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A general set of quantitative model assessment and analysis tools, termed high-dimensional model
representations (HDMR), has been introduced recently for improving the efficiency of deducing high-
dimensional inputoutput system behavior. HDMR is a particular family of representations where each term

in the representation reflects the independent and cooperative contributions of the inputs upon the output.
When data are randomly sampled, a RS (random sampling)-HDMR can be constructed. To reduce the sampling
effort, different analytical basis functions, such as orthonormal polynomials, cubic B splines, and polynomials
may be employed to approximate the RS-HDMR component functions. Only one set of random input
output samples is necessary to determine all the RS-HDMR component functions, and a few hundred samples
may give a satisfactory approximation, regardless of the dimension of the input variable space. It is shown
in an example that judicious use of orthonormal polynomials can provide a sampling savint0bfn
representing a system compared to employing a direct sampling technique. This paper discusses these practical
approaches: their formulas and accuracy along with an illustration from atmospheric modeling.

1. Introduction n
f(x)="f,+ ) f(x)+ fo(x,x) + ...+
Many problems in science and engineering reduce to ef- 0 =To & %) 1S;SH"( 'X‘)

ficiently constructing a map of the relationship between high- £o(x x Y+ 4+ f 1
dimensional system input and output variables. The system may 15i1<.._<i|gn'1'2""'()('1’)('2"")(") et n(Xp X0, %) (1)
be described by a mathematical model (e.qg., typically a set of
differential equations), where the input variables might be
specified initial and/or boundary conditions, parameters, or
functions residing in the model, and the output variable(s) would

be the solution to the model or a functional of it. The input o, hribytion tof (x) by theith input variable acting alone, the
output (10) behavior may also be based on observations in thesecond-order (i.el,= 2) component functiofy(x x) gives the

laboratory or field where a mathematical model cannot readily pair correlated contribution t(x) by the input variables; and

b_e C(I)nstruc_tgd fcc>jr the sty)/lstekmIS In thr:s cashe t_he 10 system '?x,-, etc. The last terrfnz_,_n(xl_,X2,... ) c_ontains any residuakh-
simply considered as a black box where the Input consists of o qer correlated contribution of all input variables.

the measured laboratory or field (control) variables and the = A itical feature of the HDMR expansion is that its
output(s) is the observed system response. Regardless of thg ., honent functions are optimal choices tailored to a given

circumstances, the input is often very high dimensional with f (x) over the entire desired domag® of x. Experience shows

many variables even if the output is only a single quantity. We 4 the high-order terms in the expansion often are negligible
refer to the input variables collectively as= (X1, X2, ..., Xn), such that an HDMR expansion to second order
with n ranging up to~10? to 1 or more, and the output as

f (x). For simplicity in the remainder of the paper and without n
loss of generality, we shall refer to the system as a model fo)~f+ $fx)+ Z fij(xi,xl_) 2)
=

where the zeroth-order (i.d.= 0) component functioify is a
constant representing the mean respondexpy and the first-
order (i.e.] = 1) component functiofi(x) gives the independent

regardless of whether it involves modeling, laboratory experi-
ments, or field studies.

High-dimensional model representation (HDMR) is a general can provide a satisfactory description fafk) for many high-
set of quantitative model assessment and analysis tools fordimensional systems when the input variables are properly
capturing high-dimensional 10 system behaviotr.As the chosen.
impact of the multiple input variables on the output can be  Distinct, but formally equivalent, HDMR expansions, all of
independent and cooperative, HDMR expresses the model outputhe same structure as eq 1, may be constructed. When the input
f(x) as a finite hierarchical correlated function expansion in data are randomly sampled, RS (random sampling)-HDMR

1<i<|=n

terms of the input variables: component functions can be constructed. For RS-HDMR, we
first rescale the variableg by some suitable transformations
t Princeton University. suc_h tha_lt O=x =1 for all i. The output functiorf (x) is then
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i=1,2,..,n}. The component functions of RS-HDMR possess
the following forms®

f,= ﬁ(nf (x) dx 3
(%) = frof 00 X' =, (4)
f06X) = [ of 00 X —F,00) —f(x) =T, (5)

where & and i are just the productxddxy:+-dx, without d;
and cidx;, respectively. Finally, the last terfiy. n(X1,X2,... Xn)

is determined from the difference betwddr) and all the other
component functions in eq 1. The RS-HDMR component
functions satisfy the following condition: the integral of a
component function of RS-HDMR with respect to any of its
own variables is zero, i.e.,

se{ip iy i} (6)

ﬁ)lfiliz...i‘()ﬁli)ﬁzi---Xi,) dx=0

which defines the orthogonality relation between two RS-HDMR
component functions as

Sl 062X, 106,00 6) X =0 (7)
{ig i i} Z {00 Jo it
The component function$(x), fj(x.x), ... are typically

provided numerically, at discrete values of the input variables
Xi, %, ... produced from sampling the output functibx) for
employment on the right-hand side (rhs) of egs53 Thus,

Li et al.

() = froaf 00 X' =,
1o i\(s) 1g ()
“@Zj ((6X)) = N;f «%

If the table mesh fox; takesm distinct values, themNrandom
samples are necessary to constructfiphg® numerical table.
Similarly, to construct thé;(x,x) numerical table, different
sets of random samples 6{x,x,x1) at (x, X, X1)©® = (x(9),
%29, oo X1, %, Xy X9, X, %) with distinet

fixed values of ¥, x) are needed, i.e.,

F06 %) = [ of 00 dX? = £i(x) = fi(x) — 1,
1N i 1N .
M X)) =55 (06 -
15y (X)) + = S f(x9) (10)
DALIERIDY

If the table meshes for botkh andx; take m distinct values,
then m?N random samples are necessary to constructfithe
(xi,%) table. The required number of random samples increases
exponentially with the order of the required RS-HDMR
component functions. Thus, the direct approach is prohibitively
expensive for the construction of high-order RS-HDMR com-
ponent function numerical tables.

To reduce the sampling effort, the RS-HDMR component
functions may be approximated by expansions in terms of a
suitable set of functions, such as orthonormal polynomials, spline
functions, or even simple polynomial functiohs:

k

fi(x) ~ Zakprm) (11)

numerical data tables can be constructed for these component

functions, and the approximate value fdf) for an arbitrary
pointx can be determined from these tables by performing only
low-dimensional interpolation ovei(x), fij(X.X), -...

To construct the numerical data tables for the RS-HDMR

component functions, one needs to evaluate the above integrals.

Evaluation of the high-dimensional integrals in the RS-HDMR

I
i (%) ~ ;;ﬂgqcppq(m) (12)

wherek, |, I' are integers, gq are constant coefficients to be

expansion may be carried out by Monte Carlo random sam- determined, angh(x), ¢pq(X;, ) are one- and two-variable basis

pling.® For instanceN samples of th@-dimensional vectox®

= (X9, X9, ...,x.®) (s= 1, 2, ...,N) are randomly generated
uniformly in K", and thenf is approximated by the average
value off (x) at all x©:

1 N
fo=flof 0 0~ 15 1<) ®)

WhenN — o, an accurate value df can be obtained. Very

often the integrals converge quite fast, and a modest value Ofge{a'r,ﬂ"

N may give a very good result. Moreover, the approximation

of an integral by Monte Carlo sampling often does not depend

significantly on the dimensiom. This property is extremely
beneficial for high-dimension systems.

The direct determination of all RS-HDMR component func-
tions at different values of, x;, ... by Monte Carlo integration
requires a large number of random sampl&ar example, to
determinefi(x;), different sets of random samplesfa(i,x) at
(%, X)E = (19, %9, ..., x-109, %, X+10, ..., X,®) with distinct
fixed values ofx; are needed, i.e.,

functions. With these formulas, eq 1 can be expressed as

f(x) ~ fo + iia‘rwm . > lzlzﬂngpq(m,m> + .
I=1r= <I<]=np=1g=

(13)

Each coefficienté e {air, ﬁgq,
minimization of the functional

} SeolF ) = To = iia‘rcprm) -

A,
Lo

ij DA ) T 2d 14

lﬁgﬁnpz‘qz‘ﬁpq%q(xn x) — .. dx (14)

When the basis functions with different numbers of variables
are orthogonal, i.e.,

..} may be determined by

min

Sy (5,500 X )P 6 (6,5, ) dX =0 (L5)
(p=q)
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the approximations for the RS-HDMR component functions
given by eqs 11 and 12 will preserve the mutual orthogonality
in eq 7, and eq 14 is equivalent to

k

min (1t (x) — S ol . (%)]2 dx. 16
i JALTEY) Z‘arcpr(x)] X (16)

o
Mo Jollit0%) = 3 5 Bl by (17)

1j
pq

Then each set of coefficients for the basis functions with the
same variables can be obtained by solving a linear equation

Ay =b (18)

whereA is a constant nonsingular matris,is a vector whose
elements are integrals over a productf@x) times the basis
functions, andy is the vector of coefficients for the basis

functions associated with the same variables. For example,

consideral. In this case, ther(r')-entry of A is

Ar = [ 0.00)@(x)dx

nr=1,2 ...k (19)

and

y = (oja...0op)" (20)

J1,06) (%) i

b= f/élfi(xi) Po(X) dx; (21)

1
JoT00) @) ax
Substituting eq 9 into eq 21 yields

Srof (%) 4(%)
b — | Jif 00 @2(x) o

f(x9) @4(x%)

Lo () (6
N

[ 00 gyx) dx f () ()

As no restriction is imposed on the values of the elemenis of
for f (x) in the above integrals, only one set of random samples
for f (x) is necessary to determine the elementb ofy Monte
Carlo integration. All the coefficients, are given byA~b,

and thenfi(x) is obtained. The linear equation fﬁgq can be
constructed similarly, anfj(x,x) will be obtained from the same

set of random samples. The sampling effort is then dramatically

reduced. This paper will discuss different analytical basis
functions, including orthonormal polynomials, cubic B splines,
and polynomials for approximating the RS-HDMR component
functions.

The paper is organized as follows. In section 2 the direct
determination of the RS-HDMR component functions by Monte

Carlo integration is presented and the results will be used in a

comparison with the following analytical basis function ap-
proximations. Sections-3b respectively present the approxima-
tions with orthonormal polynomials, cubic B spline functions
and polynomial functions. Finally, section 6 contains conclusions
and a discussion.

2. Direct Determination by Monte Carlo Integration

The direct determination of RS-HDMR component functions
fo, fi(x?), ... by Monte Carlo integration at discrete valuesof

J. Phys. Chem. A, Vol. 106, No. 37, 2002723

TABLE 1: Ranges of Input Variables

input lower bound upper bound
relative humidity x; (%) 5 100
CO, %2 (ppb) 200
NOx Xs (Ppt) 50 950
O3, X4 (ppb) 10 150

TABLE 2: Constant fo for P and D Obtained from Different
Sample Sizes

sample sizel) P (ppb/day) D (ppb/day)
1000 18.4 24.7
3000 18.4 24.7
5000 18.4 24.8

X, ... are performed by eqs—80 and other similar formulas
for higher order component functions. Because the error of
Monte Carlo integration decreases-as/v/N, the accuracy of
the resultant RS-HDMR component functions depends on the
sample sizé\.® Therefore, for a given application, we need first
to find the sample size that will give the desired accuracy.
For illustration consider the following example: a zero-
dimensional photochemical box model designed to treat the
ozone chemistry in the background troposphere for the study
of 3-dimensional global chemical-transpdithis box model
consists of 63 reactions and 28 chemical species. Using this
box model the rates of ozone productiBrand destructiorD
are calculated and incorporated into the overall 3-dimensional
model. The details of this process are not relevant here, but the
box model provides a good testing ground for the construction
of RS-HDMR component functions. The rates of ozone produc-
tion P and destructiorD are chosen as two output variables
controlled by the four independent input variables (xi, Xz,
X3, Xq) corresponding to the concentrations of four precursors:
H,0, CO, NQ, and Q. The ranges of the four inputs are shown
in Table 1.

The data were generated for a set of 5000 random samples
of X, as well as for given distinct valuesor (x;, x) also with
5000 random samples foxi(x')® or (x;, x;, XI)©® (s= 1-5000).
These samples were chosen within the ranges in Table 1
generated by quasi-random samplin@he corresponding
outputsP andD at x®, (x,x))® or (x;, ,x1)® are obtained by
solving the differential equations of the box model. Using these
data, the RS-HDMR component functions up to second-order
fo, fi(x), fij(xi,x) for the outputd andD are constructed by eqs
8—10 at different sample sizes (1066000). The results fafy
are given in Table 2. Some results fiatxs) and fi3(x1,xs) are
shown in Figures 1 and 2. Table 2 and Figures 1 and 2 show
that the resultanty, f3(xs) andfis(x1,x3) coincide very well for
different sample sizes. This implies that a data set of 1000
samples already gives a convergent result. The results for other
component functions are similar.

To attain a quantitative estimate for the accuracy of the
collective RS-HDMR component functions, the second-order
RS-HDMR approximations foP and D given by eq 2 were
compared to the exact solutions obtained from 53 312 box-
modelruns that uniformly covered the full region of the
4-dimensional input variable space. The component functions
of the second-order RS-HDMR were constructed from different
sample sizes. The results in Table 3 show that there is no
significant difference between the second-order RS-HDMR
approximations whose component functions are obtained from
different sample sizes. This implies that Monte Carlo integration
converges quite fast and a few thousand random samples can
give reliable results.
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Figure 1. Functionfs(xs) for outputsP andD constructed from different sample sizes.
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Figure 2. Functionfis(xi,%s) for outputsP andD constructed from different sample sizes.

Compared to the 53 312 exact results, all the second-orderor 7 270 000 random samples are needed to construct the
RS-HDMR approximations, whose component functions were RS-HDMR component functions up to second order when 1000
constructed from different sample sizes, have more than 88%or 5000 points are respectively used in the Monte Carlo
and 97% of the tested points with relative errors less than

5% for P and D, respectively. The accuracy is quite satis-
factory. As the values db, fi(x;), andfj(x,x) have converged,
in the following analytical basis function approximations,

the RS-HDMR component functions up to the second order
obtained by Monte Carlo integration with 5000 random samples dimensional systems. The procedures introduced below dramati-
will be used as a standard for comparison. Note that accordingcally reduce the necessary sample size while retaining excellent

integration. If the third-order RS-HDMR component functions
are also constructed in the same way, the required number of
random samples are even bigger. Thus, the direct determina-
tion of RS-HDMR component functions by Monte Carlo
integration is prohibitively expensive for use in many high-

to the meshes used for the four inputs, all together 1 454 000 accuracy.

Li et al.
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TABLE 3: Relative Errors of Second-Order RS-HDMR
Approximations?

data portion (%)

sample sizel) relative error (%) P D
1000 5 88.0 97.3
10 96.7 99.4
20 99.2 99.9
3000 5 88.5 97.4
10 96.7 99.4
20 99.2 99.9
5000 5 88.1 97.1
10 96.6 99.4
20 99.2 99.9

aThe component functions are obtained from different sample sizes.
b The percentage of 53 312 data with a relative error not larger than a
given value.

3. Orthonormal Polynomial Approximation

Orthonormal polynomials were used as analytical basis
functions to approximate the RS-HDMR component functions.
The polynomialsp(x) in the domain §, b] are referred to as
orthonormal when they satisfy

fab%(x) dx=0 k=1,2,.. (23)
Lb¢k2(x) dx=1 k=1,2,.. (24)
j;b%(x) () dx=0  k=| (25)

J. Phys. Chem. A, Vol. 106, No. 37, 2002725

TABLE 4: Comparison between Second-Order RS-HDMR

Approximations Whose Component Functions Were

Obtained from Different Sample SizesN and Different
Orders of Orthonormal Polynomial Expansions

data portion (%9

expansion sample size 5% 109 209
order (N) P D P D P D
kI1,I'=3 500 571 346 783 59.6 917 80.2
1000 72.6 586 883 814 96.6 93.6
3000 85.9 86.4 957 955 99.1 99.2
5000 904 918 96.8 97.6 99.4 99.6
k1,I'=2 500 729 816 88.0 932 96.0 987
1000 87.0 82.1 949 928 098.7 975
3000 89.1 93.2 95.7 982 98.7 99.7
5000 904 944 96.7 98.9 99.3 99.9
kI1,lI'=1 500 352 685 722 844 879 923
1000 355 69.0 705 852 87.7 921
3000 349 67.7 69.0 851 874 923
5000 349 676 689 850 875 918

aThe percentage of 53 312 data with a relative error not larger than
a given value® Relative error.

The accuracy of orthonormal polynomial approximation depends
on the order of orthonormal polynomials used. In many cases,
to achieve adequate accuracy usingx), @2(x), and @s(X) is
sufficient (i.e. k, |, I'=3). Because Monte Carlo integration is
employed in egs 31 and 32, the accuracy also depends on the
sample size. Thus, different sample sizes and different orders
of orthonormal polynomials were used to determine the coef-
ficients o, and ), and consequently the RS-HDMR compo-

i.e., they have a zero mean and unit norm and are mutually nent functions up to second order so that a comparison can be

orthogonal. For the domain [0, 1], the orthonormal polynomials
can be readily constructed from the above conditions:

@19 = V3(x — 1) (26)
() = 6x/§(x2 —x+ %) 27)
Ps(X) = 20\/7(x3 - gxz + gx - 2—10) (28)

Using this set of basis functions, the RS-HDMR component
functionsfi(x), fij(x;,%), ... are represented as eqs 11 and 12 with
PpdXi%) = @p(%) @o(X) (29)

and Using the orthonormality property of the polynomials, the
n k )

f(x) ~fo+ Zzakpr(&) +
1=1r=

ror
ij i )+ ... (30
1s;san|qZ|ﬁpq¢pq(x') Pol%) (30)

A matrices forol, AU . ... in eq 18 are all identity matrices, and

pa
then
) 1N
ab= [ F (9 @,(¢) dx ~ X <) ¢,(x®)  (31)

. 1 N
b= Juf (%) @) @) dx ~ sz %) 7,6 (%)
" (32)

made with the results given by direct determination of Monte
Carlo integration in section 2. Similarly, the accuracy of the
resultant second-order RS-HDMR approximations whose com-
ponent functions were approximated by orthonormal polynomi-
als was determined by comparison with the previously men-
tioned 53 312 exact data. The results are shown in Table 4.

Table 4 shows that combining linear and quadratic (kd.,
I' = 2) orthonormal polynomials gives the best results. When
N = 5000, the accuracy is similar to that of direct determination
by Monte Carlo integration (i.e., compare with Table 3). The
accuracy is poor when only linear polynomials (ile.], I
1) are used. When the sample sides small, Monte Carlo
integration has large errors. This error may cause a poor
approximation foffi(x;) and especially fof;(x;, ). As the third-
order (linear, quadratic, and cubic) polynomial expansion (i.e.,
k, I, I' = 3) has more terms (4 3 = 12 forfi(x); 6 x 3 x 3
= 54 for fj(x;, X)) than the second-order (linear and quadratic)
polynomial expansion (4« 2 = 8 for fi(x;); 6 x 2 x 2= 24 for
fii(xi,x)), and each term has its own Monte Carlo integration
error, the third-order polynomial expansion often has large errors
whenN is small. When the sample size becomes large and the
Monte Carlo integration error becomes small, the accuracy given
by the third-order polynomial expansion can be better than the
second-order one. This behavior is observed in Figure 3, which
gives thef3(xs) for P andD obtained from different sample sizes
and orders of orthonormal polynomials.

There are oscillations around the exact valuesiog) of D
when the third-order orthonormal polynomial expansion is used
with small sample sizes. These oscillations introduce large
errors. When the second-order orthonormal polynomial expan-
sion is used, there is no such oscillation even if the sample size
is smaller than 1000. This is the reason high-order polynomial
expansions (i.ek, I, I' > 3) may not be suitable for approxima-
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Figure 3. Functionfs(xs) for outputsP andD constructed from different sample sizes and different orders of orthonormal polynomials.

tion when Monte Carlo integration is involved. However, when For eq 36 andk = 3, the minimization yields

the sample size is 5000, there is no significant difference

between the accuracy of second- and third-order orthonormal i

polynomial expansions. 10 0 oy
To diminish the oscillations produced by high-order orthonor- |9 1 + 4[)22;Li 2b,(2c, + 3cy)A,

mal polynomial expansions, new objective functionals were

introduced that also minimize the second-order derivatives of

the approximation for a RS-HDMR component function. Writing

o =
0 2b,(2c, +3c)4 1+ 44(c,” + 3c,c; + 3¢5) |

the orthonormal polynomials in a general form, flfi(xi) @4 (%) dx;
0
P09 = ax+ a (33) Lo, 0,(%) dx | (38)
1
@,(X) = by® + bx + b, (34) S5 i) @a(%) dx,
P =+ )X+ cx+ ¢, (35)
Using the coefficients in egs 2&8 the above equation is
where apg, a;, by, ..., C3 are constant coefficients, the new i L (x Y dx.
functionals corresponding to egs 16, 17, and 29 become 10 0 o fol (%) #206) oy
k 0 1+7204 0 o | = | foH06) @a06) o | (39)
00 1+ 8400, || i

min [0 — 3 aig 6ol o + %[ | [T g506) o

k
12 i 292
liﬁ) [0 (r: @, (%))/0x°]" dx; (36) Equation 39 shows that one can Qhooséi do reduce the
contributions froma,, and especially.
o I ] X Figure 4 gives the results df(x,) for D with A, = 0.9 x
p=14=

i _ .
pg The oscillations around the exact value are diminished. As

1, b ) the oscillations decrease with the sample $iize¢he A;'s were
A Z !/(‘)j(')[a (ZZﬁgqqop(xi) Pa(X))xx] dx; dx chosen to be proportional to N such that forN = 5000
stelllj} p=10= introducing/; has no significant influence on the results. Similar
(37) results were obtained for oth&(x)’s.
Similarly, for eq 37 and, I' = 3, the minimization yields
wherel; andA; are regularization weight parameters introduced AB=hb (40)

to damp out the oscillations in representing the component
functions. where
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A=
1+ 144%; 0 48V21; 0 0 0 48V21; 0 336,
0 141443 0 0 0 0 0 240v213; 0
48V21; 0 1410416, 0 0 0 3364 0 67221,
0 0 0 1+ 1444 0 240V21; 0 0 0
0 0 0 0 1+50404; 0 0 0 0
0 0 0 240v213; 0 1+19200; 0 0 0
48V210; 0 3364, 0 0 0 1410416, 0 672214,
0 240V21; 0 0 0 0 0 1419200, 0
i3361ij 0 672/21; 0 0 0 672/21,; 0 1+ 45024,
(41)
B= (ﬂﬁ gzﬁg g T (42) either by solving a single linear algebraic equation foroéll
gq corresponding to ali(x;) andf(x;,x) simultaneously or by
1 solving two linear algebraic equations fay corresponding to
jc"lﬁ)lf"(xi 'Xj) 71%) %(X,-) o dxj all fi(x.% and ﬂgq corrgsponding to alfij(xgz) sepafately. gl'he
j(') ﬁ) fi;06.%) @1(%) @o(%) dx; dx; RS-HDMR component functions were approximated by third-
b=l (43) o_rder orthonormal polynomial expansions, and different sample
1 .1 sizesN were tested.
Jo S5 Ti(xiX) @5(%) (%) dx by The results of Table 6 show that, compared to Table 4 without
j;,lfolfij (%.%) P4(x) @3(x) dx dx simultaneously minimizing the second-order derivatives, only

considering the coupling of the coefficients within each order

Equation 41 shows that for a gively the oscillations related of RS-HDMR functions does not improve the accuracy.

; ; _ _ Considering the coupling of all', 8 gives a better result, but
to high-order orthonormal polynomiags(x) and can be r Ppg
mangged. POl () o) it is generally worse than the result obtained by simultaneously

. . L minimizing the second-order derivatives (see the results of Table
Table 5 gives the results of simultaneously minimizing the

d-order derivati f third-ord h Dol ial 5). Moreover, for a large the matrixA will be very big, and
second-order erivatives ofthird-order orthonorma polynomia solving high-dimensional algebraic equations is not computa-
expansions for the second-order RS-HDMR approximation.

S _ _ tionally efficient.
The regularization parametetsand/; were determined in As less than 1000 samples are necessary in the orthonormal
two steps. First, a value fot or ; was chosen to damp out

P> i | polynomial approximation with regularization, compared to
the oscillation for the corresponding functiofits) or fij(xi.x). 1 454 000 or 7 270 000 samples in direct determination of Monte
Second, the resultant valuesiphindZ;; were adjusted to achieve  carlo integration, the computational saving is very significant.
the best accuracy of the resultant second-order RS-HDMR Hence, the orthonormal polynomial approximation with regu-

approximation for theN samples. Althought; and 4;j were larization provides a practical way to construct RS-HDMR
determined only from thé&l samples, Table 5 shows that the component functions.

resultant second-order RS-HDMR approximation has excellent

accuracy for the 53 312 data that uniformly cover the whole , Spline Function Approximation

desired domain ok. This implies that choosing the values of

Ai and Z; from small samples can ensure the accuracy of the  Polynomial spline functiorfs® can be used as another basis
second-order RS-HDMR approximation in the whole domain for approximating the RS-HDMR component functiofis;),

of x. The results in Table 5 show that the accuracy of the fij(x.%), .... Cubic B spline®(x) (k= —1, 0, ...m+ 1) defined
orthonormal polynomial approximation obtained even from in interval [a, b]

samples smaller than 1000 is better than that given by direct

determination of Monte Carlo integration in Table 3 (the only B,(¥) :ls %

exception isD with a relative error not larger than 5%. The h

reason is that some of the exact datdDoére very small, and Vi — %)° YVirr < X = Yigo
the orthonormal polynomial approximation can have relative |y, ., —x)?— 4(y,,, — x? Vi < X< Vit
errors larger than 5% for these dgta). _ Wiz = 2% = 40 — 07+ 6% — %° Ve, <t=<y,

All the above results were obtained by using the orthonor- | 2 44— x° 460y — %° — 4@, — 0° Yz < X< Vi
mality property ofp,(x); i.e., the matrixA is an identity matrix. 0 otherwise
If the integrals/¢r(x)@r(x) dx, [@i(x) @' (4) dx dx;, Ser(x)
@p(%) @p(x) dx; dx;, ... are also approximated by Monte Carlo (44)

integration, then the matriR is no longer an identity matrix,  where
but a symmetric one with diagonal elements close to unity and

off-diagonal elements close to zero, and the coefficigols h— b—a 45
o -4 will be determined by solving linear algebraic equa- T m (45)
tions. Table 6 gives the accuracy of the resultant second-order y.=a-+kh (46)

RS-HDMR approximations whose coefficients were determined
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1,(x,) profiles TABLE 6: Comparison between Second-Order RS-HDMR
3 T T T 500 Foris Approximations Whose Component Functions Were
25 B 1000 paints -~ | Obtained from Different Sample SizesN and Using
Y g%gxg}: I Third-Order Orthonormal Polynomial Expansions Where
= 2r 500 points without minimizing 2nd derivatives -~ the Integrals of the Orthonormal Polynomials Were
g 151 1 Approximated by Monte Carlo Integration
% | data portion (%)
E determination of sample size 5% 109 209
g Bl (N) P D P D P D
° simultaneously 500 91.1 956 96.6 99.3 99.1 99.9
sl 1000 91.0 959 96.5 99.2 99.2 99.9
) ) ) ) 3000 91.4 955 96.8 99.2 99.2 99.9
'20 0.2 04 0.6 0.8 1 5000 915 956 96.8 99.2 99.3 99.9
X, (CO concentration [ppb}) separately 500 50.5 404 755 635 91.6 823
Figure 4. Functionfy(xp) for output D constructed from different 1000 66.8 57.9 855 80.7 948 935
sample sizes with a third-order orthonormal polynomial expansion using 3000 86.2 80.2 955 928 99.2 987
Jo= 0.9 x 1CFINE. 5000 905 90.2 96.7 97.0 99.3 99.5

aThe percentage of 53 312 data with a relative error not larger than

TABLE 5: Comparison between Second-Order RS-HDMR a given valueP Relative error.

Approximations Whose Component Functions Were
Obtained from Different Sample SizesN Using Third-Order

Orthonormal Polynomial Expansions While Simultaneously The singularity arises because for differgrthe cubic B splines
Minimizing the Second-Order Derivatives have the same form. Similar to the orthonormal polynomial
data portion (%) approximation, only co.nsider.ing the cogpling within each order
of the RS-HDMR functions gives unsatisfactory results. There-
tested sample size 59 109 20 fore, theonir and ﬁgq are still obtained by minimization of eqs
data N) P D P D P D 16 and 17. Theng. can be obtained by solving the linear
N 500 79.6 850 922 944 974 984 equationAa = b:

1000 851 893 952 974 978 999
3000 871 933 958 984 979 998

. 1
5000 880 946 958 986 982 99.5 o, Jo 1:06) By () dx
53312 500 928 93.0 995 983 100 995 i 1
1000 939 943 995 996 100 100 A% | = [foTi00) Box)x (51)

3000 95.0 96.7 99.7 99.8 100 100
5000 96.8 97.1 100 99.8 100 100

2 The percentage of tested data with a relative error not larger than
a given valuedi/N3: for P, ; = 0.9 x 104 4; = 0.0 ( = 2, 3, 4); for
D, 41 =0.0,A4,=0.7 x 105, 13 = 0.4 x 1, 1, = 0.1 x 10°. A;/N%:

Gt | | [506) Ba() o

for P. Ao = 0.9 x 10F, Ass= 0.9 x 10%, Ays = 0.9 x 10P, Aps—= 0.1 x WherleA is an (n + 3) x (m+ 3) symmetric and nonsingular
10°, Jos = 0.2 x 0P, Az = 0.0; for D, Az = 0.1 x 10F, Ay3 = 0.2 x matrix whose k, I)-entry
107, 114 =0.2x 103, 123 =0.7 x 107, /124 =0.7 x 104, 134 =0.1x 1
b .
1CP. b Relative error. A= J; B.(%) B,(x) dx, kl=-1,0..m+1 (52)
were tested for this purpose. When the domairx @ a unit ) o ) )
hypercubeK", Using the definition offi(x) given in eq 4, eq 51 can be
expressed as
1
h== a7 ) 1
m 47 ay | [ 00 By ok = 1o By () dx
i 1
Vi = E (48) A aIO - ’/;(nf (%) By(x;) dx — fO,/(; Bo(%;) dx,
m : :
: , Ot i () Brea%) dx — fo [ B a(%) d
The first and second-order RS-HDMR component functions Kn m+10% 0o Pma %) X
fi(x) andfij(x;,%) can be approximately expanded as
1
w1 F(x¥) BLy(x%) — £ () [, B_1() dx
(X)) & ! g N 1
fi(x) r:Z_loLrBr(Xn) (49) o E f (X(S)) BO(Xi(S)) —f (X(S)) j;) By(x) dx (53)
il
T < i £ () By 2069 — 1 (9) [1Bya(%) o
fi(x.%) ~ zl zlﬁpqspog) B,(%) (50) m1(% o Bmra(X) A
p=—10=—

The integrals/By(x;) dx and /By(x) Bi(x;) dx contained in egs
, . 52 and 53 can be readily determined by using the definition eq
wherea, andﬁ'F’,q are constant coefficients to be determined.  44. Thena is given byA~1h. As Monte Carlo integration has
The cubic B splines with different variables are not mutually been used in eq 53, and the accuracy of cubic B splines
orthogonal. However, one cannot determine all the coefficients approximation depends on the number of subinterwalshe
a, and ﬂgq simultaneously because the matéxis singular. accuracy of the resultarii{(x) is related to sample sizZé and
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Figure 5. Functionfs(xs) for outputsP andD constructed from different sample sizes and cubic B splines with two to four subintervals.

- i : TABLE 7: Comparison between Second-Order RS-HDMR
1)
the value of m. The coefficients3, can be determined Approximations Whose Component Functions Were

similarly. In this case, the elementsAfandb are the integrals Obtained from Different Sample SizesN and m = 2 Cubic B
J/B(x) Bq() Br(x) Bs(x) dx dx and //fj(x.x) By(x) Bo(x)  Splines Approximation

dx; dx;, respectively. To save space, the formulas are not given data portion (%6)
here. The cubic B splines approximation was applied to the same

. . . . sample sizeN) relative error (%) P D

model used for testing orthonormal polynomial approximations.
fi(x) andf;j(x;,x) were expanded by eqs 49 and 50. Different 1000 o 45.7 33.8
. . 10 69.1 57.4
sample sizes (106656000) and numbers of subintervata €& 20 86.3 70.5
2—4) were tested. 3000 5 83.7 69.7
The results forfs(xs) andfis(xq,xs) of P andD are given in 10 93.7 87.3
Figures 5 and 6, respectively. The other component functions 5000 2% 98%% %3-55
have similar figures. The figures show that the convergence is 10 959 94.7

good and the resultafi(xs) are close to those given by direct 20 98.8 08.8

Monte Carlo integration with 5000 points. Fdis(x1,X3), ) )

oscillations around the exact values can be observed, especially, ;Jgﬁ S;ﬁzgntage of 53 312 data with a relative error not larger than
when the sample size is small. Moreover, large errors occur at '

the enq of t_he interval. The resultant second-order RS-HD_MR to 1/m. Therefore, for a given sample sikelargem may yield
approximations were compared to the table of exact solutions poor accuracy. The results in Tables@show tham = 2 gives
obtained from 53 312 box-model runs. The results are shown {he pest approximation. Compared to the results of orthonormal

in Taples 9. _ _ polynomial approximation without regularization (see Table 4),
Notice thatBy(x) may vanish on some subintervals. Thus, its accuracy is a little worse fdi = 5000, but much worse for
only part of theN data are actually used fé1(x¥) in Monte smallN. Whenmiis larger, the accuracy becomes even worse.

Carlo integrationzNFlf (x©®) B(x9;)/N, which is proportional Like the orthonormal polynomial approximation, simultaneously
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Figure 6. Functionfis(xi,xs) for outputsP andD constructed from different sample sizes and cubic B splines with two subintervals.

TABLE 8: Comparison between Second-Order RS-HDMR TABLE 9: Comparison between Second-Order RS-HDMR
Approximations Whose Component Functions Were Approximations Whose Component Functions Were
Obtained from Different Sample SizesN and m = 3 Cubic B Obtained from Different Sample SizesN and m = 4 Cubic B
Splines Approximation Splines Approximation
data portion (%) data portion (%@
sample sizel) relative error (%) P D sample sizeN) relative error (%) P D
1000 5 26.9 24.2 1000 5 27.4 23.1
10 49.2 45.0 10 49.9 42.8
20 73.6 69.5 20 75.1 66.4
3000 5 68.4 57.0 3000 5 64.7 51.4
10 85.1 79.2 10 83.0 74.3
20 94.0 92.3 20 92.8 89.4
5000 5 715 72.4 5000 5 72.0 68.0
10 86.8 88.2 10 86.3 84.7
20 94.9 96.2 20 94.8 94.8
@ The percentage of 53 312 data with a relative error not larger than 2 The percentage of 53 312 data with a relative error not larger than
a given value. a given value.

minimizing the second-order derivatives of the cubic B splines the orthonormal polynomial approximation (usually, 3 fer
approximation will increase the accuracy and damp out the (x), 9 for fj(x;,x)), especially for largen and each term has
large error at the end of the interval. However, considering the Monte Carlo integration error (more terms result in larger
that (1) the cubic B splines are not an orthogonal basis, total error in the approximation), we do not expect that the
(2) only part ofN is used for the determination of the para- regularized cubic B splines approximation can have better
metersa, andﬁ'gq, and (3) the cubic B spline approximation accuracy than the regularized orthonormal polynomial ap-
has more termsnf + 3 for fi(x;), (m + 3)? for fjj(x,x)) than proximation.



RS-HDMR Component Functions

5. Polynomial Approximation

The RS-HDMR component functions can be directly ap-
proximated by polynomial functions,

k

fi(x) ~ ;airx:
fij(x) ~ ZZO/% X

Similar to the cubic B spline approximation, for the polynomial
approximation the matriA is singular, even if allair, ﬁgq
corresponding to alfi(x) andf(x,x) are deter_mined simulta-
neously or ifa, corresponding to all(x) andﬁ;fm| correspond-
ing to all fj(x,x) are determined separately. Therefore, the
constant coefficientsy, and 3}, were approximately deter-
mined by minimizing the integrals

(54)

(55)

k

min f706) — 5 ooxX]° o (56)
Oy

r=

(.
m'n ﬁ, [T 60%) — Z;Oﬁnglzdx dx  (57)

Linear equations for coefficients! andﬁi[",q can be obtained
from these minimizations. For eq 56 the minimization gives

Aa=Db (58)
where
! ", C UK+ 1)
A=|" Y, - UK+ 2) (59)
1/(k+ l) 1/(k+ 2) eee 1/(2(+2)
= (abay0g)” (60)
and
Jox) dx 0 1
b= ﬁ)lfi(xi)xi dx | _ ];nf (x) x dx — f, ﬁ) X
ﬁ)lfi()(i))(:< dx; fan (X) x dx — fojg) X dx
0
1 N (9 (S) _ (9
~— f (<)% f(x™)/2 6

Tl OO — Ok + 1)

As A is symmetric and nonsingulas, is given byA~1b. The

J. Phys. Chem. A, Vol. 106, No. 37, 2002731

model are given by the following polynomials:

fi04) = o + ogx + 0P (62)

Bi% 4 BYx + B¢ + B + Biixx +
ﬁijg)f-i_ﬂij 2X1+ﬁ 2><1X, + B; ]XSX,"'ﬂ 3X1X1 +
Bixx (63)

The coeffluentsa andﬂpq, and consequently the RS-HDMR
component funct|ons up to second order, were determined so
that the comparison with the results given by direct determi-
nation of Monte Carlo integration can be made. Resultgsfor

(x3) andfi3(x1,%3) for P andD obtained from different sample
sizes are given in Figures 7 and 8, respectively. Other component
functions have similar behavior. The figures show that the
convergence is good. When the sample size is 5000, the resultant
fi(x) andf;(x,%) are close to those given by direct Monte Carlo
integration with 5000 points. 1f;(x,x), the error is larger for

D on the boundary of the input hypercube.

The accuracy of the resultant second-order RS-HDMR
approximations whose component functions were approximated
by polynomials was determined by comparison with the 53 312
exact data set. The results are given in Table 10, which shows
that the polynomial approximation has a better accuracy than
the cubic B spline approximation witim = 2, especially when
the sample size is smaller than 5000, but it is worse than the
nonregularized orthonormal polynomial approximations (see
Table 4). Similarly, regularization will improve the accuracy
of the polynomial approximation. However, considering that
the polynomials with different numbers of variables are not
orthogonal, and that the nonregularized polynomial approxima-
tion is worse than nonregularized orthonormal polynomial
approximation, we do not expect that its regularization can
provide better accuracy than that for the regularized orthonormal
polynomial approximation.

fi; (%, %) =

6. Conclusions and a Discussion

HDMR is a general set of quantitative model assessment and
analysis tools for high-dimensional inptdutput systems. When
data are randomly sampled, an RS-HDMR can be constructed.
The RS-HDMR component functions involve high-dimensional
integrals that may be approximately calculated by Monte Carlo
integration. Because the direct determination of high-order RS-
HDMR component functions by Monte Carlo integration is
prohibitively expensive, analytical basis functions, including
orthonormal polynomials, cubic B spline functions, and poly-
nomials were employed to approximate RS-HDMR component
functions. With such basis functions, only one set of random
samples of the output is needed to determine all RS-HDMR
component functions. Thus, the sampling effort is dramatically
reduced. In a test example, the direct determination by Monte
Carlo integration needed millions of samples, but employing
the basis function approximations of the RS-HDMR component
functions needed only thousands or even hundreds of samples
with comparable accuracy. Therefore, analytical basis function
approximations form a practical approach for RS-HDMR
applications.

Three basis functions, orthonormal polynomials, cubic B

calculation procedures are similar to cubic B splines approxima- splines, and polynomials, were used for the approximation of

tions. The coefficient$’ can be determined similarly.

Different sample sizes and different orders of polynomials the expansion coefficientair, ﬁgq,
were used for the polynomial approximations. The best results using the orthogonality df(x), fij(x.x), .-,

for fi(x;) andfj(x,%) in the zero-dimensional photochemical box

RS-HDMR component functions. The formulas to determine
. were constructed by
and the determination
of the coefficients involves Monte Carlo integration approxima-
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Figure 7. Functionfs(xs) for outputsP andD constructed from different sample sizes and polynomial approximation (eq 62).
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Figure 8. Functionfis(xi,xs) for outputsP and D constructed from different sample sizes and polynomial approximation (eq 63).

tion whose error decreases a4/v/N. Hence, the accuracy of  fraction of data used iNl is proportional to Ih. Moreover, the
analytical basis approximations for RS-HDMR component cubic B splines approximation has more terms and each term
functions depends on the orthogonality of the basis functions has its own Monte Carlo integration error. Large terms cause a
and the sample size used in the approximation. Orthonormallarge total approximation error. All these factors make the cubic
polynomials provided the best accuracy. The cubic B spline B splines approximation the worst one for the RS-HDMR
function approximation has the worst accuracy of the three basiscomponent functions. Polynomial approximation has an ac-
functions because it is not orthogonal and only uses a part of curacy in between. Simultaneous minimization of the second-
theN in Monte Carlo integration points. Increasing the number order derivatives of the approximate functionsfex), f;(x.%),

of subintervalsm often improved the accuracy for cubic B ... dramatically improved the accuracy of the approximation,
splines in other problems. However, when Monte Carlo integra- which can provide a sampling saving ofL0° in representing
tion is involved, largem decreases the accuracy because the a system compared to employing a direct sampling technique.
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TABLE 10: Comparison between Second-Order RS-HDMR References and Notes
Approximations Whose Component Functions Were
Obtained from Different Sample SizesN and Polynomial (1) Rabitz, H.; Alis, O. F.; Shorter J.; Shim, K. Efficient Input-Output

Model Representation€omput. Phys. Commut998 115 1-10.

d - % (2) Shim, K.; Rabitz, H. Independent and Correlated Composition
ata portion (%6) Behavior of Material Properties: Application to Energy Band Gaps for the

Gaylni—oPsAs1-p and Galni—oPsSbAs1—s—, Alloys. Phys. Re. B 1998

Approximations

sample sizel) relative error (%) P D
58, 1940-1946.
1000 5 77.2 70.7 (3) Alis, O. F.; Rabitz, H. General Foundations of High Dimensional
10 90.0 85.9 Model Representations. Math. Chem1999 25, 197-233.
20 96.9 94.7 (4) Shorter J.; Rabitz, H. An Efficient Chemical Kinetics Solver Using
3000 5 85.3 87.9 High Dimensional Model Representatiors. Phys. Chem. A999 103
10 94.5 94.8 No. 36, 7192-7198.
20 98.5 98.6 (5) Alis, O. F.; Rabitz, H. Efficient Implementation of High Dimen-
5000 5 85.7 90.9 sional Model Representations. To appeaMathematical and Statistical
10 94.5 97.2 Methods for Sensitity Analysis Saltelli, A., Ed.; John Wiley and Sons:
20 98.6 99.6 New York, 2000.

: : 6) Press: W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.
* The percentage of 53 312 data with a relative error not larger than Nunge)rical Recipes in FORTRAL}S/lambridge Univegr]sity Press: Newerork

a given value. 1992; p 299-319.
(7) Sobol, I. M. Sensitivity Estimates for Nonlinear Mathematical
Th \vtical basis f ti imati ith lari Models, Math. Model. Computational Experimernt893 1, 407-414.
. us, analytical basis function approxn_na lons with regu a_rlza- (8) Wang, S. W.; Levy, H., Il.; Li, G.; Rabitz, H. Fully Equivalent
tion for RS-HDMR component functions form a practical operational Models for Atmospheric Chemical Kinetics Within Global
approach for the application of RS-HDMR. Chemistry-Transport Modelsl. Geophys. Red.999 104, D23, 30417
30426.
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