewhat ques-
tionable!3-15 However, it should be clear that, if we make it
large enough,Z can be taken to be anything as long as
P(E,J;E'\J) is chosen accordingly. Most experiments are sensi-
tive only to ZIAEO(or ZIAE4D). Consequently, it is relatively
easy to correct for different definitions &t

The Lennard-Jones collision rate is probably a reasonable
choice for collisions between small molecules and rare-gas
atoms in any event. Brown and Miller concluded that, forHe
HO; collisions, Z(E,J) depended weakly ok andJ and on
average was about 25% larger than.Such an error leads to
an inconsequential error iIMECor [AE4[lin most cases. The
majority of subsequent trajectory studies are, more or less, in
line with this conclusiort®1521.35However, Z, can be much
too small for large molecules, particularly with large-molecule
collision partnerg#15

Computational Details

All our calculations were carried out with VARIFLEX. The
rate coefficientsk(E,J), were calculated from microcanonical,
J-resolved, variational transition state theory. A Morse potential
was assumed to describe the breaking of theHtbonds; the
transitional degrees of freedom are not important in the low-
pressure limit, because the only propertie&(&,J) that play a
role in this limit are theJ-dependent threshold energies. State
counting for methane was done in the harmonic-oscillator/rigid-
rotor approximation. Vibrational sums and densities of states

given in the appendix.
The master equation (eq 9) can be recast in the form

Glw= —k(T,p)|wd 27)

where the vectowlIcontains the steady-state energy level
populations and is a real, symmetric matrix. Thek(T,p) can

be calculated a&(T,p) = —A4;, wherel; is algebraically the
largest (least negative) eigenvalue Gf We used several
methods to calculaté; in order to ensure accuracy under all
conditions investigated. Normally we calculatédT,p) at
two different pressureg = 1072 Torr andp = 1072 Torr,

to be certain thak(T,p) was linear in pressure. The low-
pressure limit rate coefficienky(T), is easily determined from
these results. The low-temperature eigenvalue problem is averted
by using the “matrix inversion” technique of Pilling and
co-workers! a standard option in VARIFLEX, and assuming
that thermal equilibrium is maintained below a specified
energy, the value of which is varied with temperature to ensure
accuracy.

Results and Discussion

High Temperature. As noted in the Introduction, at high
the low-pressure-limit rate coefficienky(T), for CH; +
Ar = CHz + H + Ar, is relatively well established from
shock-tube experiments. Kiefer and Kumafagive the expres-
sion

log ko(cmsl(mol s))=47.279— 8.106 logT — 25660(728)

for the temperature range, 1600KT < 4000 K, accurate to
+50%. We take this to be the correct result with the under-
standing that there is a small degree of uncertainty in the rate
coefficient.

In Figure 1 we have plotted the expression above on an

were calculated by the method of steepest descent (rather tharArrhenius plot, along with the strong-collider results from the

exact account) in order to avoid oscillations in these quantities

E,J andE models and the master equation results from&fde
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Figure 2. Weak-collision efficiency factor for the Kiefer and Kuma-
rar?® rate coefficient.

Figure 4. Values of [AEL] or [Ae[] deduced from the Kiefer and
Kumarar® rate coefficient using th&,J model, ore,J model.
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Figure 3. Values of [AEJL) or [Aeql) deduced from the Kiefer and

Kumarar® rate coefficient using th&,J model, ore,J model. Figure 5. Values offAE?[¥?, or [Ae?¥?, deduced from the Kiefer and

Kumarar® rate coefficient using th&,J model, ore,J model.

the¢,J, and theE models; the exponential-down function was

used forP(E,E'),or P(e,¢'), in the ME calculations. In these latter ~ forms of P(E,E') are not large, varying from less than 10% to
calculations[AE4 Owas taken to be 410 crhin the E andE,J roughly 25%, depending on the temperature and the particular
models, andAeq0was taken equal to 35 crhin thee,d model. moment being considered. The biggest difference isAd[]
These values were deduced from the experimental rate coef-at 4000 K, where the 0.1/10 model yield$a&E41< 800 cm?
ficient at 1600 K. For reference, the weak collision efficiency and the Gaussian function givéAEsJ~ 1000 cnt. The
factor, B(T) = ko(T)/ko>(T), is plotted in Figure 2; it was  general trend is th&(E,E’) functions with longer tails (the 0.1/

determined from the experimenta)(T) and theE,J result for 10 and 0.25/5 models) give smaller valueshEgCand larger
ko*(T). The value off. drops off rapidly with increasing  values offAE’¥? and —[AECthan do the other functions. As
temperature, approaching the low valuefaf~ 3 x 1072 at noted several times previousiy;*! [(AEq({and[AE?(¥?) values
very high temperatures. obtained from thermal dissociation/recombination experiments
From Figure 1 it is clear that taking\EqJor [AegCequal to increase substantially with increased temperature. Conversely,

a constant is not a very good approximation. Assuming the —[AELIs a relatively weak function of temperature, increasing
values of these parameters deduced at 1600 K to be valid atslowly from 1600 to 3500 K in the present case, then decreasing
4000 K leads to an error of approximately a factor of 4 for the slightly between 3500 and 4000 K. The latter effect could simply
rate coefficients in th&,J andE models and a factor of 40 in  be an artifact of the experiment. These results indicate 2]

the €,J model. Somewhat surprisingly, ti&J and E models ~ const., independent of temperature, may be a reasonable first
give rate coefficients that are very similar both for the strong- approximation in modeling unimolecular reactions when there
collision limit and in the ME calculations. The two ME results is no better information availabteit is certainly better than
are actually even closer than the two strong-collider rate taking [AE40= const.

coefficients. The near equality of tfgJ andE rate coefficients We calculated the moments &f¢,e') from the ¢,J model
implies that the rotational degrees of freedom in methane behaveonly for the exponential-down form of the energy transfer
as if they are active at these temperatures. However, as discusseflinction. The double exponential forms Bfe,¢’), which are

below, this is not the case at lower temperatures. of the most interest, would have required a very small bin width

In Figures 3-5 we have plotted the moments of the energy oe¢ to resolve satisfactorily the faster decaying exponentials in
transfer function versus T/for the four forms of P(E,E) these functions, at least for values of the moments similar to
described above; these were calculated usingetienaster- those obtained for the single exponential. The accompanying

equation model by forcing very precise agreement between theexpenditure of computer resources for such saltloes not
theoreticalko(T) and that obtained from eq 28. Also shown in appear to be worth the effort. The valuesliakq[] —[Ael] and

the figures are the moments®fe,¢’) similarly determined from [Ae2¥2 shown in Figures 35 appear to be unrealistically small.
the ¢,J model with the exponential-down form f&t(e,e'). The At 1600 K, [Aeg0= 35 cnt! and —[Ae00= 0.83 cnTl. Al-
differences iMAE4L) [AEL] and[AE2¥2 obtained using different though there are no direct experiments for methane, there is no
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evidence to support such small vibrational energy transfer 1.01 T T T T
rates either from experimeénf or from trajectory calcula-
tionst314.16for molecules of any size. One is forced to conclude
that the strong-collision-id-approximation (egs 9 and 20) is
not an adequate representation of reality, at least in the present
case. |

The most likely explanation for the failure of the strong-
collision-in-J approximation is that it implies that unreasonably
large quantities of rotational energy are transferred in a collision ¢ 095 |
for states near the dissociation limit. As noted above, methane *
at these temperatures behaves as if its rotational degrees of ; . . . .
freedom are active. Consequently, if large quantities of rotational 093 02 0.0003 00008 00008 00006
energy are transferred in a collision, not much vibrational energy
transfer is required to dissociate the molecule.

Kiefer and Kumara® and Cobos and Trd&43 have used Figure 6. Nonequilibrium factor, defined by eq 31, as a function of
the Troe factorization scherffe® to extract values of-[AEQ] ~ temperature.
from the same experiments considered here. They give 112 and o )
50 (£20) et for —[AE[] respectively. Both these results are low-pressure limit, in the present context, Smith et al. showed
of the same order of magnitude as those shown in Figure 4. that
However, it is not obvious that this comparison is valid. The
[AEDin the Troe factorization method is a rather ill-defined k(M 1 K
quantity. Troe describes it in the following wé¥:If coupled kf(_T) - foT) eq(T)
vibrational and rotational energy transfer have to be considered,
[AEOcorresponds to a complex average over vibrational and
rotational energy transfer weighted by a centrifugal barrier
function.” For the present high-temperature calculations, where "
the rotations act like they are active, our definitiorlAEL) the (j; dE X(E))?
average total energy transferred in a collision, may well be o =
directly comparable to the Tro@AE[L] However, at lower fwdEX B
temperatures for the present reaction and for other reactions, 0 f(E)
such may not be the case.

The discussion of the pervious paragraph points up a problem. f(E) = p(E)e "5IQ(T) (32)
There are at least three ways of deducing valug\& from
thermal dissociation experiments that are common in the andQ(T) is the vibrationat-rotational partition function of the
literature: dissociating molecule. It is rare fé(T) to deviate significantly

(1) The Troe factorization method. from unity, so that typically eq 29 is satisfied to a high degree

(2) Solution of a one-dimensional master equation in which Of accuracy. However, because of the very high temperatures
E, the total energy, is the independent variable. This is involved, it is instructive to investigate the applicability of eq

less)
o
3
i

ion
©
©
@©
T

0.1/10 modet T
= = = Gaussian

(dimens

0.0007

AT (K)

(30)

where

(1)

necessarily the approach whi(E) is calculated from &(T) 29 in the Kiefer and Kumaran experiments.
by inverse Laplace transform. This method is equivalent to our ~ Values off.{T) calculated from th&,J master equation using
E model. the 0.1/10 and Gaussian energy transfer models (the others are

(3) Solution of a one-dimensional master equation in which intermediate in value) are plotted in Figure 6. UpTte= 3000
e, the energy in the active degrees of freedom, is the independenk, fre &~ 1. In fact, forT = 2000 K and belowfse = 1.0000;
variable. In this case, it is values dieOthat are deduced, i.e., there are at least four zeros after the decimal point. How-
although not necessarily under the same assumption aboutever, forT > 3000 K,f,{T) begins to deviate significantly from
rotation as ouk,J model. It is tempting to compare directly  unity. In fact, if we were interested in methane dissociation at
values offAEL] or other moments d?(E,E'), deduced by these 5000 K, the applicability of eq 29 would be seriously in
three approaches. However, it is clear that they are not directly question.
comparable, and it is by no means obvious exactly how one is | et us look at what happens in the present case to the steady-
related to the other. state population&(E) as temperature increases. The rai)/

It is common practice to assume that one can calculate thef(g), at various temperatures is plotted in Figure 7 for both the
recombination rate coefficienk;, from ko and the equilibrium E,J (Figure 7a) and (Figure 7b) master equation models using
constant, the exponential-down form oP(E,E') with the AE;Ovalues

deduced from the experiments. The depletior(&) belowf(E)
@ _ for bound states near the dissociation limit is well-known to be
k(T)

the reasonf. = 1 at high temperature and wh§. gets
increasingly smaller as temperature increases. However, it is
However, this point was seriously debated in the 1950s and "°t commonly appreciated that overpopulation (X€E)/f(E)
early 1960s when it was first realized that high-temperature ~ 1) Of states at lower energies is the cause of the breakdown
dissociation of small molecules necessarily involves nonequi- Of €d 29 at high.
librium energy distributions of bound states. It was not until From eq 31, becaus€E) andf(E) are normalized to unity,
1989 that Smith et & derived a rigorous condition for the it can be seen thah(T) = 1 as long ax(E) = f(E) for all
validity of eq 29. Although their result is not limited to the states that are substantially populated in steady state. To make

Ked(T) (29)
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0 T T ] One is tempted to conclude that deviationdgffrom unity
B e 1 are not of practical importance, because they are limited to such
2 . e 1 high temperature. However, for molecules larger than methane
S 084 - that also have weaker bondg, will begin to deviate from unity
-§ . - at much lower temperatures, perhaps in the 00 K
= 064 — 1600K | temperature range that is most important for combustion
0 - 7 1800K applications.
W 7 - - - - 2000K . pplica
s . —-— 2500K i Another important feature of the two-dimensional master-
= — --— 3000K equation calculations is shown in Figure 7. In t8d model
,5‘,; 1 |- 3500K i there is significant population at steady state above the dis-
i I 4000K 7 sociation thresholdq = 0 in the figure), whereas there is none
] T in the E model. Because of angular momentum conservation,
0.0 T T T T T T high J states require more total energy to produce dissociation

' T T T T |
-28000 -24000 -20000 -16000 -12000 -8000 -4000 0 4000

than do lower ones. Of course, this property is missing in the
E (cm™) E model where allJ states are assumed to have the same

. . threshold energy. Consequently, thenodel tends to produce
Figure 7. X(E;T)/f(E;T) for various temperatures. The zero of energy -
is the threshold enerdy,. (a) E,J model. (b)E model. The calculations larger rate constants than tB2) model. However, there is a

were done with the exponential-down formR{E,E') andAE{values compensating effect. Because the dissociation threshold is
from Figure 3. actually “closer” to these states in tBemodel than in thés,J

model, populations of bound states with highhave lower
steady-state populations in tkemodel than they do in thg,J

this point clearer, one can wrifg(T) as model. This effect reduces the rate constants frontEtheodel
1 relative to those from theés,J model. It is the reason the
f(M=——"—""-— (33) difference between the two models is greater for the strong-
fwdE @X(E) collider rate constants in Figure 1 than for the master-equation
f(E) results.

Low Temperature. Unlike the situation at high temperature,
If X(E) = f(E), fnT) — 1. The only way thafn(T) can be less  the low-temperature rate coefficient is not well established. Of
than unity, as is the case in Figure 6, i({E)/f(E) is greater  course, at low temperatures we are interested in the low-pressure
than unity for states that have significant population at steady [imit of the recombination reaction,
state. Comparing Figure 7 with Figure 8, which is a plot of
relative f(E) values at various temperatures, one can see that CH;+H+Ar=CH, + Ar
the situation just described begins to occuf at 3000 K, just
asfndT) begins to drop off in Figure 6. Consequently, one can
conclude that eq 29 fails at high temperature because of a

complicated perturbation of the equilibrium distribution (over- 3000 K. For the purposes of analysis, we take the CEC

gggfl?égnc:fjslg\év ben;rg'gé sr;i?:§§gat$c?c:gs dzpclﬁtr':gr aéxh;?nr:_recommendatioﬁ to be the correct value d§ even though it
19 Y P : Y Is apparent from our analysis that this is probably not the case,
nation of other eigenvectors o& under these conditions

at least at the upper end of the suggested temperature range,

ndeaes et s petbaten ' aczompanes by smel S0 T 000K e e cosfen) fow resse
9Y Jimit) is given in the CEC review as

relaxation eigenvectors; these contributions ultimately cause the
failure of the rate constant approximation at sufficiently high
temperature.

whose rate coefficient is related to the dissociation rate
coefficientko(T) by eq 29, at least up to a temperature of about

k = 6.26 x 10° T *%m®(moF s) (34)
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This expression is plotted in Figure 9 with the recombination 1T (K)

rate coefficient obtained from the Kiefer and Kumaran result Figure 12. Values oftAEqideduced from thé&,J model.

for ko(T) and the equilibrium constant. It is clear from this plot o ]

that the CEC expression does not blend smoothly with the shock@20ve 1600 K, as shown in Figure 1, this becomes a good
tube results. Nevertheless, at least the rate coefficients Tip to  @PProximation. _

~ 800 K appear to be a reasonable extrapolation of the Kiefer ~Figure 10 also shows thal\EqJ= const. is not a good
and Kumaran expression. The inconsistency of the two rate approximation at lowl, as was also the case at high temperature.

expressions is even more apparent in some of the results!he error incurred by assumingEqC= 80 cnt*, independent
of temperature, is approximately a factor of 9.5 at 1000 K if

prtla:?;rl\rtsdlgeilgv; plot of the CEC rate constant, the strong- the CEQ rate poeﬁicient is assumed to be correct. However,
. . ’ another indication that the CEC recommendation is not accurate
collider predictions from both thé,J _and E models, an_d the at the high end of the temperature range is shown in Figure 11,
ME results from the .tWO ’.“Ode's using the expone?tlal-.down which is a plot off(T) (based on the CEC rate coefficient and
energy transfer function with a value GiE4L= 80 e ™. This the E,J strong-collider result) as a function of temperature. For
value of[AEsLwas deduced from the CEC rate constant at 300 + . "gng k B(T) actually increases with temperature, an
K using theE,J master equation formulation. Because of the extremely ur’1Iiker result. '
small values offAeqld(and —[Ael) implied by thee¢,J ME Figures 12-14 show values ofAE]) —AE[) and AE2Y?
formulation, a prohibitively small value aje is required for as a function off deduced from the CEC rate coefficients using
these calculations, as discussed above. However, calculation§he four different forms oP(E,E'). These results show trends
atT = 300 K with o = 10 cni™* resulted infAegl]< 5 et similar to those deduced from the Kiefer and Kumaran rate
and—[Ae¢[< 0.3 cnT! necessary to obtain the CEC rate constant coefficient at high temperature; i.6AEq) —[AEL) and[AE2%2

at that temperature. For the same reason as discussed abovey| increase with temperature. Viewed as a whole (keeping in

such values appear to be unrealistically small. mind the potential errors in the CEC rate coefficient), it seems
Unlike the high-temperature calculations, Figure 10 shows fajr to conclude from these results thakEqJand [AE2(Y?
significant differences between tiigJ and E models at low increase relatively slowly with temperature frofn= 300 K

temperature, both for the ME calculations and in the strong- up to perhaps 1000 K, then much more rapidly beyond 1000
collider limit. At 300 K, the ratio of thé&e-model rate coefficient K. Values of—[AECalso rise with temperature fromAEC~

to that for theE,J model is 5.15 in the strong-collider limitand  20—25 cnt! at 300 K to—[AEO~ 110-120 cnt? at 4000 K.
2.23 for the master-equation results. The two ratios drop to 2.04 In contrast to the high-temperature resulfsEqCdepends very
and 1.27, respectively, at 1000 K. As the temperature increasesweakly on the form oP(E,E') at low T. The form of the energy
the CH, dissociation/recombination behaves more and more like transfer function has relatively little effect on[AEOand

the rotational degrees of freedom are active. At temperatures[AE2[¥? at either low or high temperature.
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0 T T T T T T - process. The most important aspect of this perturbation is that
C ] states that are heavily populated at equilibrium are overpopulated
0 by the perturbation.
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