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A general set of quantitative model assessment and analysis tools, termed high-dimensional model
representations (HDMR), has been introduced recently for improving the efficiency of deducing high-
dimensional input-output system behavior. HDMR is a particular family of representations where each term
in the representation reflects the independent and cooperative contributions of the inputs upon the output.
When data are randomly sampled, a RS (random sampling)-HDMR can be constructed. To reduce the sampling
effort, different analytical basis functions, such as orthonormal polynomials, cubic B splines, and polynomials
may be employed to approximate the RS-HDMR component functions. Only one set of random input-
output samples is necessary to determine all the RS-HDMR component functions, and a few hundred samples
may give a satisfactory approximation, regardless of the dimension of the input variable space. It is shown
in an example that judicious use of orthonormal polynomials can provide a sampling saving of∼103 in
representing a system compared to employing a direct sampling technique. This paper discusses these practical
approaches: their formulas and accuracy along with an illustration from atmospheric modeling.

1. Introduction

Many problems in science and engineering reduce to ef-
ficiently constructing a map of the relationship between high-
dimensional system input and output variables. The system may
be described by a mathematical model (e.g., typically a set of
differential equations), where the input variables might be
specified initial and/or boundary conditions, parameters, or
functions residing in the model, and the output variable(s) would
be the solution to the model or a functional of it. The input-
output (IO) behavior may also be based on observations in the
laboratory or field where a mathematical model cannot readily
be constructed for the system. In this case the IO system is
simply considered as a black box where the input consists of
the measured laboratory or field (control) variables and the
output(s) is the observed system response. Regardless of the
circumstances, the input is often very high dimensional with
many variables even if the output is only a single quantity. We
refer to the input variables collectively asx ) (x1, x2, ..., xn),
with n ranging up to∼102 to 103 or more, and the output as
f (x). For simplicity in the remainder of the paper and without
loss of generality, we shall refer to the system as a model
regardless of whether it involves modeling, laboratory experi-
ments, or field studies.

High-dimensional model representation (HDMR) is a general
set of quantitative model assessment and analysis tools for
capturing high-dimensional IO system behavior.1-5 As the
impact of the multiple input variables on the output can be
independent and cooperative, HDMR expresses the model output
f (x) as a finite hierarchical correlated function expansion in
terms of the input variables:

where the zeroth-order (i.e.,l ) 0) component functionf0 is a
constant representing the mean response tof (x), and the first-
order (i.e.,l ) 1) component functionfi(xi) gives the independent
contribution tof (x) by the ith input variable acting alone, the
second-order (i.e.,l ) 2) component functionfij(xi,xj) gives the
pair correlated contribution tof (x) by the input variablesxi and
xj, etc. The last termf12...n(x1,x2,...,xn) contains any residualnth-
order correlated contribution of all input variables.

A critical feature of the HDMR expansion is that its
component functions are optimal choices tailored to a given
f (x) over the entire desired domainΩ of x. Experience shows
that the high-order terms in the expansion often are negligible3

such that an HDMR expansion to second order

can provide a satisfactory description off (x) for many high-
dimensional systems when the input variables are properly
chosen.

Distinct, but formally equivalent, HDMR expansions, all of
the same structure as eq 1, may be constructed. When the input
data are randomly sampled, RS (random sampling)-HDMR
component functions can be constructed. For RS-HDMR, we
first rescale the variablesxi by some suitable transformations
such that 0e xi e 1 for all i. The output functionf (x) is then
defined in the unit hypercubeKn ) {(x1, x2, ...,xn)| 0 e xi e 1,
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f (x) ) f0 + ∑
i)1

n

fi(xi) + ∑
1ei<jen

fij(xi,xj) + ... +

∑
1ei1<...<ilen

fi1i2...il(xi1
,xi2

,...,xil
) + ... + f12...n(x1,x2,...,xn) (1)

f (x) ≈ f0 + ∑
i)1

n

fi(xi) + ∑
1ei<jen

fij(xi,xj) (2)
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i ) 1, 2, ...,n}. The component functions of RS-HDMR possess
the following forms:3

where dxi and dxij are just the product dx1dx2‚‚‚dxn without dxi

and dxidxj, respectively. Finally, the last termf12...n(x1,x2,...,xn)
is determined from the difference betweenf (x) and all the other
component functions in eq 1. The RS-HDMR component
functions satisfy the following condition: the integral of a
component function of RS-HDMR with respect to any of its
own variables is zero, i.e.,

which defines the orthogonality relation between two RS-HDMR
component functions as

The component functionsfi(xi), fij(xi,xj), ... are typically
provided numerically, at discrete values of the input variables
xi, xj, ... produced from sampling the output functionf (x) for
employment on the right-hand side (rhs) of eqs 3-5. Thus,
numerical data tables can be constructed for these component
functions, and the approximate value off (x) for an arbitrary
pointx can be determined from these tables by performing only
low-dimensional interpolation overfi(xi), fij(xi,xj), ....

To construct the numerical data tables for the RS-HDMR
component functions, one needs to evaluate the above integrals.
Evaluation of the high-dimensional integrals in the RS-HDMR
expansion may be carried out by Monte Carlo random sam-
pling.6 For instance,N samples of then-dimensional vectorx(s)

) (x1
(s), x2

(s), ..., xn
(s)) (s ) 1, 2, ...,N) are randomly generated

uniformly in Kn, and thenf0 is approximated by the average
value of f (x) at all x(s):

When N f ∞, an accurate value off0 can be obtained. Very
often the integrals converge quite fast, and a modest value of
N may give a very good result. Moreover, the approximation
of an integral by Monte Carlo sampling often does not depend
significantly on the dimensionn. This property is extremely
beneficial for high-dimension systems.

The direct determination of all RS-HDMR component func-
tions at different values ofxi, xj, ... by Monte Carlo integration
requires a large number of random samples.7 For example, to
determinefi(xi), different sets of random samples off (xi,xi) at
(xi,xi)(s) ) (x1

(s), x2
(s), ..., xi-1

(s), xi, xi+1
(s), ..., xn

(s)) with distinct
fixed values ofxi are needed, i.e.,

If the table mesh forxi takesmdistinct values, thenmNrandom
samples are necessary to construct thefi(xi) numerical table.

Similarly, to construct thefij(xi,xj) numerical table, different
sets of random samples off (xi,xj,xij) at (xi, xj, xij)(s) ) (x1

(s),
x2

(s), ..., xi-1
(s) , xi, xi+1

(s) , ..., xj-1
(s) , xj, xj+1

(s) , ..., xn
(s)) with distinct

fixed values of (xi, xj) are needed, i.e.,

If the table meshes for bothxi and xj take m distinct values,
then m2N random samples are necessary to construct thefij-
(xi,xj) table. The required number of random samples increases
exponentially with the order of the required RS-HDMR
component functions. Thus, the direct approach is prohibitively
expensive for the construction of high-order RS-HDMR com-
ponent function numerical tables.

To reduce the sampling effort, the RS-HDMR component
functions may be approximated by expansions in terms of a
suitable set of functions, such as orthonormal polynomials, spline
functions, or even simple polynomial functions:5

wherek, l, l′ are integers,Rr
i , âpq

ij are constant coefficients to be
determined, andær(xi), æpq(xi, xj) are one- and two-variable basis
functions. With these formulas, eq 1 can be expressed as

Each coefficientê ∈ {Rr
i , âpq

ij , ...} may be determined by
minimization of the functional

When the basis functions with different numbers of variables
are orthogonal, i.e.,

f0 ) ∫Knf (x) dx (3)

fi(xi) ) ∫Kn-1f (x) dxi - f0 (4)

fij(xi,xj) ) ∫Kn-2f (x) dxij - fi(xi) - fj(xj) - f0 (5)

...

∫0

1
fi1i2...il(xi1

,xi2
,...,xil

) dxs ) 0 s∈ {i1, i2, ..., i l} (6)

∫Knfi1i2...il(xi1
,xi2

,...,xi l
)fj1j2...jk(xj1

,xj2
,...,xjk

) dx ) 0 (7)

{i1, i2, ..., i l} * {j1, j2, ..., jk}

f0 ) ∫Knf (x) dx ≈ 1

N
∑
s)1

N

f (x(s)) (8)

fi(xi) ) ∫Kn-1f (x) dxi - f0

≈ 1

N
∑
s)1

N

f ((xi,x
i)(s)) -

1

N
∑
s)1

N

f (x(s)) (9)

fij(xi, xj) ) ∫Kn-2f (x) dxij - fi(xi) - fj(xj) - f0

≈ 1

N
∑
s)1

N

f ((xi,xj,x
ij)(s)) -

1

N
∑
s)1

N

f ((xi,x
i)(s)) -

1

N
∑
s)1

N

f ((xj,x
j)(s)) +

1

N
∑
s)1

N

f (x(s)) (10)

fi(xi) ≈ ∑
r)1

k

Rr
i ær(xi) (11)

fij(xi,xj) ≈ ∑
p)1

l

∑
q)1

l′

âpq
ij æpq(xi,xj) (12)

...

f (x) ≈ f0 + ∑
i)1

n

∑
r)1

k

Rr
i ær(xi) + ∑

1ei<jen
∑
p)1

l

∑
q)1

l′

âpq
ij æpq(xi,xj) + ...

(13)

min
ê∈{Rr

i ,âpq
ij ,...}

∫Kn[f (x) - f0 - ∑
i)1

n

∑
r)1

k

Rr
i ær(xi) -

∑
1ei<jen

∑
p)1

l

∑
q)1

l′

âpq
ij æpq(xi,xj) - ...]2 dx (14)

∫Knær1r2...rp
(xi1

,xi2
,...,xip

)æs1s2...sq
(xj1

,xj2
,...,xjq

) dx ) 0 (15)

(p * q)
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the approximations for the RS-HDMR component functions
given by eqs 11 and 12 will preserve the mutual orthogonality
in eq 7, and eq 14 is equivalent to

Then each set of coefficients for the basis functions with the
same variables can be obtained by solving a linear equation

whereA is a constant nonsingular matrix,b is a vector whose
elements are integrals over a product off (x) times the basis
functions, andy is the vector of coefficients for the basis
functions associated with the same variables. For example,
considerRr

i . In this case, the (r, r′)-entry of A is

and

Substituting eq 9 into eq 21 yields

As no restriction is imposed on the values of the elements ofx
for f (x) in the above integrals, only one set of random samples
for f (x) is necessary to determine the elements ofb by Monte
Carlo integration. All the coefficientsRr

i are given byA-1b,
and thenfi(xi) is obtained. The linear equation forâpq

ij can be
constructed similarly, andfij(xi,xj) will be obtained from the same
set of random samples. The sampling effort is then dramatically
reduced. This paper will discuss different analytical basis
functions, including orthonormal polynomials, cubic B splines,
and polynomials for approximating the RS-HDMR component
functions.

The paper is organized as follows. In section 2 the direct
determination of the RS-HDMR component functions by Monte
Carlo integration is presented and the results will be used in a
comparison with the following analytical basis function ap-
proximations. Sections 3-5 respectively present the approxima-
tions with orthonormal polynomials, cubic B spline functions
and polynomial functions. Finally, section 6 contains conclusions
and a discussion.

2. Direct Determination by Monte Carlo Integration
The direct determination of RS-HDMR component functions

f0, fi(xi), ... by Monte Carlo integration at discrete values ofxi,

xj, ... are performed by eqs 8-10 and other similar formulas
for higher order component functions. Because the error of
Monte Carlo integration decreases as∼1/xN, the accuracy of
the resultant RS-HDMR component functions depends on the
sample sizeN.6 Therefore, for a given application, we need first
to find the sample size that will give the desired accuracy.

For illustration consider the following example: a zero-
dimensional photochemical box model designed to treat the
ozone chemistry in the background troposphere for the study
of 3-dimensional global chemical-transport.8 This box model
consists of 63 reactions and 28 chemical species. Using this
box model the rates of ozone productionP and destructionD
are calculated and incorporated into the overall 3-dimensional
model. The details of this process are not relevant here, but the
box model provides a good testing ground for the construction
of RS-HDMR component functions. The rates of ozone produc-
tion P and destructionD are chosen as two output variables
controlled by the four independent input variablesx ) (x1, x2,
x3, x4) corresponding to the concentrations of four precursors:
H2O, CO, NOx, and O3. The ranges of the four inputs are shown
in Table 1.

The data were generated for a set of 5000 random samples
of x(s), as well as for given distinct valuesxi or (xi, xj) also with
5000 random samples for (xi, xi)(s) or (xi, xj, xij)(s) (s) 1-5000).
These samples were chosen within the ranges in Table 1
generated by quasi-random sampling.6 The corresponding
outputsP andD at x(s), (xi,xi)(s) or (xi, xj,xij)(s) are obtained by
solving the differential equations of the box model. Using these
data, the RS-HDMR component functions up to second-order
f0, fi(xi), fij(xi,xj) for the outputsP andD are constructed by eqs
8-10 at different sample sizes (1000-5000). The results forf0
are given in Table 2. Some results forf3(x3) and f13(x1,x3) are
shown in Figures 1 and 2. Table 2 and Figures 1 and 2 show
that the resultantf0, f3(x3) and f13(x1,x3) coincide very well for
different sample sizes. This implies that a data set of 1000
samples already gives a convergent result. The results for other
component functions are similar.

To attain a quantitative estimate for the accuracy of the
collective RS-HDMR component functions, the second-order
RS-HDMR approximations forP and D given by eq 2 were
compared to the exact solutions obtained from 53 312 box-
modelruns that uniformly covered the full region of the
4-dimensional input variable space. The component functions
of the second-order RS-HDMR were constructed from different
sample sizes. The results in Table 3 show that there is no
significant difference between the second-order RS-HDMR
approximations whose component functions are obtained from
different sample sizes. This implies that Monte Carlo integration
converges quite fast and a few thousand random samples can
give reliable results.

min
Rr

i ∫0

1
[fi(xi) - ∑

r)1

k

Rr
i ær(xi)]

2 dxi (16)

min
âpq

ij ∫0

1∫0

1
[fij(xi,xj) - ∑

p)1

l

∑
q)1

l′

âpq
ij æpq(xi,xj)]

2 dxi dxj (17)

...

Ay ) b (18)

Arr ′ ) ∫0

1
ær(xi)ær′(xi)dxi r, r′ ) 1, 2, ...,k (19)

y ) (R1
i R2

i ...Rk
i )T (20)

b ) (∫0

1
fi(xi) æ1(xi) dxi

∫0

1
fi(xi) æ2(xi) dxi

l

∫0

1
fi(xi) æk(xi) dxi

) (21)

b ) (∫Knf (x) æ1(xi) dx

∫Knf (x) æ2(xi) dx

l

∫Knf (x) æk(xi) dx
) ≈ 1

N
∑
s)1

N (f (x(s)) æ1(xi
(s))

f (x(s)) æ2(xi
(s))

l
f (x(s)) æk(xi

(s)) ) (22)

TABLE 1: Ranges of Input Variables

input lower bound upper bound

relative humidity,x1 (%) 5 100
CO,x2 (ppb) 10 200
NOx, x3 (ppt) 50 950
O3, x4 (ppb) 10 150

TABLE 2: Constant f0 for P and D Obtained from Different
Sample Sizes

sample size (N) P (ppb/day) D (ppb/day)

1000 18.4 24.7
3000 18.4 24.7
5000 18.4 24.8
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Compared to the 53 312 exact results, all the second-order
RS-HDMR approximations, whose component functions were
constructed from different sample sizes, have more than 88%
and 97% of the tested points with relative errors less than
5% for P and D, respectively. The accuracy is quite satis-
factory. As the values off0, fi(xi), andfij(xi,xj) have converged,
in the following analytical basis function approximations,
the RS-HDMR component functions up to the second order
obtained by Monte Carlo integration with 5000 random samples
will be used as a standard for comparison. Note that according
to the meshes used for the four inputs, all together 1 454 000

or 7 270 000 random samples are needed to construct the
RS-HDMR component functions up to second order when 1000
or 5000 points are respectively used in the Monte Carlo
integration. If the third-order RS-HDMR component functions
are also constructed in the same way, the required number of
random samples are even bigger. Thus, the direct determina-
tion of RS-HDMR component functions by Monte Carlo
integration is prohibitively expensive for use in many high-
dimensional systems. The procedures introduced below dramati-
cally reduce the necessary sample size while retaining excellent
accuracy.

Figure 1. Functionf3(x3) for outputsP andD constructed from different sample sizes.

Figure 2. Functionf13(x1,x3) for outputsP andD constructed from different sample sizes.
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3. Orthonormal Polynomial Approximation
Orthonormal polynomials were used as analytical basis

functions to approximate the RS-HDMR component functions.
The polynomialsæk(x) in the domain [a, b] are referred to as
orthonormal when they satisfy

i.e., they have a zero mean and unit norm and are mutually
orthogonal. For the domain [0, 1], the orthonormal polynomials
can be readily constructed from the above conditions:

Using this set of basis functions, the RS-HDMR component
functionsfi(xi), fij(xi,xj), ... are represented as eqs 11 and 12 with

and Using the orthonormality property of the polynomials, the

A matrices forRr
i , âpq

ij , ... in eq 18 are all identity matrices, and
then

The accuracy of orthonormal polynomial approximation depends
on the order of orthonormal polynomials used. In many cases,
to achieve adequate accuracy usingæ1(x), æ2(x), andæ3(x) is
sufficient (i.e.,k, l, l′e3). Because Monte Carlo integration is
employed in eqs 31 and 32, the accuracy also depends on the
sample size. Thus, different sample sizes and different orders
of orthonormal polynomials were used to determine the coef-
ficients Rr

i and âpq
ij , and consequently the RS-HDMR compo-

nent functions up to second order so that a comparison can be
made with the results given by direct determination of Monte
Carlo integration in section 2. Similarly, the accuracy of the
resultant second-order RS-HDMR approximations whose com-
ponent functions were approximated by orthonormal polynomi-
als was determined by comparison with the previously men-
tioned 53 312 exact data. The results are shown in Table 4.

Table 4 shows that combining linear and quadratic (i.e.,k, l,
l′ ) 2) orthonormal polynomials gives the best results. When
N ) 5000, the accuracy is similar to that of direct determination
by Monte Carlo integration (i.e., compare with Table 3). The
accuracy is poor when only linear polynomials (i.e.,k, l, l′ )
1) are used. When the sample sizeN is small, Monte Carlo
integration has large errors. This error may cause a poor
approximation forfi(xi) and especially forfij(xi, xj). As the third-
order (linear, quadratic, and cubic) polynomial expansion (i.e.,
k, l, l′ ) 3) has more terms (4× 3 ) 12 for fi(xi); 6 × 3 × 3
) 54 for fij(xi, xj)) than the second-order (linear and quadratic)
polynomial expansion (4× 2 ) 8 for fi(xi); 6 × 2 × 2 ) 24 for
fij(xi,xj)), and each term has its own Monte Carlo integration
error, the third-order polynomial expansion often has large errors
whenN is small. When the sample size becomes large and the
Monte Carlo integration error becomes small, the accuracy given
by the third-order polynomial expansion can be better than the
second-order one. This behavior is observed in Figure 3, which
gives thef3(x3) for P andD obtained from different sample sizes
and orders of orthonormal polynomials.

There are oscillations around the exact values forf3(x3) of D
when the third-order orthonormal polynomial expansion is used
with small sample sizes. These oscillations introduce large
errors. When the second-order orthonormal polynomial expan-
sion is used, there is no such oscillation even if the sample size
is smaller than 1000. This is the reason high-order polynomial
expansions (i.e.,k, l, l′ > 3) may not be suitable for approxima-

TABLE 3: Relative Errors of Second-Order RS-HDMR
Approximationsa

data portion (%)b

sample size (N) relative error (%) P D

1000 5 88.0 97.3
10 96.7 99.4
20 99.2 99.9

3000 5 88.5 97.4
10 96.7 99.4
20 99.2 99.9

5000 5 88.1 97.1
10 96.6 99.4
20 99.2 99.9

a The component functions are obtained from different sample sizes.
b The percentage of 53 312 data with a relative error not larger than a
given value.

∫a

b
æk(x) dx ) 0 k ) 1, 2, ... (23)

∫a

b
æk

2(x) dx ) 1 k ) 1, 2, ... (24)

∫a

b
æk(x) æl(x) dx ) 0 k * l (25)

æ1(x) ) x3(2x - 1) (26)

æ2(x) ) 6x5(x2 - x + 1
6) (27)

æ3(x) ) 20x7(x3 - 3
2
x2 + 3

5
x - 1

20) (28)

...

æpq(xi,xj) ) æp(xi) æq(xj) (29)

f (x) ≈ f0 + ∑
i)1

n

∑
r)1

k

Rr
i ær(xi) +

∑
1ei<jen

∑
p)1

l

∑
q)1

l′

âpq
ij æpq(xi) æq(xj) + ... (30)

Rr
i ) ∫Knf (x) ær(xi) dx ≈ 1

N
∑
s)1

N

f (x(s)) ær(xi
(s)) (31)

âpq
ij ) ∫Knf (x) æp(xi) æq(xj) dx ≈ 1

N
∑
s)1

N

f (x(s)) æp(xi
(s)) æq(xj

(s))

(32)
...

TABLE 4: Comparison between Second-Order RS-HDMR
Approximations Whose Component Functions Were
Obtained from Different Sample SizesN and Different
Orders of Orthonormal Polynomial Expansions

data portion (%)a

5%b 10%b 20%b
expansion

order
sample size

(N) P D P D P D

k, l, l′ ) 3 500 57.1 34.6 78.3 59.6 91.7 80.2
1000 72.6 58.6 88.3 81.4 96.6 93.6
3000 85.9 86.4 95.7 95.5 99.1 99.2
5000 90.4 91.8 96.8 97.6 99.4 99.6

k, l, l′ ) 2 500 72.9 81.6 88.0 93.2 96.0 98.7
1000 87.0 82.1 94.9 92.8 98.7 97.5
3000 89.1 93.2 95.7 98.2 98.7 99.7
5000 90.4 94.4 96.7 98.9 99.3 99.9

k, l, l′ ) 1 500 35.2 68.5 72.2 84.4 87.9 92.3
1000 35.5 69.0 70.5 85.2 87.7 92.1
3000 34.9 67.7 69.0 85.1 87.4 92.3
5000 34.9 67.6 68.9 85.0 87.5 91.8

a The percentage of 53 312 data with a relative error not larger than
a given value.b Relative error.
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tion when Monte Carlo integration is involved. However, when
the sample size is 5000, there is no significant difference
between the accuracy of second- and third-order orthonormal
polynomial expansions.

To diminish the oscillations produced by high-order orthonor-
mal polynomial expansions, new objective functionals were
introduced that also minimize the second-order derivatives of
the approximation for a RS-HDMR component function. Writing
the orthonormal polynomials in a general form,

where a0, a1, b0, ..., c3 are constant coefficients, the new
functionals corresponding to eqs 16, 17, and 29 become

whereλi andλij are regularization weight parameters introduced
to damp out the oscillations in representing the component
functions.

For eq 36 andk ) 3, the minimization yields

Using the coefficients in eqs 26-28 the above equation is

Equation 39 shows that one can choose aλi to reduce the
contributions fromR2

i and especiallyR3
i .

Figure 4 gives the results off2(x2) for D with λ2 ) 0.9 ×
106/N3.

The oscillations around the exact value are diminished. As
the oscillations decrease with the sample sizeN, theλi’s were
chosen to be proportional to 1/N3 such that forN ) 5000
introducingλi has no significant influence on the results. Similar
results were obtained for otherfi(xi)’s.

Similarly, for eq 37 andl, l′ ) 3, the minimization yields

Figure 3. Functionf3(x3) for outputsP andD constructed from different sample sizes and different orders of orthonormal polynomials.

æ1(x) ) a1x + a0 (33)

æ2(x) ) b2x
2 + b1x + b0 (34)

æ3(x) ) c3x
3 + c2x

2 + c1x + c0 (35)

...

min
Rr

i ∫0

1
[fi(xi) - ∑

r)1

k

Rr
i ær(xi)]

2 dxi +

λi∫0

1
[∂2(∑

r)1

k

Rr
i ær(xi))/∂xi

2]2 dxi (36)

min
âpq

ij ∫0

1∫0

1
[fij(xi,xj) - ∑

p)1

l

∑
q)1

l′

âpq
ij æp(xi) æq(xj)]

2 dxi dxj +

λij ∑
s,t∈{i,j}

∫0

1∫0

1
[∂2(∑

p)1

l

∑
q)1

l′

âpq
ij æp(xi) æq(xj))/∂xs∂xt]

2 dxi dxj

(37)

...

(1 0 0
0 1 + 4b2

2λi 2b2(2c2 + 3c3)λi

0 2b2(2c2 + 3c3)λi 1 + 4λi(c2
2 + 3c2c3 + 3c3

2) )(R1
i

R2
i

R3
i ) )

(∫0

1
fi(xi) æ1(xi) dxi

∫0

1
fi(xi) æ2(xi) dxi

∫0

1
fi(xi) æ3(xi) dxi

) (38)

(1 0 0
0 1 + 720λi 0
0 0 1 + 8400λi )(R1

i

R2
i

R3
i ) ) (∫0

1
fi(xi) æ1(xi) dxi

∫0

1
fi(xi) æ2(xi) dxi

∫0

1
fi(xi) æ3(xi) dxi

) (39)

Aâ ) b (40)

where
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Equation 41 shows that for a givenλij the oscillations related
to high-order orthonormal polynomialsæk(xi) andæk(xj) can be
managed.

Table 5 gives the results of simultaneously minimizing the
second-order derivatives of third-order orthonormal polynomial
expansions for the second-order RS-HDMR approximation.

The regularization parametersλi andλij were determined in
two steps. First, a value forλi or λij was chosen to damp out
the oscillation for the corresponding functionsfi(xi) or fij(xi,xj).
Second, the resultant values ofλi andλij were adjusted to achieve
the best accuracy of the resultant second-order RS-HDMR
approximation for theN samples. Althoughλi and λij were
determined only from theN samples, Table 5 shows that the
resultant second-order RS-HDMR approximation has excellent
accuracy for the 53 312 data that uniformly cover the whole
desired domain ofx. This implies that choosing the values of
λi and λij from small samples can ensure the accuracy of the
second-order RS-HDMR approximation in the whole domain
of x. The results in Table 5 show that the accuracy of the
orthonormal polynomial approximation obtained even from
samples smaller than 1000 is better than that given by direct
determination of Monte Carlo integration in Table 3 (the only
exception isD with a relative error not larger than 5%. The
reason is that some of the exact data ofD are very small, and
the orthonormal polynomial approximation can have relative
errors larger than 5% for these data).

All the above results were obtained by using the orthonor-
mality property ofær(xi); i.e., the matrixA is an identity matrix.
If the integrals∫ær(xi)æ′r(xi) dxi, ∫ær(xi) ær′(xj) dxi dxj, ∫ær(xi)
æp(xi) æp(xj) dxi dxj, ... are also approximated by Monte Carlo
integration, then the matrixA is no longer an identity matrix,
but a symmetric one with diagonal elements close to unity and
off-diagonal elements close to zero, and the coefficients{Rr

i ,
âpq

ij , ...} will be determined by solving linear algebraic equa-
tions. Table 6 gives the accuracy of the resultant second-order
RS-HDMR approximations whose coefficients were determined

either by solving a single linear algebraic equation for allRr
i ,

âpq
ij corresponding to allfi(xi) andfij(xi,xj) simultaneously or by

solving two linear algebraic equations forRr
i corresponding to

all fi(xi) and âpq
ij corresponding to allfij(xi,xj) separately. The

RS-HDMR component functions were approximated by third-
order orthonormal polynomial expansions, and different sample
sizesN were tested.

The results of Table 6 show that, compared to Table 4 without
simultaneously minimizing the second-order derivatives, only
considering the coupling of the coefficients within each order
of RS-HDMR functions does not improve the accuracy.
Considering the coupling of allRr

i , âpq
ij gives a better result, but

it is generally worse than the result obtained by simultaneously
minimizing the second-order derivatives (see the results of Table
5). Moreover, for a largen the matrixA will be very big, and
solving high-dimensional algebraic equations is not computa-
tionally efficient.

As less than 1000 samples are necessary in the orthonormal
polynomial approximation with regularization, compared to
1 454 000 or 7 270 000 samples in direct determination of Monte
Carlo integration, the computational saving is very significant.
Hence, the orthonormal polynomial approximation with regu-
larization provides a practical way to construct RS-HDMR
component functions.

4. Spline Function Approximation

Polynomial spline functions9,10 can be used as another basis
for approximating the RS-HDMR component functionsfi(xi),
fij(xi,xj), .... Cubic B splinesBk(x) (k ) -1, 0, ...,m+ 1) defined
in interval [a, b]

where

A )

{1 + 144λij 0 48x21λij 0 0 0 48x21λij 0 336λij

0 1 + 144λij 0 0 0 0 0 240x21λij 0

48x21λij 0 1 + 10416λij 0 0 0 336λij 0 672x21λij

0 0 0 1 + 144λij 0 240x21λij 0 0 0
0 0 0 0 1 + 5040λij 0 0 0 0
0 0 0 240x21λij 0 1 + 19200λij 0 0 0

48x21λij 0 336λij 0 0 0 1 + 10416λij 0 672x21λij

0 240x21λij 0 0 0 0 0 1 + 19200λij 0

336λij 0 672x21λij 0 0 0 672x21λij 0 1 + 45024λij

}
(41)

â ) (â11
ij â12

ij ‚‚‚â32
ij â33

ij )T (42)

b ) (∫0

1∫0

1
fij(xi,xj) æ1(xi) æ1(xj) dxi dxj

∫0

1∫0

1
fij(xi,xj) æ1(xi) æ2(xj) dxi dxj

l

∫0

1∫0

1
fij(xi,xj) æ3(xi) æ2(xj) dxi dxj

∫0

1∫0

1
fij(xi,xj) æ3(xi) æ3(xj) dxi dxj

) (43)

Bk(x) ) 1

h3
×

{(yk+2 - x)3 yk+1 < x e yk+2

(yk+2 - x)3 - 4(yk+1 - x)3 yk < x e yk+1

(yk+2 - x)3 - 4(yk+1 - x)3 + 6(yk - x)3 yk-1 < t e yk

(yk+2 - x)3 - 4(yk+1 - x)3 +6(yk - x)3 - 4(yk-1 - x)3 yk-2 < x e yk-1

0 otherwise
}

(44)

h ) b - a
m

(45)

yk ) a + kh (46)
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were tested for this purpose. When the domain ofx is a unit
hypercubeKn,

The first and second-order RS-HDMR component functions
fi(xi) and fij(xi,xj) can be approximately expanded as

whereRr
i andâpq

ij are constant coefficients to be determined.
The cubic B splines with different variables are not mutually

orthogonal. However, one cannot determine all the coefficients
Rr

i and âpq
ij simultaneously because the matrixA is singular.

The singularity arises because for differentxi the cubic B splines
have the same form. Similar to the orthonormal polynomial
approximation, only considering the coupling within each order
of the RS-HDMR functions gives unsatisfactory results. There-
fore, theRr

i and âpq
ij are still obtained by minimization of eqs

16 and 17. Then,Rr
i can be obtained by solving the linear

equationAR ) b:

whereA is an (m + 3) × (m + 3) symmetric and nonsingular
matrix whose (k, l)-entry

Using the definition offi(xi) given in eq 4, eq 51 can be
expressed as

The integrals∫Bk(xi) dxi and∫Bk(xi) Bl(xi) dxi contained in eqs
52 and 53 can be readily determined by using the definition eq
44. ThenR is given byA-1b. As Monte Carlo integration has
been used in eq 53, and the accuracy of cubic B splines
approximation depends on the number of subintervalsm, the
accuracy of the resultantfi(xi) is related to sample sizeN and

Figure 4. Function f2(x2) for output D constructed from different
sample sizes with a third-order orthonormal polynomial expansion using
λ2 ) 0.9 × 106/N3.

TABLE 5: Comparison between Second-Order RS-HDMR
Approximations Whose Component Functions Were
Obtained from Different Sample SizesN Using Third-Order
Orthonormal Polynomial Expansions While Simultaneously
Minimizing the Second-Order Derivatives

data portion (%)a

5%b 10%b 20%b
tested
data

sample size
(N) P D P D P D

N 500 79.6 85.0 92.2 94.4 97.4 98.4
1000 85.1 89.3 95.2 97.4 97.8 99.9
3000 87.1 93.3 95.8 98.4 97.9 99.8
5000 88.0 94.6 95.8 98.6 98.2 99.5

53 312 500 92.8 93.0 99.5 98.3 100 99.5
1000 93.9 94.3 99.5 99.6 100 100
3000 95.0 96.7 99.7 99.8 100 100
5000 96.8 97.1 100 99.8 100 100

a The percentage of tested data with a relative error not larger than
a given value.λi/N3: for P, λ1 ) 0.9× 104, λi ) 0.0 (i ) 2, 3, 4); for
D, λ1 ) 0.0, λ2 ) 0.7 × 106, λ3 ) 0.4 × 105, λ4 ) 0.1 × 105. λij/N3:
for P, λ12 ) 0.9× 106, λ13 ) 0.9× 104, λ14 ) 0.9× 109, λ23 ) 0.1×
106, λ24 ) 0.2 × 108, λ34 ) 0.0; for D, λ12 ) 0.1 × 108, λ13 ) 0.2 ×
107, λ14 ) 0.2 × 105, λ23 ) 0.7 × 107, λ24 ) 0.7 × 104, λ34 ) 0.1 ×
105. b Relative error.

h ) 1
m

(47)

yk ) k
m

(48)

fi(xi) ≈ ∑
r)-1

m+1

Rr
iBr(xi) (49)

fij(xi,xj) ≈ ∑
p)-1

m+1

∑
q)-1

m+1

âpq
ij Bp(xi) Bq(xj) (50)

...

TABLE 6: Comparison between Second-Order RS-HDMR
Approximations Whose Component Functions Were
Obtained from Different Sample SizesN and Using
Third-Order Orthonormal Polynomial Expansions Where
the Integrals of the Orthonormal Polynomials Were
Approximated by Monte Carlo Integration

data portion (%)a

5%b 10%b 20%b
determination of

Rr
i ,âpq

ij
sample size

(N) P D P D P D

simultaneously 500 91.1 95.6 96.6 99.3 99.1 99.9
1000 91.0 95.9 96.5 99.2 99.2 99.9
3000 91.4 95.5 96.8 99.2 99.2 99.9
5000 91.5 95.6 96.8 99.2 99.3 99.9

separately 500 50.5 40.4 75.5 63.5 91.6 82.3
1000 66.8 57.9 85.5 80.7 94.8 93.5
3000 86.2 80.2 95.5 92.8 99.2 98.7
5000 90.5 90.2 96.7 97.0 99.3 99.5

a The percentage of 53 312 data with a relative error not larger than
a given value.b Relative error.

A(R-1
i

R0
i

l
Rm+1

i ) ) (∫0

1
fi(xi) B-1(xi) dxi

∫0

1
fi(xi) B0(xi)dxi

l

∫0

1
fi(xi) Bm+1(xi) dxi

) (51)

Akl ) ∫0

1
Bk(xi) Bl(xi) dxi k, l ) -1, 0, ...,m + 1 (52)

A (R-1
i

R0
i

l
Rm+1

i ) ) (∫Knf (x) B-1(xi) dx - f0∫0

1
B-1(xi) dxi

∫Knf (x) B0(xi) dx - f0∫0

1
B0(xi) dxi

l

∫Knf (x) Bm+1(xi) dx - f0∫0

1
Bm+1(xi) dxi

)
≈ 1

N
∑
s)1

N (f (x(s)) B-1(xi
(s)) - f (x(s))∫0

1
B-1(xi) dxi

f (x(s)) B0(xi
(s)) - f (x(s))∫0

1
B0(xi) dxi

l
f (x(s)) Bm+1(xi

(s)) - f (x(s))∫0

1
Bm+1(xi) dxi

) (53)
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the value of m. The coefficientsâkl
ij can be determined

similarly. In this case, the elements ofA andb are the integrals
∫∫Bp(xi) Bq(xj) Br(xi) Bs(xj) dxi dxj and∫∫fij(xi,xj) Bp(xi) Bq(xj)
dxi dxj, respectively. To save space, the formulas are not given
here. The cubic B splines approximation was applied to the same
model used for testing orthonormal polynomial approximations.
fi(xi) and fij(xi,xj) were expanded by eqs 49 and 50. Different
sample sizes (1000-5000) and numbers of subintervals (m )
2-4) were tested.

The results forf3(x3) and f13(x1,x3) of P andD are given in
Figures 5 and 6, respectively. The other component functions
have similar figures. The figures show that the convergence is
good and the resultantf3(x3) are close to those given by direct
Monte Carlo integration with 5000 points. Forf13(x1,x3),
oscillations around the exact values can be observed, especially
when the sample size is small. Moreover, large errors occur at
the end of the interval. The resultant second-order RS-HDMR
approximations were compared to the table of exact solutions
obtained from 53 312 box-model runs. The results are shown
in Tables 7-9.

Notice thatBk(x) may vanish on some subintervals. Thus,
only part of theN data are actually used forf (x(s)) in Monte
Carlo integration∑s)1

N f (x(s)) Bk(x(s)
i)/N, which is proportional

to 1/m. Therefore, for a given sample sizeN, largemmay yield
poor accuracy. The results in Tables 7-9 show thatm) 2 gives
the best approximation. Compared to the results of orthonormal
polynomial approximation without regularization (see Table 4),
its accuracy is a little worse forN ) 5000, but much worse for
smallN. Whenm is larger, the accuracy becomes even worse.
Like the orthonormal polynomial approximation, simultaneously

Figure 5. Functionf3(x3) for outputsP andD constructed from different sample sizes and cubic B splines with two to four subintervals.

TABLE 7: Comparison between Second-Order RS-HDMR
Approximations Whose Component Functions Were
Obtained from Different Sample SizesN and m ) 2 Cubic B
Splines Approximation

data portion (%)a

sample size (N) relative error (%) P D

1000 5 45.7 33.8
10 69.1 57.4
20 86.3 79.5

3000 5 83.7 69.7
10 93.7 87.3
20 98.1 96.5

5000 5 88.6 84.5
10 95.9 94.7
20 98.8 98.8

a The percentage of 53 312 data with a relative error not larger than
a given value.
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minimizing the second-order derivatives of the cubic B splines
approximation will increase the accuracy and damp out the
large error at the end of the interval. However, considering
that (1) the cubic B splines are not an orthogonal basis,
(2) only part ofN is used for the determination of the para-
metersRr

i and âpq
ij , and (3) the cubic B spline approximation

has more terms (m + 3 for fi(xi), (m + 3)2 for fij(xi,xj)) than

the orthonormal polynomial approximation (usually, 3 forfi-
(xi), 9 for fij(xi,xj)), especially for largem and each term has
the Monte Carlo integration error (more terms result in larger
total error in the approximation), we do not expect that the
regularized cubic B splines approximation can have better
accuracy than the regularized orthonormal polynomial ap-
proximation.

Figure 6. Functionf13(x1,x3) for outputsP andD constructed from different sample sizes and cubic B splines with two subintervals.

TABLE 8: Comparison between Second-Order RS-HDMR
Approximations Whose Component Functions Were
Obtained from Different Sample SizesN and m ) 3 Cubic B
Splines Approximation

data portion (%)a

sample size (N) relative error (%) P D

1000 5 26.9 24.2
10 49.2 45.0
20 73.6 69.5

3000 5 68.4 57.0
10 85.1 79.2
20 94.0 92.3

5000 5 71.5 72.4
10 86.8 88.2
20 94.9 96.2

a The percentage of 53 312 data with a relative error not larger than
a given value.

TABLE 9: Comparison between Second-Order RS-HDMR
Approximations Whose Component Functions Were
Obtained from Different Sample SizesN and m ) 4 Cubic B
Splines Approximation

data portion (%)a

sample size (N) relative error (%) P D

1000 5 27.4 23.1
10 49.9 42.8
20 75.1 66.4

3000 5 64.7 51.4
10 83.0 74.3
20 92.8 89.4

5000 5 72.0 68.0
10 86.3 84.7
20 94.8 94.8

a The percentage of 53 312 data with a relative error not larger than
a given value.
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5. Polynomial Approximation

The RS-HDMR component functions can be directly ap-
proximated by polynomial functions,

Similar to the cubic B spline approximation, for the polynomial
approximation the matrixA is singular, even if allRr

i , âpq
ij

corresponding to allfi(xi) and fij(xi,xj) are determined simulta-
neously or ifRr

i corresponding to allfi(xi) andâpq
ij correspond-

ing to all fij(xi,xj) are determined separately. Therefore, the
constant coefficientsRk

i and âkl
ij were approximately deter-

mined by minimizing the integrals

Linear equations for coefficientsRr
i and âpq

ij can be obtained
from these minimizations. For eq 56 the minimization gives

where

and

As A is symmetric and nonsingular,R is given byA-1b. The
calculation procedures are similar to cubic B splines approxima-
tions. The coefficientsâpq

ij can be determined similarly.
Different sample sizes and different orders of polynomials

were used for the polynomial approximations. The best results
for fi(xi) andfij(xi,xj) in the zero-dimensional photochemical box

model are given by the following polynomials:

The coefficientsRr
i andâpq

ij , and consequently the RS-HDMR
component functions up to second order, were determined so
that the comparison with the results given by direct determi-
nation of Monte Carlo integration can be made. Results forf3-
(x3) and f13(x1,x3) for P andD obtained from different sample
sizes are given in Figures 7 and 8, respectively. Other component
functions have similar behavior. The figures show that the
convergence is good. When the sample size is 5000, the resultant
fi(xi) andfij(xi,xj) are close to those given by direct Monte Carlo
integration with 5000 points. Infij(xi,xj), the error is larger for
D on the boundary of the input hypercube.

The accuracy of the resultant second-order RS-HDMR
approximations whose component functions were approximated
by polynomials was determined by comparison with the 53 312
exact data set. The results are given in Table 10, which shows
that the polynomial approximation has a better accuracy than
the cubic B spline approximation withm ) 2, especially when
the sample size is smaller than 5000, but it is worse than the
nonregularized orthonormal polynomial approximations (see
Table 4). Similarly, regularization will improve the accuracy
of the polynomial approximation. However, considering that
the polynomials with different numbers of variables are not
orthogonal, and that the nonregularized polynomial approxima-
tion is worse than nonregularized orthonormal polynomial
approximation, we do not expect that its regularization can
provide better accuracy than that for the regularized orthonormal
polynomial approximation.

6. Conclusions and a Discussion

HDMR is a general set of quantitative model assessment and
analysis tools for high-dimensional input-output systems. When
data are randomly sampled, an RS-HDMR can be constructed.
The RS-HDMR component functions involve high-dimensional
integrals that may be approximately calculated by Monte Carlo
integration. Because the direct determination of high-order RS-
HDMR component functions by Monte Carlo integration is
prohibitively expensive, analytical basis functions, including
orthonormal polynomials, cubic B spline functions, and poly-
nomials were employed to approximate RS-HDMR component
functions. With such basis functions, only one set of random
samples of the output is needed to determine all RS-HDMR
component functions. Thus, the sampling effort is dramatically
reduced. In a test example, the direct determination by Monte
Carlo integration needed millions of samples, but employing
the basis function approximations of the RS-HDMR component
functions needed only thousands or even hundreds of samples
with comparable accuracy. Therefore, analytical basis function
approximations form a practical approach for RS-HDMR
applications.

Three basis functions, orthonormal polynomials, cubic B
splines, and polynomials, were used for the approximation of
RS-HDMR component functions. The formulas to determine
the expansion coefficientsRr

i , âpq
ij , ... were constructed by

using the orthogonality offi(xi), fij(xi,xj), ..., and the determination
of the coefficients involves Monte Carlo integration approxima-

fi(xi) ) Ri
0 + Ri

1xi + Ri
2xi

2 (62)

fij(xi, xj) ) âij
00 + âij

10xi + âij
01xj + âij

20xi
2 + âij

02xj
2 + âij

11xixj +

âij
30xi

3 + âij
03xj

3 + âij
21xi

2xj + âij
12xixj

2 + âij
31xi

3xj + âij
13xixj

3 +

âij
22xi

2xj
2 (63)

fi(xi) ≈ ∑
r)0

k

Rr
i xi

r (54)

fij(xi,xj) ≈ ∑
p)0

l

∑
q)0

l′

âpq
ij xi

pxj
q (55)

...

min
Rk

i ∫0

1
[fi(xi) - ∑

r)0

k

Rr
ixi

r]2 dxi (56)

min
âkl

ij ∫0

1∫0

1
[fij(xi,xj) - ∑

p)0

l

∑
q)0

l′

âpq
ij xi

pxj
q]2 dxi dxj (57)

AR ) b (58)

A ) (1 1/2 ‚‚‚ 1/(k + 1)
1/2

1/3 ‚‚‚ 1/(k + 2)
‚‚‚ ‚‚‚

1/(k + 1) 1/(k + 2) ‚‚‚ 1/(2k + 2)
) (59)

R ) (R0
i R1

i ‚‚‚Rk
i )T (60)

b ) (∫0

1
fi(xi) dxi

∫0

1
fi(xi)xi dxi

l

∫0

1
fi(xi)xi

k dxi

) ) (0∫Knf (x) xi dx - f0∫0

1
xi dxi

l

∫Knf (x) xi
k dx - f0∫0

1
xi

k dxi
)

≈ 1

N
∑
s)1

N (0f (x(s))xi
(s) - f (x(s))/2

l
f (x(s))(xi

(s))k - f (x(s))/(k + 1)
) (61)
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tion whose error decreases as∼1/xN. Hence, the accuracy of
analytical basis approximations for RS-HDMR component
functions depends on the orthogonality of the basis functions
and the sample size used in the approximation. Orthonormal
polynomials provided the best accuracy. The cubic B spline
function approximation has the worst accuracy of the three basis
functions because it is not orthogonal and only uses a part of
theN in Monte Carlo integration points. Increasing the number
of subintervalsm often improved the accuracy for cubic B
splines in other problems. However, when Monte Carlo integra-
tion is involved, largem decreases the accuracy because the

fraction of data used inN is proportional to 1/m. Moreover, the
cubic B splines approximation has more terms and each term
has its own Monte Carlo integration error. Large terms cause a
large total approximation error. All these factors make the cubic
B splines approximation the worst one for the RS-HDMR
component functions. Polynomial approximation has an ac-
curacy in between. Simultaneous minimization of the second-
order derivatives of the approximate functions forfi(xi), fij(xi,xj),
... dramatically improved the accuracy of the approximation,
which can provide a sampling saving of∼103 in representing
a system compared to employing a direct sampling technique.

Figure 7. Functionf3(x3) for outputsP andD constructed from different sample sizes and polynomial approximation (eq 62).

Figure 8. Functionf13(x1,x3) for outputsP andD constructed from different sample sizes and polynomial approximation (eq 63).
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Thus, analytical basis function approximations with regulariza-
tion for RS-HDMR component functions form a practical
approach for the application of RS-HDMR.
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