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A computational approach to the study of magnetism in molecular crystals is outlined, and applications are
presented for three purely organic nitronyl nitroxide (NN) crystals: WILVIW (p-N-methylpyridiniumNN+‚
I-), TOLKEK (R-2-hydroNN), and KAXHAS (â-p-nitrophenylNN). Data from ab initio electronic structure
computations are used to parametrize an algebraic Heisenberg Hamiltonian. The magnetic susceptibility as a
function of temperatureø(T) is, in turn, obtained directly from the computed energy levels of the algebraic
Heisenberg Hamiltonian. The parametrization of the two site interaction parametersJAB requires the
identification of the (one-, two-, or three-dimensional) magnetic motifs (e.g., spin ladders, etc.) from a study
of the magnetic structure of the crystal. The energy levels of the magnetic motif are then computed as a
function of the extension of the constituent magnetic building blocks along the crystallographic axes until
convergence onø(T) can be demonstrated. Rapid convergence has been demonstrated, showing that a simple
model (the minimal magnetic model space) can be used as a realistic model of the magnetic motif for an
infinite crystal lattice. Applications to the three organic NN crystals have demonstrated the efficacy of this
theoretical approach for the simulation of the experimental magnetic susceptibility and heat capacity data.

Introduction

Transition metal molecular magnetism has been the subject
of active research for the last few decades.1 However, the first
bulk organic molecular magnets, theâ phase of thep-
nitrophenylNN2 and the carbon cluster C60,3 were not character-
ized until 1991. Since then, many other purely organic magnets
have been successfully synthesized.4 Nevertheless, the theoreti-
cal models used to explain and simulate the behavior of the
magnetic susceptibilityø(T) for organic/transition metal mo-
lecular crystals are still very crude.5 Those models rarely include
an explicit dependence of the magnetic response on the geometry
of the constituent radicals for a given crystal. Our purpose in
this paper is to present a theoretical approach that incorporates
data from ab initio computations providing the magnitude of
the microscopic magnetic interactions and that is focused on
the importance of the magnetic structure of the crystal.

One usually visualizes the geometric structure of a crystal in
terms of a three-dimensional array of chemical bonds (intra or
intermolecular in nature). The packing of the constituent building
molecules of the crystal can then be described in terms of
structural motifs according to the intermolecular bond strength
(e.g., electrostatic interactions, hydrogen bonds, Van der Waal
forces, etc.). Analogously, the magnetic structure of a crystal
can be defined in terms of the topography of a three-dimensional
array of dimeric exchange interactionsJAB between (radical)
sites A and B. The dominant interactionsJAB define the
constituent magnetic building block of a given crystal. The
infinite repetition in one, two, or three directions of the
constituent magnetic building blocks defines, in turn, the

structure of the magnetic motifs. Finally, the magnetic structure
of a crystal for a low-dimensional magnet is defined as an array
of infinite-dimensional magnetic motifs, the magnetic interaction
between magnetic motifs being sufficiently weak that it can be
neglected (see discussion for WILVIW and TOLKEK). For the
case of a bulk magnet, the magnetic motif is three-dimensional
and coincides with the magnetic structure (see discussion for
KAXHAS).

The preceding ideas of magnetic structure at a microscopic
level can be illustrated with an example. Scheme 1 shows (a)
dimer, (b) linear chain, (c) spin ladder, and (d) two-dimensional
layer magnetic motifs. Let us assume that an array of non-
interacting two-dimensional layers (Scheme 1d) represents the
magnetic structure of a crystal. ForJ1 > J2 . J3, the constituent
magnetic building block corresponds to a rung (Scheme 1a) and
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the magnetic motif becomes a spin ladder (Scheme 1c). Each
one of the two-dimensional layers (Scheme 1d) can then be
pictured as spin ladders (Scheme 1c) weakly interacting through
J3.

The main goal of this work is to show how the microscopic
magnetic motif (chains, ladders, etc.) of the crystal can be related
to the macroscopic properties that can be measured, such as
magnetic susceptibility and heat capacity. The magnetic structure
is not obvious from the crystal structure, and simple models
such as the way McConnell’s theory is currently applied have
been discredited.6 As we shall show, an objective procedure
for connecting the microscopic to the macroscopic magnetic
information involves four steps. (1) The identification of all
possible magnetic interactionsJAB on the basis of intersite A-B
distances in the crystal and subsequent computation of the
magnitude of the correspondingJAB to determine the dominant
contributions (via electronic structure methods such as embedded
cluster7,8 or periodic methods9). (2) The pattern and strength of
the dominant interactionsJAB are then used to define the
magnetic building blocks and the magnetic motif, which
specifies the magnetic structure of the crystal. (3) The electronic
energy levels of the model defined by a finite number of
magnetic building blocks of the magnetic motif are then obtained
by diagonalization of an algebraic representation of a Heisenberg
Hamiltonian parametrized with the computedJAB:

In eq 1, A and B are spin1/2 sites representing the constituent
N radical sites of the magnetic building blocks. This Hamiltonian
is then of finite dimension and acts on the space of all possible
spin functions that can be constructed from these spinS ) 1/2
sites. The choice of the number of magnetic building blocks of
the magnetic motif to be used in the Heisenberg Hamiltonian
(minimal magnetic model space) is a crucial step in this
prescription. (4) Finally, the microscopic energy levels obtained
by diagonalization of the Heisenberg Hamiltonian are used in
standard statistical mechanics methods to give the macroscopic
magnetic susceptibility and heat capacity (for a recent review
of steps 3 and 4, see ref 10).

A few related theoretical approaches have been docu-
mented.10-12 Borrás-Almenar et al.10 propose a more general
Heisenberg Hamiltonian approach to study magnetic inorganic
clusters based on a generalized spin Hamiltonian. However,
there is no explicit account of the crystal geometry (except in
a parametric form10,13b-k) since the JAB values are never
numerically computed. Fink et al.11 use a finite-size cluster
approach to compute the energy levels of only the four lowest-
lying spin states for binuclear complexes and then calculateø(T).
We will show that all energy levels seem to be essential in the
computation ofø(T). Hellberg et al.12 computeø(T) by solving
the Heisenberg Hamiltonian using Lanczos techniques on large
(20-32 spins) clusters to obtain the lowest/highest energy levels
and then assume an analytical density of states for the middle
eigenvalues. The full four-step prescription given above does
however not seem to have been fully tested. Rather, theoretical
work often stops at the computation of theJAB for organic and
inorganic systems.7-8 The full Heisenberg Hamiltonian is
usually not constructed (except for cluster models14), and thus,
there is no direct comparison with experiment.

Experimentalø(T) data are frequently fitted using a Bleaney
and Bowers two-level model15 given by eq 2 (or other analytical
expressions13):

Equation 2 can be rigorously derived16 using the statistical
mechanics expression for a two-level model. In this case, there
are only two accessible energy levels of the system: the singlet
S ground state and the triplet T first excited state. Accordingly,
2J is the S-T spin energy gap of the system. This is clearly
only applicable for an antiferromagnetic system (a “two-level”
model cannot possibly describe a ferromagnet as will be shown
for KAXHAS). The J parameter is often erroneously identified
with a single type of dimeric interactionJAB. However, a crystal
will have more than one type of dimeric interaction. Thus, the
J parameter in eq 2 effectively “averages” all possible micro-
scopicJAB in the crystal. By “averaging”, one means using all
magnetically relevantJAB in the parametrization of the Heisen-
berg Hamiltonian (eq 1) and then solving the secular equation
problem for the accessible singlet and triplet states and using
only these two levels inø(T). The use of two-level models is
assumed in many studies published in the literature without
numerical justification. In this work, these assumptions will be
tested. A least-squares fitting procedure is normally used to
reproduce the experimentalø(T) values using an equation of
the form of eq 2 or similar.17 However, the microscopic
magnetic picture that underlies the “best-fitting” model is not
available because one obtains an energy difference rather than
the individual magneticJAB interactions. As we shall show, a
two-level model (eq 2) can reproduce the experimentalø(T)
values (see discussion for TOLKEK). However, this is not
obvious. When the system deviates from this two-level (spin-
gap) model (see discussion for WILVIW), the introduction of
some empirical factors (e.g., mean fieldθ parameter) becomes
necessary to describe properly the magnetism of the system.
These empirical parameters correct the fact that a many-level
model is required (the spin-gap model fails). It is thus evident
that a theory that incorporates all the microscopicJAB parameters
(e.g., using the computed energy levels of a Heisenberg
Hamiltonian) is required to relate the microscopic magnetic
informationJAB to the macroscopic magnetic susceptibilityø(T).

In summary, we propose a four-step prescription involving:
(1) identification and computation of the numerical values of
JAB, (2) definition of the magnetic building block, magnetic
motif, and magnetic structure, (3) construction and diagonal-
ization of the Heisenberg Hamiltonian, and (4) computation of
the macroscopic magnetic susceptibility and heat capacity from
statistical mechanics. In the following sections, we will discuss
each step, and the methodology involved in it will be compared
to the current approaches used by others. Finally, we will present
three examples of nitronyl nitroxide crystals where this proce-
dure has been applied.

Theoretical Development

Identification and Computation of the Numerical Values
of JAB. The simulation ofø(T) requires the identification of the
magnetic building block of the magnetic motif, which is in turn
specified according to the magnitude of the dominantJAB.
Therefore, we will proceed to discuss the identification and
computation of the numerical values ofJAB.

First, the crystal packing must be analyzed. One must identify
the potentially important dimeric interactionsJAB that exist
between the radicals within the asymmetric crystallographic unit
cell and those of neighboring crystal cells. Crystals are periodic
systems, so the number of uniqueJAB one needs to identify is

Ĥ ) -2∑
A,B

N

JABŜA‚ŜB (1)

ø )
2Ng2µB

2

kBT
µ0

1
3 + exp(-2J/kBT)

[emu mol-1] (2)
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finite. The distance between spin carrier groups in these radicals
is the criterion used to decide whether a pair of radicals A-B
might be magnetically relevant. Thus, the candidates for dimeric
interactionsJAB are chosen according to a given cutoff distance
between spin carriers since the magnetic interaction is known
to vary as exp(-r) depending on the distancer between
magnetic centers and their relative orientation.18a Constituent
radicals of different crystals belonging to the same family will
have the same cutoff distance. One does not assume any
preconceived microscopic exchange paths. Rather, one computes
theJAB values for all sensible dimeric interactions. The distance
criterion per se does not determine the relevant exchange
pathways; rather, it provides the initial candidates for the
subsequent computation of theJAB values (i.e., we deliberately
include more candidates than the first nearest neighbors, which
are the usual candidates in the literature). After the identification
of the pairs of spin sites, computations are carried out on the
whole radical at the geometry of the molecules in the X-ray
structure19 accounting for the relative orientation of the radicals.

The target crystals studied in this paper belong to the nitronyl
nitroxide (NN) family (see Scheme 2). These three compounds
are characterized by the presence of one unpaired electron in
the constituent radical that is mostly localized on the ONCNO
unit.20 Thus, we take the ONCNO atoms as the spin carrier
group (the total number of unpaired electrons for a given NN
radical depends on the substituent R attached to theR-C of the
NN group). For crystals belonging to the NN family, allJAB

are computed using the X-ray geometry of pairs of radicals with
a spin carrier intersite threshold ONCNO‚‚‚ONCNO distance
of 7.4 Å (at larger distances, the magnetic interaction is assumed
to be negligible because of the exponential decay ofJAB with
distance18).

We now turn to the computation of theJAB. Methods such
as embedded cluster approach7,8 or periodic methods21 have been
used in order to compute the magnitude ofJAB. A “dressed”
cluster approach would be required for transition metal crystals,
where one takes into account the cluster and its environment.7

However, a “bare” cluster approach is adequate for organic
crystals. Thus, in the computation ofJAB values, we use standard
electronic structure computations for the singlet-triplet energy
separation using unrestricted DFT with broken symmetry.22

Some practical aspects of the computation ofJAB within the
unrestricted DFT broken symmetry approach22 are now dis-
cussed. From the Heisenberg Hamiltonian (eq 1) for a pair of
radicals A and B with one unpaired electron, theJAB value is
computed as the energy difference between biradical open-shell

singlet S and triplet T states

When using DFT, the use of the unrestricted broken symmetry
approach is required in order to compute the biradical open-
shell singlet ground state. From a variety of choices,22 the criteria
followed to compute the energy difference is

where S stands for singlet, T for triplet, and BS for broken
symmetry andSab is the overlap integral between a and b singly
occupied molecular orbitals (SOMOs). For all three NN crystals
studied in this paper, the solutions for the biradical open-shell
singlet have localized SOMOs on one radical or on the other,
so the overlap is negligible (Sab ) 0). Thus, eq 4 becomes simply

and

We have used unrestricted DFT, with the UB3LYP23 func-
tional using broken symmetry, and a 6-31+G(d) basis set24

(Gaussian package25).
It is clear that the bare dimer approach neglects three-, four-

or n-body cooperative exchange effects. Depending on the
substituent R attached to theR-C of the NN group (see Scheme
2), these many-body effects may be large (R) phenyl group)
or small (R) hydrogen atom). Other more accurate ab initio
methods (e.g., FCI, CC, DDCI, CASPT2...26) could be used to
compute the exchange couplingJAB whenever the size of the
system allows it. However, we shall show that it is the
topography of the magnetic motif of the crystal that is important
when simulatingø(T) rather than the accuracy of the computed
JAB. Once the topography of theJAB has been identified, we
will show thatø(T) can be fitted by uniform scaling of all the
computedJAB.

Definition of the Magnetic Building Block, Magnetic Motif
and Magnetic Structure. The magnitude of the dominant
dimeric exchange interactionsJAB (computed as described in
previous section) defines the magnetic building block of the
crystal. The magnetic motif is then defined by the infinite
appropriate repetition of this magnetic building block, which is
first extended along the direction given by the largestJAB, then
along the direction of the second largestJAB, and so on. Scheme
1 shows the topography of four different magnetic motifs in
terms ofJ1, J2, J3... between radicals A and B: (a) dimer, (b)
linear chain, (c) spin ladder, and (d) two-dimensional layer. The
relative ratios between computedJAB values define different
motif topographies in terms of magnetic building blocks.27

Therefore, the correct definition of the magnetic building block
is essential to properly represent the microscopic magnetic
topography. The extension of the number of magnetic building
blocks in terms ofJAB is carried out according to the topography
of JAB and not according to the repetition of crystallographic
cells of the crystal. For instance, assumingJ3 , J1 and J2,
Scheme 1d shows an array of non interacting spin ladders
(Scheme 1c). In such a case, a spin ladder is the magnetic motif
providing all the relevant microscopic information. In contrast,
the broken lines in Scheme 1d represent a crystallographic unit
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cell containing a pair of radicals A and B. It follows that the
repetition of this unit cell is not related to the magnetic motif.

Finally, the magnetic structure of the crystal is defined
according to the infinite repetition of a given magnetic motif.
Using the above example, if the magnetic motif for a crystal is
a spin ladder (Scheme 1c), the three-dimensional magnetic
structure is formed by infinite noninteracting (or very weakly
interacting) spin ladders. For the special case of bulk magnets
(the magnetic motif is three-dimensional), the magnetic structure
and the magnetic motif coincide (as illustrated with KAXHAS).

Construction and Diagonalization of a Heisenberg Hamil-
tonian. The simulation of macroscopic properties, such as
magnetic susceptibilityø(T) and heat capacityCp(T), is carried
out using the energy levels obtained from the diagonalization
of a Heisenberg Hamiltonian. This Hamiltonian is, in turn,
parametrized with the previously computedJAB. The magnetic
motif (for a finite number of magnetic building blocks) defines
the dimension of the Heisenberg Hamiltonian. Thus, from a
practical viewpoint, the concept of magnetic motif (and in
particular the constituent magnetic building block) enables one
to reduce the problem of an infinite crystal into a finite model
(i.e., it enables the use of a Heisenberg Hamiltonian).

For organic molecular crystals, the energy levels are obtained
from the full numerical solution of the secular equation problem
of the algebraic Heisenberg Hamiltonian given by eq 1, which
is rewritten as28

In eq 7, the sum A and B runs over a subset ofN magneticS
) 1/2 centers of the magnetic motif for a finite number of
constituent magnetic building blocks.ŜA is the spin operator
associated with the radical A, andÎAB is the identity operator.
TheJAB are the microscopic parameters which give the magnetic
exchange coupling interaction between those centers (computed
as described previously). IfJAB is negative, the spins within
the radical site pair tend to be antiparallel to each other
(antiferromagnetic coupling), while ifJAB is positive, the spins
align parallel to each other (ferromagnetic coupling). The
Hamiltonian (eq 7) operates on a basis ofN-fold tensor products
consisting of products ofN spins (eitherR or â for a system of
doublets) in the crystal.29

The space of Heisenberg Hamiltonian (eq 7) is defined by
the choice of a finite number of magnetic building blocks of
the magnetic motif.29 However, the choice of the number of
building blocks to be used in the construction of the Hamiltonian
remains to be discussed. One must demonstrate convergence
onø(T) with respect to the extension of the number of magnetic
building blocks (according to the topography of the magnetic
motif). As we will show subsequently, rapid convergence can
be demonstrated indicating that simple models with small
number of magnetic centers (4-8 radical sites) may be adequate
to provide a realistic model of the magnetic motif for an infinite
crystal lattice. Thus, the only practical limit, from a computa-
tional point of view in our approach, is the restriction to about
16 radical sites because of the need to fully diagonalize the
Hamiltonian (with 16 active sites, H in eq 7 has a dimension of
12870 by 12870). However, two conceptual issues remain: (1)
whether to simulate the magnetic motif with an open or cyclic
model, and (2) an a priori rationalization of the reason small
models may provide a rapid convergence on the computed
magnetic susceptibilityø(T) data.

Calculations have been carried out on a series of large finite
cyclic chains.30,31a It is believed that the properties of an

infinite chain of atoms can be properly reproduced by a finite
cyclic chain (less than 30 atoms is enough in many cases30).
The same approach can be extrapolated to three-dimensional
problems. However, an open cluster approach31 is also possible.
If a particular property of the cluster has converged, the limiting
value is considered as that of the infinite system; otherwise, an
estimation of the bulk-limit results can be done.31 A series of
tests using open and cyclic models corresponding to the
extension of the number of magnetic building blocks has been
carried out for the three crystals studied in this paper. The results
obtained using all energy levels computed for both models show
quasi-identicalø(T) curves (we will just show the results for
WILVIW).

Effective Hamiltonian theory32 can be used to understand and
demonstrate the rapid convergence of the simulated magnetic
susceptibility data using simple models. This methodology has
been tested to be valid for a number of spin problems.33 The
use of an effective Hamiltonian32,33 requires the introduction
of two new concepts, minimal magnetic model space and target
space, which we will illustrate with an example. Scheme 1c
shows a spin ladder magnetic motif. For such a magnetic motif,
the magnetic building block (mbb) could be pictured as a dimer
(rung) assuming a dominantJ1 interaction. A 2mbb model (4-
spin sites in Scheme 3a) could be thought as being the minimal
magnetic model space for a 4mbb target space (8-spin sites in
Scheme 3b) since the latter is a double repetition. In such a
case, the diagonalization of the Hamiltonian using the 4mbb
model, and its subsequent projection onto the 2mbb space will
yield six eigenstates (out of 70 eigenvectors corresponding to
the 4mbb target space) matching the six eigenstates of the 2mbb
minimal magnetic model space (a quintet, three triplet and two
singlet states). If the computedø(T) data do not change when
increasing the size of the target space (4-, 5-,n-mbb model)
while keeping the same minimal magnetic model space (2mbb
model, onto which the target space Hamiltonian is projected),
the calculation is converged (see discussion for WILVIW
crystal). One then also concludes that the minimal magnetic
model space can provide a faithful representation of the infinite
system.

Within the framework of effective Hamiltonian theory, instead
of working with the Hamiltonian of the infinite crystal space,
one uses its projection onto a subspace of magnetic building
blocks. This subspace is the smallest subset of magnetic building
blocks required to describe properlyø(T), the so-called minimal
magnetic model space. The space of the effective Hamiltonian
is thus the minimal magnetic model space. The space defined
by a larger number of magnetic building blocks is in turn called
the target space. The effective Hamiltonian33 projected from a
target space will always reproduce exactly a subset of eigen-
values of this target space corresponding to the minimal
magnetic model space. The accepted strategy for the study of
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periodic systems, using finite models, involves the systematic
extension of the finite system until convergence is obtained.
Thus, we have used this strategy by extending the minimal
magnetic model along the crystallographic directions until we
obtain convergence.

Macroscopic Magnetic Susceptibility and Heat Capacity
from Statistical Mechanics.Once the microscopic information
has been obtained (JAB values) and the energy levels of the
Heisenberg Hamiltonian computed, one can simulate the
magnetic susceptibility and heat capacity using statistical
mechanics. The behavior ofø(T) shows whether the molecular
material behaves macroscopically as a ferro or antiferromagnet.
Experimentally, susceptibility measurements are conducted at
very low magnetic fields to avoid saturation effects in the
magnetic data (e.g., using SQUID34). Thus, the expression for
ø(T) will be derived at zero magnetic fieldB limit.

The general expression for the magnetic susceptibilityø(T)
given by statistical mechanics is written in terms of the
microscopic energy levels at zero magnetic field as5

The above expression can further reduce to35

after summing overmSn (at zero magnetic field limit). Similarly,
the statistical mechanics expression for the heat capacityCp(T)
in terms of the microscopic energy levels is

In the above expressions,En is thenth energy level from the
algebraic Heisenberg Hamiltonian,Sn is the spin of thenth
energy level (mSn ) -Sn, ..., -1, 0, +1, ..., +Sn), g is the
gyromagnetic factor, and the constantsN, µB, kB, and µ0 are

Avogadro’s number, Bohr magneton, Boltzmann constant, and
permeability of free space, respectively. The units ofø (eq 9)
in SI are m3 mol-1 dimers (and in CGS system,ø/4π10-6 gives
the susceptibility in emu mol-1 dimers).36 The units forCp (eq
10) are J mol-1 K-1. It is thus essential to clarify whether
“mol-1” in N refers to moles of magnetic centers (radicals),
pairs of radicals (dimers), minimal magnetic model space, etc.
The units of the energyEn must then be in accordance withN
and refer to a mole of radicals, dimers, minimal magnetic model
space, etc.

Two strategies can be followed when computing the magnetic
susceptibility (eq 9) as a function of temperatureø(T), depending
on whether the energy levels are obtained using (1) the
Heisenberg Hamiltonian in the target space or (2) its projection
onto a model space. A Heisenberg Hamiltonian is applied to
different target spaces with increasing number of magnetic
building blocks until convergence onø(T) is obtained. It is
essential that all the energy levels{En} and corresponding spin
values{Sn} from each target space are included in the statistical
mechanics expression (9) (e.g., ref 11 only uses the 4 lowest
spin states for a binuclear complex). However, the projection
of the Heisenberg Hamiltonian onto the minimal magnetic model
space via an effective Hamiltonian reproduces a subset of
eigenvalues of a target space and can be used as well. When
working with the projected Heisenberg Hamiltonian, only the
energy levels{En} and corresponding spin values{Sn} of the
minimal magnetic model space are included in the statistical
mechanics expression. If the computedø(T) does not change
when increasing the size of the target space (keeping the same
minimal magnetic model space), the calculation (eq 9) is
converged. We will exemplify both strategies in the following
section. Once theø(T) data have been computed using the energy
levels of either Hamiltonian, comparison to the experimental
values is always carried out.

Let us now digress to compare our approach with the standard
solid-state approach to the quantum mechanical modeling of
an infinite periodic system. CRYSTAL package21 is the periodic
ab initio program often applied to magnetism-related problems.
In CRYSTAL, the energy of an infinite crystal is computed
using the Hartree-Fock (or Kohn-Sham) formalism within the
LCAO approximation. An a priori choice of the magnetic unit
cell and spin configuration has to be made. Then the UHF
(UDFT) energy is obtained for this local minimum using this
specific electronic configuration as a starting guess (i.e.,
preassigning a spin arrangement within the magnetic unit cell).
The process is then repeated for some spin arrangements. The
microscopic magnetic exchangeJAB parameters for these
particular configurations37,38 are obtained from the computed
energies for the various spin arrangements by solving the
relevant equations involving the diagonal matrix element
symbolic expressions for the Heisenberg Hamiltonian (for an
analogous treatment see ref 12). However, the computation of
all the energy levels required in the expression ofø(T) is not
carried out. In principle, theJAB values obtained with CRYSTAL
could be reintroduced in an algebraic Heisenberg Hamiltonian
to compute the energy levels required for the statistical
mechanics computation ofø(T). Hellberg et al.12 have obtained
the magnetic exchange vanadium-vanadium couplingJV-V for
CaV4O9 from the energy of seven different configurations using
a periodic method equivalent to CRYSTAL based on plane
waves. The authors have followed the former prescription to
compute the energy levels by solving the Heisenberg Hamil-

ø )
Ng2µB

2

kBT
µ0[∑n

∑
mSn)-S

+S

(mSn
+ S0)

2 exp[-
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kBT ]
∑

n

(2Sn + 1) exp[-
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kBT ]
-

[∑n
∑

mSn)-S

+S
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kBT ]]2
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-
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tonian with Lanczos techniques on finite (20-spin) periodic
clusters using the previously computedJV-V, and then simulat-
ing ø(T).

In addition, several other numerical techniques have been used
to study the low-energy properties of strongly interacting
quantum lattice models described by a model Hamiltonian
accounting for periodic boundary conditions, such as quantum
Monte Carlo (QMC39) and density matrix renormalization group
(DMRG40). However, none of them has universal applicability,
and so they will not be the subject of further discussion.

Results and Discussion

We will now discuss the results obtained using the preceding
four-step prescription for two antiferromagnetic nitronyl nitrox-
ide NN crystals, WILVIW (p-N-methylpyridiniumNN+‚I-) 41

and TOLKEK (2-hydroNN,R phase)42, and for the ferromag-
netic NN crystal KAXHAS (p-nitrophenylNN, â phase)2

(nomenclature taken from CCSD43). Notice that the constituent
radicals in these three crystals have just one unpaired electron
that is mostly delocalized on the ONCNO atoms (see Scheme
2), which are taken as the spin carrier group. For WILVIW, a
detailed discussion will be given on how to identify and compute
the numerical values ofJAB, determine the magnetic building
block, magnetic motif and magnetic structure, construct and

diagonalize a parametrized Heisenberg Hamiltonian, and com-
pute the macroscopic magnetic susceptibility from statistical
mechanics. However, for TOLKEK and KAXHAS, we will just
outline the main results. Full documentation is contained in
Supporting Information.

WILVIW. The WILVIW crystal (p-N-methylpyridiniumNN+‚
I-; for radical, see Scheme 2) has P1h symmetry with parameters
a ) 11.843 Å,b ) 12.695 Å,c ) 9.532 Å,R ) 95.53°, â )
90.55°, andγ ) 146.89°. There are two WILVIW radicals per
unit cell (Z ) 2). It is known to be an antiferromagnet.41 The
experimental magnetic susceptibility data have been fitted to a
Bleaney-Bowers expression corrected with an empirical mean
field θ parameter

whereJ/kB ) -74.0 K (-51.4 cm-1), θ ) -4.7 K (-3.3 cm-1),
andC ) 0.376 emu K mol-1.

First, we proceed by analyzing the packing of the crystal in
terms of magnetic interactions. Figure 1 shows the packing of
the WILVIW crystal indicating those dimeric interactionsJAB

between constituent radicals that meet the cutoff criterion18 and
thus might be magnetically important (hydrogen atoms are not

Figure 1. Snapshot of the magnetic structure for WILVIW crystal (hydrogen atoms are not shown, see Scheme 2 for radical formula). WILVIW
radicals with ONCNO‚‚‚ONCNO distance shorter than 7.4 Å are connected with a line. The connected radicals form a two-dimensional layer that
extends alongbc crystallographic axes. The infinite stack of parallel noninteracting two-dimensional layers along thea crystallographic direction
are shown (distance between two neighboring layers is larger than the cutoff of 7.4 Å).

ø ) 4C
T[3 + exp(-2J/kBT)] - θ

[emu mol-1] (11)
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shown; see Scheme 2 for radical formula). Each line connecting
two ONCNO groups represents an individualJAB (only one line
per pair of radicals). For WILVIW, the magnetic interactions
form a stack of parallel two-dimensional layers (bc crystal-
lographic directions in Figure 1). We assume these layers do
not interact along thea crystallographic direction because they
are further apart than the cutoff distance of 7.4 Å. Therefore,
the magnetic structure for WILVIW is a two-dimensional layer,
which is part of a stack of parallel noninteracting layers in the
three-dimensional magnetic packing.

Figure 2a shows a simplified two-dimensional layer (hydrogen
atoms are omitted), and Figure 2b depicts a schematic view of
the topography of this layer. In Figure 2b, each radical molecule
is reduced to a point site, and all dimeric interactionsJAB less
than 7.4 Å are drawn diagrammatically as a line (only one line
per pair of radicals). These lines are pictured plain, bold, broken,
etc., to distinguish among seven different pairs of radicals (d1-
d7 in Figure 2b) that repeat themselves thanks to the P1h
symmetry of the crystal.

Now we discuss the magnitude of the computed dimeric
interactionJAB for the seven d1-d7 pairs. Unrestricted broken
symmetry UB3LYP/6-31+G(d)22-25 has been used to compute
theJAB values via eq 6 using the geometry of each dimer taken
directly from the crystal structure (using CCSD43). Table 1
contains the computed dimeric interactionsJi (i ) 1-7) for

d1-d7 (dimers are listed as shortest O‚‚‚O distance increases).
One can see that only four dimeric interactions are magnetically
important and will thus contribute to the macroscopic magnetism
of the crystal. Interestingly, the strength of theJAB interactions
is not proportional to the O‚‚‚O distance (see Table 1), showing
that the relative orientation of the pair of radicals plays an
important role. The fourth column in Table 1 gives the ordering
of J1... J4 relative to the magnetically strongest dimeric
interaction.

The data contained in Table 1 are used to identify the actual
magnetic motif for WILVIW in terms of the constituent

Figure 2. (a) Simplified view of a two-dimensional layer for WILVIW showing the seven pairs of radicals di (hydrogen atoms are omitted) with
an ONCNO‚‚‚ONCNO distance shorter than 7.4 Å. Different di pairs of radicals are represented diagrammatically with different lines. (b) Schematic
view of the topography of the two-dimensional layer (a). Each WILVIW radical is replaced with a point site, and lines are labeled according to the
di pairs of radicals they connect (i ) 1-7 with increasing O‚‚‚O distance). (c) Magnetic motif for WILVIW is defined in terms of nonnegligible
Ji dimeric interactions (i ) 1-4 with decreasing strength) between di pairs of radicals. The magnetic motif is a spin ladder defined byJ1 (rungs,
i.e., magnetic building block) andJ2 (legs). The two-dimensional layer consists of spin ladders weakly interacting throughJ3 andJ4. (Inset in the
figure, bc crystallographic axes are shown.)

TABLE 1: Unrestricted DFT Broken Symmetry UB3LYP/
6-31+G(d) Results for the Dimeric Interaction of All Seven
Candidates (d1-d7 listed as O‚‚‚O Distance Increases) for
WILVIW a

candidatei di(O‚‚‚O)/Å Ji/cm-1 Ji ordering

d1 3.16 -9.1 J2

d2 3.38 -28.2 J1

d3 4.37 -1.5 J3

d4 5.85 < |0.05|
d5 6.04 < |0.05|
d6 6.46 +1.1 J4

d7 6.71 < |0.05|
a The fourth column gives the ordering of the four non-negligible

dimeric interactionsJ1‚‚‚J4 from strongest to weakest dimeric inter-
action.

Magnetic Properties of Organic Molecular Crystals J. Phys. Chem. A, Vol. 106, No. 7, 20021305



magnetic building blocks (mbb). The largest dimeric interaction
value (J1 ) -28.2 cm-1) defines the magnetic building block
as a dimer. This dimer is then replicated along the second largest
JAB value (J2 ) -9.1 cm-1) (Figure 2c) so that the magnetic
motif becomes a spin ladder defined byJ1 (rungs) andJ2 (legs).
This spin ladder motif, in turn, interacts weakly with nearby
ladders throughJ3 andJ4, as shown in Figure 2c. For WILVIW,
the magnetic building block of the spin ladder (magnetic motif)
is a rung (dimer). Thus, the extension of the number of rungs
along thebc axes (two-dimensional layer magnetic structure)
is the finite model used when applying the algebraic Heisenberg
Hamiltonian (eq 7) to compute the microscopic energy levels
required by the statistical mechanics definition of the magnetic
susceptibility (eq 9). To reproduce the experimentalø(T) data,
one must demonstrate convergence onø(T) with respect to the
extension of the number of magnetic building blocks (according
to the topography of the magnetic motif).

We begin the discussion on the convergence of the macro-
scopic susceptibilityø(T) for WILVIW, by increasing the
number of rungs (mbb) along thec axis for an isolated spin
ladder from 2 (2mbb, i.e., a 4-spin site model) to 5 (5mbb, i.e.,
a 10-spin site model), according to Figure 3a. By extending
the number of rungs along the spin ladder, the dimension of
the secular equation in the Heisenberg Hamiltonian problem
increases from 6× 6 (4 spin sites, i.e., a 2 rung (2mbb) model)
to 252× 252 (10 spin sites, i.e., a 5 rung (5mbb) model). Next,
the convergence ofø(T) is studied extending the magnetic
building block along theb axis for the case of two ([2+2]mbb)
and three ([2+2+2]mbb) interacting spin ladder 2mbb models
(Figure 3b).

In Figure 4a, we plotøT(T) data computed according to the
models shown in Figure 3. A very rapid convergence is achieved
by extending the number of rungs along a spin ladder from 2
to 5 (see Figure 3a for model). The discrepancy between
simulated and experimental data will be discussed subsequently.
Notice that all the simulatedø(T) curves are almost the same
irrespective of the size of the model being used. Tests using a
“cyclic” spin ladder model of increasing size also show a
complete agreement with the magnetic susceptibilityø(T) data
obtained with an “open” spin ladder model (Figure 5). It

follows that the simple 2mbb model seems to be adequate as a
minimal model of the infinite spin ladder.

We now allow the spin ladders to interact among themselves
to reproduce the magnetism in thebc planes of the WILVIW
crystal. Now,ø(T) is simulated using two-interacting ([2+2]-
mbb) and three-interacting ([2+2+2]mbb) spin ladder 2mbb
minimal models and compared to the computed data for an
isolated 2mbb model (Figure 3b). Again, the computedøT(T)
data using these three models agree (see Figure 4b). Thus, one
can conclude that a 2mbb model is the minimal model that
describes the magnetic motif for WILVIW. Note also that the
2mbb model is the smallest model containing the two largest
JAB dimeric interactions. In fact, Awaga et al.41 suggested that
the dimers with O‚‚‚O distance of 3.38 and 3.16 Å (J1 andJ2,
respectively, in Table 1) might be responsible for the magnetism
of WILVIW.

The use of the projected Heisenberg Hamiltonian enables one
to understand why the 2mbb minimal magnetic model space is
appropriate for the magnetic motif of WILVIW. The energy
levels obtained with the effective Hamiltonian in the minimal
magnetic model space (2mbb in Figure 3) reproduce exactly a
subset of eigenvalues of a target space that consists of a larger
number of magnetic building blocks (3mbb, 4mbb, 5mbb, [2+2]-
mbb... in Figure 3). If the computedø(T) data do not change
when increasing the size of the target space (6-, 8-, 10-,n-spin
sites model) keeping the same minimal magnetic model space
(2mbb model with 4-spin sites) onto which the target space
Hamiltonian is projected, the calculation is converged. Figure
6 shows the agreement between the simulatedø(T) data using
the energy levels obtained from the 2mbb minimal magnetic

Figure 3. Models used to study the convergence of the macroscopic
susceptibility for WILVIW. Extension of the number of magnetic
building blocks (mbb) (a) along thec axis for an isolated spin ladder
from 2 (2mbb) to 5 (5mbb) magnetic building blocks and (b) along
the b axis for the case of two ([2+2]mbb) and three ([2+2+2]mbb)
interacting spin ladder 2mbb models.

Figure 4. (a) øT(T) computed by extending the number of magnetic
building blocks along thec axis for an isolated spin ladder from 2mbb
(9), 3mbb (O), and 5mbb (+) (see Figure 3a for models). (b)øT(T)
obtained by extending the number of interacting spin ladders from one
(2mbb9), two ([2+2]mbbO), and three ([2+2+2]mbb ‚) (see Figure
3b for models). The experimental data are shown as (b).

1306 J. Phys. Chem. A, Vol. 106, No. 7, 2002 Deumal et al.



model space and those of the effective Hamiltonian obtained
from the 3mbb and 4mbb target spaces. It is clear that the
calculation is converged.

Let us now discuss the difference between simulated and
experimental values that appears in Figure 4. The computed
curve clearly has the correct shape, suggesting that the magnetic
motif is correct. Thus, a scaling factor multiplying allJAB

interactions has been introduced. The scaling factor indirectly
accounts for the systematic errors due to computing the
microscopic magnetic exchange interactionsJAB using DFT44

and to cooperative exchange effects between differentJAB’s,
which are neglected when using a bare dimer approach
(WILVIW has a pyridinium ring as R substituent attached to
theR-C of the NN group, see Scheme 2). In Figure 7a, one can
see that applying a scaling factor of 1.6 or 1.7 to the 2mbb
model reproduces theøT(T) data obtained from experiment. One
can discriminate between the two factors by plottingø(T) rather

than øT(T) (Figure 7b), from which it is clear that a scaling
factor of 1.7 is more adequate. Note that the scaling factor we
use throughout the paper is linear because our target is to
reproduce qualitatively the experimental curves, and the use of
the same factor for allJAB parameters is the simplest approach
one can follow.

Comparison of the singlet-triplet spin-gap for different target
spaces (3-5mbb, [2+2]mbb, [2+2+2]mbb, [3+3]mbb pro-
jected onto a minimal 2mbb, see Figure 3) shows that it has
approximately the same value (-49.8( 1.6 cm-1 in average)
irrespective of the target space being used [Supporting Informa-
tion Table S1]. The spin-gap for each individual target space
decreases as the size of the target space increases, but the
projected spin-gap is kept constant [see arrows for projected
singlet and triplet states in Supporting Information Figure S1].
The fact that different target spaces converge to the same
projected spin-gap is consistent with the 2mbb model being the

Figure 5. Comparison between the simulatedøT(T) data using a “cyclic”/”open” spin ladder motif of increasing number of magnetic building
blocks for a 3mbb ((/)), 4mbb (9/0), and 5mbb (2/4) models. The 2mbb open model (+) and the experimental data (b) are given as a reference.

Figure 6. SimulatedøT(T) data from projected effective Hamiltonians onto the energy levels obtained for the 2mbb minimal magnetic model
space (9) and those from the projected 3mbb (O) and 4mbb (2) target spaces onto the minimal magnetic model space.
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minimal magnetic model space for WILVIW. By using the 1.7
scaling factor required to reproduce the experimentalø(T) data,
the spin-gap becomes-84.7 cm-1 (spin-gap mean value times
1.7). We now compare this value to the Bleaney-Bowers fitting
J parameter obtained by Awaga et al.,41 which is the spin-gap
for a two-level system (see discussion in Introduction). The
difference between the experimentally fitted spin-gap 2J )
-102.8 cm-1 and our simulated spin-gap-84.7 cm-1 is telling
us that WILVIW cannot be described using a two-level model.
This result is extremely important, because it implies that
WILVIW is a many-level system (i.e., not only the two lowest
energy levels are accessible). It follows that the energy levels
introduced in the expression ofø(T) cannot be truncated after
the first excited state (as the energy spectrum for the above-
mentioned target spaces indicates; see Supporting Information
Figure S1). This conclusion is justified by the fact that the fitting
expression for the experimental data (eq 11) requires the
introduction of the empirical mean fieldθ parameter.

Finally, the sensitivity of the computation ofø(T) to the
magnetic motif in terms of the relative magnitudes of the dimeric
interactionsJ1... J4 values is tested to demonstrate that we are
not getting the right answer accidentally. Supporting Information
S.I shows two tests where the topography of the spin ladder
motif with a set ofJAB different from the computedJ1-4 values
is used. Both tests are compared to the 2mbb model simulated
data since it is known to be the minimal magnetic model space
for WILVIW. These tests enable us to conclude that the
computation ofø(T) is highly sensitive to the magnetic motif
in terms of the relative dimeric interactions. Thus, we are not
getting the right answer accidentally, since by using the wrong
set of dimeric interactions in the magnetic motif the simulated

ø(T) values cannot reproduce the experimental data even
qualitatively.

In summary, the analysis of the packing of the crystal,
together with the computed dimeric interactionJAB values, gives
the magnetic picture of WILVIW at a microscopic level. The
magnetic structure of this crystal is a two-dimensional layer,
and its three-dimensional magnetic packing consists of a stack
of parallel noninteracting two-dimensional layers. This micro-
scopic magnetic picture is consistent with WILVIW being
experimentally a low-dimensional antiferromagnet. The two-
dimensional layer magnetic structure consists of weakly inter-
acting antiferromagnetic spin ladder motifs. Several independent
tests have proven that the minimal model capable of reproducing
the macroscopicø(T) values for WILVIW is a two-rung model
(2mbb) with a 1.7 scaling factor, where a rung is considered
the magnetic building block of this crystal. The two-rung 2mbb
model contains microscopic information on the largest magnetic
interactionsJ1 andJ2. In addition, WILVIW has been found to
behave as a many energy level system, and consequently, a spin-
gap modelssuch as a pure Bleaney-Bowers equation15scannot
describe the magnetism of this crystal. This fact is in agreement
with the fitting expression for the experimental data (eq 11),
which requires the introduction of the empirical mean fieldθ
parameter.41

TOLKEK. TOLKEK (R-2-hydroNN; for radical, see Scheme
2) crystallizes into theP21/n space group (a ) 11.879 Å,b )
11.611 Å,c ) 6.332 Å,â ) 104.48°, Z ) 4) with four radicals
per unit cell. TOLKEK behaves as an antiferromagnet42 whose
experimental magnetic susceptibility data have been fitted to a
“pure” Bleaney-Bowers expression withJ/kB) -11.2K (-7.8
cm-1) and C)0.5 emu K mol-1

In this section, we will discuss the main results obtained for
TOLKEK following the four-step prescription we propose in
this paper. The analysis of the crystal packing in terms of
O‚‚‚O distances between ONCNO groups that are shorter than
7.4 Å suggests seven dimeric interactions, which must be
computed. Table 2 shows the computedJAB for d1-d7 pairs of
radicals, which are listed as shortest O‚‚‚O distance increases
[for d1-d7 dimers see Supporting Information Figure S2]. Only
five dimeric interactions are magnetically important and will
contribute to the macroscopic magnetism of the crystal. The
fourth column in Table 2 gives the ordering ofJ1‚‚‚J5 relative
to the strongest dimeric interaction.

We can now identify the magnetic building block, magnetic
motif, and magnetic structure for TOLKEK. The magnetic
building block is a dimer defined by the largestJAB dimeric
interaction (J1 ) -7.26 cm-1). The extension of the magnetic

Figure 7. (a) øT(T) using the 2mbb minimal model (9) data after
applying a scaling factor of 1.6 (4) or 1.7 (2) to the 2mbb model. (b)
ø(T) with 1.6 (4) and 1.7 (2) scaling factors. The experimental data
are shown as (b).

TABLE 2: Unrestricted DFT Broken Symmetry UB3LYP/
6-31+G(d) Results for Each CandidateJi (i ) 1-7 Listed as
O‚‚‚O Distance Increases) for TOLKEKa

candidatei di(O‚‚‚O)/Å Ji/cm-1 Ji ordering

d1 3.80 (2) -7.26 J1

d2 4.27 +1.54 J2

d3 4.65 +0.22 J4

d4 4.79 +0.24 J3

d5 6.12 -0.13 J5

d6 6.22 < |0.05|
d7 7.01 < |0.05|

a The fourth column in Table 2 gives the ordering of the five non-
negligible dimeric interactionsJ1‚‚‚J5 from strongest to weakest dimeric
interaction.

ø ) C
T

3
3 + exp(-2J/kBT)

[emu mol-1] (12)
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building block along thec axis throughJ2-J3 defines a spin
ladder motif. Figure 8 shows two crystallographic cells for
TOLKEK (only the imidazolyl ring is plotted, hydrogen atom
and methyl groups are omitted). In the center of the figure, there
are four TOLKEK radicals forming a spin ladder (J1-J3 are
schematically drawn as a line connecting the shortest O‚‚‚O
distance between pairs of radicals) along thec crystallographic
axis. This spin ladder alongc is shown more clearly in Figure
9a, whereR-C atoms are connected instead of oxygen atoms
for a better realization of the magnetic motif. Each spin ladder
defined byJ1-J3 interacts weakly with other four surrounding
spin ladders (mm1-mm4 in Figure 8) throughJ4-J5 alongab
axes. Figure 9b is the diagrammatic representation of the five

spin ladders shown in Figure 8 (each radical is replaced by a
point site). The full magnetic structure for TOLKEK is then
weakly three-dimensional due to the interaction between spin
ladder motifs.

The convergence of the macroscopic susceptibilityø(T) is
next studied in terms of increasing the number of magnetic
building blocks (rung, mbb) along thec axis for a spin ladder
(2mbb-4mbb) and then alongab axes to simulate five interact-
ing spin ladders (see Figure 9b). Figure 10 demonstrates the
very rapid convergence onø(T) at high temperatures irrespective
of the size of the model being used. In this figure the low-
temperature region is also shown. It is clear that even at very
low temperatures all models have a good convergence onø(T)

Figure 8. Two crystallographic cells for TOLKEK (only the imidazolyl ring is plotted, hydrogen atom and methyl groups are omitted). In the
center of the figure, there are four TOLKEK radicals forming a spin ladder (J1-J3 are schematically drawn as a line connecting the shortest O‚‚‚O
distance between pairs of radicals) along thec crystallographic axis. Each spin ladder defined byJ1-J3 interacts weakly with other four surrounding
spin ladders (mm1-mm4) throughJ4-J5 along theab axes.

Figure 9. (a) Spin ladder motif shown along thec crystallographic axis (only the imidazolyl ring is plotted; hydrogen atom and methyl groups are
omitted). TheR-C atoms are connected instead of oxygen atoms for a better realization of the spin ladder magnetic motif. (b) Diagrammatic
representation of the five spin ladders shown in Figure 8 (reference and mm1-mm4; each radical is replaced by a point site).
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(notice there is a slight improvement when we account for the
inter-spin ladder dimeric interactions with a five spin ladder
model, see Figure 9b). These results show that the 2mbb model
is the minimal model of the magnetic motif, i.e., provides the
minimal magnetic model space for TOLKEK.

Next, the discrepancy between simulated and experimental
data in Figure 10 is taken into account. In this case, a scaling
factor of only 1.1 applied to allJAB’s of the 2mbb minimal
model is required to reproduce the experimentalø(T) data
(Figure 10). TOLKEK has a hydrogen H atom as R substituent
attached to theR-C of the NN group (see Scheme 2). Thus,
TOLKEK will have almost negligible three- or four-body
cooperative exchange effects to account for, arising from the H
atom substituent, in contrast to WILVIW that has a pyridinium
ring.

Although we have demonstrated a 2mbb spin ladder model
with three dimeric interactionsJ1-3 is the minimal magnetic
model for TOLKEK, one should point out thatJ3 is much
smaller thanJ1 andJ2. Therefore, this implies that the minimal
model of the magnetic motif could even be a linear chain with
two dimeric interactionsJ1-2 (instead of being a spin ladder
motif; see Figure 9a). This simplification has been confirmed
by tests using a linear chain withJ1 and J2 instead of a spin
ladder model as target space. All simulated results converge to
those obtained with a four-site linear chain minimal model
[Supporting Information Figure S3].

For TOLKEK, the computed spin-gap using all nonnegligible
microscopicJAB in the crystal for all different spin ladder motif
target spaces (or linear chain motifs) has a mean value of-12.5
( 3.5 cm-1 [Supporting Information Table S2]. The spin-gap
for each individual target space decreases as the size of the target
space increases, but the projected spin-gap is kept constant [see
arrows for projected singlet and triplet states in Supporting
Information Figure S4]. This result justifies once again the
choice of the 2mbb spin ladder (or four-site linear chain) as
representing the minimal magnetic model space for TOLKEK.

By using the 1.1 scaling factor required to reproduce the
experimentalø(T) data, the spin-gap becomes-13.8 cm-1 (spin-
gap mean value times 1.1). We now compare this value to the
Bleaney-Bowers (eq 12)J parameter obtained experimentally.42

The agreement between experimentally fitted spin-gap 2J )
-15.6 cm-1 and our “simulated” spin-gap-13.8 cm-1 tells that
TOLKEK can be described using a two-level model.

Hosokoshi et al.42 have suggested that the main magnetically
important dimeric interactions are those with O‚‚‚O distance
of 3.80 and 4.27 Å (J1 andJ2 respectively in Table 2). However,
the authors assumed that only one of these interactions would
contribute to the magnetism of TOLKEK. They identified the
Bleaney-BowersJ parameter with an “actual” single dimeric
interaction instead of being the singlet-triplet spin energy gap.
However, the computed values obtained forJ1 (-7.26 cm-1)
andJ2 (+1.54 cm-1) at UB3LYP/6-31+G(d) are not negligible
and are in agreement with a two-level model for TOLKEK (as
discussed above).

To summarize, we have shown that in order to give the correct
physical interpretation to the microscopic magnetic paths in
TOLKEK, it is absolutely essential to take into account all
nonnegligible microscopic dimeric interactionsJAB. The mag-
netic structure of this crystal is three-dimensional and consists
of weakly interacting spin ladders (or linear chains) as a
magnetic motif. For TOLKEK, a 2mbb spin ladder (or four-
site linear chain) minimal model with three (or two) dimeric
interactions is capable of reproducing the experimentalø(T) data
with a 1.1 scaling factor. In addition, we have proved that a
minimal model with two or moreJAB interactions is not in
contradiction with the system being described by a two-level
model.

KAXHAS. Finally, we will discuss KAXHAS, the first bulk
purely organic ferromagnet ever.2 KAXHAS (â-p-nitro-
phenylNN; for radical, see Scheme 2) crystallizes into the
orthorhombic F2dd space group (a ) 12.347 Å,b ) 19.364 Å,
c ) 10.971 Å,Z ) 8) with eight radicals per unit cell. The

Figure 10. Simulatedø(T) results for TOLKEK using models for two (+), three (0), and four (4) magnetic building blocks (mbb) along thec axis
for an isolated spin ladder, as well as alongab axes for a five spin ladder model (×) (see Figure 9b for diagrammatic view). In the inset, the
low-temperature region is shown. A scaling factor of 1.1 applied to the 2mbb model (O) is required to reproduce the experimentalø(T) data (b).
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experimental magnetic susceptibility data for this crystal were
fitted to a Curie-Weiss expression withθ ) 1.2 K (0.84 cm-1)
andC ) 0.376 emu K mol-1 in the temperature range between
4 and 300 K

Let us start the discussion for KAXHAS by analyzing the
crystal packing in terms of O‚‚‚O distances between ONCNO
groups shorter than 7.4 Å.18 The analysis suggests four pairs of
radicals whose dimeric interaction should be computed [see
Supporting Information Figure S5]. Table 3 shows that only
two dimeric interactions (J1 > J2) are magnetically important
and will contribute to the macroscopic magnetism of the crystal
(d1-d4 listed in Table 3 as shortest O‚‚‚O distance increases).

Figure 11 shows the nonnegligibleJ1 and J2 magnetic
interactions between radical centers in terms of KAXHAS
crystallographic unit cells (each radical is replaced by a point
site; see Scheme 2). The packing of KAXHAS radicals is usually
pictured as forming ABABA planes (ac crystallographic direc-
tions), as shown in Figure 11 taking the upper right unit cell as
a reference (in the inset,a, b, c axes are given). Such a picture
for the magnetic structure would suggest thatJ2 is the driving
force of the macroscopic magnetic interaction. However,J1 is
in fact the largest dimeric interaction, and the magnetic structure
must be first analyzed in terms of this interaction. The analysis
shows that the magnetic structure (and so the magnetic motif)
is three-dimensional (thick lines in Figure 11), which is
consistent with KAXHAS being experimentally a bulk ferro-
magnet.

For nonbulk magnets, one would proceed by identifying the
magnetic building blocks of the magnetic motif defined by the
dominantJAB (e.g., WILVIW and TOLKEK). However, for bulk
magnets, there are no isolated building blocks defined by the
strongestJAB and connected through weakerJAB interactions
as shown in Scheme 1. One must then identify the smallest
repeating unit required in order to propagate the magnetic
interactions in terms ofJAB along all spatial directions (J1 for
KAXHAS). For KAXHAS, we found that a 6-spin site, three-
dimensional model (6s 3d, point sites labeled 1-6 are shown
in Figure 11) is a suitable repeating unit (magnetic building
block). In Figure 11, we show the propagation of the 6s 3d
model required to fill the three-dimensional magnetic structure.
There is a pure translation along theb crystallographic axis (3dz)
and two mixed translations along combinations ofa/c axes (3dx
and 3dy). These finite models are then used when applying the
algebraic Heisenberg Hamiltonian (eq 7) to compute the
microscopic energy levels required by the statistical mechanics
definition of the magnetic susceptibility (eq 9).

Kinoshita 2c has suggested, from the analysis of the crystal
structure, that at least two kinds of exchange interactions (J
and J′) are expected to dominate the ferromagnetism of
KAXHAS. Okumura et al.45 estimated these interactions to be

J ) +0.17 cm-1 andJ′ ) +0.08 cm-1 using the APUHF INDO
method. Our computed values obtained at UB3LYP/6-31+G-
(d) areJ1 ) +0.62 cm-1 andJ2 ) +0.18 cm-1 to be compared
to J andJ′ of Okumura,45 respectively. There is a clear difference
between these values as a consequence of a better description
of the electron correlation at DFT level. However, the important
point here is that different studies reach the same general
conclusion about which exchange interactionsJ1 and J2 are
magnetically important.

For KAXHAS, convergence on the magnetic susceptibility
ø(T) has been explored by extending the 6-site three-dimensional
(6s 3d) model alonga, b, andc crystallographic directions (3dx,
3dy, and 3dz, see Figure 11). Figure 12 shows that all simulated
results forø(T) converge at high temperatures, and even in the
low-temperature region whereøT(T) is plotted in order to
appreciate better the comparison among simulated data. Thus,
the 6-spin site, three-dimensional (6s 3d) model is adequate to
represent the magnetic structure for KAXHAS since it represents
the minimal magnetic model space. To address the difference
between experimental and simulatedø(T) data, a scaling factor
of 1.8 is required (the R substituent attached to theR-C of the
NN group is a phenyl group and the cooperative effects will be
non negligible; see Scheme 2). This factor is in agreement with
the 1.7 scaling factor obtained for WILVIW whose R substituent
is a pyridinium ring.

TABLE 3: Unrestricted DFT Broken Symmetry UB3LYP/
6-31+G(d) Results for the Four Candidates (d1-d4 listed as
O‚‚‚O Distance Increases) for KAXHASa

candidatei di(O‚‚‚O)/Å Ji/cm-1 Ji ordering

d1 5.35 +0.62 J1

d2 6.43 +0.18 J2

d3 6.73 < |0.05|
d4 6.90 < |0.05|

a The fourth column refers to the ordering ofJ1 andJ2 from strongest
to weakest dimeric interaction.

ø ) C
T - θ

[emu mol-1] (13)

Figure 11. NonnegligibleJ1-J2 magnetic interactions between radicals
in terms of KAXHAS crystallographic cells (each radical is replaced
by a point site, for formula see Scheme 2). According toJ2 (broken
lines), the radicals pack forming ABABA planes (ac crystallographic
directions) as shown in the upper right unit cell. According toJ1 (thick
lines), the magnetic motif (and so the magnetic structure) is three-
dimensional. The six-site three-dimensional magnetic building block
(6s 3d) is given with point sites labeled 1-6. Inset in the figure, the
propagation of the 6s 3d model required to fill the three-dimensional
magnetic structure along theb axis (3dz) anda/c axes (3dx and 3dy) is
shown.
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The experimentalø(T) data for KAXHAS have been fitted
using the Curie-Weiss expression (15), where C is the Curie
constant defined as

andθ is the Weiss temperature (or the mean field parameter)
given by

In eqs 14 and 15,S is the spin of the magnetic center,g is
the gyromagnetic factor, andN, µB, and kB are Avogadro’s
number, Bohr magneton, and Boltzmann constant, respectively.
Expression 13 is a modification of the Curie law to account for
weak intermolecular interactions among radicals with non
accessible excited states (large separation between ground and
first excited states) and no first-order angular momentum. The
interaction between magnetic centers is treated using molecular
field theory with a magnetic Hamiltonian given by the Zeeman
term and a perturbation- zJ〈Sz〉Ŝz (for discussion see ref 46).
According to this theory,47 a given magnetic center interacts
with strengthJ (pair interaction) with a numberz of nearest

neighbor centers in the crystal lattice. Thus, a given magnetic
center feels the mean field〈Sz〉 created by itsznearest neighbors.
When using the mean field perturbation in the statistical
mechanicsø(T) eq 9 for a one-level model (radical) system with
transition between states with spin-1/2 and1/2, one can derive
the Curie-Weiss expression (eq 13) and a higher order
correction [for derivation, see Supporting Information S.II]

Note that theC andθ values obtained in eq 16 correspond
to replacingS) 1/2 in eqs 14 and 15. Let us now compare the
value one would obtain for the mean intermolecular interactions
J (using eq 15) to the computed dimeric interactionJAB values
for KAXHAS.

From Figure 11, one can see that each point site (radical)
interacts throughJ1 with four nearest neighbors and throughJ2

with other four. Thus takingz ) 4, J is +0.83 cm-1, and ifz )
8, thenJ is +0.42 cm-1. Comparing these values toJ1 (+0.62
cm-1), we realize thatJ(z)4) is too large because it does not
account forJ2-type interactions andJ(z)8) is too small since it
does not distinguish betweenJ1 andJ2 interactions. Therefore,
a Curie-Weiss expression has limited value for understanding
the microscopic picture of a magnetic center interacting with
its neighbors due to the fact that this methodology averages all
magnetic interactions. Moreover, we must stress that the energy
spectra for KAXHAS using any of the target spaces (6s 3d,
3dx, 3dy, and 3dz) shows that all the energy levels are accessible,
not just the ground state [Supporting Information Figure S6].
It follows that for such a ferromagnetic example, there is no
way to justify the application of the one-level Curie-Weiss
model (nor a two-level Bleaney-Bowers model).

After correctly reproducing theø(T) experimental data, we
have simulated the heat capacityCp(T) data for KAXHAS by
using the 6s 3d minimal model and extending it alonga, b, and
c crystallographic directions (3dx, 3dy, and 3dz; see Figure 11).
Statistical mechanics provides an expression forCp(T) (eq 10)
in terms of microscopic energy levels (the units forCp are J
mol-1 K-1). The experimental heat capacity has a sharp peak
at the ferromagnetic transition temperatureTC of 0.6 K,
corresponding to a three-dimensional (second order) magnetic
phase transition. Figure 13 shows the simulatedCp(T) data for
KAXHAS. The maximum temperature for all models gives a
critical temperature of 0.45K, which is in qualitative agreement
with the experimental ferromagnetic transition temperature of
0.60 K. Obviously, Figure 13 does not show the typicalλ-shape
of Cp(T) since we are not using the crystal but a finite small
model. However, one can see that when increasing the number
of sites (from 6 to 12) in the model the curve does get sharper.

According to this study, a 6-site and two exchange coupling
constant minimal model (6s 3d) is the most adequate to give a
good description to the microscopic magnetic paths for
KAXHAS. This three-dimensional ferromagnetic building block
(repeating unit) defines a three-dimensional magnetic structure,
which is consistent with KAXHAS being a bulk ferromagnet.
By using the microscopic magnetic information of the 6-site
and two dimeric interaction model, one is able to describe the
heat capacity behaviorCp as well as the magnetic susceptibility
ø as a function of temperature, and estimate the ferromagnetic
transition critical temperature. It has been shown that neither a
one-level Curie-Weiss nor a two-level Bleaney-Bowers
models is consistent with the energy spectra of KAXHAS [as
shown in Supporting Information Figure S6].

Figure 12. Simulated results for (a)ø(T) and (b)øT(T) using the six-
site three-dimensional 6s 3d model (9) and its extension 3dx (4), 3dy

(O),and 3dz (+). A scaling factor of 1.8 applied to the 6s 3d minimal
model (0) is required to reproduce the experimentalø(T) data (b).

C )
Ng2µB

2S(S+ 1)

3kB
(14)

θ )
zJS(S+ 1)

3kB
(15)

ø ) C
T - θ

- C
2

T

(T - θ)2
(16)
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Conclusions

The method we have used in this work to study the magnetism
in molecular crystals is essentially a numerical approach. We
have simulated the magnetic susceptibilityø(T) (eq 9)sand heat
capacityCp(T) (eq 10)susing the energy levels computed with
an algebraic Heisenberg Hamiltonian (eq 7) parametrized with
JAB (eq 6), which have been computed using DFT. Once the
magnetic susceptibility data are computed, it can be compared
to the experimentalø(T) data. The computedJAB interactions
are essential not only in the parametrization procedure, but also
in the basic definition of the microscopic magnetic structure of
the molecular crystal (e.g., spin ladder, etc.). Using this
numerical approach, a very rapid convergence on the magnetic
susceptibilityø(T) is obtained. Thus, simple models (i.e., small
number of radical sites) and a linear scaling of the previously
computedJAB proves to be adequate. Therefore, we have shown
that we can directly relate the microscopic magnetic information
(magnetic structure, magnetic motif and magnetic building block
defined byJAB dimeric interactions) to the macroscopic proper-
ties of a crystal (e.g., magnetic susceptibility, heat capacity, etc.).
The four-step prescription we propose has been shown to
reproduce the experimental data and to rationalize the bulk
ferromagnetism of KAXHAS and the antiferromagnetism of
WILVIW and TOLKEK.

In the literature, one can distinguish between models for
fitting the experimental magnetic susceptibilityø(T) data
depending on whether they (1) make explicit reference to
microscopic data (e.g.,JAB) or (2) are based on two-level spin-
gap-type models (e.g., Bleaney-Bowers15), one-level Curie-
Weiss46 model, etc., which do not contain microscopic infor-
mation explicitly. Our computations rationalize why a spin-gap
model (i.e., Bleaney-Bowers) is suitable for reproducing the
experimentalø(T) data of some antiferromagnetic crystals (e.g.,
TOLKEK). However, such a model only provides a mechanism
for fitting the experimental data. It cannot provide understanding
about the microscopic picture of the interacting magnetic centers
(i.e.,JAB). For bulk ferromagnets, our computations suggest that
neither a two-level Bleaney-Bowers nor a Curie-Weiss model
should be used, since the energy spectrum for such a crystals
shows an almost continuum of levels.

In contrast to models such as Bleaney-Bowers,15 other
models that contain microscopic data have been proposed to fit

the experimental data using an analytical function of the
microscopicJAB, etc. parameters for the magnetic susceptibility
ø(T).13 The specific analytical expression forø(T) depends on
using a model (linear chain, spin ladder, etc.) containing a series
of microscopic parameters (e.g.,JAB, D, g, etc.). The model
itself is a hypothesis since the actual magnetic structure of the
crystal (JAB) is not known a priori. If the experimental data can
be fitted with such analytical expressions, the resulting fitting
parameters do give indeed information about the microscopic
structure of the crystal (JAB). For instance, from our computa-
tions, we demonstrate that in WILVIW crystal an analytical
function of JAB based on a spin ladder model is essentially
correct. The problem is that, often, more than one analytical
model may fit the experimentalø(T) data sensibly.

Our computations suggest a general strategy for the descrip-
tion of the macroscopic magnetism in molecular crystals taking
into account the microscopic information. Our numerical
approach demonstrates rapid convergence onø(T). Thus, a small
number of radical sites interacting in the correct magnetic motif,
after linear scaling the computedJAB interactions, has been
demonstrated to be sufficient to reproduce qualitatively the
experimental data. It has been shown that the topography of
the JAB and the correct relative magnitudes and sign of the
computed JAB are the essential elements of the magnetic
structure. Therefore, although a simple linear scaling has been
adequate to reproduce qualitatively the experimentalø(T) data,
we could refine the microscopicJAB values using a general
nonlinear fitting to the actual experimentalø(T) data.
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