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Torsional tunneling splittings for the ground and selected vibrationally excited states of HOOH, HOOD, and
DOOD are calculated using a semiclassical tunneling approach. The approach incorporates tunneling
calculations into quasiclassical trajectory simulations and is thus practical for large systems. Comparisons
with the experimental and quantum results show that the mode selectivity and isotope effects are generally
reproduced in the semiclassical calculations. The causes for the quantitative discrepancies between the quantum
and semiclassical calculations are discussed.

I. Introduction

This is a continuation of our efforts to study tunneling effects
in polyatomic molecules by using the semiclassical approach1,2

that incorporates tunneling calculations into classical trajectory
simulations. The gist of the approach is to propagate classical
trajectories to determine turning points and then compute
tunneling probabilities at turning points along some predefined
tunneling direction. The energy level splitting or rate constant
can be obtained by averaging the results over an ensemble of
trajectories representing the specified state. The approach is
practical for large systems where quantum-mechanical solutions
are not feasible. Since the full-dimensional classical dynamics
are explicitly treated, it also provides insight into the effects of
intramolecular dynamics on tunneling.

We have applied the method to compute tunneling splittings
in large polyatomic systems. The calculated ground-state
splittings in several isotopomers of malonaldehyde3 and methyl-
substituted malonaldehyde4 agree with the experimental values
within a factor of 2, indicating that the method may be accurate
for treating tunneling in large systems at low energies. However,
because of the uncertainty in the accuracy of the potential energy
surface (PES), direct comparisons with quantum calculations
on the same PES should provide better assessment of the
method. Thus, it is useful to study smaller molecules for which
quantum results are available.

The main focus of the present work is to further investigate
various aspects of this semiclassical approach and to test its
accuracy. We apply the method to hydrogen peroxide (HOOH),
which has been used as a prototype system for studying
spectroscopic and kinetic properties of small polyatomic
molecules. The potential along the torsional angle is of double-
well form, and there are available experimental values for the
tunneling splittings of the ground and selected vibrational
excited states. It is found that the splitting strongly depends on
the excitation site; some modes promote tunneling, some
suppress it, and some do not affect it. This demonstrates the
importance of properly treating the intramolecular couplings.
Thus, the system provides a good case for testing the method.
Although the molecule has been extensively studied both

experimentally and theoretically,5 until only very recently have
high quality multidimensional quantum-mechanical calculations
become available due to the advance in quantum chemistry and
computational power. Kuhn et al.6 have developed an accurate
six-dimensional analytical potential for the electronic ground
state of HOOH based on extensive high-level ab initio calcula-
tions. Luckhaus7 and Chen et al.8 have performed 6D calcula-
tions on this potential and obtained vibrational energy levels.
Thus, there are available quantum results for comparison.

II. Computational Methods

A. Initial Conditions. We wish to compute tunneling
splittings of vibrational states. To represent a given quantum
state semiclassically, two sampling methods for selecting the
initial conditions were used: the quasiclassical normal-mode
and local-mode samplings.9

The normal-mode sampling was used for all the states
considered here except the OH overtone states. In the normal-
mode sampling, initial normal-mode coordinatesQi andPi are
chosen from the quantized torus of the harmonic Hamiltonian
expressed in action-angle variables

with ni being the quantum numbers, and the angle variablesφi

chosen randomly in the interval (0, 2π). The normal-mode
coordinates are then transformed to the Cartesian coordinates,
after which the coordinates are scaled so that the total energy
equals the eigenvalue of the specified state.

Obviously, for anharmonic systems the normal-mode sam-
pling is an approximation, and the produced initial state is not
equivalent to the corresponding quantum one. We have calcu-
lated tunneling splittings for a two-dimensional system by
employing the normal-mode and the more rigorous adiabatic
switching samplings,10,11and the results are very close to each
other.12 We have also employed normal-mode sampling in
computing the ground-state splittings of several polyatomic
molecules, and the results agree well with the experimental
values.3,4 These studies suggest that the approximate normal-
mode sampling is generally valid for practical applications of
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Qi ) x(2ni+1)p/mωi sinφi

Pi ) x(2ni+1)pmωi cosφi (1)
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the semiclassical approach, especially for the low energy states
where anharmonicity is relatively small.

The local-mode sampling was used for selecting the initial
conditions for the OH stretch overtone states. Since the molecule
has a two-fold classical local mode degeneracy, the correspond-
ing pair of quantum states can be written as

with νOH quanta in one OH bond andνOH′ in the other. The
splitting of the two energy levels decreases with increasing
energy due to the anharmonic detuning of the two oscillators,
leading to the local mode effect.13 These effects are most easily
observed in the|ν, 0〉( states (i.e., all quanta in one bond) of
X-H bonds where anharmonicity is large and interbond
coupling is weak. If the energy difference of the two eigenstates
of eq 2 is small, the torsional splittings of the two states should
be close to each other. In addition, the two zeroth-order states
|νOH,νOH′〉 and |νOH′,νOH〉 should also be good approximations
to the eigenstates. We thus compute the torsional tunneling
splitting by selecting the initial conditions representing the|νOH,
0〉 states. The sampling method described in ref 9 for a Morse
oscillator was employed for the excited OH bond, and the
normal-mode sampling for the unexcited one.

B. Semiclassical Treatment of Tunneling Splittings.The
semiclassical approach for computing the level splitting via
classical trajectory calculations has been described previously.1-3

It is formulated based on the WKB expression for tunneling
splitting in a one-dimensional potential

whereν is the oscillating frequency at energyE, andSc is the
classical action integral in the barrier region between the two
turning pointsx< andx>

Using this one-dimensional WKB expression, one approximates
the splitting for a multidimensional system by1

where the brackets imply an average over an ensemble of
trajectories representing the given state andA(t) is accumulated
along a classical trajectory

Hereh(t - ti) is the step function,ti are the times that a trajectory
is at the turning points, andSi are the action integrals.

The basic procedures of this semiclassical method are as
follows. A trajectory is initialized in one of the wells using the
method described in section IIA and propagated classically. Each
time a turning point in the predefined tunneling direction is
encountered, an action integralSi is computed, which contributes
to the accumulated tunneling amplitude factorA(t) of eq 6.
<A(t)> is obtained by summing contributions from all the
turning points along a trajectory and then averaging over the
ensemble of trajectories representing the specified state. Typical
plots of<A(t)> are shown in Figure 1 for the ground states of
HOOH (panel a) and DOOD (panel b). The level splitting is
then derived from eq 5 by obtaining the slope from the least-
squares fit of<A(t)>.

Since the motion of the reaction coordinate is slower than
that of the other degrees of freedom, it is an adiabatic case. In
the adiabatic limit (i.e., the zero-curvature limit), the Hamiltonian
can be reduced to a one-dimensional form14

with an effective potentialV(s) including the vibrational energies
in the transverse modes

wheres is the reaction coordinate,V0(s) is the potential along
s, andωi(s) are the frequencies of transverse modes alongs.
Note that the harmonic approximation for the transverse modes
is implied in eq 8. The tunneling calculation is then reduced to
a one-dimensional problem, and the tunneling path is just the
minimum energy path. Thus, an ensemble of trajectories starting
with the same quantum number but different vibrational phases
should stop at the same turning point and have the same
tunneling probability. However, the vibrational adiabaticity does
not strictly hold for any reaction. The semiclassical method
based on the classical trajectory approach takes care of this
vibrational nonadiabaticity in an approximate yet natural way.
The full-dimensional trajectories are propagated to determine
the distribution of the turning points. The action integral for

|νOH,νOH′ > ( ) 2-1/2(|νOH,νOH′ > (|νOH′,νOH >) (2)

∆E ) 2pν exp(- Sc/p) (3)

Sc ) ∫x<

x> x2m[V(x) - E] dx (4)

∆E ) 2p
d
dt

< A(t) > (5)

A(t) ) ∑
i

h(t - ti) exp(- Si/p) (6)

Figure 1. Typical plots of tunneling amplitude factorA(t). Results
are for (a) the ground state of HOOH and (b) the ground state of DOOD.
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i

(ni +
1

2)pωi(s) (8)
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each individual turning point can be obtained by using the one-
dimensional potential of eq 8, with the reaction coordinates
being the torsional angleτ in this case. In this work, for the
sake of simplicity, a further approximation is employed in
computing the action integral; that is, the total potential, instead
of V(τ), has been used with the transverse degrees of freedom
held fixed. Using energy conservation along the tunneling path
(the torsional coordinateτ) and the fact thatpτ ) 0 at a turning
point, the action integral is approximated by

whereGττ is theG-matrix element for torsional angle andV is
the total potential alongτ. Since the cis barrier (7.56 kcal/mol)
is 6.5 kcal/mol higher than the trans barrier (1.03 kcal/mol),
tunneling through only the trans barrier was considered.

Note that the action integral is obtained by performing the
integration from the turning point to the top of the barrier and
then multiplying it by two. This is because the two potential
wells are mirror images of each other and thus the positions of
all the atoms have to be symmetrically reflected in passing from
one well to the other in computing the action integral.

III. Results and Discussion

We have computed the energy level splittings for selected
vibrational states of HOOH, HOOD, and DOOD. The calcula-
tions were carried out on the six-dimensional global potential
energy surface developed by Kuhn et al.6 Ensembles of 1000-
2000 trajectories were used for each specified state. The
trajectories were integrated in a lab-fixed Cartesian coordinate
system with a fixed step size of 0.03 fs, and were followed up
to 0.3 ps. The total angular momentum is zero in all cases.

The calculated tunneling splittings for the ground state and
excited states with one mode at the first quantum level (n ) 1)
are given in Table 1 together with the experimental and
quantum-mechanical values taken from ref 8. The initial
conditions were selected by quasiclassical normal-mode sam-

pling as described in section IIA. For most of the states, the
agreement between the semiclassical and quantum calculations
is within a factor of 2. Compared to the ground state splitting,
some modes enhance tunneling, some suppress it, and some do
not affect it. Not surprisingly, direct excitation of the torsional
mode results in a drastic increase in the splitting. Excitation of
the OO stretch has essentially no effect, indicating that the OO
stretch is weakly coupled to the torsional mode. The effects of
excitations of the bending and OH/OD stretching modes are
not as simple. For HOOH and DOOD, the antisymmetric bend
promotes tunneling while the symmetric bend suppresses
tunneling, whereas both modes promote tunneling for HOOD.
Excitation of the antisymmetric OH/OD stretch gives rise to
lower splitting for all three species, whereas excitations of the
symmetric OH and OD stretches have the opposite effectss
one suppresses while the other enhances tunneling. The result
of the antisymmetric OD stretch excitation of DOOD has been
attributed to the mode coupling and state mixing.15 We note
that only absolute values of the splittings are listed in Table 1
because the semiclassical method is unable to account for the
sign difference. It is clear that the trends of the mode selectivity
and isotope effects are generally well described by the semiclas-
sical method.

The quantitative difference between the semiclassical and
quantum results seems to stem in a large part from the errors
introduced in computing the ground state splitting, since many
of the semiclassical values are shifted by the difference between
the quantum-mechanical and semiclassical ground-state split-
tings. These errors are likely resulted from the intrinsic
semiclassical WKB approximation as well as the approximate
procedures in computing the action integral. In addition, the
normal-mode sampling becomes less valid with increasing
anharmonicity and coupling. For instance, it is likely that the
initial sampling does not properly account for the couplings
between the OH stretch and the reaction coordinate, resulting
in the less accurate splitting for the symmetric OH stretch
excitation.

The classical propagation introduces another source of errors
that usually accumulates with time. In addition, the quasiclassical
normal-mode sampling yields nonstationary initial states that
will decay with time. Thus, short run times are often used in
semiclassical calculations. At low energies where anharmonicity
is small, these errors should also be relatively small. It seems
that for all the excited states listed in Table 1 with the exception
of the torsional one, the states remain fairly stationary within
the run time. When the torsional mode is excited, the energy
flows out of the torsional coordinate after a short time, and the
decay curve levels off after the initial period. In this case, only
the initial portion of the curve was used to obtain the splitting,
and the error introduced by choosing the cutoff time is nontrivial
to assess and is generally far greater than the statistical error of
sampling size.

We have also calculated tunneling splittings for selected OH
overtone states|νOH,0〉 up toνOH ) 5. Since the anharmonicity
increases with the increase of OH bond energy, the normal-
mode sampling is less valid here. On the other hand, it is known
that the OH stretch in HOOH is a good local mode at high
excitations, thus the local-mode sampling described in section
IIA was used here. The results are given in Table 2 along with
the quantum-mechanical and experimental values. One has to
keep in mind when making comparisons that for each quantum
number, the experimental value is the tunneling splitting of just
one state of the overtone pair, the quantum result is for the pair
(the difference in the splittings for the two states is small though

TABLE 1: Tunneling Splittings of the Ground State and
Vibrationally Excited States with One Mode at the First
Quantum Level

state energy expta QMa this work

HOOH
ground state 0 11.4 11.0 18.1
torsion 319 116 119 110
OO stretch 856 12.0 11.0 19.2
antisym bend 1247 20.6 20.8 27.6
sym bend 1395 3.09 6.10 15.7
antisym OH 3609 8.18 7.32 12.8
sym OH 3620 8.15 7.58 18.1

HOOD
ground state 0 5.8 5.60 13.7
torsion 277 82.5 85.9
OO stretch 854 5.94 14.3
antisym bend 969 7.69 17.5
sym bend 1342 15.9 28.4
antisym OH/OD 2670 3.98 11.7

DOOD
ground state 0 1.88 1.86 3.6
torsion 235 42.3 43.7 63.6
OO stretch 853 1.78 3.9
antisym bend 926 4.50 9.8
sym bend 1027 1.63 3.9
antisym OD 2662 1.23 2.6
sym OD 2673 6.34 5.4

a Results are taken from ref 8.

S) 2∫τ<

0
pτ dτ ) 2∫τ<

0 x2Gττ
-1(V - V|τ)τ<) dτ (9)
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and thus not listed here), and the semiclassical calculation was
performed for the zeroth-order state with only one OH bond
excited. Theoretically, these values should converge for high
excitation states where the local-mode effects are strong but
are somewhat different at low energies. The semiclassical values
reproduce the trend of the experimental and quantum results;
the splitting decreases with increasing levels of the OH stretch
excitation, but they show a consistent overestimation. Because
of the close agreement between experiments and quantum
calculations performed on an adiabatic surface, the decrease in
the splitting with increasing OH bond excitation can be attributed
to the increase of the effective torsional barrier. Since the local-
mode sampling is a good approximation here, especially for
high overtone states, it seems that the error in the semiclassical
splitting comes from the approximations involved in evaluating
the action integral. The results would likely be improved if the
transverse frequenciesωi(τ) are computed and the effective
potential of eq 8 is employed in computing the action integral.
For lower energy states, such as the first excited state, the
inaccuracy in the local-mode sampling may also be significant.

IV. Summary

Hydrogen peroxide presents an interesting case because of
the mode-selective tunneling splittings due to the strong
intramolecular couplings. It is found that, depending on the
excitation site, vibrational excitations promote, suppress, or do
not affect tunneling. This clearly demonstrates the multidimen-
sional nature of the tunneling process in HOOH. Since the
semiclassical method employs quasiclassical trajectory simula-
tions to determine the turning points, it also provides a good
case for testing the accuracy of the quasiclassical trajectory
approach as well as the semiclassical method.

Our calculated level splittings for the ground and selected
vibrationally excited states of HOOH generally agree with the

trends of the experimental and quantum results. Compared with
the ground-state splitting, excitation of the OO stretch essentially
has no effect on the splitting. Excitation of the antisymmetric
OOH bend increases the splitting, while excitation of the
symmetric bend reduces the splitting. The increase in the OH
stretch excitation leads to monotonic decrease in the splitting.
The isotope effects have also been generally reproduced in our
calculations of HOOD and DOOD. These results again demon-
strate the applicability of this classical-trajectory-based semi-
classical approach.

There are three major causes for the quantitative difference
between the semiclassical and quantum results. One is the
intrinsic error in the semiclassical WKB approximation, which
seems to be the major error in the ground state splitting. Another
comes from the normal-mode sampling, which becomes less
valid with increasing anharmonicity. The third one lies in the
approximations used in computing the action integral, which
may be largely responsible for the overestimation of the
splittings for the OH overtone states.
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TABLE 2: Tunneling Splittings of Selected OH Overtone
States

(νOH,νOH′) expta QMa this work

(0,0) 11.4 10.6 (11.0)b 18.1
(1,0) 8.1 7.6 14.6
(2,0) 6.2 4.5 12.6
(3,0) 4.0 2.7 12.2
(5,0) 0.7 8.8

a Values are taken from ref 7.b The ground-state splitting given in
parentheses is the quantum value taken from ref 8.
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