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In this article, one of the more important dilemmas in molecular physics is considered: given a matrix of the
nonadiabatic coupling terms of any desired dimension, what is the minimal sub-Hilbert space for which
diabatization is still valid. This problem was addressed by one of us before (Baer, M.Chem. Phys. Lett.
2000, 329, 450), but it was recently established that the suggested criteria therein lead to subspaces that are
too large to be of any use. In this article, we discuss the conditions that have to be satisfied to reach the
minimal subspace. We have found that these conditions are related to the spatial distribution of the various
nonadiabatic coupling terms. Thus, if nonadiabatic coupling terms for the relevant states overlap only slightly
in configuration space, the required size of the subspace for diabatization can be reduced significantly. As an
example, we consider the C2H molecule.

I. Introduction

When studying molecular systems, one encounters two almost
insurmountable difficulties: (1) that of treating the nonadiabatic
coupling terms, which are not only spikysa feature that is a
“recipe” for numerical instabilitiessbut also singular and (2)
that of having to consider large configuration subspaces. As
will be shown in this article, the two apparently unrelated types
of difficulties are, in fact, interrelated. Moreover, it will be
shown that resolving the first difficulty may, in many cases,
also settle the second.

In molecular physics, one distinguishes between (i) the
adiabatic framework that is characterized by the adiabatic
surfaces and the above-mentioned nonadiabatic coupling terms,
which arise from derivative coupling and (ii) the diabatic
framework that is characterized by the fact that derivative
couplings are replaced by (smoothly behaving) potential coup-
lings. Because of the unpleasant features of the nonadiabatic
coupling terms, the dynamics is more easily carried out within
the diabatic framework. Therefore, transforming to the diabatic
framework, which is to be termed diabatization, is appropriate
when treating the multi-state problem as created by the Born-
Oppenheimer approach.1,2 However, the fact that the nonadia-
batic coupling terms become singular (“dressed” as conical
intersections3,4 or parabolical intersections,5,6) causes difficulties.
There exists a belief that conical intersections are rare events
in molecular systems; therefore, one is expected to achieve
diabatization without essential difficulties. Indeed, in many
earlier formulations, the transformation to the diabatic frame-
work was done by ignoring the effectsthe topological effects
of the singularities of the nonadiabatic coupling terms.7 How-
ever, more recently, it became clear that conical intersections
are very common8-22 and that while diabatizing one must treat
the singularities of the nonadiabatic coupling terms with care.

In 1975, one of the present authors23 suggested a way to reach
the diabatic framework indirectly by first forming the adiabatic
framework and then transforming to the diabatic framework by
employing the nonadiabatic coupling terms. This procedure
becomes particularly simple when applied to two states because
it amounts to the calculation of an angle (related to a 2× 2
orthogonal matrix) by integration over a nonadiabatic coupling
term along an assumed contour.23-26 This approach was later
employed to treat charge-transfer processes27-31 (studies which
until that time were solely carried out using semiclassical
surface-hopping-trajectories32-33) and reactive exchange pro-
cesses between neutrals34-36 and, most recently, photodissocia-
tion.37 In the following discussion, this angle is termed the
adiabatic-to-diabatic transformation angle, and the integral along
the contour is termed the line integral. The concept “line
integral” is also used in the more general situation (i.e., in the
case of more than two coupled adiabatic states for which the
above-mentioned integral becomes an integral equation along
a contour).

Because of difficulties in calculating the nonadiabatic coup-
ling terms, this method did not become very popular. Neverthe-
less, this approach, as such, was employed extensively, in
particular, to simulate spectroscopic measurements, with a
modification by Macias and Riera.38a They suggested looking
for a symmetric operator that behaves “violently” at the vicinity
of the conical intersection and using it instead of the nonadia-
batic coupling term as the kernel to calculate the adiabatic-to-
diabatic transformation angle via the line integral. As a result,
a series of operators such as the electronic dipole moment
operator, the transition dipole moment operator, the quadrupole
moment operator, etcetera were employed for this purpose.16,18,38b

However, we emphasize that, immaterial to the success of this
approach, it is still an ad hoc procedure; therefore, sooner or
later, the adiabatic-to-diabatic transformation angles will have
to be formed from the nonadiabatic coupling terms to guarantee
reliable results. Another difficulty associated with the Macias-
Riera approach is that it cannot be extended to multisurface
systems (or at least was never suggested for this purpose).
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Before discussing the main subject of this article, we consider
the problem of finite subspaces and the corresponding finite
Curl condition (see eqs 6 and 7). This is always an important
issue when treating a finite number of electronic states but is
particularly important when considering the adiabatic-to-diabatic
transformation. The transformation is guaranteed to be meaning-
ful if the Curl condition is fulfilled. However ,the Curl condition
was derived for an electronic manifold that forms a very large
and even an infinite Hilbert space.23 The question to be asked
in this respect is whether a reduced Curl condition can be
formulated for a finite subspace. This subject was addressed
some time ago by Mead and Truhlar39 while referring to the
possibility of constructing diabatic states, and it was claimed
that strictly diabatic states cannot be formed because a Curl
condition cannot be formulated for a finite subspace except in
case of atom-atom systems (where it is trivially fulfilled for
any number of states). However, it is known from numerous
studies, whether based on perturbation theory or on ab initio
treatment, that if one considers regions close enough to a given
conical intersection, the size of the sub-Hilbert space (see below
for definition) shrinks significantly and may be reduced even
to two states.8-13,15,19,20,22This implies that diabatic states, not
necessarily strictly diabatic states but those that are accurate
enough for any practical numerical application, can be formed
in given finite regions of configuration space and that the
“reduced” Curl condition holds approximately in these regions.
This reduced Curl condition was recently addressed in several
articles,40 and they can be summarized as follows: A sub-Hilbert
space (or a subspace of a Hilbert space) is considered in which
the states belonging to it are strongly coupled to each other,
but none of them is strongly coupled to states outside it (see
section III). It was proved40a,b that if the weak interaction
between any two statessone internal and one externals
measures asO(ε) then the Curl condition related to the sub-
Hilbert space (i.e., the reduced Curl condition) is fulfilled up
to an error ofO(ε2).40a,b

In the last paragraph, we present the purpose of this article.
To do so in a comprehensive way, we need to explain what is
meant, within the present study, by the statement that a diabatic
potential matrix isnonphysical. The procedure discussed above
is based on a transformation matrix of dimensionM derived
within a subspace of the same dimension. When we say that
the diabatic potential matrix, obtained via this transformation
matrix, is nonphysical, we mean that some of its elements are
multivalued in configuration space. (It is important to emphasize
that the nuclear Schro¨dinger equation cannot be solved for
multivalued potentials.) We shall show that if anM-dimensional
subspace is not large enough some elements of the diabatic
potential matrix will not be single-valued. On the other hand,
we have to guarantee thatM is kept as small as possible.

Finally, we refer to recent efforts to form diabatic states by
overcoming the incompleteness of the two-state subspace as
encountered in the H3 system. Kuppermann and Abrol41 present
an interesting approach in which the nonadiabatic coupling
matrix is decomposed into two matrixes (i.e., the longitudinal
matrix, which fulfills a reduced Curl condition, and the
transversal matrix). Next, they suggest the determination of the
longitudinal part in such a way as to minimize the average effect
of the transversal matrix.

Following these introductory remarks, we can now state the
purpose of this paper. We intend to show that an adiabatic-to-
diabatic transformation matrix based on the nonadiabatic
coupling matrix can be used not only to reach the diabatic

framework (for which, a priori, it was designed) but also to
determine the minimum size of a subspace for which diabati-
zation is still physically meaningful.

We explain this subject by considering the two-state situa-
tion: following a 2× 2 adiabatic-to-diabatic transformation, a
2-D, multivalued diabatic potential matrix is formed. This
implies that the 2-D transformation matrix yields a nonphysical
diabatic potential matrix; therefore, the required dimension of
the transformation matrix has to be increased to three or more
dimensions. The same situation applies to the size of the
subspace, which also must be at least 3-D. In the present article,
we intend to discuss these types of problems. We refer to the
conditions for forming the minimal relevant subspace as “the
necessary conditions for diabatization”.

The paper is arranged as follows: In section II, we present
a summary of the theoretical background that leads to “quan-
tization” of the nonadiabatic coupling matrix. In section III, we
discuss the conditions for a “reduced” diabatization, which is
obtained by considering the spatial distribution of the relevant
nonadiabatic coupling terms, and in section IV, we consider
the C2H molecule to show that the two lowest states can indeed
be diabatized although the relevant sub-Hilbert space contains
more than two states in the region of interest. Conclusions are
given in section V.

II. Theoretical Background

In their treatment of the mixed systems of nuclei and
electrons, Born and Oppenheimer derived the Schro¨dinger
equation for the nuclei, which can be written as7,42,43

where∇ is the usual gradient operator (here and in the following
discussion, all coordinates are internal, mass-scaled Jacoby
coordinates),E is the total energy,Ψ is a column matrix that
contains the nuclear functions{Ψi; i ) 1,2...}, u is a diagonal
matrix that contains the adiabatic potentials, andτ is the
nonadiabatic coupling matrix with the (vectorial) elementstij
defined as

In eq 2, the differentiation is with respect to the nuclear
coordinates, and the integration, with respect to the electronic
coordinates. Note that each element of theτ matrix is a vector
of n components wheren is the number of internal coordinates
(this number will be 1 for a diatomic system, 3 for a triatomic
system, etc.). In what follows, we assume that the dimension
of the (complete) Hilbert space isN, which, therefore, is also
the dimension of theτ matrix. For real molecular systems,N is
very large and may even become infinite. However, it can be
shown that eq 1 also holds for a subspace of finite, much-
reduced dimensionM, provided that certain conditions (to be
discussed in section IV) are fulfilled. In what follows, we assume
that a finite sub-Hilbert space can be constructed.40,43-45

In this article, the diabatic states are obtained from the
adiabatic-to-diabatic transformation matrixA, which is a solution
of the following first-order differential equation:23-26

It has been shown that the diabatic potential matrixW is
obtained from the expression

- 1
2m

(∇ + τ)2Ψ + (u - E)Ψ ) 0 (1)

tij ) 〈új|∇úi〉 (2)

∇A + τA ) 0 (3)

W ) A†uA (4)
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whereA† is the Hermitian conjugate of the unitary matrixA.
Before consideringW, we shall briefly discuss the conditions

for eq 3 to have a solution. To solve eq 3, we assume a contour
and then solve it along this contour. The condition for the
existence of a solution along such a contour is the fulfillment
of the Curl condition23,43-46 in a region along this contour and
that contains the contour. Thus, ifp and q are any two
(Cartesian) coordinates, then the Curl condition implies that

This equation can be written more compactly as

Let us now return to eqs 3 and 4, which form the basis of
the procedure used to obtain the diabatic potential matrix
elements. If this procedure is mathematically valid, then the
diabatic potentials produced in this way have to be single-valued.
We notice that because the adiabatic potentials are single-valued,
by definition, the single-valuedness ofW depends on the
features of theA matrix (see eq 4). It is also obvious that ifA
is single-valued the same applies toW. In Appendix C of ref
43, it is shown that the condition for having a single-valuedA
matrix is the fulfillment of the Curl condition in the region of
interest. However, it turns out thatA does not have to be single-
valued to guarantee the single-valuedness ofW. In fact, it was
proved that the necessary condition for having single-valued
diabatic potentials in the region surrounded by a given contour
Γ is that theτ matrix fulfills a certain quantization condition.46,47

This condition will be discussed next.
If we assume that the Curl condition (i.e., eq 6) is fulfilled

along a given contourΓ, then eq 3 has the following solu-
tion:25

sands0 are two points onΓ, andA(s0) is the boundary condition
for the solution (in this article, it is assumed to be the unit matrix
I ). A path-ordering operatorP̃ is introduced to indicate that this
integral has to be carried out in a certain order.25 In other words,
the contourΓ has to be broken into segments so that the
integration and the exponentiation are done independently for
each segment and that the final result is obtained, following a
series of products to be performed in the correct order.

Next, we introduce a matrixD, hence termed the topological
matrix.47 The D matrix is defined as

whereA(s0, s0) is the value ofA as calculated at the end point
of the closed contour. It has been proved thatD does not depend
on the boundary matrixA(s0) but depends only on the assumed
contourΓ. From eq 7, theD matrix for a closed contour can be
presented as47

which shows explicitly thatD depends only on the contourΓ,
not on any particular point along this contour.

Now returning to the diabatic potentials, it was proved that
the necessary condition for having single-valued diabatic
potentials is that theD matrix is diagonal with numbers of norm
equal to 1, namely, numbers that are either (+1)s or (-1)s (the
norm 1 is guaranteed by the fact that theD matrix is a unitary

matrix). In this sense, eq 9 is a quantization condition. In other
words, if in a given region the calculatedD matrices of
dimensionM are diagonal for any closed contour in this region,
then this implies that the correspondingM-dimensional diabatic
potential matrix in this region is single-valued and therefore
can be employed to solve the diabatic Schro¨dinger equation.

III. Noninteracting Conical Intersections

III.1. Introductory Comments. We use the term “nonin-
teracting conical intersections” to mean a situation where the
spatial distribution of two conical intersections (in a given
region), presented in terms oft12(s) andt23(s), is such that they
overlap slightly, at most, in the region of interest. As an example,
we consider a 2-D (planar) case where the highest intensity of
t12(s) is concentrated along one straight line that is reminiscent
of a ridge and the highest intensity oft23(s) is concentrated along
another straight line. Next, if these two lines are parallel and
located far enough apart, the overlap will be minimal. In Figures
1 and 2, we present a situation similar to the one that was
revealed while we were studying the C2H molecule (see section
IV for more details)

In some recent publications,40a,b,43,48we examined conditions
under which certain subspaces belonging to a Hilbert space can
be treated independently of other (external) parts of the Hilbert
space. To simplify the discussion, we consider two subspaces,
namely, the P space with dimensionM and the complementary
Q space, which is allowed to be of an infinite dimension. It
was suggested that we use the following criteria for constructing
the P subspace in a given region:40

In other words, the P states are all assumed to be weakly coupled
to Q states. Next, an interaction between two states is strong
when they are coupled via a conical intersection.40a,b Because
a conical intersection can be formed between two successive
states only, the P subspace is seen to be composed of M states
where each two adjacent states,j and j + 1, are coupled via a
strong nonadiabatic coupling term,tjj+1, which is a conical

Figure 1. 3-D plot for the nonadiabatic coupling termst12(x, y) and
t23(x, y) (see eq 29) as calculated for the C2H molecule for a fixed CC
distance ofrCC ) 1.35 Å τ12 stands fort12, andτ23 stands fort23.

tij = O(ε) for i e M, j > M (10)

∂

∂p
τq - ∂

∂q
τp ) [τq, τp] (5)

Curlτ ) [τ × τ] (6)

A(s, s0) ) P̃ exp(-∫s0

s
ds τ) A(s0) (7)

D ) A(s0, s0) A†(s0) (8)

D ) P̃ exp(-IΓ ds τ) (9)
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intersection (or stands for a sum of several conical intersections).
For such P subspaces, we showed that one can form a rigorous
diabatic framework characterized by anM × M diabatic
potential matrix.40a,b,43,48

The main difficulty with this procedure is that the above
definition for an isolated P subspace can be too extensive; in
particular, we suspect that almost every adiabatic state is coupled
via a conical intersection to its neighbor states at some point(s)
in configuration space. If this is indeed the case, then the
suggested breakup of the Hilbert space is not useful, even ifM
is finite but too large.

Knowing that, the question to be asked is whether one can
reach the diabatic framework using requirements that are not
as strict but are still rigorous. In other words, what are the
necessary conditions to reach the diabatic framework and obtain
the relevant (dimensionally reduced) potential matrix? We shall
not treat this issue for a generalM-dimensional subspace but
shall limit ourselves to a 3-D space where each two adjacent
states, namely, the two lower states 1 and 2 and the two higher
states 2 and 3, are strongly coupled to each other in the region
of interest. We shall examine the conditions necessary to reach
a 2-D diabatic framework for which the 2× 2 diabatic potential
matrix is single-valued.

III.2. Treatment of the Line Integral. For this purpose, we
consider a 2-D configuration space (see Figure 3) in which two
conical intersections are located at C12 and C23. The two
corresponding nonadiabatic coupling terms aret12(s) for the two
lower states andt23(s) for the two higher two states. Although
we consider here only two conical intersections, the treatment
can be extended to any number of conical intersections (among
the three just-mentioned states). In addition, we present a contour
Γ that is located mainly in the vicinity of C12, and we are
interested to follow what happens along this contour, in
particular, when it gets closer to C23.

Note that some segments of the contourΓ are drawn as solid
lines and others, as dashed lines. The solid lines denote segments
along which the intensity oft12(s) is strong but that oft23(s) is
negligibly weak. The dashed lines denote segments along which
t12(s) is negligible weak.

Next, we consider the following line integral23

whereA(s) is a 3-D matrix andτ(s) is given in the form

Note that thet13 term is missing because in realistic cases it
was found to be negligibly small; it is ignored to shorten the
algebra, and it is not essential to the derivation that follows.

Figure 2. Equi-nonadiabatic coupling-term lines for|t12(x, y)| and|t23(x,
y)| (see eq 29) as calculated for the C2H molecule for a fixed CC
distance ofrCC ) 1.35 Å.

Figure 3. Representation of an open contourΓ in terms of an open
contourΓ12 in the vicinity of the conical intersection at C12 and a closed
contourΓ23 at the vicinity of a conical intersection at C23. Γ ) Γ12 +
Γ23. It is assumed that the intensity oft12 is strong along those segments
of Γ that coincide withΓ12 (s) and weak along those segments ofΓ
that coincide withΓ23 (‚‚‚). (a) C23 is outside the closed contourΓ23.
(b) C23 is inside the closed contourΓ23.

A(s) ) A(s0) -∫s0

s
ds τ(s) A(s) (11)

τ(s) ) ( 0 t12 0
-t12 0 t23

0 -t23 0 ) (12)
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We also consider two otherτ matrixes, namely,τ̃12(s)

and τ̃23(s)

and it is easy to see that

To continue, the contourΓ along which the integration in eq
11 is carried out is assumed to be the sum of two contours (see
Figure (3))

whereΓ23 is a closed contour in the vicinity of C23 that may
surround it andΓ12 is an open contour near C12. By substituting
eq 15 into eq 11, we get

Next, recalling the assumptions concerning the intensities of
t12(s) andt23(s), we replace theτ(s) in the second term of eq 16
with τ̃12(s) and in the third term, withτ̃23(s). As a result, eq 16
becomes

Defining A23 as the following (constant) matrix

eq 17 becomes

where the matrixA23 is now the corresponding boundary
condition for this equation.

To continue, we first considerA23 and we notice that because
it is defined via an integration along a closed contour (Γ23) where
τ̃23(s) is the kernel, it can be written as (see eq 8)

where D23 is the corresponding topological matrix and is
assumed to be diagonal.

Next, we treat eq 19, and for this purpose, we consider the
following equation

which is similar to eq 19, where the only difference is the
inhomogeneous (matrix) term. To obtain eq 19 from eq 21, we
use the following manipulation: (a) multiply it from the left
by D23 and (b) introduce into the integrand (betweenτ̃12(s) and

Ã12(s)) the productD23D23 (≡I ). BecauseD23 τ̃12(s) D23 )
(τ̃12(s), eq 19 is fulfilled for the followingA(s) matrix:

Returning to eq 21, we notice that this is the line integral for a
2 × 2 Ã12(s) matrix becauseτ̃12(s), its kernel, is (essentially) a
2 × 2 matrix (see eq 13a).

We shall now summarize our findings. We proved that if the
two interactionst12(s) andt23(s) overlap even slightly along any
segment of a chosen contourΓ in the region of interest, then it
is enough to solve eq 21 whereΓ12 is the contour along which
t23(s) ≈ 0. However, a solution is needed along the given contour
Γ, and to find this solution, we arbitrarily extendΓ12 to Γ
becauset12(s) ≈ 0 along the missing segment. To obtain the
final solutionA(s), we employ eq 22.

Next, we consider the equation for the diabatic potentialW(s)
(see eq 4). After substituting eq 22 in eq 4 and recalling that
D23 andu(s) are diagonal matrixes, we find that

This implies that whenever the above requirements are
fulfilled we do not have to solve a 3× 3 matrix. In fact, we are
allowed to assume anA(s) matrix of the form

whereγ12 () γ12(s|Γ12)) is obtained from the integral over the
(1, 2) nonadiabatic coupling term

In other words, we are essentially back to the two-state case.
Finally, we have three comments:
(1) In eq 25, we have a- sign. It is important to emphasize

that the minus sign applies to those contours that do not surround
the (2, 3) conical intersection and that the plus sign applies to
those contours that do surround it. The only potential matrix
element affected by this sign is the off-diagonal term (see eq
23), but this sign will not affect the solution of the final nuclear
Schrödinger equation.

(2) We limited the derivation to a case where theΓ12 contour
is close to C12, the point of the (1, 2) conical intersection. This
treatment can be extended to any number of C12 locations as
long as the specified conditions are fulfilled.

(3) It could very well be that in realistic casesD23 is not
diagonal because the third state may be strongly coupled to a
fourth state, etcetera. If this is the case, the theoretical treatment
just described has to be extended to four states (or for that
matter, to any number of states). This extension will not affect
our final result as expressed in eqs 22-25.

III.3. Curl Condition. The theory presented in the previous
section ended by stating that if for a given three-state system
the nonadiabatic coupling terms between the two lower states
and between the two upper states do not interact we can form
a 2× 2 diabatic potential by calculating the adiabatic-to-diabatic
transformation angle as presented in eq 25. The question to be
asked is whether the corresponding reduced Curl condition is
fulfilled along every contour in the region of interest. Before
answering this question, we have to remind the reader of two
facts:

τ̃12(s) )( 0 t12 0
-t12 0 0

0 0 0
) (13a)

τ̃23(s) )(0 0 0
0 0 t23

0 -t23 0 ) (13b)

τ(s) ) τ̃12(s) + τ̃23(s) (14)

Γ ) Γ12 + Γ23 (15)

A(s) ) A(s0) - ∫Γ12
ds′ τ(s′) A(s′) - IΓ23

ds′ τ(s′) A(s′) (16)

A(s) ) A(s0) -∫Γ12
ds′ τ̃12(s′) A(s′) - IΓ23

ds′ τ̃23(s′) A(s′)
(17)

A23 ) A(s0) - IΓ23
ds′ τ̃23(s′) A(s′) (18)

A(s) ) A23 - ∫Γ12
ds′ τ̃12(s′) A(s′) (19)

A23 ) D23 A(s0) (20)

Ã12(s) ) A(s0) - ∫Γ12
ds′ τ̃12(s′) Ã12(s′) (21)

A(s) ) D23Ã(s) (22)

W ) Ã12
† uÃ12 (23)

A(s) ) Ã12(s) )( cosγ12 sin γ12 0
-sin γ12 cosγ12 0

0 0 1
) (24)

γ12(s|Γ12) ) γ12(s0) - ∫s0

s
ds t12(s|Γ12) (25)
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(1) The Curl condition as presented in eqs 5 and 6 simplifies
significantly for the case of two states. First, the commutator
on the right side of eq 5 is identically zero; second, the Curl
condition between matrixes becomes the Curl condition between
the matrix elementstp12, tq12, etcetera. Thus, in a two-state
system, we have

(2) In the case of three states, each nonadiabatic coupling
matrix contains three nonzero elements, and its components form
a nonzero commutation relation. To probe whether the Curl
condition for (the vector)t12 holds while also considering the
three-state system, we have to evaluate the commutation relation
of eq 5 for our planar system composed of the coordinates (p,
q). Thus,

Returning now to eq 5, we notice that for the Curl condition
(for the matrixes) produced for the two components of thet12

element, the following condition must be fulfilled:

We see that the right-hand side of eq 28 is equal to zero when
|t23| ) 0. However, we assumed that|t23| ≈ 0 whenever|t12| >
0. Consequently, eq 26 holds in all regions where|t12| > 0 and
is trivially fulfilled in those regions where|t12| ≈ 0.

IV. C 2H Molecule as a Test Case

As an example, we discuss the three lowest2A′ states of the
C2H molecule. The ab initio calculations of the nonadiabatic
coupling terms were carried out at the state-averaged CASSCF
level with the 6-311G** basis set.50 The three2A′ states were
calculated using the active space, including all nine valence
electrons distributed on nine orbitals (full-valence active space).
Depending on the targeted electronic states, up to five states
were computed by the state-averaged CASSCF with equal
weights. The nonadiabatic coupling terms were calculated by
using MOLPRO program.51

All calculations were made for a fixed CC distance, namely,
rCC ) 1.35 Å. For this CC distance, the (1, 2) conical
intersection is located at the linear configuration at a distance
of 1.3 Å from the closest carbon.16 Because of symmetry, we
encounter two conical intersectionssone on each side (see
Figure 4). As for the (2, 3) conical intersection, it is located at

a distance of 1.68 Å from the CC axis17 on theC2V line (see
Figure 4). Here also, because of symmetry, we encounter another
conical intersection “below” the CC axis (not shown in the
Figure).

To show the spatial distribution of each of the nonadiabatic
coupling terms, we employed a Cartesian system of coordinates
with its origin at the midpoint between the two carbons on the
CC axis. The relevant nonadiabatic coupling terms for this
presentation were defined as follows.

Employing chain rules,11,13we calculated for the above fixed
CC distance and a given set of (x, y) grid points the Cartesian
nonadiabatic coupling termstjj+1x(x, y) and tjj+1y(x,y) with j )
1, 2. We continued the calculations to obtain absolute values
of tjj+1(x, y), namely,|tjj+1(x, y)|:

The values of the two functions are presented twice: in Figure
1, the 3-D plot for the two nonadiabatic coupling terms for both
|t12(x, y)| and |t23(x, y)| as defined above is presented, and in
Figures 2a and b, equi-nonadiabatic coupling lines for these two
functions, respectively, are presented. We have noticed (in
particular, in Figure (2)) that the regions for which either|t12(x,
y)| or |t23(x, y)| differ from zero are indeed well-separated. This
implies that any contour assumed in the above (x, y) plane will
have segments for which|t12(x, y)| > 0 but |t23(x, y)| ≈ 0 and
vice versa, namely, segments for which|t12(x, y)| ≈ 0 but|t23(x,
y)| > 0 (we may also have segments along which both functions
are∼0). We have hardly any segments along which both|t12(x,
y)| and|t23(x, y)| are significantly different from zero. According
to the theory presented in the previous section, the necessary
condition that ensures the replacement of the three-state line
integral by a two-state line integral is that along any segment
of an assumed contour for which|t12(x, y)| > 0 we have|t23(x,
y)| ≈ 0. If this condition is fulfilled along any contour in a
given region, we can safely employ the two-state line integral
for the entire region under consideration. From Figures 1 and
2, it seems that this condition is satisfied by the three lowest
states of the C2H molecule.

Next, we prove numerically that this is indeed the case. For
this purpose ,we performed a series of line integral calculations
of the kind given in eq 25. All line integral calculations were
made for circular contours, namely, the adiabatic-to-diabatic
transformation angles were calculated from the expression

The test for the above-discussed decoupling is based on
R12(q), the topological angle, which is defined as

Having this angle, the (1, 2) system is assumed to be “de-
coupled” from other states if and only if for any circleR12(q)
can be written as

wheren is an integer (or zero).
In Figures 5-7, angular nonadiabatic coupling terms and the

relevant adiabatic-to-diabatic transformation angles as calculated
for seven cases are presented. We show the results obtained
for three different systems of coordinates, each time for a
different radiusq (some of these radii are large enough for their
circles to surround the entire configuration space of interest).

Figure 4. Geometrical positions (with respect to the CC axis) of the
two conical intersections studied in this article. The planes on which
the conical intersections are located are formed by freezing the CC
distances. Xij designates the conical intersection formed by theith and
the jth states. All distances are in Å. (a) (1,2) conical intersection; (b)
(2,3) conical intersection.

Curlt12 ) 0 (26)

[τ × τ] )

( 0 -t13pt23q + t13qt23p t12pt23q - t12qt23p

-(-t13pt23q + t13qt23p) 0 -t12pt13q + t12qt13p

-(t12pt23q - t12qt23p) -(-t12pt13q + t12qt13p) 0 )
(27)

Curlt12 ) -t13p t23q + t13q t23p (28)

|tjj+1(x, y)| ) xtjj+1x(x, y)2 + tjj+1y(x, y)2 j ) 1, 2 (29)

γ12(q, æ) ) ∫0

æ
dæ′ t12æ(q, æ′) (30)

R12(q) ) γ12(q, æ ) 2π) (31)

R12(q) ) nπ (32)
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In Table 1 are listed then values as calculated for these circular
closed contours. We have noticed that in all cases then value
of eq 29 is either∼1.0 when only one conical intersection is
surrounded or∼0.0 when the circle surrounds two conical
intersections or none of them. More information about the
variousn values can be found in ref 13.

Before concluding this section, we have to make the following
comment to avoid any reservations regarding these results: all
contours considered here are symmetrical with respect to the

Figure 5. Results as calculated along circles located at the carbon position and surrounding the (1, 2) conical intersections. Shown are the geometry,
the nonadiabatic coupling-matrix elementsτæ(æ|q), and the adiabatic-to-diabatic transformation anglesγ(æ|q) as calculated forrCC ) 1.35 Å and
for threeq values (q is the CH distance). (a) and (b)q ) 1.80 Å; (c) and (d)q ) 2.00 Å; (e) and (f)q ) 3.35 Å. The first two circles surround
one conical intersection, and the third circle surrounds the two conical intersections.

Figure 6. Results as calculated along circles located at the (1, 2) conical
intersection position and defined in terms of a radiusq. Shown are the
geometry, the nonadiabatic coupling-matrix elementsτæ(æ|q) ((a) and
(c)), and the adiabatic-to-diabatic transformation anglesγ(æ|q) ((b) and
(d)) as calculated forrCC ) 1.35 Å and for twoq values. (a) and (b)q
) 0.2 Å; (c) and (d)q ) 1.00 Å.

Figure 7. Results as calculated along circles located at the midpoint
between the two carbon atoms and defined in terms of a radiusq. Shown
are the geometry, the nonadiabatic coupling-matrix elementsτæ(æ|q)
((a) and (c)) and the adiabatic-to-diabatic transformation anglesγ(æ|q)
((b) and (d)) as calculated forrCC ) 1.35 Å and for two q values. (a)
and (b)q ) 2.475 Å (in this case, the contour does not surround any
(1, 2) conical intersection); (c) and (d)q ) 2.875 Å (in this case, the
contour surrounds the two (1, 2) conical intersections).
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two sides (“above” and “below”) of the CC axis; therefore, one
may suspect that effects due to the third state produced along
segments located above this axis may cancel those produced
along segments located below this axis. This possibility always
exists, but because for practical purposes the components oft12

≈ 0 along these segments, as is shown in Figures 1, 2, and
5-7, it is not conceivable that the third state is capable of
enhancing them significantly, if at all.

To avoid any confusion or ambiguity, all line integral
calculations reported here have been carried out properly,
namely, by employing the relevant components oft12 and not
the absolute value oft12 (i.e., |t12|).

V. Conclusions

In this article, we have tried to answer the following question.
Considering a nonadiabatic coupling-term matrix of a given
dimension, what is the minimal subspace for which diabatization
is still valid? We proved that the actual size might be smaller
than the size of the P sub-Hilbert space as defined in eq 10.
The conditions for that to happensthey were referred to as the
necessary conditions for diabatizationsare dependent on the
spatial distribution of the various nonadiabatic coupling terms.
It was found that if the relevant nonadiabatic coupling terms
do not overlap in configuration space (or overlap only slightly)
then the subspace for diabatization can be reduced significantly.
As an example, we considered the three lowest states of the
C2H molecule and showed that although the subspace is 3-D
(in fact, we know it is larger than 5-D) we are (rigorously)
allowed to employ, for diabatization purposes, the two lowest
(adiabatic) states only. To show that this approach is valid, we
calculated various line integrals along closed contours and
examined then values as presented in eq 32. In all cases, our
results were close to 1 or 0 (see Table 1).

The fact that for any assumed contour the value ofn is either
1 or 0 guarantees that any 2× 2 diabatic matrix potential,W(s),
calculated from eq 4 will be single-valued and can be used for
any dynamic calculations. In other words, the following four
potential matrix elements

are reliable as long as theγ12(s) angles are calculated by

employing contours that start at the same points0 with the same
given initial value ofγ12 ) γ12(s ) s0) (see eq 25).
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