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In this article, one of the more important dilemmas in molecular physics is considered: given a matrix of the
nonadiabatic coupling terms of any desired dimension, what is the minimal sub-Hilbert space for which
diabatization is still valid. This problem was addressed by one of us before (BaeTh&m. Phys. Lett.

200Q 329, 450), but it was recently established that the suggested criteria therein lead to subspaces that are
too large to be of any use. In this article, we discuss the conditions that have to be satisfied to reach the
minimal subspace. We have found that these conditions are related to the spatial distribution of the various
nonadiabatic coupling terms. Thus, if nonadiabatic coupling terms for the relevant states overlap only slightly
in configuration space, the required size of the subspace for diabatization can be reduced significantly. As an
example, we consider the,& molecule.

I. Introduction In 1975, one of the present auth®rsuggested a way to reach

When studvina molecular systems. one encounters two almostthe diabatic framework indirectly by first forming the adiabatic
ying Y ’ framework and then transforming to the diabatic framework by

insurmountable difficulties: (1) that of treating the nonadiabatic employing the nonadiabatic coupling terms. This procedure

gzouplln"g terms, Wh'Ch are not _only Spiky fe_ature that is a becomes particularly simple when applied to two states because
recipe” for numerical instabilitiesbut also singular and (2) it amounts to the calculation of an angle (related to & 2

that of having to consider large configuration subspaces. As orthogonal matrix) by integration over a nonadiabatic coupling
will be shown in this article, the two apparently unrelated types .
' bp y typ term along an assumed cont@8r26 This approach was later

of difficulties are, in fact, interrelated. Moreover, it will be mployed to treat charge-transfer proce¥s@s(studies which

shown that resolving the first difficulty may, in many cases, employed o freal charge-transter proc (studies which

also settle the second until that time were solely carried out using semiclassical
: surface-hopping-trajectori#s33) and reactive exchange pro-

In molecular physics, one distinguishes between (i) the 6 - .
adiabatic framework that is characterized by the adiabatic qess;s between negtﬁ&@_ and, most rt_ecently, p_hotodlssoua-
tion.3” In the following discussion, this angle is termed the

urfac nd the above-mentioned nonadiabatic coupling terms, . . . ) . .
surfaces and the above-mentioned nonadiabatic coupling te Sé\d|abat|c-to-d|abat|ctransformatlon angle, and the integral along

which arise from derivative coupling and (ii) the diabatic th " is t d the line int L Th e
framework that is characterized by the fact that derivative . te colrl (_)urlls ern:je_ the Iné in egrai it et_con(_:ep . I?he
couplings are replaced by (smoothly behaving) potential coup- integral” is also used in the more general situation (i.e., in the

lings. Because of the unpleasant features of the nonadiabaticc35¢ of more than two coupled adiabatic states for which the

coupling terms, the dynamics is more easily carried out within above-mentioned integral becomes an integral equation along
the diabatic framework. Therefore, transforming to the diabatic & CONtour).
framework, which is to be termed diabatization, is appropriate  Because of difficulties in calculating the nonadiabatic coup-
when treating the multi-state problem as created by the Born ling terms, this method did not become very popular. Neverthe-
Oppenheimer approadi?.However, the fact that the nonadia- 1€ss, this approach, as such, was employed extensively, in
batic coupling terms become singular (“dressed” as conical particular, to simulate spectroscopic measurements, with a
intersection&* or parabolical intersectior$) causes difficulties. ~ modification by Macias and Rief42 They suggested looking
There exists a belief that conical intersections are rare eventsfor a symmetric operator that behaves “violently” at the vicinity
in molecular systems; therefore, one is expected to achieveof the conical intersection and using it instead of the nonadia-
diabatization without essential difficulties. Indeed, in many batic coupling term as the kernel to calculate the adiabatic-to-
earlier formulations, the transformation to the diabatic frame- diabatic transformation angle via the line integral. As a result,
work was done by ignoring the effeethe topological effect a series of operators such as the electronic dipole moment
of the singularities of the nonadiabatic coupling ternsow- operator, the transition dipole moment operator, the quadrupole
ever, more recently, it became clear that conical intersections moment operator, etcetera were employed for this pu§ées°
are very commofr22 and that while diabatizing one must treat However, we emphasize that, immaterial to the success of this
the singularities of the nonadiabatic coupling terms with care. approach, it is still an ad hoc procedure; therefore, sooner or
later, the adiabatic-to-diabatic transformation angles will have
* Corresponding author. E-mail: mmbaer@netvision.net.il. to be formed from the nonadiabatic coupling terms to guarantee
 Guest Professor, Chemistry Department, University of Copenhagen. reliaple results. Another difficulty associated with the Maeias
H.C. drsted Institute, University of Copenhagen. . . . .
s Soreq NRC. Riera approach is that it cannot be extended to multisurface
' Academia Sinica. systems (or at least was never suggested for this purpose).

10.1021/jp020105j CCC: $22.00 © 2002 American Chemical Society
Published on Web 06/18/2002




6500 J. Phys. Chem. A, Vol. 106, No. 27, 2002 Baer et al.

Before discussing the main subject of this article, we consider framework (for which, a priori, it was designed) but also to
the problem of finite subspaces and the corresponding finite determine the minimum size of a subspace for which diabati-
Curl condition (see egs 6 and 7). This is always an important zation is still physically meaningful.
issue when treating a finite number of electronic states but is We explain this subject by considering the two-state situa-
particularly important when considering the adiabatic-to-diabatic tion: following a 2 x 2 adiabatic-to-diabatic transformation, a
transformation. The transformation is guaranteed to be meaning-2-D, multivalued diabatic potential matrix is formed. This
ful if the Curl condition is fulfilled. However ,the Curl condition ~ implies that the 2-D transformation matrix yields a nonphysical
was derived for an electronic manifold that forms a very large diabatic potential matrix; therefore, the required dimension of
and even an infinite Hilbert spa&The question to be asked the transformation matrix has to be increased to three or more
in this respect is whether a reduced Curl condition can be dimensions. The same situation applies to the size of the
formulated for a finite subspace. This subject was addressedsubspace, which also must be at least 3-D. In the present article,
some time ago by Mead and Truti&while referring to the we intend to discuss these types of problems. We refer to the
possibility of constructing diabatic states, and it was claimed conditions for forming the minimal relevant subspace as “the
that strictly diabatic states cannot be formed because a CurlN€cessary conditions for diabatization™.
condition cannot be formulated for a finite subspace exceptin "€ paper is arranged as follows: In section II, we present
case of atomratom systems (where it is trivially fulfilled for ~ & Summary of the theoretical background that leads to “quan-

any number of states). However, it is known from numerous tization” of the nonadiabatic coupling matrix. In section IIl, we
studies. whether based on pertu’rbation theory or on ab initio discuss the conditions for a “reduced” diabatization, which is

treatment, that if one considers regions close enough to a givenobtained by considering the spatial distribution of the relevant

conical intersection, the size of the sub-Hilbert space (see beIow,[‘hom‘dl_"z’lbatl'C C?uf“nﬁ tertrﬂsi t?]n(i n Isectlotn {Vt we co_nsalde(rj
for definition) shrinks significantly and may be reduced even e GH molecule to show that the two lowest states can indee

to two state$-131519.20.22This implies that diabatic states, not be diabatized although the relevant sub-Hilbert space contains

necessarily strictly diabatic states but those that are accurate \0'¢ than two states in the region of interest. Conclusions are

. . o given in section V.
enough for any practical numerical application, can be formed
in given finite regions of conﬂguraﬂpn space and that. the || Theoretical Background
“reduced” Curl condition holds approximately in these regions. ) ) )
This reduced Curl condition was recently addressed in several In their treatment of the mixed systems of nuclei and
articles?® and they can be summarized as follows: A sub-Hilbert electrons, Born and Oppenheimer derived the3 Sdihger
space (or a subspace of a Hilbert space) is considered in whicheguation for the nuclei, which can be writterf &*
the states belonging to it are strongly coupled to each other,

) N 1
but none of them is strongly coupled to states outside it (see — %(V +79°P+U—-E¥=0 (1)
section Ill). It was provetfab that if the weak interaction
between any two statemne internal and one external  whereV is the usual gradient operator (here and in the following

measures af(e) then the Curl condition related to the sub- discussion, all coordinates are internal, mass-scaled Jacoby
Hilbert space (i.e., the reduced Curl condition) is fulfilled up coordinates)E is the total energy®¥’ is a column matrix that
to an error ofO(e?).40ap contains the nuclear functiodd;; i = 1,2..}, u is a diagonal

In the last paragraph, we present the purpose of this article.matrix that contains the adiabatic potentials, ands the
To do so in a comprehensive way, we need to explain what is honadiabatic coupling matrix with the (vectorial) elemetjts
meant, within the present study, by the statement that a diabaticdefined as
potential matrix imonphysical The procedure discussed above
is based on a transformation matrix of dimensnderived t = EZIJWCiD ()
within a subspace of the same dimension. When we say that
the diabatic potential matrix, obtained via this transformation
matrix, is nonphysical, we mean that some of its elements are
multivalued in configuration space. (It is important to emphasize

that_the nuclear _Schdcmger equation cannot b_e solyed for (this number will be 1 for a diatomic system, 3 for a triatomic

multivalued potentials.) We shall show that if Badimensional system, etc.). In what follows, we assume that the dimension

subspace is not large enough some elements of the diabatiG {he (complete) Hilbert space ¥, which, therefore, is also

potential matrix will not be _single-valued. On the other hand, ihe dimension of the matrix. For real molecular systemsjis

we have to guarantee thit is kept as small as possible. very large and may even become infinite. However, it can be
Finally, we refer to recent efforts to form diabatic states by shown that eq 1 also holds for a subspace of finite, much-

overcoming the incompleteness of the two-state subspace ageduced dimensioM, provided that certain conditions (to be

encountered in the $system. Kuppermann and Abtbpresent discussed in section V) are fulfilled. In what follows, we assume

an interesting approach in which the nonadiabatic coupling that a finite sub-Hilbert space can be construdfed 4

matrix is decomposed into two matrixes (i.e., the longitudinal  In this article, the diabatic states are obtained from the

matrix, which fulfills a reduced Curl condition, and the adiabatic-to-diabatic transformation matfixwhich is a solution

transversal matrix). Next, they suggest the determination of the of the following first-order differential equatiot? 26

longitudinal part in such a way as to minimize the average effect

of the transversal matrix. VA+7A=0 ®3)

Following these introductory remarks, we can now state the |t has been shown that the diabatic potential mailXx is
purpose of this paper. We intend to show that an adiabatic-to- obtained from the expression
diabatic transformation matrix based on the nonadiabatic
coupling matrix can be used not only to reach the diabatic w =ATuA (4)

In eq 2, the differentiation is with respect to the nuclear
coordinates, and the integration, with respect to the electronic
coordinates. Note that each element of theatrix is a vector

of n components where is the number of internal coordinates
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whereAT is the Hermitian conjugate of the unitary matix
Before consideringV, we shall briefly discuss the conditions
for eq 3 to have a solution. To solve eq 3, we assume a contour
and then solve it along this contour. The condition for the
existence of a solution along such a contour is the fulfillment
of the Curl conditio®43-46 in a region along this contour and
that contains the contour. Thus, f and g are any two
(Cartesian) coordinates, then the Curl condition implies that

d

90 _
%’q N &fp = 7 7l ®)
This equation can be written more compactly as
Curlt =[7 x 1] (6)

Let us now return to egs 3 and 4, which form the basis of
the procedure used to obtain the diabatic potential matrix
elements. If this procedure is mathematically valid, then the
diabatic potentials produced in this way have to be single-valued.

We notice that because the adiabatic potentials are single-valued

by definition, the single-valuedness &% depends on the
features of thed matrix (see eq 4). It is also obvious thatAif

is single-valued the same applieswo. In Appendix C of ref

43, it is shown that the condition for having a single-valded
matrix is the fulfillment of the Curl condition in the region of
interest. However, it turns out thAtdoes not have to be single-
valued to guarantee the single-valuednes#/oin fact, it was
proved that the necessary condition for having single-valued
diabatic potentials in the region surrounded by a given contour
T is that ther matrix fulfills a certain quantization conditigi§:#
This condition will be discussed next.

If we assume that the Curl condition (i.e., eq 6) is fulfilled
along a given contouf’, then eq 3 has the following solu-
tion:?>

~ S
A(s s) = Pexp(= fSOdS 7) A(S) )
sands are two points o, andA(s) is the boundary condition
for the solution (in this article, it is assumed to be the unit matrix
). A path-ordering operatd? is introduced to indicate that this
integral has to be carried out in a certain oréfdn other words,
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Figure 1. 3-D plot for the nonadiabatic coupling terris(x, y) and
ta(X, y) (see eq 29) as calculated for theHOmolecule for a fixed CC
distance ofrcc = 1.35 A 7y, stands fort;,, andzzs stands fortys.

matrix). In this sense, eq 9 is a quantization condition. In other
words, if in a given region the calculated matrices of
dimensionM are diagonal for any closed contour in this region,
then this implies that the correspondikigdimensional diabatic
potential matrix in this region is single-valued and therefore
can be employed to solve the diabatic Sdhinger equation.

[Il. Noninteracting Conical Intersections

IlI.1. Introductory Comments. We use the term “nonin-
teracting conical intersections” to mean a situation where the
spatial distribution of two conical intersections (in a given
region), presented in terms gf(s) andt,s(s), is such that they
overlap slightly, at most, in the region of interest. As an example,
we consider a 2-D (planar) case where the highest intensity of
t12(s) is concentrated along one straight line that is reminiscent
of a ridge and the highest intensity tg4(s) is concentrated along

the contourT' has to be broken into segments so that the another straight line. Next, if these two lines are parallel and
integration and the exponentiation are done independently for|5cated far enough apart, the overlap will be minimal. In Figures
each segment and that the final result is obtained, following a 1 gng 2. we present a situation similar to the one that was

series of products to be performed in the correct order.
Next, we introduce a matril, hence termed the topological
matrix#” The D matrix is defined as

D =A% %) A'(s) ®)

whereA(so, o) is the value ofA as calculated at the end point
of the closed contour. It has been proved batoes not depend
on the boundary matriR(so) but depends only on the assumed
contourT". From eq 7, thé matrix for a closed contour can be
presented &3

D =Pexp(f-ds7) 9)
which shows explicitly thaD depends only on the contolly
not on any particular point along this contour.

Now returning to the diabatic potentials, it was proved that
the necessary condition for having single-valued diabatic
potentials is that th® matrix is diagonal with numbers of norm
equal to 1, namely, numbers that are eithet)s or (—1)s (the
norm 1 is guaranteed by the fact that thenatrix is a unitary

revealed while we were studying thelCmolecule (see section
IV for more details)

In some recent publicatior{82.24348ye examined conditions
under which certain subspaces belonging to a Hilbert space can
be treated independently of other (external) parts of the Hilbert
space. To simplify the discussion, we consider two subspaces,
namely, the P space with dimensibhand the complementary
Q space, which is allowed to be of an infinite dimension. It
was suggested that we use the following criteria for constructing
the P subspace in a given regith:

tj = O(e) fori<M,j>M (20)

In other words, the P states are all assumed to be weakly coupled
to Q states. Next, an interaction between two states is strong
when they are coupled via a conical intersectith?.Because

a conical intersection can be formed between two successive
states only, the P subspace is seen to be composed of M states
where each two adjacent stategndj + 1, are coupled via a
strong nonadiabatic coupling terrt+1, which is a conical
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. 23 (a)
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Figure 3. Representation of an open contduiin terms of an open

(b) contourT';2 in the vicinity of the conical intersection at£and a closed
contourI';; at the vicinity of a conical intersection ab£I' = 'z +
I'23. Itis assumed that the intensity @ is strong along those segments
of I" that coincide withl'1> (—) and weak along those segmentslof
that coincide withI';3 (+++). (a) Gs is outside the closed contolbs.
(b) Cysis inside the closed contouit,s.

I11.2. Treatment of the Line Integral. For this purpose, we
consider a 2-D configuration space (see Figure 3) in which two
conical intersections are located at.Gand Gz The two

X corresponding nonadiabatic coupling termsta#(@) for the two
Figure 2. Equi-nonadiabatic coupling-term lines for(X, y)| and|tzs(x, lower St"’.‘tes antby(s) for the IWQ h'glher two .States' Although
y)| (see eq 29) as calculated for theHCmolecule for a fixed CC we consider here only two conical intersections, the treatment
distance ofrcc = 1.35 A. can be extended to any number of conical intersections (among

the three just-mentioned states). In addition, we present a contour

intersection (or stands for a sum of several conical intersections).I' that is located mainly in the vicinity of G, and we are
For such P subspaces, we showed that one can form a rigorousnterested to follow what happens along this contour, in
diabatic framework characterized by @M x M diabatic particular, when it gets closer to,£

potential matri?é‘.)ab"‘&“g _ _ _ Note that some segments of the contbuare drawn as solid
The main difficulty with this procedure is that the above Jines and others, as dashed lines. The solid lines denote segments
definition for an isolated P subspace can be too extensive; in glong which the intensity ofio(s) is strong but that of,5(s) is

particular, we suspect that almost every adiabatic state is couplechegligibly weak. The dashed lines denote segments along which
via a conical intersection to its neighbor states at some point(s)t, ,s) is negligible weak.

in configuration space. If this is indeed the case, then the

suggested breakup of the Hilbert space is not useful, evin if

is finite but too large. s
Knowing that, the question to be asked is whether one can A(9) = Als) _fSOdS 7(s) A(9) (11)

reach the diabatic framework using requirements that are not

as strict but ar.e.still rigorous. In pther_ words, what are thg whereA(s) is a 3-D matrix andr(s) is given in the form

necessary conditions to reach the diabatic framework and obtain

the relevant (dimensionally reduced) potential matrix? We shall

1\ , ) 0 tp O

not treat this issue for a genensll-dimensional subspace but

shall limit ourselves to a 3-D space where each two adjacent 7(9=|"he 0 1y (12)

states, namely, the two lower states 1 and 2 and the two higher 0 —t3 0

states 2 and 3, are strongly coupled to each other in the region

of interest. We shall examine the conditions necessary to reachNote that thet;3 term is missing because in realistic cases it

a 2-D diabatic framework for which the 2 2 diabatic potential was found to be negligibly small; it is ignored to shorten the

matrix is single-valued. algebra, and it is not essential to the derivation that follows.

Next, we consider the following line integ?al
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We also consider two othar matrixes, namelyFi(S) A12(9) the productDy3Das (=I). BecauseD,s #1x(S) Doz =
+71(9), eq 19 is fulfilled for the followingA(s) matrix:
0 t,0
7(9=|"1, 0 0 (13a) A(S) = D,ZA(9) (22)
0O 0O
and#,3(s) Returning to eq 21, we notice that this is the line integral for a
2 x 2 A1x(s) matrix becauséi(s), its kernel, is (essentially) a
0 0 O 2 x 2 matrix (see eq 13a).
(=0 o t 13b We shall now summarize our findings. We proved that if the
7249 0 —ty (2)3 (13b) two interactiondi(s) andtys(s) overlap even slightly along any

segment of a chosen contaliin the region of interest, then it

is enough to solve eq 21 whefg; is the contour along which

t23(s) &~ 0. However, a solution is needed along the given contour

7(S) = F1(S) + F5(9) (14) I', and to find this solution, we _arbltrarlly exterld;, to _I“
becausdix(s) ~ 0 along the missing segment. To obtain the

To continue, the contodr along which the integration in eq  final solutionA(s), we employ eq 22.

11 is carried out is assumed to be the sum of two contours (see, X, We consider the equation for the diabatic poteiiis)
Figure (3)) (see eq 4). After substituting eq 22 in eq 4 and recalling that

D3 andu(s) are diagonal matrixes, we find that

and it is easy to see that

I'=T,+T, (15) L
W =ALUA,, (23)
wherel'»3 is a closed contour in the vicinity of £that may
surround it and"12 is an open contour near £ By substituting This implies that whenever the above requirements are
eqg 15 into eq 11, we get fulfilled we do not have to solve a 8 3 matrix. In fact, we are

allowed to assume aA(s) matrix of the form
AS) =A%) — [,,d8 7(8) A(S) — fr., ds 7(S) A(S) (16) .
i cosy,, Siny;, 0
A(s) = Ay(s) =| —siny;, COSyy, 0 (24)
Next, recalling the assumptions concerning the intensities of 0 0 1
t12(s) andtzs(s), we replace the(s) in the second term of eq 16 _ ) _
with #1(5) and in the third term, withs(s). As a result, eq 16~ Whereyiz (= y1(Sll'12)) is obtained from the integral over the

becomes (1, 2) nonadiabatic coupling term
S
A(9) = A(sp) — [ 1,08 F1x(S) A(S) — f1 dS F,4(S) A(S) V181 = 714(%) F [ ds ti(SIT1) (25)
17
a7 In other words, we are essentially back to the two-state case.
Defining A3 as the following (constant) matrix Finally, we have three comments:
(1) In eq 25, we have & sign. It is important to emphasize
Ay =A(S) — fr, 8 T,S) A(S) (18) that the minus sign applies to those contours that do not surround
the (2, 3) conical intersection and that the plus sign applies to
eq 17 becomes those contours that do surround it. The only potential matrix
element affected by this sign is the off-diagonal term (see eq
A(S) = A,y — fr ds 7,,(8) A(S) (19) 23), but this sign will not affect the solution of the final nuclear
12

Schrainger equation.

(2) We limited the derivation to a case where the contour
is close to Gy, the point of the (1, 2) conical intersection. This
treatment can be extended to any number ¢f IGcations as
long as the specified conditions are fulfilled.

(3) It could very well be that in realistic cas&s3 is not
diagonal because the third state may be strongly coupled to a
Ay =Dy AS) (20) fourth state, etcetera. If this is the case, the theoretical treatment

23 23 just described has to be extended to four states (or for that
matter, to any number of states). This extension will not affect
our final result as expressed in eqs—25.

I11.3. Curl Condition. The theory presented in the previous
section ended by stating that if for a given three-state system
the nonadiabatic coupling terms between the two lower states
- B - and between the two upper states do not interact we can form

Ap(s) =Als) F f r,, 08 T1(S) Agy(s) (21) a 2 x 2 diabatic potential by calculating the adiabatic-to-diabatic
transformation angle as presented in eq 25. The question to be
which is similar to eq 19, where the only difference is the asked is whether the corresponding reduced Curl condition is
inhomogeneous (matrix) term. To obtain eq 19 from eq 21, we fulfilled along every contour in the region of interest. Before
use the following manipulation: (a) multiply it from the left answering this question, we have to remind the reader of two
by D,z and (b) introduce into the integrand (betwéigs(s) and facts:

where the matrixAys is now the corresponding boundary
condition for this equation.

To continue, we first consideé,; and we notice that because
it is defined via an integration along a closed contdug)(where
T23(9) is the kernel, it can be written as (see eq 8)

where Dys is the corresponding topological matrix and is
assumed to be diagonal.

Next, we treat eq 19, and for this purpose, we consider the
following equation



6504 J. Phys. Chem. A, Vol. 106, No. 27, 2002 Baer et al.

X3 a distance of 1.68 A from the CC akison theCy, line (see
@ (b) Figure 4). Here also, because of symmetry, we encounter another
. conical intersection “below” the CC axis (not shown in the
1684 Figure).
Xiz C c X2 To show the spatial distribution of each of the nonadiabatic
hd L4 L4 N ® *r e . . .
160A 135X  160A 1.35 A coupling terms, we employed a Cartesian system of coordinates

Figure 4. Geometrical positions (with respect to the CC axis) of the With its origin at the midpoint between the two carbons on the
two conical intersections studied in this article. The planes on which CC axis. The relevant nonadiabatic coupling terms for this
the conical intersections are located are formed by freezing the CC presentation were defined as follows.

distances. Xdesignates the conical intersection formed byithend Employing chain rules-13we calculated for the above fixed
thejth sta_tes._AII dista'nces are in A. (a) (1,2) conical intersection; (b) CC distance and a given set of §) grid points the Cartesian
(2,3) conical intersection. nonadiabatic coupling terntg. (X, y) andtj+1,(xy) with j =

(1) The Curl condition as presented in egs 5 and 6 simplifies 1, 2. We continued the calculations to obtain absolute values
significantly for the case of two states. First, the commutator ©f ti+1(x ¥), namely,[tj+a(x, y)I:
on the right side of eq 5 is identically zero; second, the Curl 5 5
condition between matrixes becomes the Curl condition between  [tj1(X, Y)| = \/ bt X Y)™ T+ gy (X Y)
The values of the two functions are presented twice: in Figure

the matrix elementsp, tqo, etcetera. Thus, in a two-state
system, we have
1, the 3-D plot for the two nonadiabatic coupling terms for both
[ti2(X, y)| and |t23(X, V)| as defined above is presented, and in
Figures 2a and b, equi-nonadiabatic coupling lines for these two

(2) In the case of three states, each nonadiabatic couplingfunctions, respectively, are presented. We have noticed (in
matrix contains three nonzero elements, and its components formparticular, in Figure (2)) that the regions for which eitlfiex(x,

a nonzero commutation relation. To probe whether the Curl y)| or |tas(X, y)| differ from zero are indeed well-separated. This
condition for (the vector};, holds while also considering the  implies that any contour assumed in the aboye) plane will
three-state system, we have to evaluate the commutation relatiorhave segments for whiclth2(X, y)| > 0 but |t23(X, y)| ~ 0 and

of eq 5 for our planar system composed of the coordingies ( vice versa, namely, segments for whichi(x, y)| =~ 0 but|tas(X,

g). Thus, y)| > 0 (we may also have segments along which both functions
are~0). We have hardly any segments along which bax,

y)| and|tzs(x, y)| are significantly different from zero. According

to the theory presented in the previous section, the necessary
condition that ensures the replacement of the three-state line
integral by a two-state line integral is that along any segment
of an assumed contour for whi¢tio(x, y)| > 0 we haveltas(x,

y)| ~ 0. If this condition is fulfilled along any contour in a
given region, we can safely employ the two-state line integral
for the entire region under consideration. From Figures 1 and
2, it seems that this condition is satisfied by the three lowest
states of the g¢H molecule.

Next, we prove numerically that this is indeed the case. For
this purpose ,we performed a series of line integral calculations
of the kind given in eq 25. All line integral calculations were
made for circular contours, namely, the adiabatic-to-diabatic
transformation angles were calculated from the expression

i=1,2 (29)

Curlt;, =0 (26)

[tx 1] =

0
- (_t13pt23q + t13thSp)
_(t12pt23q - t12qtz3p)

_t13pt23q + t13th3p
0

_(_t12pt13q + t12qtl3p)

tlZpt23q - tlzqtzzp

_t12pt13q + tqutlSp
0

27)

Returning now to eq 5, we notice that for the Curl condition
(for the matrixes) produced for the two components oftthe
element, the following condition must be fulfilled:
Curlty, = —t1 5, tha + tigths (28)
We see that the right-hand side of eq 28 is equal to zero when
[t2g] = 0. However, we assumed thats ~ 0 wheneveit;o| >
0. Consequently, eq 26 holds in all regions whigrg > 0 and

is trivially fulfilled in those regions wherétis =~ 0. (30)

(p r T
710, @) = ﬁ) do" t15,(a, ¢')
IV. C,H Molecule as a Test Case The test for the above-discussed decoupling is based on

As an example, we discuss the three lowféststates of the a1(0), the topological angle, which is defined as

C,H molecule. The ab initio calculations of the nonadiabatic
coupling terms were carried out at the state-averaged CASSCF
level with the 6-311G** basis Séf)The thl’eezA' states were Having this ang|e, the (1, 2) system is assumed to be “de-
calculated using the active space, including all nine valence coupled” from other states if and only if for any cirabe(q)
electrons distributed on nine orbitals (full-valence active space). can be written as
Depending on the targeted electronic states, up to five states

were computed by the state-averaged CASSCF with equal

weights. The nonadiabatic coupling terms were calculated by

a(d) = 710, ¢ = 27) (31)

ay,(q) = nw (32)

using MOLPRO prograrft
All calculations were made for a fixed CC distance, namely,
rcc = 1.35 A. For this CC distance, the (1, 2) conical

wheren is an integer (or zero).
In Figures 5-7, angular nonadiabatic coupling terms and the
relevant adiabatic-to-diabatic transformation angles as calculated

intersection is located at the linear configuration at a distance for seven cases are presented. We show the results obtained
of 1.3 A from the closest carbdfi.Because of symmetry, we  for three different systems of coordinates, each time for a
encounter two conical intersectionsne on each side (see different radiusy (some of these radii are large enough for their
Figure 4). As for the (2, 3) conical intersection, it is located at circles to surround the entire configuration space of interest).
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Figure 5. Results as calculated along circles located at the carbon position and surrounding the (1, 2) conical intersections. Shown are the geometry,
the nonadiabatic couplmg -matrix elememigp|q), and the adiabatic-to-diabatic transformation angigs|q) as calculated forcc = 1.35 A and

for threeq values  is the CH distance). (a) and ()= 1.80 A; (c) and (d)q = 2.00 A; (e) and (f)q = 3.35 A. The first two circles surround

one conical intersection, and the third circle surrounds the two conical intersections.
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Figure 6. Results as calculated along circles located at the (1, 2) conical

intersection position and defined in terms of a ragjuShown are the
geometry, the nonadiabatic coupling-matrix elemente|q) ((a) and
(c)), and the adiabatic-to-diabatic transformation angiesq) ((b) and
(d)) as calculated forcc = 1.35 A and for twoq values. (a) and (b
= 0.2 A; (c) and (d)gq = 1.00 A.

In Table 1 are listed the values as calculated for these circular
closed contours. We have noticed that in all casesthalue

of eq 29 is either~1.0 when only one conical intersection is

surrounded or~0.0 when the circle surrounds two conical

intersections or none of them. More information about the
variousn values can be found in ref 13.

¢/ rad ¢/rad

Figure 7. Results as calculated along circles located at the midpoint
between the two carbon atoms and defined in terms of a rgd&isown

are the geometry, the nonadiabatic coupling-matrix elemeytis )

((a) and (c)) and the adiabatic-to-diabatic transformation andtess)

((b) and (d)) as calculated fogc = 1.35 A and for two q values. (a)
and (b)q = 2.475 A (in this case, the contour does not surround any
(1, 2) conical intersection); (c) and (d)= 2.875 A (in this case, the
contour surrounds the two (1, 2) conical intersections).

Before concluding this section, we have to make the following
comment to avoid any reservations regarding these results: all
contours considered here are symmetrical with respect to the
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TABLE 1: n Values as Calculated for Various Circles employing contours that start at the same pgjntith the same
no. of given initial value ofy1, = y12(s = ) (see eq 25).
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