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Hamiltonian. Applications to WILVIW, TOLKEK, and KAXHAS Nitronyl Nitroxide

Crystals
Mercé Deumal,*T Michael J. Bearpark,™ Juan J. Novoaf and Michael A. Robb*
Chemistry Department, King’s College London, Strand WC2R 2LS London, U.K., and Departament de
Quimica Fsica, Uniersitat de Barcelona, Marti Franqués 1, E-08028 Barcelona, Spain
Receied: July 19, 2001; In Final Form: Neember 4, 2001
A computational approach to the study of magnetism in molecular crystals is outlined, and applications are
presented for three purely organic nitronyl nitroxide (NN) crystals: WILVIRMN-methylpyridiniumNN-
[7), TOLKEK (a-2-hydroNN), and KAXHAS g-p-nitrophenyINN). Data from ab initio electronic structure
computations are used to parametrize an algebraic Heisenberg Hamiltonian. The magnetic susceptibility as a
function of temperaturg(T) is, in turn, obtained directly from the computed energy levels of the algebraic
Heisenberg Hamiltonian. The parametrization of the two site interaction paramitersequires the
identification of the (one-, two-, or three-dimensional) magnetic motifs (e.g., spin ladders, etc.) from a study
of the magnetic structure of the crystal. The energy levels of the magnetic motif are then computed as a
function of the extension of the constituent magnetic building blocks along the crystallographic axes until
convergence of(T) can be demonstrated. Rapid convergence has been demonstrated, showing that a simple
model (the minimal magnetic model space) can be used as a realistic model of the magnetic motif for an
infinite crystal lattice. Applications to the three organic NN crystals have demonstrated the efficacy of this
theoretical approach for the simulation of the experimental magnetic susceptibility and heat capacity data.

Introduction SCHEME 1

Transition metal molecular magnetism has been the subject @) (b)

of active research for the last few decadétowever, the first LI A A B A

bulk organic molecular magnets, the phase of thep- T2

nitrophenyINN and the carbon clusters® were not character-

ized until 1991. Since then, many other purely organic magnets

have been successfully synthesiZédevertheless, the theoreti- © )

cal models used to explain and simulate the behavior of the

magnetic susceptibility(T) for organic/transition metal mo- A i B e A i A R
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an explicit dependence of the magnetic response on the geometry i B —p B B — e

of the constituent radicals for a given crystal. Our purpose in ’ ’ | ‘ | ‘ ’ ’

this paper is to present a theoretical approach that incorporates ;s e A A A —F e

data from ab initio computations providing the magnitude of ‘ ‘ I ’ | ‘ [ ‘

the microscopic magnetic interactions and that is focused on  gema e T — | — p —

the importance of the magnetic structure of the crystal.

One usually visualizes the geometric structure of a crystal in
terms of a three-dimensional array of chemical bonds (intra or structure of the magnetic motifs. Finally, the magnetic structure
intermolecular in nature). The packing of the constituent building of a crystal for a low-dimensional magnet is defined as an array
molecules of the crystal can then be described in terms of of infinite-dimensional magnetic motifs, the magnetic interaction
structural motifs according to the intermolecular bond strength between magnetic motifs being sufficiently weak that it can be
(e.g., electrostatic interactions, hydrogen bonds, Van der Waalneglected (see discussion for WILVIW and TOLKEK). For the
forces, etc.). Analogously, the magnetic structure of a crystal case of a bulk magnet, the magnetic motif is three-dimensional
can be defined in terms of the topography of a three-dimensionaland coincides with the magnetic structure (see discussion for
array of dimeric exchange interactiodss between (radical) KAXHAS).
sites A and B. The dominant interactiodsg define the The preceding ideas of magnetic structure at a microscopic
constituent magnetic building block of a given crystal. The level can be illustrated with an example. Scheme 1 shows (a)
infinite repetition in one, two, or three directions of the dimer, (b) linear chain, (c) spin ladder, and (d) two-dimensional
constituent magnetic building blocks defines, in turn, the layer magnetic motifs. Let us assume that an array of non-

interacting two-dimensional layers (Scheme 1d) represents the
tKing's College London. magnetic structure of a crystal. Fér> J, > Js, the constituent
* Universitat de Barcelona. magnetic building block corresponds to a rung (Scheme 1a) and
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the magnetic motif becomes a spin ladder (Scheme 1c). Each ZNQZyBZ 1

one of the two-dimensional layers (Scheme 1d) can then be v = T Ho [emumol’] (2)
pictured as spin ladders (Scheme 1c) weakly interacting through Ks 3+ exp(-2J/kgT)

Js.

The main goal of this work is to show how the microscopic Equation 2 can be rigorously derividusing the statistical
magnetic motif (chains, ladders, etc.) of the crystal can be relatedmechanics expression for a two-level model. In this case, there
to the macroscopic properties that can be measured, such asire only two accessible energy levels of the system: the singlet
magnetic susceptibility and heat capacity. The magnetic structureS ground state and the triplet T first excited state. Accordingly,
is not obvious from the crystal structure, and simple models 2J is the S-T spin energy gap of the system. This is clearly
such as the way McConnell’s theory is currently applied have only applicable for an antiferromagnetic system (a “two-level”
been discreditefl.As we shall show, an objective procedure model cannot possibly describe a ferromagnet as will be shown
for connecting the microscopic to the macroscopic magnetic for KAXHAS). The J parameter is often erroneously identified
information involves four steps. (1) The identification of all ~with a single type of dimeric interactiaizs. However, a crystal
possible magnetic interactiodss on the basis of intersite AB will have more than one type of dimeric interaction. Thus, the
distances in the crystal and subsequent computation of theJ parameter in eq 2 effectively “averages” all possible micro-
magnitude of the correspondidgg to determine the dominant ~ scopicJag in the crystal. By “averaging”, one means using all
contributions (via electronic structure methods such as embeddednagnetically relevaniag in the parametrization of the Heisen-
cluster-8 or periodic method. (2) The pattern and strength of  berg Hamiltonian (eq 1) and then solving the secular equation
the dominant interactiondag are then used to define the problem for the accessible singlet and triplet states and using
magnetic building blocks and the magnetic motif, which only these two levels ix(T). The use of two-level models is
specifies the magnetic structure of the crystal. (3) The electronic assumed in many studies published in the literature without
energy levels of the model defined by a finite number of numerical justification. In this work, these assumptions will be
magnetic building blocks of the magnetic motif are then obtained tested. A least-squares fitting procedure is normally used to
by diagonalization of an algebraic representation of a Heisenbergreproduce the experimentg(T) values using an equation of
Hamiltonian parametrized with the computég: the form of eq 2 or similat’ However, the microscopic

magnetic picture that underlies the “best-fitting” model is not
. N o available because one obtains an energy difference rather than
H= —ZgJABSA-SB 1) the individual magnetidag interactions. As we shall show, a
; two-level model (eq 2) can reproduce the experimeptd)
values (see discussion for TOLKEK). However, this is not
In eq 1, A and B are spif; sites representing the constituent obvious. When the system deviates from this two-level (spin-
N radical sites of the magnetic building blocks. This Hamiltonian gap) model (see discussion for WILVIW), the introduction of
is then of finite dimension and acts on the space of all possible some empirical factors (e.g., mean fiélgharameter) becomes
spin functions that can be constructed from these Spin/, necessary to describe properly the magnetism of the system.
sites. The choice of the number of magnetic building blocks of These empirical parameters correct the fact that a many-level
the magnetic motif to be used in the Heisenberg Hamiltonian model is required (the spin-gap model fails). It is thus evident
(minimal magnetic model space) is a crucial step in this that a theory that incorporates all the microscdpicparameters
prescription. (4) Finally, the microscopic energy levels obtained (e.g., using the computed energy levels of a Heisenberg
by diagonalization of the Heisenberg Hamiltonian are used in Hamiltonian) is required to relate the microscopic magnetic
standard statistical mechanics methods to give the macroscopidnformationJag to the macroscopic magnetic susceptibijity).
magnetic susceptibility and heat capacity (for a recent review  |n summary, we propose a four-step prescription involving:
of steps 3 and 4, see ref 10). (1) identification and computation of the numerical values of

A few related theoretical approaches have been docu- J,s, (2) definition of the magnetic building block, magnetic
mented:® 2 Borrés-Almenar et al? propose a more general  motif, and magnetic structure, (3) construction and diagonal-
Heisenberg Hamiltonian approach to study magnetic inorganic jzation of the Heisenberg Hamiltonian, and (4) computation of
clusters based on a generalized spin Hamiltonian. However, the macroscopic magnetic susceptibility and heat capacity from
there is no explicit account of the crystal geometry (except in statistical mechanics. In the following sections, we will discuss
a parametric ford?13>%) since theJag values are never  each step, and the methodology involved in it will be compared
numerically computed. Fink et &.use a finite-size cluster  to the current approaches used by others. Finally, we will present
approach to compute the energy levels of only the four lowest- three examples of nitronyl nitroxide crystals where this proce-

lying spin states for binuclear complexes and then calcy(dje dure has been applied.
We will show that all energy levels seem to be essential in the
computation ofy(T). Hellberg et a2 computey(T) by solving Theoretical Development

the Heisenberg Hamiltonian using Lanczos techniques on large

(20—32 spins) clusters to obtain the lowest/highest energy levels  Identification and Computation of the Numerical Values

and then assume an analytical density of states for the middleof Jas. The simulation of(T) requires the identification of the

eigenvalues. The full four-step prescription given above does magnetic building block of the magnetic motif, which is in turn

however not seem to have been fully tested. Rather, theoreticalspecified according to the magnitude of the dominagy.

work often stops at the computation of thg for organic and Therefore, we will proceed to discuss the identification and

inorganic system&:8 The full Heisenberg Hamiltonian is ~ computation of the numerical values &fs.

usually not constructed (except for cluster mo#jsand thus, First, the crystal packing must be analyzed. One must identify

there is no direct comparison with experiment. the potentially important dimeric interactiorig that exist
Experimental(T) data are frequently fitted using a Bleaney between the radicals within the asymmetric crystallographic unit

and Bowers two-level mod€lgiven by eq 2 (or other analytical ~ cell and those of neighboring crystal cells. Crystals are periodic

expressions): systems, so the number of uniqdis one needs to identify is
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SCHEME 2 singlet S and triplet T states
o) _
Me N AEST=E° - E"=2J,, (3)
MeA/ \
_l C-R When using DFT, the use of the unrestricted broken symmetry
Me /\N/{ approach is required in order to compute the biradical open-
Me \ _ shell singlet ground state. From a variety of cho®édhg criteria
o followed to compute the energy difference is
-N-methylpyridiniumNN*T , WILVIW R= A . 2(ES. — E"
p-N-methylpyridinium —@N Me [ Es . ET _ ( BS _ ) (4)
1+8S,
2-hydroNN, o phase , TOLKEK R= —H where S stands for singlet, T for triplet, and BS for broken

symmetry ands,y, is the overlap integral between a and b singly
occupied molecular orbitals (SOMOs). For all three NN crystals
- R= studied in this paper, the solutions for the biradical open-shell
p-nitrophenyINN, f phase , KAXHAS < > NO2 singlet have localized SOMOs on one radical or on the other,
so the overlap is negligibl&s{, = 0). Thus, eq 4 becomes simply
finite. The distance between spin carrier groups in these radicals
is the criterion used to decide whether a pair of radicatsBA E°S—E =2(E;— E (5)
might be magnetically relevant. Thus, the candidates for dimeric
interactionslag are chosen according to a given cutoff distance and
between spin carriers since the magnetic interaction is known

to vary as expfr) depending on the distance between ESS— ET=JAB (6)
magnetic centers and their relative orientafithConstituent
radicals of different crystals belonging to the same family will We have used unrestricted DFT, with the UB3L%¥Runc-

have the same cutoff distance. One does not assume anytional using broken symmetry, and a 6-3&(d) basis sétf
preconceived microscopic exchange paths. Rather, one computeéGaussian packag®.
the Jag values for all sensible dimeric interactions. The distance It is clear that the bare dimer approach neglects three-, four-
criterion per se does not determine the relevant exchangeor n-body cooperative exchange effects. Depending on the
pathways; rather, it provides the initial candidates for the substituent R attached to theC of the NN group (see Scheme
subsequent computation of thgs values (i.e., we deliberately ~ 2), these many-body effects may be large=Rhenyl group)
include more candidates than the first nearest neighbors, whichor small (R= hydrogen atom). Other more accurate ab initio
are the usual candidates in the literature). After the identification methods (e.g., FCI, CC, DDCI, CASPTZ).could be used to
of the pairs of spin sites, computations are carried out on the compute the exchange couplidgs whenever the size of the
whole radical at the geometry of the molecules in the X-ray system allows it. However, we shall show that it is the
structuré® accounting for the relative orientation of the radicals. topography of the magnetic motif of the crystal that is important
The target crystals studied in this paper belong to the nitronyl when simulating,(T) rather than the accuracy of the computed
nitroxide (NN) family (see Scheme 2). These three compounds Jag. Once the topography of thég has been identified, we
are characterized by the presence of one unpaired electron inwill show thaty(T) can be fitted by uniform scaling of all the
the constituent radical that is mostly localized on the ONCNO computedlag.
unit2® Thus, we take the ONCNO atoms as the spin carrier  Definition of the Magnetic Building Block, Magnetic Motif
group (the total number of unpaired electrons for a given NN and Magnetic Structure. The magnitude of the dominant
radical depends on the substituent R attached totfeof the dimeric exchange interactionkg (computed as described in
NN group). For crystals belonging to the NN family, dals previous section) defines the magnetic building block of the
are computed using the X-ray geometry of pairs of radicals with crystal. The magnetic motif is then defined by the infinite
a spin carrier intersite threshold ONCNGDNCNO distance appropriate repetition of this magnetic building block, which is
of 7.4 A (at larger distances, the magnetic interaction is assumedfirst extended along the direction given by the larghst then

to be negligible because of the exponential decayagfwith along the direction of the second largéss, and so on. Scheme
distanceés). 1 shows the topography of four different magnetic motifs in
We now turn to the computation of thkg. Methods such terms ofJy, Jp, Js... between radicals A and B: (a) dimer, (b)
as embedded cluster appro&thr periodic methodd have been linear chain, (c) spin ladder, and (d) two-dimensional layer. The
used in order to compute the magnitudeJag. A “dressed” relative ratios between computéds values define different

cluster approach would be required for transition metal crystals, motif topographies in terms of magnetic building bloéks.
where one takes into account the cluster and its environment. Therefore, the correct definition of the magnetic building block
However, a “bare” cluster approach is adequate for organic is essential to properly represent the microscopic magnetic
crystals. Thus, in the computation dfs values, we use standard topography. The extension of the number of magnetic building
electronic structure computations for the singlgiplet energy blocks in terms oflag is carried out according to the topography

separation using unrestricted DFT with broken symmgétry. of Jag and not according to the repetition of crystallographic
Some practical aspects of the computatiodf within the cells of the crystal. For instance, assumifig<< J; and Jo,
unrestricted DFT broken symmetry appro#chre now dis- Scheme 1d shows an array of non interacting spin ladders
cussed. From the Heisenberg Hamiltonian (eq 1) for a pair of (Scheme 1c). In such a case, a spin ladder is the magnetic motif
radicals A and B with one unpaired electron, thg value is providing all the relevant microscopic information. In contrast,

computed as the energy difference between biradical open-shelthe broken lines in Scheme 1d represent a crystallographic unit



1302 J. Phys. Chem. A, Vol. 106, No. 7, 2002

cell containing a pair of radicals A and B. It follows that the
repetition of this unit cell is not related to the magnetic motif.

Finally, the magnetic structure of the crystal is defined
according to the infinite repetition of a given magnetic motif.
Using the above example, if the magnetic motif for a crystal is
a spin ladder (Scheme 1c), the three-dimensional magnetic
structure is formed by infinite noninteracting (or very weakly
interacting) spin ladders. For the special case of bulk magnets
(the magnetic motif is three-dimensional), the magnetic structure
and the magnetic motif coincide (as illustrated with KAXHAS).

Construction and Diagonalization of a Heisenberg Hamil-
tonian. The simulation of macroscopic properties, such as
magnetic susceptibility(T) and heat capacit¢y(T), is carried
out using the energy levels obtained from the diagonalization
of a Heisenberg Hamiltonian. This Hamiltonian is, in turn,
parametrized with the previously comput&g. The magnetic
motif (for a finite number of magnetic building blocks) defines
the dimension of the Heisenberg Hamiltonian. Thus, from a
practical viewpoint, the concept of magnetic motif (and in
particular the constituent magnetic building block) enables one
to reduce the problem of an infinite crystal into a finite model
(i.e., it enables the use of a Heisenberg Hamiltonian).

For organic molecular crystals, the energy levels are obtained
from the full numerical solution of the secular equation problem
of the algebraic Heisenberg Hamiltonian given by eq 1, which
is rewritten a&®

N
H=- ;‘JAB(ZSA.SS + l/2|AB) (7)
In eq 7, the sum A and B runs over a subseiNafnagneticS
= 1/, centers of the magnetic motif for a finite number of
constituent magnetic building blockSy is the spin operator
associated with the radical A, angk is the identity operator.
TheJag are the microscopic parameters which give the magnetic
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infinite chain of atoms can be properly reproduced by a finite
cyclic chain (less than 30 atoms is enough in many é8ses
The same approach can be extrapolated to three-dimensional
problems. However, an open cluster apprdazhalso possible.

If a particular property of the cluster has converged, the limiting
value is considered as that of the infinite system; otherwise, an
estimation of the bulk-limit results can be dofieA series of
tests using open and cyclic models corresponding to the
extension of the number of magnetic building blocks has been
carried out for the three crystals studied in this paper. The results
obtained using all energy levels computed for both models show
quasi-identicaly(T) curves (we will just show the results for
WILVIW).

Effective Hamiltonian theo? can be used to understand and
demonstrate the rapid convergence of the simulated magnetic
susceptibility data using simple models. This methodology has
been tested to be valid for a number of spin probléfiEhe
use of an effective Hamiltonidh33 requires the introduction
of two new concepts, minimal magnetic model space and target
space, which we will illustrate with an example. Scheme 1c
shows a spin ladder magnetic motif. For such a magnetic motif,

exchange coupling interaction between those centers (computedhe magnetic building block (mbb) could be pictured as a dimer

as described previously). fag is negative, the spins within
the radical site pair tend to be antiparallel to each other
(antiferromagnetic coupling), while fag is positive, the spins
align parallel to each other (ferromagnetic coupling). The
Hamiltonian (eq 7) operates on a basidNafold tensor products
consisting of products dfl spins (eithei or 5 for a system of
doublets) in the crystaP

The space of Heisenberg Hamiltonian (eq 7) is defined by
the choice of a finite number of magnetic building blocks of
the magnetic motit? However, the choice of the number of
building blocks to be used in the construction of the Hamiltonian
remains to be discussed. One must demonstrate convergenc
onx(T) with respect to the extension of the number of magnetic
building blocks (according to the topography of the magnetic
motif). As we will show subsequently, rapid convergence can
be demonstrated indicating that simple models with small
number of magnetic centers<{48 radical sites) may be adequate
to provide a realistic model of the magnetic motif for an infinite
crystal lattice. Thus, the only practical limit, from a computa-
tional point of view in our approach, is the restriction to about
16 radical sites because of the need to fully diagonalize the
Hamiltonian (with 16 active sites, H in eq 7 has a dimension of
12870 by 12870). However, two conceptual issues remain: (1)
whether to simulate the magnetic motif with an open or cyclic
model, and (2) an a priori rationalization of the reason small
models may provide a rapid convergence on the computed
magnetic susceptibility(T) data.

Calculations have been carried out on a series of large finite
cyclic chains®®312 |t is believed that the properties of an

(rung) assuming a dominadt interaction. A 2mbb model (4-
spin sites in Scheme 3a) could be thought as being the minimal
magnetic model space for a 4mbb target space (8-spin sites in
Scheme 3b) since the latter is a double repetition. In such a
case, the diagonalization of the Hamiltonian using the 4mbb
model, and its subsequent projection onto the 2mbb space will
yield six eigenstates (out of 70 eigenvectors corresponding to
the 4mbb target space) matching the six eigenstates of the 2mbb
minimal magnetic model space (a quintet, three triplet and two
singlet states). If the computedT) data do not change when
increasing the size of the target space (4-,rBrmbb model)
while keeping the same minimal magnetic model space (2mbb
model, onto which the target space Hamiltonian is projected),
the calculation is converged (see discussion for WILVIW
crystal). One then also concludes that the minimal magnetic
model space can provide a faithful representation of the infinite
system.

Within the framework of effective Hamiltonian theory, instead
of working with the Hamiltonian of the infinite crystal space,
one uses its projection onto a subspace of magnetic building
blocks. This subspace is the smallest subset of magnetic building
blocks required to describe propegT), the so-called minimal
magnetic model space. The space of the effective Hamiltonian
is thus the minimal magnetic model space. The space defined
by a larger number of magnetic building blocks is in turn called
the target space. The effective Hamiltorfaprojected from a
target space will always reproduce exactly a subset of eigen-
values of this target space corresponding to the minimal
magnetic model space. The accepted strategy for the study of
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periodic systems, using finite models, involves the systematic Avogadro’s number, Bohr magneton, Boltzmann constant, and
extension of the finite system until convergence is obtained. permeability of free space, respectively. The unity ¢éq 9)
Thus, we have used this strategy by extending the minimal in SI are n¥ mol~ dimers (and in CGS systeny/4710-° gives
magnetic model along the crystallographic directions until we the susceptibility in emu mot dimers)3® The units forC,, (eq

obtain convergence.

Macroscopic Magnetic Susceptibility and Heat Capacity
from Statistical Mechanics.Once the microscopic information
has been obtainedl{z values) and the energy levels of the

10) are J moi! K71, It is thus essential to clarify whether
“mol~1" in N refers to moles of magnetic centers (radicals),
pairs of radicals (dimers), minimal magnetic model space, etc.
The units of the energkg, must then be in accordance with

Heisenberg Hamiltonian computed, one can simulate the 54 refer to a mole of radicals, dimers, minimal magnetic model

magnetic susceptibility and heat capacity using statistical

mechanics. The behavior @{T) shows whether the molecular

material behaves macroscopically as a ferro or antiferromagnet.

space, etc.
Two strategies can be followed when computing the magnetic

Experimentally, susceptibility measurements are conducted atSUSCePtibility (eq 9) as a function of temperaty(€), depending

very low magnetic fields to avoid saturation effects in the
magnetic data (e.g., using SQUP Thus, the expression for
x(T) will be derived at zero magnetic fiel limit.

The general expression for the magnetic susceptibjlty)
given by statistical mechanics is written in terms of the
microscopic energy levels at zero magnetic fielél as
]

s 2 E.—E
(mg + ) exp—
e [T 2
x= o -
ks T E,—
® Z(ZSh +1) ex;{— =
' n+S E.— Eo||?
+ —
2,2 M ex‘{ T
8)
E, — Eo]?
[Z(ZSH+ 1) exr{— I
The above expression can further reduc® to
I E.—E
N2 Z&(Sn +1)(25,+ 1) exp{—
£ gt i E_E ©)
z(zsh +1) exp{—
! n

after summing ovem, (at zero magnetic field limit). Similarly,
the statistical mechanics expression for the heat cap@g(t)
in terms of the microscopic energy levels is

' E-E

25 + 1)E. — E)exd — ———

N Z(Sn )E, — Ey) ex;{ T
cpszTz — _
2(231—1—1) ex;{— o ] |

E,— EJ]]?

]
IZ(ZS1 + 1)E, — Ey) ex;{— o

[Z(an +1) exp{—
" i

In the above expressions, is thenth energy level from the
algebraic Heisenberg Hamiltonia®, is the spin of thenth
energy level g, = =S, ..., =1, 0, +1, ..., +S), g is the
gyromagnetic factor, and the constaMsus, ks, andug are

(10)

E, — Bol|?

on whether the energy levels are obtained using (1) the
Heisenberg Hamiltonian in the target space or (2) its projection
onto a model space. A Heisenberg Hamiltonian is applied to
different target spaces with increasing number of magnetic
building blocks until convergence on(T) is obtained. It is
essential that all the energy levés,} and corresponding spin
values{ S} from each target space are included in the statistical
mechanics expression (9) (e.g., ref 11 only uses the 4 lowest
spin states for a binuclear complex). However, the projection
of the Heisenberg Hamiltonian onto the minimal magnetic model
space via an effective Hamiltonian reproduces a subset of
eigenvalues of a target space and can be used as well. When
working with the projected Heisenberg Hamiltonian, only the
energy leveld E} and corresponding spin valu¢s,} of the
minimal magnetic model space are included in the statistical
mechanics expression. If the computgd) does not change
when increasing the size of the target space (keeping the same
minimal magnetic model space), the calculation (eq 9) is
converged. We will exemplify both strategies in the following
section. Once thg(T) data have been computed using the energy
levels of either Hamiltonian, comparison to the experimental
values is always carried out.

Let us now digress to compare our approach with the standard
solid-state approach to the quantum mechanical modeling of
an infinite periodic system. CRYSTAL packd&yés the periodic
ab initio program often applied to magnetism-related problems.
In CRYSTAL, the energy of an infinite crystal is computed
using the HartreeFock (or Kohr-Sham) formalism within the
LCAO approximation. An a priori choice of the magnetic unit
cell and spin configuration has to be made. Then the UHF
(UDFT) energy is obtained for this local minimum using this
specific electronic configuration as a starting guess (i.e.,
preassigning a spin arrangement within the magnetic unit cell).
The process is then repeated for some spin arrangements. The
microscopic magnetic exchangég parameters for these
particular configuratiori$:38 are obtained from the computed
energies for the various spin arrangements by solving the
relevant equations involving the diagonal matrix element
symbolic expressions for the Heisenberg Hamiltonian (for an
analogous treatment see ref 12). However, the computation of
all the energy levels required in the expressiory@f) is not
carried out. In principle, théss values obtained with CRYSTAL
could be reintroduced in an algebraic Heisenberg Hamiltonian
to compute the energy levels required for the statistical
mechanics computation @{T). Hellberg et ak? have obtained
the magnetic exchange vanaditwanadium couplingy—y for
CaV,Oq from the energy of seven different configurations using
a periodic method equivalent to CRYSTAL based on plane
waves. The authors have followed the former prescription to
compute the energy levels by solving the Heisenberg Hamil-
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Figure 1. Snapshot of the magnetic structure for WILVIW crystal (hydrogen atoms are not shown, see Scheme 2 for radical formula). WILVIW
radicals with ONCN@-ONCNO distance shorter than 7.4 A are connected with a line. The connected radicals form a two-dimensional layer that
extends alongpc crystallographic axes. The infinite stack of parallel noninteracting two-dimensional layers aloagrystallographic direction

are shown (distance between two neighboring layers is larger than the cutoff of 7.4 A).

tonian with Lanczos techniques on finite (20-spin) periodic diagonalize a parametrized Heisenberg Hamiltonian, and com-
clusters using the previously comput&d.y, and then simulat- pute the macroscopic magnetic susceptibility from statistical
ing x(T). mechanics. However, for TOLKEK and KAXHAS, we will just

In addition, several other numerical techniques have been usedoutline the main results. Full documentation is contained in
to study the low-energy properties of strongly interacting Supporting Information.
quantum lattice models described by a model Hamiltonian ~ WILVIW. The WILVIW crystal -N-methylpyridiniumNN-
accounting for periodic boundary conditions, such as quantum |~; for radical, see Scheme 2) has $inmetry with parameters
Monte Carlo (QME®) and density matrix renormalization group a = 11.843 A,b = 12.695 A,c = 9.532 A,a. = 95.53, 8 =
(DMRG?*9). However, none of them has universal applicability, 90.5%, andy = 146.89. There are two WILVIW radicals per

and so they will not be the subject of further discussion. unit cell Z = 2). It is known to be an antiferromagr&tThe
experimental magnetic susceptibility data have been fitted to a
Results and Discussion Bleaney-Bowers expression corrected with an empirical mean

. . . . . field 6 parameter
We will now discuss the results obtained using the preceding P

four-step prescription for two antiferromagnetic nitronyl nitrox- 4C
ide NN crystals, WILVIW (pN-methylpyridiniumNN-—|~) 41 x= >3] [emumol] (11)
and TOLKEK (2-hydroNN,a phase??, and for the ferromag- T[3 + exp(-2J/kgT)] — 6

netic NN crystal KAXHAS @-nitrophenyINN, 8 phasée}

(nomenclature taken from CC3. Notice that the constituent ~ whereJ/kg = —74.0 K (-51.4 cn1?), 6 = —4.7 K (—3.3 cn1?),
radicals in these three crystals have just one unpaired electrorandC = 0.376 emu K mot*.

that is mostly delocalized on the ONCNO atoms (see Scheme First, we proceed by analyzing the packing of the crystal in
2), which are taken as the spin carrier group. For WILVIW, a terms of magnetic interactions. Figure 1 shows the packing of
detailed discussion will be given on how to identify and compute the WILVIW crystal indicating those dimeric interactiodss

the numerical values afag, determine the magnetic building  between constituent radicals that meet the cutoff critéfiand
block, magnetic motif and magnetic structure, construct and thus might be magnetically important (hydrogen atoms are not
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Figure 2. (a) Simplified view of a two-dimensional layer for WILVIW showing the seven pairs of radicgalsydirogen atoms are omitted) with

an ONCNO--ONCNO distance shorter than 7.4 A. Differenpdirs of radicals are represented diagrammatically with different lines. (b) Schematic
view of the topography of the two-dimensional layer (a). Each WILVIW radical is replaced with a point site, and lines are labeled according to the
d pairs of radicals they connedt£ 1—7 with increasing ©-O distance). (c) Magnetic motif for WILVIW is defined in terms of nonnegligible

Ji dimeric interactionsi(= 1—4 with decreasing strength) betweerpdirs of radicals. The magnetic motif is a spin ladder defined;byungs,

i.e., magnetic building block) andb (legs). The two-dimensional layer consists of spin ladders weakly interacting thdgagid Js. (Inset in the

figure, bc crystallographic axes are shown.)

. ; ; . TABLE 1: Unrestricted DFT Broken Symmetry UB3LYP/
shown; see Scheme 2 for radical fofm‘ﬂ"f")- Each line con_nectlng 6-31+G(d) Results for the Dimeric Interaction of All Seven
two ONCNO groups represents an individdgs (only one line  candidates (d1-d7 listed as O++O Distance Increases) for
per pair of radicals). For WILVIW, the magnetic interactions WILVIW 2

form a stack of parallel two-dimensional layetsc(crystal-

e o candidaté di(O-+-0)/A J/emt J, ordering
lographic directions in Figure 1). We assume these layers do
not interact along tha crystallographic direction because they di 3.16 o1 &
. d2 3.38 —28.2 N
are further apart than the cutoff distance of 7.4 A. Therefore, d3 437 15 X
the magnetic structure for WILVIW is a two-dimensional layer, da 5.85 <10.05
which is part of a stack of parallel noninteracting layers in the ds 6.04 <10.05
three-dimensional magnetic packing. dé 6.46 +1.1 Ja
d7 6.71 <10.05

Figure 2a shows a simplified two-dimensional layer (hydrogen ' _ N
atoms are omitted), and Figure 2b depicts a schematic view of *The fourth column gives the ordering of the four non-negligible
the topography of this layer. In Figure 2b, each radical molecule dimeric interactions)y*+-Js from strongest to weakest dimeric inter-
is reduced to a point site, and all dimeric interactidpg less action.

than 7.4 A are drawn diagrammatically as a line (only one line ¢1—d7 (dimers are listed as shortest @ distance increases).
per pair of radicals). These lines are pictured plain, bold, broken, One can see that only four dimeric interactions are magnetically
etc., to distinguish among seven different pairs of radicals-(d1  important and will thus contribute to the macroscopic magnetism
d7 in Figure 2b) that repeat themselves thanks to the P1of the crystal. Interestingly, the strength of the interactions
symmetry of the crystal. is not proportional to the ©-O distance (see Table 1), showing
Now we discuss the magnitude of the computed dimeric that the relative orientation of the pair of radicals plays an
interactionJag for the seven dd7 pairs. Unrestricted broken  important role. The fourth column in Table 1 gives the ordering
symmetry UB3LYP/6-3%+G(d)? 2> has been used to compute of Ji... Js relative to the magnetically strongest dimeric
theJag values via eq 6 using the geometry of each dimer taken interaction.
directly from the crystal structure (using CCSp Table 1 The data contained in Table 1 are used to identify the actual
contains the computed dimeric interactiohs(i = 1—7) for magnetic motif for WILVIW in terms of the constituent
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Figure 3. Models used to study the convergence of the macroscopic bl 0-25 o ‘
susceptibility for WILVIW. Extension of the number of magnetic & | WQ'
building blocks (mbl (a) along thec axis for an isolated spin ladder %< ® /
from 2 (2mbb) to 5 (5mbb) magnetic building blocks and (b) along § 45 s
the b axis for the case of two ([22]mbb) and three ([22+2]mbb) ,: ) /
interacting spin ladder 2mbb models. ~ 010 , f
o
magnetic building blocks (mbb). The largest dimeric interaction 0.05] —
value (; = —28.2 cn1?) defines the magnetic building block 000 ‘_Q/
as a dimer. This dimer is then replicated along the second largest " o 50 oo 150 200 250

Jap value > = —9.1 cnth) (Figure 2c) so that the magnetic
motif becomes a spin ladder defined ly(rungs) andl; (legs).
This spin ladder motif, in turn, interacts weakly with nearby
ladders throughi; andJ,, as shown in Figure 2c. For WILVIW,
the magnetic building block of the spin ladder (magnetic motif)
is a rung (dimer). Thus, the extension of the number of rungs
along thebc axes (two-dimensional layer magnetic structure)

Figure 4. (a) xT(T) computed by extending the number of magnetic
building blocks along the axis for an isolated spin ladder from 2mbb
(m), 3mbb ©), and 5mbb {) (see Figure 3a for models). (R)(T)
obtained by extending the number of interacting spin ladders from one
(2mbbm), two ([2+2]mbbO), and three ([22+2]mbb-) (see Figure

3b for models). The experimental data are shown@s (

is the finite model used when applying the algebraic Heisenberg follows that the simple 2mbb model seems to be adequate as a

Hamiltonian (eq 7) to compute the microscopic energy levels
required by the statistical mechanics definition of the magnetic
susceptibility (eq 9). To reproduce the experimen(d) data,
one must demonstrate convergence(6n with respect to the
extension of the number of magnetic building blocks (according
to the topography of the magnetic motif).

We begin the discussion on the convergence of the macro-

scopic susceptibilityy(T) for WILVIW, by increasing the
number of rungs (mbb) along theaxis for an isolated spin
ladder from 2 (2mbb, i.e., a 4-spin site model) to 5 (5mbb, i.e.,
a 10-spin site model), according to Figure 3a. By extending

minimal model of the infinite spin ladder.

We now allow the spin ladders to interact among themselves
to reproduce the magnetism in the planes of the WILVIW
crystal. Now,x(T) is simulated using two-interacting (f2]-
mbb) and three-interacting {2-+2]mbb) spin ladder 2mbb
minimal models and compared to the computed data for an
isolated 2mbb model (Figure 3b). Again, the comput@(T)
data using these three models agree (see Figure 4b). Thus, one
can conclude that a 2mbb model is the minimal model that
describes the magnetic motif for WILVIW. Note also that the
2mbb model is the smallest model containing the two largest

the number of rungs along the spin ladder, the dimension of Jag dimeric interactions. In fact, Awaga etdlsuggested that

the secular equation in the Heisenberg Hamiltonian problem
increases from & 6 (4 spin sites, i.ea 2 rung (2mbb) model)
to 252 x 252 (10 spin sites, i.ea 5 rung (5mbb) model). Next,
the convergence of(T) is studied extending the magnetic
building block along thév axis for the case of two ([22]mbb)
and three ([2-2+2]mbb) interacting spin ladder 2mbb models
(Figure 3b).

In Figure 4a, we ployT(T) data computed according to the

the dimers with @-O distance of 3.38 and 3.16 A;(andJ,,
respectively, in Table 1) might be responsible for the magnetism
of WILVIW.

The use of the projected Heisenberg Hamiltonian enables one
to understand why the 2mbb minimal magnetic model space is
appropriate for the magnetic motif of WILVIW. The energy
levels obtained with the effective Hamiltonian in the minimal
magnetic model space (2mbb in Figure 3) reproduce exactly a

models shown in Figure 3. A very rapid convergence is achieved subset of eigenvalues of a target space that consists of a larger

by extending the number of rungs along a spin ladder from 2
to 5 (see Figure 3a for model). The discrepancy between

number of magnetic building blocks (3mbb, 4mbb, 5mbb,JR
mbb... in Figure 3). If the computeg(T) data do not change

simulated and experimental data will be discussed subsequentlywhen increasing the size of the target space (6-, 8-,rt6pijn

Notice that all the simulate@(T) curves are almost the same

sites model) keeping the same minimal magnetic model space

irrespective of the size of the model being used. Tests using a(2mbb model with 4-spin sites) onto which the target space

“cyclic” spin ladder model of increasing size also show a
complete agreement with the magnetic susceptibjifly) data
obtained with an “open” spin ladder model (Figure 5). It

Hamiltonian is projected, the calculation is converged. Figure
6 shows the agreement between the simulg{@dl data using
the energy levels obtained from the 2mbb minimal magnetic
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Figure 5. Comparison between the simulatg®(T) data using a “cyclic’/"open” spin ladder motif of increasing number of magnetic building
blocks for a 3mbb€/¢), 4mbb @/0), and S5mbb &4/A) models. The 2mbb open modet) and the experimental dat®) are given as a reference.
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Figure 6. SimulatedyT(T) data from projected effective Hamiltonians onto the energy levels obtained for the 2mbb minimal magnetic model
space M) and those from the projected 3mbb)(and 4mbb 4) target spaces onto the minimal magnetic model space.

model space and those of the effective Hamiltonian obtained than ¥ T(T) (Figure 7b), from which it is clear that a scaling
from the 3mbb and 4mbb target spaces. It is clear that the factor of 1.7 is more adequate. Note that the scaling factor we
calculation is converged. use throughout the paper is linear because our target is to
Let us now discuss the difference between simulated andreproduce qualitatively the experimental curves, and the use of
experimental values that appears in Figure 4. The computedthe same factor for allas parameters is the simplest approach
curve clearly has the correct shape, suggesting that the magnetione can follow.
motif is correct. Thus, a scaling factor multiplying alks Comparison of the singletriplet spin-gap for different target
interactions has been introduced. The scaling factor indirectly spaces (35mbb, [2+2]mbb, [2+2+2]mbb, [3+3]mbb pro-
accounts for the systematic errors due to computing the jected onto a minimal 2mbb, see Figure 3) shows that it has
microscopic magnetic exchange interactidag using DF P4 approximately the same value-49.8+ 1.6 cnt!in average)
and to cooperative exchange effects between diffelggis, irrespective of the target space being used [Supporting Informa-
which are neglected when using a bare dimer approachtion Table S1]. The spin-gap for each individual target space
(WILVIW has a pyridinium ring as R substituent attached to decreases as the size of the target space increases, but the
theo-C of the NN group, see Scheme 2). In Figure 7a, one can projected spin-gap is kept constant [see arrows for projected
see that applying a scaling factor of 1.6 or 1.7 to the 2mbb singlet and triplet states in Supporting Information Figure S1].
model reproduces thel(T) data obtained from experiment. One The fact that different target spaces converge to the same
can discriminate between the two factors by plott(@) rather projected spin-gap is consistent with the 2mbb model being the
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Figure 7. (a) xT(T) using the 2mbb minimal model) data after
applying a scaling factor of 1.&() or 1.7 (a) to the 2mbb model. (b)
x(T) with 1.6 (2) and 1.7 @) scaling factors. The experimental data
are shown as®).

minimal magnetic model space for WILVIW. By using the 1.7
scaling factor required to reproduce the experimer(f8) data,
the spin-gap becomes84.7 cnt? (spin-gap mean value times
1.7). We now compare this value to the Blean®pwers fitting

J parameter obtained by Awaga et &lwhich is the spin-gap
for a two-level system (see discussion in Introduction). The
difference between the experimentally fitted spin-gap=2
—102.8 cnt! and our simulated spin-gap84.7 cntlis telling

us that WILVIW cannot be described using a two-level model.
This result is extremely important, because it implies that
WILVIW is a many-level system (i.e., not only the two lowest

Deumal et al.

TABLE 2: Unrestricted DFT Broken Symmetry UB3LYP/
6-31+G(d) Results for Each CandidateJ; (i = 1—7 Listed as
O:---O Distance Increases) for TOLKEK?

candidaté di(0-+-0)/A Jiemt J, ordering

d1 3.80 (2) —7.26 a
d2 4.27 +1.54 Jo
d3 4.65 +0.22 Js
da 4.79 +0.24 J3
d5 6.12 -0.13 Js
dé 6.22 < 0.05

d7 7.01 <10.08

2 The fourth column in Table 2 gives the ordering of the five non-
negligible dimeric interactiond;-++Js from strongest to weakest dimeric
interaction.

x(T) values cannot reproduce the experimental data even
qualitatively.

In summary, the analysis of the packing of the crystal,
together with the computed dimeric interactig values, gives
the magnetic picture of WILVIW at a microscopic level. The
magnetic structure of this crystal is a two-dimensional layer,
and its three-dimensional magnetic packing consists of a stack
of parallel noninteracting two-dimensional layers. This micro-
scopic magnetic picture is consistent with WILVIW being
experimentally a low-dimensional antiferromagnet. The two-
dimensional layer magnetic structure consists of weakly inter-
acting antiferromagnetic spin ladder motifs. Several independent
tests have proven that the minimal model capable of reproducing
the macroscopig(T) values for WILVIW is a two-rung model
(2mbb) with a 1.7 scaling factor, where a rung is considered
the magnetic building block of this crystal. The two-rung 2mbb
model contains microscopic information on the largest magnetic
interactions); andJ,. In addition, WILVIW has been found to
behave as a many energy level system, and consequently, a spin-
gap modet-such as a pure BleaneBowers equatiotft—cannot
describe the magnetism of this crystal. This fact is in agreement
with the fitting expression for the experimental data (eq 11),
which requires the introduction of the empirical mean fiéld
parametef?!

TOLKEK. TOLKEK (a-2-hydroNN; for radical, see Scheme
2) crystallizes into thé®2,/n space groupg = 11.879 A b =
11.611 A,c=6.332 A, = 104.48, Z = 4) with four radicals
per unit cell. TOLKEK behaves as an antiferromadfathose
experimental magnetic susceptibility data have been fitted to a
“pure” Bleaney-Bowers expression with/lke= —11.2K (—7.8

energy levels are accessible). It follows that the energy levels cM %) and G=0.5 emu K mot*

introduced in the expression @{T) cannot be truncated after

the first excited state (as the energy spectrum for the above-
mentioned target spaces indicates; see Supporting Information

Figure S1). This conclusion is justified by the fact that the fitting

expression for the experimental data (eq 11) requires the

introduction of the empirical mean field parameter.

Finally, the sensitivity of the computation of(T) to the
magnetic motif in terms of the relative magnitudes of the dimeric
interactionsl;... J4 values is tested to demonstrate that we are
not getting the right answer accidentally. Supporting Information

_C 3
L7 T3+ exp2dikgT)

[emu mol ] (12)

In this section, we will discuss the main results obtained for
TOLKEK following the four-step prescription we propose in
this paper. The analysis of the crystal packing in terms of
O---0 distances between ONCNO groups that are shorter than
7.4 A suggests seven dimeric interactions, which must be
computed. Table 2 shows the compudgd for d1—d7 pairs of
radicals, which are listed as shortest @ distance increases

S.I shows two tests where the topography of the spin ladder [for d1—d7 dimers see Supporting Information Figure S2]. Only

motif with a set ofJag different from the computed;—4 values

five dimeric interactions are magnetically important and will

is used. Both tests are compared to the 2mbb model simulateccontribute to the macroscopic magnetism of the crystal. The
data since it is known to be the minimal magnetic model space fourth column in Table 2 gives the ordering &f-+Js relative
for WILVIW. These tests enable us to conclude that the to the strongest dimeric interaction.

computation ofy(T) is highly sensitive to the magnetic motif

We can now identify the magnetic building block, magnetic

in terms of the relative dimeric interactions. Thus, we are not motif, and magnetic structure for TOLKEK. The magnetic
getting the right answer accidentally, since by using the wrong building block is a dimer defined by the largekis dimeric

set of dimeric interactions in the magnetic motif the simulated

interaction §; = —7.26 cnTl). The extension of the magnetic
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Figure 8. Two crystallographic cells for TOLKEK (only the imidazolyl ring is plotted, hydrogen atom and methyl groups are omitted). In the
center of the figure, there are four TOLKEK radicals forming a spin laddierJ; are schematically drawn as a line connecting the shortesPO
distance between pairs of radicals) alongdteeystallographic axis. Each spin ladder definedlbyJs interacts weakly with other four surrounding
spin ladders (mmitmm4) throughJ,—Js along theab axes.

(a) (b)

mmd mm2

Figure 9. (a) Spin ladder motif shown along tliecrystallographic axis (only the imidazolyl ring is plotted; hydrogen atom and methyl groups are
omitted). Thea-C atoms are connected instead of oxygen atoms for a better realization of the spin ladder magnetic motif. (b) Diagrammatic
representation of the five spin ladders shown in Figure 8 (reference and-mm#; each radical is replaced by a point site).

building block along thec axis throughJ,—J; defines a spin spin ladders shown in Figure 8 (each radical is replaced by a
ladder motif. Figure 8 shows two crystallographic cells for point site). The full magnetic structure for TOLKEK is then
TOLKEK (only the imidazolyl ring is plotted, hydrogen atom weakly three-dimensional due to the interaction between spin
and methyl groups are omitted). In the center of the figure, there ladder motifs.

are four TOLKEK radicals forming a spin laddek {J; are The convergence of the macroscopic susceptibjfy) is
schematically drawn as a line connecting the shortestGD next studied in terms of increasing the number of magnetic
distance between pairs of radicals) alongdlweystallographic building blocks (rung, mbpalong thec axis for a spin ladder
axis. This spin ladder alongis shown more clearly in Figure  (2mbb—-4mbb) and then alongb axes to simulate five interact-
9a, wherea-C atoms are connected instead of oxygen atoms ing spin ladders (see Figure 9b). Figure 10 demonstrates the
for a better realization of the magnetic motif. Each spin ladder very rapid convergence gifT) at high temperatures irrespective
defined byJ;—J; interacts weakly with other four surrounding of the size of the model being used. In this figure the low-
spin ladders (mm1-mm4 in Figure 8) throudgh-Js alongab temperature region is also shown. It is clear that even at very
axes. Figure 9b is the diagrammatic representation of the five low temperatures all models have a good convergenggDn
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Figure 10. Simulatedy(T) results for TOLKEK using models for twoH), three {), and four () magnetic building blocks (mbb) along teexis

for an isolated spin ladder, as well as alcgig axes for a five spin ladder modek] (see Figure 9b for diagrammatic view). In the inset, the
low-temperature region is shown. A scaling factor of 1.1 applied to the 2mbb mo}éd (equired to reproduce the experimentél) data @).

(notice there is a slight improvement when we account for the By using the 1.1 scaling factor required to reproduce the
inter-spin ladder dimeric interactions with a five spin ladder experimentaj(T) data, the spin-gap become43.8 cn? (spin-
model, see Figure 9b). These results show that the 2mbb modelgap mean value times 1.1). We now compare this value to the
is the minimal model of the magnetic motif, i.e., provides the Bleaney-Bowers (eq 12)) parameter obtained experimentefy.
minimal magnetic model space for TOLKEK. The agreement between experimentally fitted spin-gap=2
Next, the discrepancy between simulated and experimental —15.6 cnm* and our “simulated” spin-gap13.8 cni ! tells that
data in Figure 10 is taken into account. In this case, a scaling TOLKEK can be described using a two-level model.
factor of only 1.1 applied to allag’s of the 2mbb minimal Hosokoshi et at? have suggested that the main magnetically
model is required to reproduce the experiment@l) data important dimeric interactions are those with-@ distance
(Figure 10). TOLKEK has a hydrogen H atom as R substituent of 3.80 and 4.27 AL, andJ; respectively in Table 2). However,
attached to thex-C of the NN group (see Scheme 2). Thus, the authors assumed that only one of these interactions would
TOLKEK will have almost negligible three- or four-body contribute to the magnetism of TOLKEK. They identified the
cooperative exchange effects to account for, arising from the H Bleaney-BowersJ parameter with an “actual” single dimeric
atom substituent, in contrast to WILVIW that has a pyridinium interaction instead of being the singtdtiplet spin energy gap.
ring. However, the computed values obtained Jpi(—7.26 cnT?)
Although we have demonstrated a 2mbb spin ladder model andJz (+1.54 cnt?) at UB3LYP/6-31G(d) are not negligible
with three dimeric interactiond;_s is the minimal magnetic ~ and are in agreement with a two-level model for TOLKEK (as
model for TOLKEK, one should point out thak is much discussed above).
smaller thanl; andJ,. Therefore, this implies that the minimal To summarize, we have shown that in order to give the correct
model of the magnetic motif could even be a linear chain with physical interpretation to the microscopic magnetic paths in
two dimeric interactions);—, (instead of being a spin ladder TOLKEK, it is absolutely essential to take into account all
motif; see Figure 9a). This simplification has been confirmed nonnegligible microscopic dimeric interactiodgs. The mag-
by tests using a linear chain with and J; instead of a spin netic structure of this crystal is three-dimensional and consists
ladder model as target space. All simulated results converge toof weakly interacting spin ladders (or linear chains) as a
those obtained with a four-site linear chain minimal model magnetic motif. For TOLKEK, a 2mbb spin ladder (or four-
[Supporting Information Figure S3]. site linear chain) minimal model with three (or two) dimeric
For TOLKEK, the computed spin-gap using all nonnegligible  interactions is capable of reproducing the experimeg{®ldata
microscopiclag in the crystal for all different spin ladder motif ~ with a 1.1 scaling factor. In addition, we have proved that a
target spaces (or linear chain motifs) has a mean valuel@f5 minimal model with two or morelsg interactions is not in
+ 3.5 cnv! [Supporting Information Table S2]. The spin-gap contradiction with the system being described by a two-level
for each individual target space decreases as the size of the targenodel.
space increases, but the projected spin-gap is kept constant [see KAXHAS. Finally, we will discuss KAXHAS, the first bulk
arrows for projected singlet and triplet states in Supporting purely organic ferromagnet evérKAXHAS (A-p-nitro-
Information Figure S4]. This result justifies once again the phenyINN; for radical, see Scheme 2) crystallizes into the
choice of the 2mbb spin ladder (or four-site linear chain) as orthorhombic F2dd space group+ 12.347 A b= 19.364 A,
representing the minimal magnetic model space for TOLKEK. ¢ = 10.971 A,Z = 8) with eight radicals per unit cell. The
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TABLE 3: Unrestricted DFT Broken Symmetry UB3LYP/
6-31+G(d) Results for the Four Candidates (dt-d4 listed as
0O---O Distance Increases) for KAXHAS

candidaté di(0-+-0)/A Jlemt J, ordering
dl 5.35 +0.62 N
d2 6.43 +0.18 J>
d3 6.73 <10.05
d4 6.90 <10.05

aThe fourth column refers to the ordering&fandJ, from strongest
to weakest dimeric interaction.

experimental magnetic susceptibility data for this crystal were
fitted to a Curie-Weiss expression with = 1.2 K (0.84 cn?)
andC = 0.376 emu K moi? in the temperature range between
4 and 300 K

[emu mol ] (13)

__c
XTI

Let us start the discussion for KAXHAS by analyzing the
crystal packing in terms of & O distances between ONCNO
groups shorter than 7.4 B The analysis suggests four pairs of
radicals whose dimeric interaction should be computed [see
Supporting Information Figure S5]. Table 3 shows that only
two dimeric interactionsJ;, > J,) are magnetically important
and will contribute to the macroscopic magnetism of the crystal
(d1—d4 listed in Table 3 as shortest<dD distance increases).

Figure 11 shows the nonnegligiblé and J, magnetic
Interactions b?“"’e‘?” radical cente_rs n terms of KAXHA_S Figure 11. NonnegligibleJ:—J, magnetic interactions between radicals
crystallographic unit cells (each radical is replaced by a point iy ‘ierms of KAXHAS crystallographic cells (each radical is replaced
site; see Scheme 2). The packing of KAXHAS radicals is usually py a point site, for formula see Scheme 2). Accordingligbroken
pictured as forming ABABA planes crystallographic direc- lines), the radicals pack forming ABABA planead(crystallographic
tions), as shown in Figure 11 taking the upper right unit cell as directions) as shown in the upper right unit cell. Accordingtéthick
a reference (in the insed, b, ¢ axes are given). Such a picture Iines), t_he magneti(_: m_otif (and SO the_magnetic str_uctur_e)_ is three-
for the magnetic structure would suggest thais the driving dimensional. The six-site three-dimensional magnetic building block

f f th . tic int fi H Jei (6s 3d) is given with point sites labeled-6. Inset in the figure, the
orce Or the macroscopic magnetic interaction. Howevers propagation of the 6s 3d model required to fill the three-dimensional

in fact the largest dimeric interaction, and the magnetic structure magnetic structure along theaxis (3d) anda/c axes (3dand 3g) is
must be first analyzed in terms of this interaction. The analysis shown.
shows that the magnetic structure (and so the magnetic motif)
is three-dimensional (thick lines in Figure 11), which is .
consistent with KAXHAS being experimentally a bulk ferro- J= +0.17 cnt*andJ = +0.08 cn1* using the APUHF INDO
magnet. method. Our computed values obtained at UB3LYP/6-G1
For nonbulk magnets, one would proceed by identifying the (d) areJ; = +0.62 cn* andJ, = +0.18 cnT* to be compared
magnetic building blocks of the magnetic motif defined by the t0JandJ' of Okumura(® respectively. There is a clear difference
dominantlag (e.g., WILVIW and TOLKEK). However, for bulk between these values as a consequence of a better description
magnets, there are no isolated building blocks defined by the of the electron correlation at DFT level. However, the important
strongestlag and connected through weakéxs interactions point here is that different studies reach the same general
as shown in Scheme 1. One must then identify the smallestconclusion about which exchange interactichsand J, are
repeating unit required in order to propagate the magnetic magnetically important.
interactions in terms ofag along all spatial directionsJ{ for For KAXHAS, convergence on the magnetic susceptibility
KAXHAS). For KAXHAS, we found that a 6-spin site, three-  x(T) has been explored by extending the 6-site three-dimensional
dimensional model (6s 3d, point sites labeled6lare shown (6s 3d) model along, b, andc crystallographic directions (3d
in Figure 11) is a suitable repeating unit (magnetic building 3d,, and 3d, see Figure 11). Figure 12 shows that all simulated
block). In Figure 11, we show the propagation of the 6s 3d results fory(T) converge at high temperatures, and even in the
model required to fill the three-dimensional magnetic structure. low-temperature region whergT(T) is plotted in order to
There is a pure translation along therystallographic axis (33 appreciate better the comparison among simulated data. Thus,
and two mixed translations along combinationsuafaxes (3¢ the 6-spin site, three-dimensional (6s 3d) model is adequate to
and 3¢). These finite models are then used when applying the represent the magnetic structure for KAXHAS since it represents
algebraic Heisenberg Hamiltonian (eq 7) to compute the the minimal magnetic model space. To address the difference
microscopic energy levels required by the statistical mechanics between experimental and simulaygd) data, a scaling factor
definition of the magnetic susceptibility (eq 9). of 1.8 is required (the R substituent attached todh@ of the
Kinoshitac has suggested, from the analysis of the crystal NN group is a phenyl group and the cooperative effects will be
structure, that at least two kinds of exchange interactidns ( non negligible; see Scheme 2). This factor is in agreement with
and J) are expected to dominate the ferromagnetism of the 1.7 scaling factor obtained for WILVIW whose R substituent
KAXHAS. Okumura et al'> estimated these interactions to be is a pyridinium ring.
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Figure 12. Simulated results for (g)(T) and (b)xT(T) using the six-
site three-dimensional 6s 3d modM)(and its extension 3da), 3d,
(O),and 3d (+). A scaling factor of 1.8 applied to the 6s 3d minimal
model Q) is required to reproduce the experimentél) data @).

The experimentay(T) data for KAXHAS have been fitted
using the Curie-Weiss expression (15), where C is the Curie
constant defined as

o NGug'SS+ 1

Deumal et al.

neighbor centers in the crystal lattice. Thus, a given magnetic
center feels the mean fiel&/ treated by itz nearest neighbors.
When using the mean field perturbation in the statistical
mechanicg/(T) eq 9 for a one-level model (radical) system with
transition between states with spit/, and¥,, one can derive
the Curie-Weiss expression (eq 13) and a higher order
correction [for derivation, see Supporting Information S.11]

__ ¢ ¢ T
x T—0 2(T—9)2

(16)

Note that theC and 6 values obtained in eq 16 correspond
to replacingS= 1/, in eqgs 14 and 15. Let us now compare the
value one would obtain for the mean intermolecular interactions
J (using eq 15) to the computed dimeric interactiiap values
for KAXHAS.

From Figure 11, one can see that each point site (radical)
interacts throughd; with four nearest neighbors and through
with other four. Thus taking = 4, Jis +0.83 cn1?, and ifz=
8, thenJ is +0.42 cn1. Comparing these values fg (+0.62
cm™1), we realize thatl(z=4) is too large because it does not
account forJo-type interactions and(z=8) is too small since it
does not distinguish betwedp andJ, interactions. Therefore,

a Curie-Weiss expression has limited value for understanding
the microscopic picture of a magnetic center interacting with
its neighbors due to the fact that this methodology averages all
magnetic interactions. Moreover, we must stress that the energy
spectra for KAXHAS using any of the target spaces (6s 3d,
3d,, 3d,, and 3¢) shows that all the energy levels are accessible,
not just the ground state [Supporting Information Figure S6].
It follows that for such a ferromagnetic example, there is no
way to justify the application of the one-level Curi#/eiss
model (nor a two-level BleaneyBowers model).

After correctly reproducing thg(T) experimental data, we
have simulated the heat capac@y(T) data for KAXHAS by
using the 6s 3d minimal model and extending it alang, and
c crystallographic directions (3d3d,, and 3d; see Figure 11).
Statistical mechanics provides an expressiondgiT) (eq 10)
in terms of microscopic energy levels (the units @y are J
mol~t K=1). The experimental heat capacity has a sharp peak
at the ferromagnetic transition temperatufe of 0.6 K,
corresponding to a three-dimensional (second order) magnetic
phase transition. Figure 13 shows the simulaig{) data for
KAXHAS. The maximum temperature for all models gives a
critical temperature of 0.45K, which is in qualitative agreement
with the experimental ferromagnetic transition temperature of

and 0 is the Weiss temperature (or the mean field parameter) 0.60 K. Obviously, Figure 13 does not show the typicahape

3 (14)
given by
_2J§S+1)
0= T (15)

In egs 14 and 15Sis the spin of the magnetic centey|s
the gyromagnetic factor, an, ug, and ks are Avogadro’'s

of Cy(T) since we are not using the crystal but a finite small
model. However, one can see that when increasing the number
of sites (from 6 to 12) in the model the curve does get sharper.
According to this study, a 6-site and two exchange coupling
constant minimal model (6s 3d) is the most adequate to give a
good description to the microscopic magnetic paths for
KAXHAS. This three-dimensional ferromagnetic building block

number, Bohr magneton, and Boltzmann constant, respectively.(repeating unit) defines a three-dimensional magnetic structure,
Expression 13 is a modification of the Curie law to account for which is consistent with KAXHAS being a bulk ferromagnet.
weak intermolecular interactions among radicals with non By using the microscopic magnetic information of the 6-site
accessible excited states (large separation between ground andnd two dimeric interaction model, one is able to describe the
first excited states) and no first-order angular momentum. The heat capacity behavi@, as well as the magnetic susceptibility
interaction between magnetic centers is treated using moleculary as a function of temperature, and estimate the ferromagnetic
field theory with a magnetic Hamiltonian given by the Zeeman transition critical temperature. It has been shown that neither a

term and a perturbation zJS,$, (for discussion see ref 46).
According to this theory? a given magnetic center interacts
with strengthJ (pair interaction) with a numbez of nearest

one-level Curie-Weiss nor a two-level BleaneyBowers
models is consistent with the energy spectra of KAXHAS [as
shown in Supporting Information Figure S6].
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Conclusions
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the experimental data using an analytical function of the
microscopiclag, etc. parameters for the magnetic susceptibility
%(T).23 The specific analytical expression fg(T) depends on
using a model (linear chain, spin ladder, etc.) containing a series
of microscopic parameters (e.dlas, D, g, etc.). The model
itself is a hypothesis since the actual magnetic structure of the
crystal Jag) is not known a priori. If the experimental data can
be fitted with such analytical expressions, the resulting fitting
parameters do give indeed information about the microscopic
structure of the crystallgg). For instance, from our computa-
tions, we demonstrate that in WILVIW crystal an analytical
function of Jag based on a spin ladder model is essentially
correct. The problem is that, often, more than one analytical
model may fit the experimentalT) data sensibly.

Our computations suggest a general strategy for the descrip-
tion of the macroscopic magnetism in molecular crystals taking
into account the microscopic information. Our numerical
approach demonstrates rapid convergencg(@n Thus, a small
number of radical sites interacting in the correct magnetic motif,
after linear scaling the computellg interactions, has been
demonstrated to be sufficient to reproduce qualitatively the
experimental data. It has been shown that the topography of
the Jag and the correct relative magnitudes and sign of the
computed Jag are the essential elements of the magnetic

~ The method we have used in this work to study the magnetism structure. Therefore, although a simple linear scaling has been
in molecular crystals is essentially a numerical approach. We adequate to reproduce qualitatively the experimer(fBl data,

have simulated the magnetic susceptibifiy) (eq 9)—and heat
capacityCy(T) (eq 10)-using the energy levels computed with
an algebraic Heisenberg Hamiltonian (eq 7) parametrized with
Jas (eq 6), which have been computed using DFT. Once the

we could refine the microscopidag values using a general
nonlinear fitting to the actual experimentglT) data.
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