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The scalar relativistic contributions to bond or atomization energies of homo- or hetero-polar s-p-bonded
atoms,∆relE(bond), correlate well with the changes on bond formation of the electron density, integrated
throughout the spatial K-shell region of the heavy nucleus,∆bondFK-region, timesZ4, whereZ is the nuclear
charge. The “bond density changes” in the innermost atomic core regions, however, have no direct simple
relationship to the electron density reorganizations in the outer atomic valence shell regions, which determine
the nonrelativistic main contribution to the bond energy,∆nonrelE(bond). Also, scalar relativistic bond energy
changes and bond length changes,∆relRe, are not directly correlated. Namely,∆relE(bond) correlates with the
difference∆bondFK-region, whereas∆relRe correlates with the derivative (dFK-region/dR). Reducing the internuclear
distance from the separated to the united atom limit through the equilibrium distance value,Re, the density
around the nucleus at first decreases in many cases, goes through a minimum, and finally increases again.
Therefore (dFK-region/dR) may be positive or negative atRe.

1. Introduction

Relativistic effects significantly change the valence properties
of heavy element compounds. The same physical mechanisms
operate in heavy and in light systems. The lighter systems are
easier to understand, because first-order nondegenerate or near-
degenerate perturbation theory (FOPT) is often sufficient and
can be interpreted more easily. Electron correlation will be
accounted for approximately at the level of density functional
theory. It will also be cross-checked in a few cases by more
sophisticated correlation methods.

Several years ago Wang1 and Schwarz et al.,2 and again more
recently other researchers,3-7 found that the scalar relativistic
effects reducethe absolute value of the bond or atomization
energies (atomization energy is the sum of two-atomic bond
energies) of many light p-block molecules (i.e.,raisethe values
of their bond energies, which are defined as negative). On the
other hand,positiVe and negatiVe relativistic contributions to
bond energies were obtained for a more comprehensive set of
molecules.1,2,8,9

The scalar relatiVistic effectscomprise the direct mass-
velocity and scalar spin-Darwin contributions, and the so-called
indirect effects caused by the Coulomb repulsion between the
relatiVistically modifiedorbitals. In addition, there are also the
Vectorial spin-dependentrelativistic bond energy contributions,
which are of orders of magnitude similar to the scalar ones.

A more detailed inspection of the published numerical data1-7

on p-block elements suggests that the total scalar relativistic
bond energy reduction can be approximated as a sum of diatomic
relativistic bond energy increments. For bonds between H and

a second- or third-row atom the increments range from 1 meV
up to 10 meV. For bonds between two second-row atoms, the
order of magnitude of the increments is about 10 meV; and for
bonds from third-row atoms to third- or second-row ones, the
increments are about 20 meV. The simple approach of Martin
et al.4 applying monatomic increments and formal bond orders
reproduces the data only at a moderate accuracy.

To achieve further insight into the mechanisms of relativistic
effects in chemical bonding, we have investigated the following
light molecules, containing oxygen as the ‘relativistic’ atom:
OH, H2O, O2, BeO, Li2O, F2O. The ground states of the
respective atoms and molecules are O(2p4 3P2), H(1s2S1/2), Li-
(2s 2S1/2), Be(2s2 1S0), F(2p5 2P3/2), OH(π3 2Π3/2), H2O(1A1),
Li 2O(1Σ+), BeO(1Σ+), O2(3Σ-), F2O(1A1). Concerning the
structural parameters, see Table 1B. This set of molecules
contains homopolar and heteropolar bonds, with oxygen being
the negative or positive partner. In addition, a larger sample of
heavier compounds from all blocks of the periodic table is also
reinvestigated here.1

Spin-orbit (s-o) leVel splittingsare qualitatively sketched
in Figure 1 at the first-order level. Neglecting correlation effects,
changes of the atomic orbitals (AO), and other higher order
effects, one expects no significant s-o modification of the bond
energy of OH and O2, but bond destabilizations of about1/2‚
λO2p for H2O, Li2O, and BeO, and of1/2‚λO2p + 1‚λF2p for F2O.
(For general qualitative explanations of s-o-bond effects, see
refs 8-11.)λO2pmeans the O-2p orbital s-o splitting parameter.
The experimental atomic values ofλ2p for O(3P) and for F(2P)
are 19 and 33 meV, respectively (derived from refs 12 and 13).

Concerning thescalar relatiVistic effects,we note that s
valence AOs, in general, are relativistically stabilized, fraction-
ally by the order of (Z/c)2, see Appendix I and Table 3 below.8,14

HereZ is the nuclear charge, andc the velocity of light in atomic
units (c ) 1/R ) 137.036). In oxygen, the 2s stabilization is
about -40 meV. Concerning p valence AOs, the p1/2-p3/2

j-weighted averagespj of most of the p-group atoms are weakly
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destabilized (except for the heaviest atoms in the lower right
corner of the periodic table, see Table 3D). The fractional 2p
destabilization in the second row of the periodic table (B to
Ne) is comparatively “large” in units of (Z/c)2, but its value is
still only about+9 meV for O.14

Because the valence s AOs, and for most atoms also the p1/2

AOs, are relativistically stabilized, one might at first expect that
relativistic s-p-bond stabilization will occur for electronic
charge transfer to the heavier atom. However, this turns out
not to be the case in general. Then, one might expect, the more
pronounced the s-to-p promotion and hybridization upon bond
formation, the more relativistic bond destabilization. However,
this expectation is also not fully corroborated by the calculations
presented below.

The computational details of our investigation are described
in Section 2. The calculated relativistic changes of bond energy
and bond length are presented and discussed in relation to orbital
populations and spatial electronic density distributions in Section
3. The final conclusions are given in Section 4. The relativistic
atomic s and p orbital corrections are tabulated in Appendix I,
and a comment on local properties in relativistic quantum
chemistry is made in Appendix II.

2. Calculations

The light and heavy atoms and molecules mentioned in the
Introduction were calculated and analyzed at the density
functional level. We have applied the Amsterdam Density
Functional (ADF) package.15 Both the all-electron and the
frozen-core orbital options were used. The LDA and Becke-
Vosko-Perdew16 combination of density functionals (DF)
(BVP) was used. Extended Slater basis sets of the uncontracted
valence triple-polarization double-ú type (3s3p2d2f)17 were
applied.

In addition, a few light systems were investigated at the ab
initio MRCISD(q) and CCSD(T) levels (multireference con-
figuration interaction with single and double substitutions and
Davidson’s correction; coupled cluster with singles, doubles,
and perturbative triples). The MOLPRO package20 was used.
The extended cc-pCVQZ Gaussian basis sets of Dunning26 were
applied (fully uncontracted, but without g functions in the s-o
calculations).

Concerning the relativistic corrections, first-order Hamilto-
nians were applied. In the DF case, we used a Breit-Pauli-
type Hamiltonian, transformed so20 that it resembles the
numerically stable relativistic Dirac Perturbation Theory (DPT)21,22

at first order. In the ab initio case, the first-order scalar
relativistic corrections were determined with DPT at the

correlated CCSD(T) level.25 The first-order s-o level splittings
were calculated by means of the Breit-Pauli s-o operator at
the MRCISD(q) level. Note that the Breit-Pauli s-o operator
is exactly the same as the s-o part of the first-order DPT
operator.22

The energy and electron density contributions from specified
regions of space were determined individually with the help of
Boerrigter’s integration scheme.19 Thereby, the total relativistic
change of the bond energy of a molecule can be, within the
framework of first-order perturbation theory, partitioned rather
uniquely into contributions from the individual atoms. Theoreti-
cal subtleties of such a partitioning at the FOPT level have been
discussed in detail elsewhere.8

3. Results and Discussion

3.1. Relativistic Bond Energy and Valence Shell Popula-
tions. The calculated relativistic energy corrections are presented
in Table 1. Positive values indicate relativistic destabilization
of the molecules. The s-o contributions are of the expected10,11

sign and order of magnitude (compare Figure 1).
The present scalar relativistic corrections of the molecular

atomization energies,∆scal.relE(bond), lie within the scatter of
results of other authors (cf. Table 1B). The present first-order
DPT-CCSD(T) results from extended basis sets are expected
to be the most accurate estimates of∆relE for the systems studied
here.

∆relE(bond) does not correlate well with the total effective
atomic charges on the oxygen. Concerning the Mulliken charges
(Figure 2A), a low-quality linear correlation seems to exist
(correlation coefficientk ) 0.76), but the respective line (not
shown in Figure 2A) would largely deviate from the reference
origin of the oxygen atom at∆E(bond)) 0, Qeff ) 0. (We do
not consider here the principal problem of Mulliken’s definition
of charges and orbital populations, which yields nonunique
values.)

Physically better defined parameters such as the Wigner-
Seitz or Voronoi charges also do not satisfactorily correlate with
∆scal.relE(bond); see Figure 2B (the correlation is even worse,k
) 0.71). And the correlation with the oxygen 2s-AO population
(Figure 3) is not better. The situation is not improved very much
for other choices of parameters. We had already found in an
investigation of more than 30 diverse s-p-σ-bonded heavy
molecules1,2 that no simple relation exists between the scalar
relativistic bond energy contributions and the electronic distribu-
tions in the valence shells of the bonded atoms.

3.2. Relativistic Bond Energy and the Spatial Neighbor-
hood of the Nuclei. In Appendix II we argue that, despite
Heisenberg’s uncertainty principle, some basis still exists to talk
about local energy contributions from specific regions of space,
such as momentum-dependent local kinetic energies. Namely,
valence electrons behave relativistically when they dive into
an atomic core and become ‘relativistically fast’ near a nucleus.27

That is, the direct relativistic contributions to the valence energy
physically emerge from the neighborhood of the nuclei.28,29

(Sometimes it is reported that the relativistic change of energy
of an atomic valence orbital is caused by orthogonality of the
valence orbitals on the relativistically modified inner core
orbitals of the same atom. This is not true; see ref 29.)
Accordingly, we expect the scalar relativistic atomization energy
contribution,∆scal.relE(bond), to be a sum of increments from
the different regions of each bonded atom in the molecule. The
largest relativistic bond increments should be directly propor-
tional to the change of density (upon bond formation) in the
neighborhood of the heavy nuclei.

Figure 1. Sketch of spin-orbit splittings at the level of the first-order
frozen orbital-ls coupling model.λ2p is the 2p orbital spin-orbit
parameter of the O atom (or F atom, respectively).
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Therefore, we have determined the change caused by bond
formation,∆bond, of the electronic density within the region of
the K shell,〈F〉K-region. The outer radius of a K shell is here
defined by the inner nodes of the respective atomic outer s
orbitals. According to this definition, the respective〈...〉K-region

integral values are not very sensitive to small changes of the
K-shell radii values, because the radial density of the s orbitals
has a minimum there.

The ∆bond〈F〉K-region values of oxygen are given in Table 2.
They are plotted in Figure 4 versus the∆scal.relE(bond) values
from Table 1B. A reasonable linear relationship exists withk
) 0.98. Figure 4 also indicates that accurate data make the
linearity even better.

It is remarkable that both the all-electron optimized core
orbital and the frozen core orbital results lie on the same
correlation line. In the frozen-core representation, both the bond
energy and the bond density contributions (also those in the

Figure 2. Calculated scalar relativistic atomization energy contributions,∆scal.relE(bond), versus effective charge on the oxygen atom, from ADF
calculations. (A)Qeff

Mulliken; (B) Qeff
Voronoi.

TABLE 1: Relativistic Atomization Energy Contributions (in meV ) 23 cal/mol ≈ 0.1 kJ/mol; negative means stabilization)

A. experimental and calculated spin-orbit stabilizations

s-o stabilization

system state exp.13,40
calc.

MRCISD(q) & FODPT
calc.

DF-BVP & Pauli

O 3P2
e -9.5 -9.6 -11.8

F 2P3/2
o -16.7 -16.1 -20.6

OH 2Π3/2 -7.8 -8.6 -11 0.0

B. calculated scalar relativistic energy contributions from the O atom for the molecular valence shell,
and total relativistic bond energy change of the molecules

scalar relativistic valence shell energy total relativistic change energy of atomization energy

systema state
calc.

CCSD(T) & FODPT
calc.

DF-BVP & Pauli other authors3-7
calc.

CCSD(T) & FODPT
calc.

DF-BVP & Pauli

OH(97) 2Π3/2 +5.0b +3.6 4.3, 4.8, 5.2, 6.2 +6.2 +4.3
OH2 (96;104) 1A1 +11.0b +8.9 11.3, 13.0, 13.3, 14.0 +20.9 +20.7
OLi2 (165) 1Σ+

g,0+ +7.1 +18.9
OBe (133) 1Σ+

0+ +6.6 4.7, 5.4 +17.9
O2 (120.8) 3Σ-

g,0+ +4.4c 2.2, 2.7, 3.2, 6.9 +28.0
OF2 (142;105) 1A1 -1.1c +77.7

+12.9c

a In parentheses: bond length (in pm); and where applying bond angle (in degree).bReference value is 1515.4 meV (1499 meV by ref 41); i.e.,
valence shell only;cper each O and F atom, i.e.,∆E(O2) ) 2‚∆E(O) and∆E(OF2) ) ∆E(O) + 2‚∆E(F).

Figure 3. Calculated scalar relativistic atomization energy contribu-
tions,∆scal.relE(bond), versus O-2s AO population, Pop(O2s), from ADF
calculations.

TABLE 2: The Orbital Populations, the Atomic Mulliken-
(Qeff

Mulliken ) and Voronoi- Deformation Charges (Qeff
Voronoi) in

e, the Change of Density in the K-shell of Oxygenb Due to
Bond Formation (∆bond〈G〉O-K-region), in 10-3 e, and
Relativistic Change of Bond Length (∆scal.relRe) in pm

system O 2s O 2p O d,fQMulliken QVoronoi ∆bond〈F〉O-K
a ∆scal.relRe

OH2 1.86 4.46 0.05 -0.36 -0.26 -2.83 > +0.01
OH 1.94 4.39 0.03 -0.36 -0.12 -1.23 > +0.01
OLi2 1.93 5.15 0.01 -1.08 -0.78 -1.84 -0.015

OBe 1.92 4.91 0.03 -0.88 -0.48 -1.65 > +0.01
O2 1.90 4.03 0.07 0.0 0.0 -1.18 +0.025

O 2 4 0 0 0 0
OF2 1.87 3.53 0.00 +0.57 +0.09 +0.08 -0.47

-0.28b -0.05b -2.88b

a Reference value is 2000 me. Negative sign means reduced electron
density around the oxygen nucleus in the molecule.b Values on each
F atom in the OF2.
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spatial core regions near the nuclei) are completely caused by
the valence electrons, i.e., the outer and inner wiggles of the
valence orbitals. Even the Hellmann-Feynman forces,30 which
are extremely sensitive to tiny details of the total electronic
density near the nuclei, can be well reproduced in the frozen-
core orbital approximation. One should also remember that any
partitioning into core and valence orbital contributions is
somewhat arbitrary, whereas the total expectation values, such
as∆scal.relE(bond) or∆bond〈F〉K-region, are unique.

The relativistic energy contributions of hydrogen-like atomic
orbitals vary with the nuclear charge asZ4. Indeed∆scal.relE-
(bond) correlates well with∆bond〈F〉K-region‚Z4 for a large set of
s-p-σ-bonded molecules with a single heavy atom (Figure 5,
see also refs 1 and 2), wherek ) 0.95:

The respective slope of-21 V for heavy atomic molecules
agrees well with the one from Figure 4 for oxygen compounds,
which is -22.5 V (i.e.,-103 V‚Z4/c2, whereZ/c is 8/137 for
oxygen). Most molecules with a heavy s-block element in Figure
5 show relativistic bond energy increases, whereas most
molecules with a heavy p-d-f-block element show relativistic

bond energy decreases, as do the oxygen systems. Both
correlation lines in Figures 4 and 5 nicely pass close to the
origin.

After this work had been finished, Kedziora et al.6 published
extensive investigations on 222 molecules of the so-called ‘G3/
99 formation set’. These authors found a very good correlation
between the total scalar relativistic energy contributions of the
molecules,∆scal.relE(total), and the sum of the electron densities
at the nuclei,Fn (r ) 0), times the respectiveZ values:

Because the radii of the K-shells are about 1 Å/Z, we get
〈F〉K-region ∼ F(r ) 0)‚Å3/Z3. So, eqs 1 and 2 correspond to
each other, at least concerning the functional dependencies.
However,∆scal.relE(bond) seems to correlate only qualitatively
with Z‚∆bondF(r ) 0).6 ∆relE(bond) is only a very small, sensitive
fraction of ∆relE(total), and ∆bondF(r)0) is also a sensitive
property at a single point. In contrast,∆bond〈F〉K-region is an
integral property, which also accounts for inner density polariza-
tions and some p-AO density. Therefore, a better correlation of
∆scal.relE(bond) with∆bond〈F〉K-region‚Z4 (eq 1) than withF(r )
0)‚Z (corresponding to eq 2) seems reasonable.

TABLE 3: Fractional Relativistic Correction Factors γ (eq A0) of EnergiesE (upper entries) and Radii 〈r〉 (lower entries) of the
Atomic Valence s and p Dirac-Fock Orbitals14

A. s
1H 0.25 2He 0.2

0.33 0.24
3Li 0.17 4Be 0.20 5B 0.32 6C 0.10 7N 0.11 8O 0.48 9F 0.51 10Ne 0.53

0.19 0.21 0.26 0.29 0.31 0.32 0.33 0.33
11Na 0.200 12M g 0.429 13Al 0.291 14Si 0.335 15P 0.364 16S 0.385 17Cl 0.402 18Ar 0.416

0.204 0.322 0.220 0.230 0.235 0.240 0.243 0.246
19K 0.195 20Ca 0.187 31Ga 0.436 32Ge 0.455 33As 0.427 34Se 0.426 35Br 0.425 36Kr 0.425

0.196 0.183 0.323 0.301 0.283 0.273 0.265 0.259
37Rb 0.213 38Sr 0.347 49In 0.471 50Sn 0.454 51Sb 0.442 52Te 0.432 53I 0.425 54Xe 0.419

0.215 0.238 0.343 0.313 0.293 0.278 0.267 0.258
55Cs 0.096 56Ba 0.207 81Tl 0.561 82Pb 0.531 83Bi 0.509 84Po 0.492 85At 0.479 86Rn 0.468

0.094 0.204 0.430 0.388 0.360 0.340 0.324 0.312

B. p1/2

5B -0.11 6C 0.04 7N 0.17 8O 0.30 9F 0.42 10Ne 0.53
0.05 0.15 0.22 0.28 0.33 0.37

13Al -0.004 14Si 0.119 15P 0.214 16S 0.294 17Cl 0.363 18Ar 0.425
0.082 0.15 0.22 0.28 0.33 0.37

31Ga 0.097 32Ge 0.217 33As 0.300 34Se 0.365 35Br 0.418 36Kr 0.464
0.190 0.232 0.252 0.264 0.273 0.279

49In 0.156 50Sn 0.261 51Sb 0.331 52Te 0.384 53I 0.426 54Xe 0.461
0.233 0.259 0.269 0.274 0.277 0.278

81Tl 0.257 82Pb 0.358 83Bi 0.421 84Po 0.466 85At 0.501 86Rn 0.528
0.333 0.348 0.349 0.347 0.345 0.342

C. p3/2

5B -0.33 6C -0.33 7N -0.35 8O -0.39 9F -0.43 10Ne -0.47
-0.15 -0.13 -0.13 -0.13 -0.14 -0.15

13Al -0.290 14Si -0.277 15P -0.281 16S -0.290 17Cl -0.302 18Ar -0.315
-0.143 -0.116 -0.102 -0.094 -0.088 -0.084

31Ga -0.244 32Ge -0.236 33As -0.244 34Se -0.255 35Br -0.266 36Kr -0.277
-0.080 -0.063 -0.057 -0.055 -0.053 -0.052

49In -0.232 50Sn -0.224 51Sb -0.230 52Te -0.239 53I -0.247 54Xe -0.256
-0.0 59 -0.046 -0.041 -0.039 -0.038 -0.037

81Tl -0.2 57 82Pb -0.253 83Bi -0.261 84Po -0.271 85At -0.281 86Rn -0.291
-0.0 61 -0.047 -0.042 -0.040 -0.039 -0.038

D.pj
5B -0.2 6 6C -0.21 7N -0.18 8O -0.16 9F -0.15 10Ne -0.14

-0.0 8 -0.04 -0.01 0.00 0.02 0.02
13Al -0.194 14Si -0.145 15P -0.115 16S -0.095 17Cl -0.079 18Ar -0.066

-0.068 -0.029 -0.006 0.009 0.020 0.029
31Ga -0.129 32Ge -0.082 33As -0.059 34Se -0.043 35Br -0.031 36Kr -0.022

0.009 0.034 0.045 0.050 0.054 0.057
49In -0.099 50Sn -0.055 51Sb -0.033 52Te -0.018 53I -0.007 54Xe 0.001

0.036 0.053 0.059 0.062 0.064 0.065
81Tl -0.065 82Pb -0.018 83Bi 0.007 84Po 0.024 85At 0.037 86Rn 0.047

0.059 0.073 0.077 0.077 0.077 0.077

∆scal.relE(bond)≈ -21 V‚∆bond〈F〉K-region‚Z
4/c2 (1)

∆scal.relE(total)≈ -2.035 V Å3‚Σnuclei Fn(r ) 0)‚Zn/c
2 (2)
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Concerning the relation between relativistic energy and
·4•〈F〉K-region, we add the following remarks. Depending on the
type of representation, the first-order one-electron scalar rela-
tivistic operator is

or

or

whereT ) p‚p/2m is the nonrelativistic kinetic energy corre-
sponding to T) (E-V), and where [TV] ) -∆V/2 yields the
Darwin term for Coulomb potentials. Although the density of
the inner wiggles of the valence orbitals is small, both the
nonrelativistic kinetic and potential energy contributions from
any of the wiggles are all similarly large, T≈ -V . -ε.28 But
they cancel each other nearly completely in the inner regions.
The respective contributions of the relativistic expressions (3)
become even more huge for the inner wiggles of the valence
orbitals and no longer cancel each other. Each of the different
representations (3) yields the largest contributions very near to
the nuclei.28

3.3. Electron Difference Density Distributions due to
Bonding. The electron “deformation” density distributions (DD)
are conventionally defined as the difference between the
molecular density and the superposed, spherically averaged
densities of the ground configurations of the neutral atoms.31

The DDs of BeO, OH, O2, and OF2 are plotted along the
molecular axes in Figure 6.

Corresponding to the chemical formula of Beδ+Oδ-, the
molecular electron density in the beryllium region has decreased
(Figure 6A), whereas in the valence shell around the oxygen K
shell it has increased. However, in the oxygen core region the
density nevertheless has decreased.

Concerning Oδ-Hδ+, we remember32 that any bonded hy-
drogen has an increased electron density at the nucleus and on
the bond axis. “Positively charged” bonded hydrogens are
characterized by reduced electron density in a large region
“behind” the proton (Figure 6B). Again the bonded Oδ- exhibits
some electron density increase in the valence region, but density
decrease at the nucleus.

In O2 the neutral oxygen atoms, of course, do not show an
average electron density increase in the valence region, but there
still is an average density decrease in the K-shell region (Figure
6C). In all three cases of BeO, OH, and O2, we note the
pronounced charge asymmetry in the oxygen K shell, which
yields a significant contribution to the binding Hellmann-
Feynman forces.30

In Oδ+Fδ- (Figure 6D) there is an average decrease of density
in the oxygen valence shell, a pronounced charge asymmetry
in the O-K shell, but very small change of total charge in the
O-K shell. Not visible along the molecular axis in Figure 6D,
there is, however, significant density reduction in the K-shells
of the fluorine atoms before and behind the axis.

3.4. Bond Length and Bond Energy.According to chemical
rules of thumb, inverse correlations exist between bond lengths
and bond strengths, concerning, for instance, (more or less polar)
covalent bonds,33 hydrogen bonds,34 etc. One might anticipate,
therefore, that the relativistic reduction of the value of the bond
energy of most p-block compounds,|∆scal.relE(bond)| < 0, would
go together with relativistic bond-length expansion,∆scal.relRe

> 0. On the other hand, it had been argued that, because of
overlap and orbital orthogonality between the valence AOs of
one atom and the core of the other bonded (heavy) atom, scalar
relativistic effects should in general contract the bond lengths.35

In an analysis of the relativistic virial theorem, the following
points had been noted.36 First, at large internuclear distances
(separated atom limit), the interaction energy is dominated by
multipole, induction, and dispersion effects. In many cases
relativistic orbital contraction dominates, and the electric
moments, the polarizability, and the van der Waals constants
are relativistically reduced. Then the value of the long-range
interatomic attraction becomes reduced because of relativity.
Second, at short distances (united atom limit), relativity stabilizes
the compound system, because∆relE ∼ Z4. That is,∆relE often
increases at first for decreasingR, and then it decreases for small
Rvalues. An example of this rather common behavior is shown

Figure 4. Calculated scalar relativistic atomization energy contribu-
tions, ∆scal.relE(bond) in 10-3 eV. 9, accurate CCSD(T)-FODPT
approach, molecular formula in square brackets;4, DF (ADF-BVP-
Pauli) approach, molecular formula with superscript∆; *, DF estimate
by frozen-core orbital approximation. Plotted versus change of electronic
charge in the K-shell region of the oxygen atom due to bonding,
∆bond〈F〉O-K-region, in 10-3 e (from DF calculations). In OF2, there is a
small contribution to∆scal.relE(bond) from oxygen [OF2(O)] and bigger
ones from the fluorines [OF2(F)]. The latter contributions to∆E(bond)
are also plotted, versus∆bond〈F〉F-K-region of the F-K shell, times (9/
8)4 where (9/8) is the ratio of nuclear charges of F and O.

-1/2mc2 *{p(E-V)p/2m}
(from direct Dirac perturbation theory),

-1/2mc2 *{T2 + [TV]} (from Pauli perturbation theory),(3)

-1/2mc2 *{(E-V)2 - [pV]‚p/2m}, etc.,

Figure 5. Calculated (ADF) scalar relativistic bond energy contribu-
tions,∆scal.relE(bond), in electronvolts, versus change of electronic charge
in the K shell of the heavy atom,∆bond〈F〉K, times itsZ4, in 103 e, for
30 molecules with a heavy atom from the s, the p, and the d-f blocks
of the periodic system.
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in Figure 7, where the bonding is mainly caused by oxygen-
2p. Similar curves were obtained, for instance, for the pσ-bonded
halogen dimers, for the thallium halides,24b and for the s-bonded
H2

+ (see Figure 8).36

The lighter p-block compounds evidently lie near the
maximum of the∆relE(R)curve, where the slope is very small.
According to double-perturbation theory, the relativistic first-
order change of bond lengthRe is given by37

wherek is the force constant andR is the fine structure constant.
BecauseE11, i.e., the slope of the∆relE(R) curve, is so small,
∆relRe is comparatively small, too (see Table 2). For compara-
tively shorterRe values, the slope is larger and positive, and
one obtains larger bond contractions for both∆scal.relE(bond)>
0 (relativistic destabilization as for many p-block compounds),

and for∆scal.relE(bond)< 0 (relativistic stabilization as for many
s-block compounds).

4. Concluding Remarks

It is remarkable that the electron density near the nucleus
can increase or decrease, in a given bond formation process,
for both density increase and density decrease in the valence
shell of the respective atom. This is so because several opposing
tendencies contribute.

First, electric polarization and dispersion as well as orbital
overlap effects at large internuclear distances in general transfer
charge from the vicinity of the nuclei into the adjacent regions
of the outer valence shells, thereby reducing the density around
the nuclei. This raises the potential energy of the system. And
the respective electron density delocalization results in a
(somewhat larger) decrease of the kinetic energy, particularly

Figure 6. Difference of electronic density between superimposed spherical atoms and the bonded molecule, along the molecular axis. Negative
means reduced density in the molecule. The nuclei are atb, the extensions of the K shells are indicated by|. (A) BeO; (B) OH; (C) O2; (D) OF2

(the diagonal axis goes through the middle between the two F atoms, F2).

Figure 7. Scalar relativistic bond energy change,∆scal.relE(bond), left
scale in 10-3 eV, and change of the electronic charge within the region
of the K shell caused by bond formation,∆bond〈F〉K-region, right scale in
10-3 e, for OH, versus the internuclear distanceR in angstroms.

∆relRe ) -E11/k ) -(∂2E/∂ ln R2
∂R)Re/(∂

2E/∂R2)Re (4)

Figure 8. Kinetic energyT, potential energyV, total energyE, and
relativistic contribution∆relE to the total energy timesc2, drelE ) ∆relE‚
c2, versus logarithm of internuclear distance, lnR, of H2

+, all quantities
in atomic units.36
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of its bond-parallel component.38,39 According to the negative
signs in eq 3, relativity attenuates the nonrelativistic energy
decrease.

Second, when overlap increases upon reducing the inter-
nuclear distance further, the Pauli principle (e.g., orthogonality
of overlapping occupied orbitals in the standard independent
electron model) keeps the valence density of one atom out of
the core electrons’ region of the other atom. But it increases
the density at the nucleus because of the orthogonalization tails
of the orbitals.35 This holds for any type of valence overlap,
i.e., also for p and d AOs, which have no (nonrelativistic)
electron density contributions at the nuclei in the unperturbed
atoms. The kinetic energy begins to increase because of the
orthogonalization wiggles, and the potential energy begins to
decrease. Because the kinetic term dominates in the relativistic
corrections, eq 3, the change of trend upon shortening the
internuclear distance occurs already at larger distances for the
relativistic bond energy contribution∆relE(bond) than for the
nonrelativistic one,E(bond) (e.g., see Figure 8).

Third, at even shorter internuclear distances around the
equilibrium separationRe, valence orbital contraction toward
the electronic potential wells is required to occur according to
the virial theorem,38,39 resulting in a density increase around
the nucleus. This concerns particularly bonding s valence
orbitals, while bonding po´ orbitals contract less, and the pπ AOs
undergo only little change.42,43 Antibonding AO interaction
causes an opposite orbital-expansion.

Fourth, as mentioned in the beginning, if bonding induces
s-p promotional hybridization, i.e., angular deformation of the
bonded atoms in the molecule, and reduces the s valence
population (compare the AO population values in Table 2), the
inner tail density of the s valence orbital at the nucleus should
also decrease, although the total density in the valence shell
does not change. (However, upon relativistic ‘antiparallel’ spin-
orbit coupling, a relativistic p1/2 spinor obtains density at the
nucleus.)

Finally, an increase of density on an atom increases the
interelectronic repulsion, which expands the charge distribution
in the valence shell. This is particularly pronounced for
negatively charged atoms. Indeed, in second-row atoms, the
density increase in the K-shell region is only in the percent range
for a 100% increase of the 2s population (i.e., by one additional
valence electron). So, only low-quality correlations were found
between ∆scal.relE(bond) and orbital populations or atomic
charges in the valence shell.

As a result of these different mechanisms, sσ-bonded
molecules adopt their equilibrium distanceRe, where the K-shell
density is already increasing for decreasing distance, so∆relRe

< 0 and ∆relE(bond) either> or < 0, whereas pσ-bonded
molecules have their equilibrium distance not far from where
the K-shell density is minimal, so∆relRe ≈ 0 and∆relE(bond)
> 0.

Simple arguments in the literature such as “Electrons
participating in bonding are drawn away from the nucleus to
the bond center. Therefore bonding reduces the relativistic
energy stabilization.”, or those ones mentioned at the end of
the section 1, must be applied with caution. Also the relations
between∆relE(bond) and∆relRe cannot be explained with the
help of such naive inferences.

Generally speaking, the first-order differential relativistic
effects are determined by the deformed (i.e., molecular) one-
and two-particle density matrixes in conjunction with first-order
relativistic integrals. For the systems studied here, the two-
electron relativistic effects are small. Near the nuclei, the K-shell
density dominates in the one-particle density matrix; therefore,
a ‘good’ correlation is expected between (first order) relativistic

effects and the K-shell density. However, for valence shells,
generally the off-diagonal elements of the one-electron density
matrix in an atom centered basis are not small, and therefore a
good correlation between valence-shell density and relativity
cannot be expected in general.

Quantum theory is a ‘holistic’ theory: Whole space and whole
environment matters. However, because the wave function is
analytic, already a small piece in some spatial domain deter-
mines the whole wave function. So in principle, any region of
space can be used to explain the whole bonding mechanism.
Furthermore, performing integral transformations and math-
ematical conversions, different weights can be attached to
different spatial domains. A typical example is the transition
probability between two extended Rydberg states: In the length
formula, the dominant outer diffuse density of the states matters,
while in the velocity and in particular in the acceleration formula
the tiny inner orbital tails matter.

Using common formulations, the nonrelativistic s-p valence
energy (concerning valence forces see below) comes dominantly
from the outer atomic spatial shells, whereas the direct
relativistic valence effects originate in these formulations
dominantly from the innermost atomic core regions. The indirect
relativistic effects come from the whole atomic region; they
modify the orbital properties in first order ofc-2, but total
energies and, accordingly, atomization energies, are influenced
only in second order. This explains why also the heavy-atomic
compounds with large indirect orbital reorganizations lie near
the correlation lines of Figures 4 and 5. Scalar relativistic bond
effects can be attributed dominantly to the contributions from
the first half wave of atomic s orbitals (compare also refs 1, 2,
and 28).

If very similar compounds are compared, such as different
covalently bonded carbon atoms in organic chemistry, a linear
relation may exist between the wave function at the nucleus
and in the outer valence shell, e.g., between the chemical shift
and the outer valence s population. However, this core-valence
relation does not hold in general, as concerning the examples
discussed above. We also note that the nonrelativistic valence
effects are “determined” by the wave function in all spatial
regions of the molecule,if the bondingforcesare determined
by integrating the Hellmann-Feynman38 formula, where espe-
cially high weights are put on the regions near the nuclei.30
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Appendix I

Fractional Relativistic Correction Coefficients for Valence
s and p AOs. The fractional relativistic correction of the
energiesε and of the radii〈r〉 of the atomic valence s and p
Dirac-Fock orbitals14 are represented in the form of “fractional
relativistic correction factors”γ:

The γ are given for s, for p1/2, for p3/2, and for the average
pj ) 1/3‚p1/2 + 2/3‚p3/2 in Table 3, A, B, C, and D, respectively.
(The γ values forε (though∆relε/εnorel) for s and for pj were
already presented in ref 8. However, thoseγε(pj) are erroneous.)
The valence s and p1/2 are relativistically contracted (γr < 0),
and relativistically stabilized (γε < 0), except concerning the
stabilization of p1/2 of the light electropositive atoms B and Al.

∆rel
ε/ε ) γε‚(Z/c)2, -∆rel〈r〉/〈r〉) γr‚(Z/c)2 (A0)
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The valence p3/2 is relativistically destabilized (γε > 0) and
slightly expanded (γr > 0). The valencepj average varies from
destabilization and slight expansion to weak stabilization and
weak contraction, when going in the periodic table from the
upper left to the lower right. There is no strict correlation
between energetic stabilization and spatial contraction.

Appendix II

Classical Localized Pictures in Quantum Mechanics.
Because of Heisenberg’s uncertainty, it is in principle forbidden
to speak in quantum mechanics of a velocity or momentum value
at a given position. However, one can still ask the following
question: Given a specific integral representation for an expec-
tation value, say for the energy or for the kinetic energy or for
the momentum, which pieces of position space contribute most?
Discussing such positional contributions of momentum to the
energy helps to understand the physical mechanism in the given
representation by well-defined mathematical formulas.

Furthermore, the mentioned caveat holds strictly only as long
as the classical uncertainty limits are more restrictive than the
quantum mechanical Heisenberg condition

wheren ) 1/2 holds for a Gaussian distribution. A Gaussian
reference state is used, for instance, to define the quasiclassical
Husimi phase space function.38 For an eigenstate in a smooth
potential,n in eq A1 is of the order of the principal quantum
number. Here we use atomic units, i.e.,p ) 1, me ) 1, e ) 1.

Now, let ∆xcl be the uncertainty of a classical position
measurement of an electron in an atom, at distancer from the
nucleus (reasonably, withr > ∆xcl > 0); and let∆pcl be its
respective experimental momentum uncertainty. A classical
model may then be used, if

For a valence electron with small energy, i.e.,ε ≈ 0, the
comparatively large kinetic and potential energies,T and V,
approximately cancel each other,-V ≈ T.28 Note that for a
one-electron orbital in a Hartree-Fock potential or any similarly
screened Coulomb potential, the virial relation significantly
differs from the relation for pure Coulomb potentials (a good
approximation for any many-electron molecule and its total bond
energy), where-V ) 2T holds. This important point is not
always remembered by all authors.

In the nonrelativistic case,

The ∆pcl corresponding to∆xcl is then given by

In the relativistic case, we have

yielding

For an electron near the nucleus,me ) 1 and-V ≈ Z/r. From

eq A2 we then obtain for the nonrelativistic and relativistic cases,
respectively,

This means for the nonrelativistic case that the classical model
is applicable only for

Because the orbital radius is of the order of<r> ∼ n2/Z, a
classical orbit model is never applicable ‘inside’ an atom.
However, in the relativistic case, eq A8 yields a smaller critical
value rrel < rnrel, namely

This reduction is bigger than the hydrogenic relativistic orbital
contraction, i.e., a classical model becomes more reasonable
in the relativistic case. For instance for anyZ > c/2 ) 68.5,
eq A10 just means nothing else than the trivial restriction
rrel > 0.

References and Notes

(1) Wang, S. G. Relativistic Effects and Chemical Bonding; Ph.D.
dissertation, University Siegen, Verlag Shaker, Aachen, 1994.

(2) Schwarz, W. H. E.; Rutkowski, A.; Wang, S. G.Int. J. Quantum
Chem.1996,57, 641.

(3) Feller, D.; Peterson, K. A.J. Chem. Phys.1999,110, 8384.
(4) Martin, J. M. L.; Sundermann, A.; Fast, P. L.; Truhlar, D. G.J.

Chem. Phys.2000,113, 1348; Martin, J. M. L.; de Oliveira, G.J. Chem.
Phys.1999,111, 1843.

(5) Kedziora, G. S.; Pople, J. A.; Rassolov, V. A.; Ratner, M. A.;
Redfern, P. C.; Curtiss, L. A.J. Chem. Phys.1999, 110, 7123.

(6) Kedziora, G. S.; Pople, J. A.; Rassolov, V. A.; Ratner, M. A.;
Redfern, P. C.; Curtiss, L. A.J. Chem. Phys.2001,115, 718.

(7) Yanagisawa, S.; Nakajima, T.; Tsuneda, T.; Hirao, K.J. Mol. Struct.
THEOCHEM2001,537, 63.

(8) Schwarz, W. H. E. inThe Concept of the Chemical Bond; Maksić,
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