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Using three formulations of the master equation (ME), we have investigated theoretically the dissociation of
methane in the low-pressure limit. The three forms of the ME are as follows: (1) A one-dimensional model
in which E, the total energy, is the independent variable (theE model). (2) The two-dimensional strong-
collision-in-J model of Smith and Gilbert (Int. J. Chem. Kinet. 1988, 20, 307-329) in whichε, the energy
in the active degrees of freedom, andJ, the total angular momentum quantum number, are the independent
variables (theε,J model). (3) A two-dimensional variant of theε,J model in whichE andJ are the independent
variables (theE,J model). The third form of the ME is the most physically realistic, and for this model we
investigate the dependence of values of the energy transfer moments (〈∆Ed〉, -〈∆E〉, and〈∆E2〉1/2) deduced
from experiment on assumed forms of the energy transfer function,P(E,E′), and on temperature. All three
moments increase as the temperature rises;-〈∆E〉 increases from 20-25 cm-1 at 300 K to 110-120 cm-1

at 4000 K. The variation in the energy transfer moments with the form ofP(E,E′) depends on the particular
moment and the temperature, but generally the variation is not greater than 25%. For the same input to the
models, theE andE,J models give similar values of the rate coefficient at high temperature, implying that
the rotational degrees of freedom behave increasingly as if they are active as temperature is increased. ForT
> 3000 K, the dissociation perturbs the equilibrium energy distribution of the molecule so much that the
detailed-balance condition begins to fail; i.e.,k0(T)/kr(T) * Keq(T), wherek0(T) andkr(T) are the dissociation
and recombination rate coefficients andKeq(T) is the equilibrium constant.

Introduction

Dissociation/recombination reactions play an important role
in combustion chemistry. However, predicting (or even estimat-
ing) their rate coefficients is ultimately limited by knowledge
of collisional energy transfer. The problem is particularly
important for small molecules at high temperature (an important
regime for combustion), where dissociation (or recombination)
occurs at or near the low-pressure limit. Conversely, because
low-pressure rate coefficients are so sensitive to collisional
energy transfer, they have become an important source of
information on quantities such as〈∆Ed〉 (the average energy
transferred in a deactivating collision),〈∆E〉 (the average energy
transferred in all collisions), and〈∆E2〉1/2 (the root-mean-squared
(RMS) energy transferred in all collisions).1 This remains the
case even though important information about these quantities,
as well as information on the energy transfer function itself,
P(E,E′), can now be obtained from more direct experiments2-12

and from classical trajectory calculations,13-24 at least in certain
cases.

To extract information about collisional energy transfer from
dissociation/recombination rate coefficients, one must solve the
master equation (ME). But what constitutes an adequate
formulation of the master equation? How sensitive are the
calculated results for the rate coefficient to the assumed form
of P(E,E′)? How can one include the effects of molecular
rotation in the analysis in a straightforward, yet meaningful,
way? The present investigation is an exploratory one in which

we seek answers to these questions. We have chosen to limit
our discussion to the reaction

because its rate coefficient is known fairly accurately at high
temperature,25-27 and because methane has no properties that
are likely to make its dissociation (or the reverse recombination)
particularly unusual. Consequently, one might hope that some
of our conclusions might be generalizable to other small-
molecule dissociations.

In the present work, as part of the analysis, we also derive
and discuss a new approximate solution to the two-dimensional
master equation inE andJ, the total energy and total angular
momentum quantum number of the molecule, respectively. This
solution is closely related, at least mathematically, to the solution
of the 2-D ME of Smith and Gilbert28 in ε andJ, whereε is the
energy in the active degrees of freedom of the dissociating
molecule. Both solutions depend on reducing the 2-D ME to
an equivalent 1-D equation by making assumptions about the
J-dependence of the energy transfer function. The present model
appears to capture most of the two-dimensional effects important
in thermal dissociation/recombination reactions without intro-
ducing the complexity of solving a full two-dimensional master
equation.29-33

Theory

The Master Equation. In the present investigation we solve
three forms of the master equation for thermal dissociation. The

CH4 + Ar a CH3 + H + Ar
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three differ in the way they treat molecular rotation. In the
following we describe the reduction of the two-dimensional
master equation inE and J to an equivalent one-dimensional
model inE. Then we discuss modifications to this model that
result in the other two models used in the analysis.

The E,J Model. The two-dimensional master equation for
the irreversible dissociation of a molecule immersed in an inert
gas is

where n(E,J,t) dE is the number density of molecules with total
energy betweenE and E + dE and total angular momentum
quantum number equal toJ; t is the time;Z is the collision rate
of the molecule with the bath gas;k(E,J) is the unimolecular
(RRKM) rate coefficient; andP(E,J;E′,J′) is the probability of
a molecule with energy betweenE′ andE′ + dE′ and with total
angular momentum quantum numberJ′ being transferred by
collision to a state with energy betweenE and E + dE and
with total angular momentum quantum number equal toJ.
Lettingn(E,J,t) ) n(t) x(E,J,t), wherex(E,J,t) is the normalized
population distribution, the left-hand side of eq 1 becomes

If we consider only the regime where the thermal rate coefficient
is well defined, the population distribution is in steady state,
i.e., dx(E,J,t)/dt ) 0, and dn(t)/dt ) -k(T,p) n(t). Using these
results in eq 1 and simplifying, one obtains

By assuming thatP(E,J;E′J′) can be written asP(E,E′) æ(E,J)
(i.e., theJ. distribution after the collision is independent of the
angular momentum of the molecule before collision), one can
derive from eq 3 an equivalent 1-D model that is analogous to
that derived by Smith and Gilbert28 in the ε,J formulation of
the master equation. In the present model we assume thatæ(E,J)
is given by

and

whereF(E,J) is the density of states of the molecule at energy
E and angular momentum quantum numberJ. Equations 4 and
5 imply that rotational energy is transferred just like vibrational
energy and that theJ distribution after the collision is simply
proportional to the volume of phase space available at anyE,J
combination. This approximation appears to be reasonably
consistent with results from classical trajectory calculations13-15

in that a collision usually results in comparable quantities of
vibrational and rotational energy being transferred.

Using the approximation above in eq 3, one obtains

Summing overJ and definingxj(E) andkh(E) as

and

eq 6 becomes

Equation 9 has the same form as a one-dimensional master
equation in the total energyE, except that calculatingkh(E)
requires the solution of the full two-dimensional master equa-
tion.28 To eliminate this problem, we follow the lead of Smith
and Gilbert.

Solving eq 6 forx(E,J), we get

Using eq 10 and simplifying,kh(E) can be written as

where

The form of kh(E) given by eq 11 highlights the fact that the
only dependence ofkh(E) on the solution to the master equation
is throughk(T,p) in the denominator ofy(E,J). As noted by
Smith and Gilbert, it is normally a good approximation to take

This approximation decouples the calculation ofkh(E) from the
solution of eq 9, the desired result. An alternative to making
the assumption (13) is to develop an iteration scheme for solving
eqs 9 and 11 simultaneously, but this does not appear to be
necessary.

The E Model. The most direct way of deriving this model
is to start with theE,J model and to make the further assumption
that

i.e., theJ distribution of the population at anyE is proportional
to the available phase space at thatE andJ. Thenxj(E) becomes
x(E), and using the RRKM expression fork(E,J),

where h is Planck’s constant andN((E,J) is the sum of states
at the transition state with energy less than or equal toE and

dn(E,J,t)

dt
) Z∑

J′
∫0

∞
[P(E,J;E′,J′) n(E′,J′,t) -

P(E′,J′;E,J) n(E,J,t)] dE′ - k(E,J) n(E,J,t) (1)

dn(E,J,t)
dt

) x(E,J,t)
dn(t)

dt
+ n(t)

dx(E,J,t)
dt

(2)

-k(T,p) x(E,J) ) Z∑
J′
∫0

∞
P(E,J;E′,J′) x(E′,J′) dE′ -

Zx(E,J) - k(E,J) x(E,J) (3)

æ(E,J) ) (2J + 1)F(E,J)/F(E) (4)

F(E) ) ∑
J

(2J + 1)F(E,J) (5)

-k(T,p) x(E,J) ) Zæ(E,J)∑
J′
∫0

∞
P(E,E′) x(E′,J′) dE′ -

Zx(E,J) - k(E,J) x(E,J) (6)

xj(E) ) ∑
J

x(E,J) (7)

kh(E) )

∑
J

k(E,J) x(E,J)

xj(E)
(8)

-k(T,p) xj(E) ) Z∫0

∞
P(E,E′) xj(E′) dE′ - Zxj(E) - kh(E)xj(E)

(9)

x(E,J) )
Zæ(E,J)

Z + k(E,J) - k(T,p)
∫0

∞
P(E,E′) xj(E′) dE′ (10)

kh(E) )

∑
J

k(E,J) y(E,J)

∑
J

y(E,J)

(11)

y(E,J) )
æ(E,J)

Z + k(E,J) - k(T,p)
(12)

k(T,p) , Z + k(E,J) (13)

x(E,J) ) x(E) æ(E,J) (14)

k(E,J) )
N((E,J)

hF(E,J)
(15)
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angular momentum quantum number equal toJ, kh(E) can be
written as

If (and only if) there is a single transition state for allJ, eq 16
becomes

whereN((E) is the sum of states (vibrational and rotational)
for that transition state with energy less than or equal toE. Note
that, in either eq 16 or eq 17, the threshold energy for reaction
(i.e., the lowest energy for whichkh(E) * 0) necessarily
corresponds toJ ) 0, because conservation of angular momen-
tum in a rotating molecule always ties up some energy that
cannot be used for dissociation. Consequently, in this model, it
does not matter whether we resolve theJ dependence of the
rate constants correctly in the low pressure limit, where only
the threshold energies are of concern. However, this is not the
case at higher pressures.

Because the threshold energy corresponds to that forJ ) 0,
no matter how much energy we put in rotation, and because
the sums and densities of states include all the rotational degrees
of freedom, this model is completely equivalent to assuming
that all rotational degrees of freedom are “active”. This statement
is true whether or not the reaction is in the low-pressure limit.

The E,J Model. This model is a slightly more general version
of that described by Smith and Gilbert. It is what they call a
strong-collision-in-J model. First, define the energy in the active
degrees of freedom of the molecule to be

whereB is the appropriate rotational constant of the molecule.
In the present case, because methane is a spherical top,ε is the
vibrational energy, and the energy in the inactive degrees of
freedom is the rotational energy. Stated more succinctly, there
are no active rotational degrees of freedom in methane. One
can then write a master equation, withε andJ as the independent
variables, that is identical in form to eq 1. Making the
assumption that

results in the same simplifications that were obtained above in
the E,J model. TakingΦ(ε,J) to be

whereEJ ) BJ(J + 1), â ) (kBT)-1, kB is Boltzmann’s constant,
and F(ε,J) is the density of states of the inactive degrees of
freedom with angular momentum quantum numberJ, results
in “strong collisions inJ”. This model assumes that the post-
collision J distribution is thermally equilibrated at the bath gas
temperature, independent ofε′ or J′. Clearly, in both theE,J
andε,J models, one could use different forms foræ(E,J) and
Φ(ε,J)and get different results. However, in both cases the
distributions assumed appear to be the only ones that are
consistent with detailed balance; i.e., they lead to rotational
equilibrium at very long times.

It is worthwhile to comment about the density of statesF(ε,J)
used in eq 20a. In general,F(ε,J) has the form

whereEτJ is the τth eigenvalue of the rotational Hamiltonian
for angular momentum quantum number equal toJ, andFvib is
the vibrational density of states. For a symmetric top, one can
replace the sum overτ by a sum over the “K” quantum number.
For a spherical top such as methane,EτJ ) BJ(J + 1) for all τ.
Consequently,

andΦ(ε,J) assumes the particularly simple form

The density of statesF(ε), used in the detailed balance equation
to determine the activating wing ofP(E,E′)from the deactivating
wing, is

The Energy Transfer Function P(E,E′). In the present work
we investigate the effects of three different forms of the energy
transfer function. In all cases a functional form is assumed for
the deactivating collisions, i.e., forE e E′, and the activating
wing of P(E,E′) is determined from detailed balance. The
functional forms used are the following:

exponential

Gaussian

double exponential

In these expressionsCN(E′) is a normalization constant,∆E )
E′ - E, and theR’s andf are parameters in the model. We are
interested in three different moments ofP(E,E′), all evaluated
at E′ ) E0, the dissociation threshold energy:

For theε,J model the same functional forms ofP(ε,ε′) and the
same moments,〈∆εd〉, 〈∆ε〉, and 〈∆ε2〉, are of interest. In

kh(E) )
1

h

∑
J

(2J + 1)N((E,J)

F(E)
(16)

kh(E) ) 1
h

N((E)

F(E)
(17)

ε ) E - BJ(J + 1) (18)

P(ε,J;ε′,J′) ) P(ε,ε′) Φ(ε,J) (19)

Φ(ε,J) ) (2J + 1)F(ε,J)e-âEJ/∑
J

(2J + 1)F(ε,J)e-âEJ (20a)

F(ε,J) ) ∑
τ)1

2J+1

Fvib(ε - (EτJ - BJ(J + 1)))

F(ε,J) ) (2J + 1)Fvib(ε)

Φ(ε,J) )
(2J + 1)2e-âEJ

∑
J

(2J + 1)2e-âEJ

(20b)

F(ε) ) ∑
J

(2J + 1)F(ε,J)e-âEJ/∑
J

(2J + 1)e-âEJ

P(E,E′) ) 1
CN(E′)

exp(-∆E/R), E e E′ (21)

P(E,E′) ) 1
CN(E′)

exp[-(∆E/R)2], E e E′ (22)

P(E,E′) ) 1
CN(E′)

[(1 - f) exp(-∆E/R1) + f exp(-∆E/R2)],

E e E′ (23)

〈∆E〉 ) ∫0

∞
(E - E′)P(E,E′) dE (24)

〈∆E2〉 ) ∫0

∞
(E - E′)2P(E,E′) dE (25)

〈∆Ed〉 ) ∫0

E′
(E′ - E)P(E,E′) dE/∫0

E′
P(E,E′) dE (26)
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practice, we typically adjust the parameters inP(E,E′) until we
obtain the desired (experimental) rate coefficient from a master
equation calculation; then we calculate from eqs 24-26 what
that rate constant and energy transfer function imply about the
moments ofP(E,E′).

It is common practice in analyzing thermal dissociation/
recombination experiments to assume the exponential-down
model forP(E,E′) described above. This is at least partially a
matter of expedience, sinceR ≈ 〈∆Ed〉 for this model. However,
since the classical trajectory analysis of He-HO2 collisional
energy transfer by Brown and Miller,13 virtually all classical
trajectory calculations13-16,18-20,34 and direct experiments6,12,34

have concluded that the double exponential is a more realistic
form for P(E,E′). One goal of the present investigation is to
quantify the effect of the form ofP(E,E′) on the values of the
moments of∆E deduced from thermal dissociation experiments.
In applying the double-exponentialP(E,E′), we consider two
specific cases: one in whichf ) 0.1 andR2 ) 10R1, and another
in which f ) 0.25 andR2 ) 5R1. The first is crudely based on
the trajectory results of Brown and Miller; the second is simi-
larly based on those of Lendvay and Schatz.16 We call these
the 0.1/10 model and the 0.25/5 model, respectively. It should
be understood that the two terms in the double exponential
function must be of comparable importance in determining
〈∆Ed〉; otherwise the double exponential simply reduces to a
single exponential, which could be either the fast or the slow
decay, depending on the values of the parameters used in the
model. Both terms are important in the two models considered
here.

In writing down eq 1 we implicitly assumed thatk(E,J;E′,J′),
the rate coefficient for energy transfer, was factorable into a
collision rate, Z(E′,J′), and a probability density function,
P(E,J;E′,J′). We will go even further, as is common practice,
and assume thatZ ) ZLJ, where ZLJ is the Lennard-Jones
collision rate. All of these assumptions are somewhat ques-
tionable.13-15 However, it should be clear that, if we make it
large enough,Z can be taken to be anything as long as
P(E,J;E′,J′) is chosen accordingly. Most experiments are sensi-
tive only to Z〈∆E〉 (or Z〈∆Ed〉). Consequently, it is relatively
easy to correct for different definitions ofZ.

The Lennard-Jones collision rate is probably a reasonable
choice for collisions between small molecules and rare-gas
atoms in any event. Brown and Miller concluded that, for He-
HO2 collisions, Z(E,J) depended weakly onE and J and on
average was about 25% larger than ZLJ. Such an error leads to
an inconsequential error in〈∆E〉 or 〈∆Ed〉 in most cases. The
majority of subsequent trajectory studies are, more or less, in
line with this conclusion.13,15,21,35However, ZLJ can be much
too small for large molecules, particularly with large-molecule
collision partners.14,15

Computational Details

All our calculations were carried out with VARIFLEX.36 The
rate coefficients,k(E,J), were calculated from microcanonical,
J-resolved, variational transition state theory. A Morse potential
was assumed to describe the breaking of the C-H bonds; the
transitional degrees of freedom are not important in the low-
pressure limit, because the only properties ofk(E,J) that play a
role in this limit are theJ-dependent threshold energies. State
counting for methane was done in the harmonic-oscillator/rigid-
rotor approximation. Vibrational sums and densities of states
were calculated by the method of steepest descent (rather than
exact account) in order to avoid oscillations in these quantities

as the bin width,δE, was reduced, a desirable property for
ensuring accuracy. The two methods of state counting give very
similar results anyway. Most of the calculations reported here
were done withδE (or δε) ) 25 cm-1. However, aδE of 10
cm-1 was employed in some cases. Such small values ofδE
were necessary to resolve satisfactorily the fast exponential in
the double-exponential energy transfer functions in some cases
and even the〈∆εd〉 deduced from the single-exponential function
in the ε,J model. Numerical values of molecular constants are
given in the appendix.

The master equation (eq 9) can be recast in the form

where the vector|w〉 contains the steady-state energy level
populations andG is a real, symmetric matrix. Then,k(T,p) can
be calculated ask(T,p) ) -λ1, whereλ1 is algebraically the
largest (least negative) eigenvalue ofG. We used several
methods to calculateλ1 in order to ensure accuracy under all
conditions investigated. Normally we calculatedk(T,p) at
two different pressures,p ) 10-3 Torr and p ) 10-2 Torr,
to be certain thatk(T,p) was linear in pressure. The low-
pressure limit rate coefficient,k0(T), is easily determined from
these results. The low-temperature eigenvalue problem is averted
by using the “matrix inversion” technique of Pilling and
co-workers,41 a standard option in VARIFLEX, and assuming
that thermal equilibrium is maintained below a specified
energy, the value of which is varied with temperature to ensure
accuracy.

Results and Discussion

High Temperature. As noted in the Introduction, at highT
the low-pressure-limit rate coefficient,k0(T), for CH4 +
Ar a CH3 + H + Ar, is relatively well established from
shock-tube experiments. Kiefer and Kumaran25 give the expres-
sion

for the temperature range, 1600 Ke T e 4000 K, accurate to
(50%. We take this to be the correct result with the under-
standing that there is a small degree of uncertainty in the rate
coefficient.

In Figure 1 we have plotted the expression above on an
Arrhenius plot, along with the strong-collider results from the
E,J andE models and the master equation results from theE,J,

Figure 1. High-temperature rate coefficients. The master-equation
calculations were done with〈∆Ed〉 ) 410 cm-1, independent ofT, for
the E,J and E models. A constant value of〈∆εd〉 ) 35 cm-1 was
assumed for theε,J ME calculations.

G|w〉 ) -k(T,p)|w〉 (27)

log k0(cm3/(mol s))) 47.279- 8.106 logT - 25660/T
(28)
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the ε,J, and theE models; the exponential-down function was
used forP(E,E′),or P(ε,ε′), in the ME calculations. In these latter
calculations,〈∆Ed〉 was taken to be 410 cm-1 in theE andE,J
models, and〈∆εd〉 was taken equal to 35 cm-1 in theε,J model.
These values were deduced from the experimental rate coef-
ficient at 1600 K. For reference, the weak collision efficiency
factor, âc(T) ) k0(T)/k0

sc(T), is plotted in Figure 2; it was
determined from the experimentalk0(T) and theE,J result for
k0

sc(T). The value ofâc drops off rapidly with increasing
temperature, approaching the low value ofâc ≈ 3 × 10-2 at
very high temperatures.

From Figure 1 it is clear that taking〈∆Ed〉 or 〈∆εd〉 equal to
a constant is not a very good approximation. Assuming the
values of these parameters deduced at 1600 K to be valid at
4000 K leads to an error of approximately a factor of 4 for the
rate coefficients in theE,J andE models and a factor of 40 in
the ε,J model. Somewhat surprisingly, theE,J and E models
give rate coefficients that are very similar both for the strong-
collision limit and in the ME calculations. The two ME results
are actually even closer than the two strong-collider rate
coefficients. The near equality of theE,J andE rate coefficients
implies that the rotational degrees of freedom in methane behave
as if they are active at these temperatures. However, as discussed
below, this is not the case at lower temperatures.

In Figures 3-5 we have plotted the moments of the energy
transfer function versus 1/T for the four forms ofP(E,E′)
described above; these were calculated using theE,J master-
equation model by forcing very precise agreement between the
theoreticalk0(T) and that obtained from eq 28. Also shown in
the figures are the moments ofP(ε,ε′) similarly determined from
theε,J model with the exponential-down form forP(ε,ε′). The
differences in〈∆Ed〉, 〈∆E〉, and〈∆E2〉1/2 obtained using different

forms of P(E,E′) are not large, varying from less than 10% to
roughly 25%, depending on the temperature and the particular
moment being considered. The biggest difference is for〈∆Ed〉
at 4000 K, where the 0.1/10 model yields a〈∆Ed〉 < 800 cm-1

and the Gaussian function gives〈∆Ed〉 ≈ 1000 cm-1. The
general trend is thatP(E,E′) functions with longer tails (the 0.1/
10 and 0.25/5 models) give smaller values of〈∆Ed〉 and larger
values of〈∆E2〉1/2 and-〈∆E〉 than do the other functions. As
noted several times previously,37-41 〈∆Ed〉 (and〈∆E2〉1/2) values
obtained from thermal dissociation/recombination experiments
increase substantially with increased temperature. Conversely,
-〈∆E〉 is a relatively weak function of temperature, increasing
slowly from 1600 to 3500 K in the present case, then decreasing
slightly between 3500 and 4000 K. The latter effect could simply
be an artifact of the experiment. These results indicate that〈∆E〉
≈ const., independent of temperature, may be a reasonable first
approximation in modeling unimolecular reactions when there
is no better information availablesit is certainly better than
taking 〈∆Ed〉 ) const.

We calculated the moments ofP(ε,ε′) from the ε,J model
only for the exponential-down form of the energy transfer
function. The double exponential forms ofP(ε,ε′), which are
of the most interest, would have required a very small bin width
δε to resolve satisfactorily the faster decaying exponentials in
these functions, at least for values of the moments similar to
those obtained for the single exponential. The accompanying
expenditure of computer resources for such smallδε does not
appear to be worth the effort. The values of〈∆εd〉, -〈∆ε〉, and
〈∆ε2〉1/2 shown in Figures 3-5 appear to be unrealistically small.
At 1600 K, 〈∆εd〉 ) 35 cm-1 and -〈∆ε〉 ) 0.83 cm-1. Al-
though there are no direct experiments for methane, there is no

Figure 2. Weak-collision efficiency factor for the Kiefer and Kuma-
ran25 rate coefficient.

Figure 3. Values of 〈∆Ed〉, or 〈∆εd〉, deduced from the Kiefer and
Kumaran25 rate coefficient using theE,J model, orε,J model.

Figure 4. Values of 〈∆E〉, or 〈∆ε〉, deduced from the Kiefer and
Kumaran25 rate coefficient using theE,J model, orε,J model.

Figure 5. Values of〈∆E2〉1/2, or 〈∆ε2〉1/2, deduced from the Kiefer and
Kumaran25 rate coefficient using theE,J model, orε,J model.
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evidence to support such small vibrational energy transfer
rates either from experiment6-9 or from trajectory calcula-
tions13,14,16for molecules of any size. One is forced to conclude
that the strong-collision-in-J approximation (eqs 9 and 20) is
not an adequate representation of reality, at least in the present
case.

The most likely explanation for the failure of the strong-
collision-in-J approximation is that it implies that unreasonably
large quantities of rotational energy are transferred in a collision
for states near the dissociation limit. As noted above, methane
at these temperatures behaves as if its rotational degrees of
freedom are active. Consequently, if large quantities of rotational
energy are transferred in a collision, not much vibrational energy
transfer is required to dissociate the molecule.

Kiefer and Kumaran25 and Cobos and Troe42,43 have used
the Troe factorization scheme44-46 to extract values of-〈∆E〉
from the same experiments considered here. They give 112 and
50 ((20) cm-1 for -〈∆E〉, respectively. Both these results are
of the same order of magnitude as those shown in Figure 4.
However, it is not obvious that this comparison is valid. The
〈∆E〉 in the Troe factorization method is a rather ill-defined
quantity. Troe describes it in the following way:45 “If coupled
vibrational and rotational energy transfer have to be considered,
〈∆E〉 corresponds to a complex average over vibrational and
rotational energy transfer weighted by a centrifugal barrier
function.” For the present high-temperature calculations, where
the rotations act like they are active, our definition of〈∆E〉, the
average total energy transferred in a collision, may well be
directly comparable to the Troe〈∆E〉. However, at lower
temperatures for the present reaction and for other reactions,
such may not be the case.

The discussion of the pervious paragraph points up a problem.
There are at least three ways of deducing values of〈∆E〉 from
thermal dissociation experiments that are common in the
literature:

(1) The Troe factorization method.
(2) Solution of a one-dimensional master equation in which

E, the total energy, is the independent variable. This is
necessarily the approach whenk(E) is calculated from ak(T)
by inverse Laplace transform. This method is equivalent to our
E model.

(3) Solution of a one-dimensional master equation in which
ε, the energy in the active degrees of freedom, is the independent
variable. In this case, it is values of〈∆ε〉 that are deduced,
although not necessarily under the same assumption about
rotation as ourε,J model. It is tempting to compare directly
values of〈∆E〉, or other moments ofP(E,E′), deduced by these
three approaches. However, it is clear that they are not directly
comparable, and it is by no means obvious exactly how one is
related to the other.

It is common practice to assume that one can calculate the
recombination rate coefficient,kr, from k0 and the equilibrium
constant,

However, this point was seriously debated in the 1950s and
early 1960s when it was first realized that high-temperature
dissociation of small molecules necessarily involves nonequi-
librium energy distributions of bound states. It was not until
1989 that Smith et al.47 derived a rigorous condition for the
validity of eq 29. Although their result is not limited to the

low-pressure limit, in the present context, Smith et al. showed
that

where

andQ(T) is the vibrational-rotational partition function of the
dissociating molecule. It is rare forfne(T) to deviate significantly
from unity, so that typically eq 29 is satisfied to a high degree
of accuracy. However, because of the very high temperatures
involved, it is instructive to investigate the applicability of eq
29 in the Kiefer and Kumaran experiments.

Values offne(T) calculated from theE,J master equation using
the 0.1/10 and Gaussian energy transfer models (the others are
intermediate in value) are plotted in Figure 6. Up toT ) 3000
K, fne ≈ 1. In fact, forT ) 2000 K and below,fne ) 1.0000;
i.e., there are at least four zeros after the decimal point. How-
ever, forT > 3000 K,fne(T) begins to deviate significantly from
unity. In fact, if we were interested in methane dissociation at
5000 K, the applicability of eq 29 would be seriously in
question.

Let us look at what happens in the present case to the steady-
state populations,xj(E) as temperature increases. The ratioxj(E)/
f(E), at various temperatures is plotted in Figure 7 for both the
E,J (Figure 7a) andE (Figure 7b) master equation models using
the exponential-down form ofP(E,E′) with the 〈∆Ed〉 values
deduced from the experiments. The depletion ofxj(E) belowf(E)
for bound states near the dissociation limit is well-known to be
the reasonâc * 1 at high temperature and whyâc gets
increasingly smaller as temperature increases. However, it is
not commonly appreciated that overpopulation (i.e.,xj(E)/f(E)
> 1) of states at lower energies is the cause of the breakdown
of eq 29 at highT.

From eq 31, becausexj(E) and f(E) are normalized to unity,
it can be seen thatfne(T) ) 1 as long asxj(E) ) f(E) for all
states that are substantially populated in steady state. To make

k0(T)

kr(T)
) Keq(T) (29)

Figure 6. Nonequilibrium factor, defined by eq 31, as a function of
temperature.

k0(T)

kr(T)
) 1

fne(T)
Keq(T) (30)

fne(T) )
(∫0

∞
dE xj(E))2

∫0

∞
dE

xj2(E)

f(E)

(31)

f(E) ) F(E)e-âE/Q(T) (32)
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this point clearer, one can writefne(T) as

If xj(E) ) f(E), fne(T) f 1. The only way thatfne(T) can be less
than unity, as is the case in Figure 6, is ifxj(E)/f(E) is greater
than unity for states that have significant population at steady
state. Comparing Figure 7 with Figure 8, which is a plot of
relative f(E) values at various temperatures, one can see that
the situation just described begins to occur atT ≈ 3000 K, just
asfne(T) begins to drop off in Figure 6. Consequently, one can
conclude that eq 29 fails at high temperature because of a
complicated perturbation of the equilibrium distribution (over-
population at low energies necessitated by depletion at high
energies) caused by the dissociation process. A cursory exami-
nation of other eigenvectors ofG under these conditions
indicates that this perturbation is accompanied by small
contributions to the dissociation from some of the energy
relaxation eigenvectors; these contributions ultimately cause the
failure of the rate constant approximation at sufficiently high
temperature.

One is tempted to conclude that deviations offne from unity
are not of practical importance, because they are limited to such
high temperature. However, for molecules larger than methane
that also have weaker bonds,fne will begin to deviate from unity
at much lower temperatures, perhaps in the 1000-2000 K
temperature range that is most important for combustion
applications.

Another important feature of the two-dimensional master-
equation calculations is shown in Figure 7. In theE,J model
there is significant population at steady state above the dis-
sociation threshold (E ) 0 in the figure), whereas there is none
in the E model. Because of angular momentum conservation,
high J states require more total energy to produce dissociation
than do lower ones. Of course, this property is missing in the
E model where allJ states are assumed to have the same
threshold energy. Consequently, theE model tends to produce
larger rate constants than theE,J model. However, there is a
compensating effect. Because the dissociation threshold is
actually “closer” to these states in theE model than in theE,J
model, populations of bound states with highJ have lower
steady-state populations in theE model than they do in theE,J
model. This effect reduces the rate constants from theE model
relative to those from theE,J model. It is the reason the
difference between the two models is greater for the strong-
collider rate constants in Figure 1 than for the master-equation
results.

Low Temperature. Unlike the situation at high temperature,
the low-temperature rate coefficient is not well established. Of
course, at low temperatures we are interested in the low-pressure
limit of the recombination reaction,

whose rate coefficient is related to the dissociation rate
coefficientk0(T) by eq 29, at least up to a temperature of about
3000 K. For the purposes of analysis, we take the CEC
recommendation48 to be the correct value ofkr even though it
is apparent from our analysis that this is probably not the case,
at least at the upper end of the suggested temperature range,
300 K < T < 1000 K. The rate coefficientkr(T) (low-pressure
limit) is given in the CEC review as

Figure 7. xj(E;T)/f(E;T) for various temperatures. The zero of energy
is the threshold energyE0. (a)E,J model. (b)E model. The calculations
were done with the exponential-down form ofP(E,E′) and〈∆Ed〉 values
from Figure 3.

fne(T) ) 1

∫0

∞
dE

xj(E)

f(E)
xj(E)

(33)

Figure 8. Relative values off(E;T). The functions are normalized so
that the peak is always unity.

CH3 + H + Ar a CH4 + Ar

kr ) 6.26× 1023 T-1.8cm6/(mol2 s) (34)
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This expression is plotted in Figure 9 with the recombination
rate coefficient obtained from the Kiefer and Kumaran result
for k0(T) and the equilibrium constant. It is clear from this plot
that the CEC expression does not blend smoothly with the shock
tube results. Nevertheless, at least the rate coefficients up toT
≈ 800 K appear to be a reasonable extrapolation of the Kiefer
and Kumaran expression. The inconsistency of the two rate
expressions is even more apparent in some of the results
presented below.

Figure 10 is a plot of the CEC rate constant, the strong-
collider predictions from both theE,J and E models, and the
ME results from the two models using the exponential-down
energy transfer function with a value of〈∆Ed〉 ) 80 cm-1. This
value of〈∆Ed〉 was deduced from the CEC rate constant at 300
K using theE,J master equation formulation. Because of the
small values of〈∆εd〉 (and -〈∆ε〉) implied by the ε,J ME
formulation, a prohibitively small value ofδε is required for
these calculations, as discussed above. However, calculations
at T ) 300 K with δε ) 10 cm-1 resulted in〈∆εd〉 < 5 cm-1

and-〈∆ε〉 < 0.3 cm-1 necessary to obtain the CEC rate constant
at that temperature. For the same reason as discussed above,
such values appear to be unrealistically small.

Unlike the high-temperature calculations, Figure 10 shows
significant differences between theE,J and E models at low
temperature, both for the ME calculations and in the strong-
collider limit. At 300 K, the ratio of theE-model rate coefficient
to that for theE,J model is 5.15 in the strong-collider limit and
2.23 for the master-equation results. The two ratios drop to 2.04
and 1.27, respectively, at 1000 K. As the temperature increases,
the CH4 dissociation/recombination behaves more and more like
the rotational degrees of freedom are active. At temperatures

above 1600 K, as shown in Figure 1, this becomes a good
approximation.

Figure 10 also shows that〈∆Ed〉 ) const. is not a good
approximation at lowT, as was also the case at high temperature.
The error incurred by assuming〈∆Ed〉 ) 80 cm-1, independent
of temperature, is approximately a factor of 9.5 at 1000 K if
the CEC rate coefficient is assumed to be correct. However,
another indication that the CEC recommendation is not accurate
at the high end of the temperature range is shown in Figure 11,
which is a plot ofâc(T) (based on the CEC rate coefficient and
theE,J strong-collider result) as a function of temperature. For
T > 800 K, âc(T) actually increases with temperature, an
extremely unlikely result.

Figures 12-14 show values of〈∆Ed〉, -〈∆E〉, and〈∆E2〉1/2

as a function ofT deduced from the CEC rate coefficients using
the four different forms ofP(E,E′). These results show trends
similar to those deduced from the Kiefer and Kumaran rate
coefficient at high temperature; i.e.,〈∆Ed〉, -〈∆E〉, and〈∆E2〉1/2

all increase with temperature. Viewed as a whole (keeping in
mind the potential errors in the CEC rate coefficient), it seems
fair to conclude from these results that〈∆Ed〉 and 〈∆E2〉1/2

increase relatively slowly with temperature fromT ) 300 K
up to perhaps 1000 K, then much more rapidly beyond 1000
K. Values of-〈∆E〉 also rise with temperature from-〈∆E〉 ≈
20-25 cm-1 at 300 K to-〈∆E〉 ≈ 110-120 cm-1 at 4000 K.
In contrast to the high-temperature results,〈∆Ed〉 depends very
weakly on the form ofP(E,E′) at lowT. The form of the energy
transfer function has relatively little effect on-〈∆E〉 and
〈∆E2〉1/2 at either low or high temperature.

Figure 9. Recombination rate coefficient.

Figure 10. Low-temperature recombination rate coefficients. The
master-equation calculations were done with the exponential-down form
of P(E,E′) and with 〈∆Ed〉 ) 80 cm-1.

Figure 11. Weak-collision efficiency factor from the CEC rate
coefficient.

Figure 12. Values of〈∆Ed〉 deduced from theE,J model.
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Concluding Remarks

We have studied the dissociation of methane in the low-
pressure limit using three forms of the master equation: theE
formulation, theE,J formulation, and theε,J formulation. In
theE,J model, the best of the three formulations, we employed
four different energy transfer functions to deduce values of
〈∆Ed〉, 〈∆E〉, and〈∆E2〉1/2 from experimental rate coefficients.
As temperature increases from 300 to 4000 K,〈∆Ed〉, -〈∆E〉,
and〈∆E2〉1/2 all increase continuously. The values of〈∆Ed〉 and
〈∆E2〉1/2 increase relatively slowly from 300 K up to perhaps
1000 K, then more rapidly between 1000 and 4000 K;-∆E
increases from 20-25 cm-1 at 300 K to approximately 110-
120 cm-1 at 4000 K. These trends are generally independent
of the form ofP(E,E′). The dependence of〈∆Ed〉 on P(E,E′) is
greatest at high temperature, whereas the variation in〈∆E2〉1/2

with P(E,E′) is relatively small at all temperatures. The spread
in -〈∆E〉 values withP(E,E′) increases slightly from only about
3 cm-1 at 300 K to approximately 10 cm-1 at 4000 K.

Theε,J model (i.e., the strong-collision-in-J approximation28)
yields unreasonably small values of〈∆εd〉, 〈∆ε2〉1/2, and-〈∆ε〉,
probably because it implies that excessively large quantities of
rotational energy are transferred in a collision for states near
the dissociation limit. If everything else in the theory is kept
the same, theE andE,J models give significantly different rate
coefficients at low temperature, but this difference disappears
as temperature is increased. This latter result implies that the
rotational degrees of freedom behave more and more as if they
are active as the temperature rises.

For T > 3000 K, the relationshipk0/kr ) Keq begins to fail.
This failure occurs because of a complicated perturbation of
the equilibrium energy distribution caused by the dissociation

process. The most important aspect of this perturbation is that
states that are heavily populated at equilibrium are overpopulated
by the perturbation.
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Appendix

Methane
Vibrational frequencies (cm-1) with degeneracies

3019(3), 2917, 1534(2), 1306(3)
rotational constant (cm-1)

5.31
threshold energy,E0 (kcal/mol)

103.34
Lennard-Jones parameters

σ ) 3.33 Å
ε ) 94.9 cm-1

Argon
Lennard-Jones parameters

σ ) 3.75 Å
ε ) 98.3 cm-1
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