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A new theory of solvent effects on the optical rotations of chiral molecules is presented. The frequency-
dependent electric dipole-magnetic dipole polarizability,âRâ(ν), is calculated using density functional theory
(DFT). Solvent effects are included using the polarizable continuum model (PCM). DFT/PCM calculations
of sodium D line specific rotations, [R]D, have been carried out for seven conformationally rigid chiral organic
molecules (fenchone, camphor,R-pinene,â-pinene, camphorquinone, verbenone, and methyloxirane) for a
diverse set of seven solvents (cyclohexane, carbon tetrachloride, benzene, chloroform, acetone, methanol,
and acetonitrile). The predicted variation in [R]D for the solvents cyclohexane, acetone, methanol, and
acetonitrile are in excellent agreement with experiment for all seven molecules. For the solvents carbon
tetrachloride, benzene, and chloroform, agreement is much poorer. Since only electrostatic solute-solvent
interactions are included in the PCM, our results lead to the conclusion that, for the seven molecules studied,
in cyclohexane, acetone, methanol, and acetonitrile electrostatic effects are dominant while in carbon
tetrachloride, benzene, and chloroform other nonelectrostatic effects are more important. The observed variations
in [R]D with solvent are inconsistent, both qualitatively and quantitatively, with the variations predicted by
the equation [R]D(solvent)) {[R]D(gas)}(nD

2 + 2)/3.

Introduction

Chiral molecules exhibit optical rotation. With very few
exceptions, optical rotation measurements are carried out in the
condensed phase, most often in liquid solutions. Optical rotations
of solutions of chiral molecules are solvent-dependent.1 In the
case of flexible molecules, which exhibit multiple conformations
in solution, solvent effects can often be attributed predominantly
to changes in conformational populations with solvent. However,
in the case of rigid molecules exhibiting a single conformation,
optical rotations can still exhibit substantial solvent dependence.
For example, [R]D for (+)-methyloxirane varies from+30.6°
to -4.3° over a range of 35 solvents.2

In this paper, we present a new theory of solvent effects on
optical rotations. Optical rotations are calculated using density
functional theory (DFT).3 Solvent effects are incorporated using
the integral equation formalism (IEF)4 version of the polarizable
continuum model (PCM).5 The accuracy of the DFT/PCM
theory is evaluated by comparison of its predictions for seven

conformationally rigid chiral organic molecules in seven solvents
to experiment. The chiral molecules chosen are fenchone (1),
camphor (2), R-pinene (3), â-pinene (4), camphorquinone (5),
verbenone (6) and methyloxirane (7):
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The solvents after are C6H12, CCl4, C6H6, CHCl3, (CH3)2CO,
CH3OH, and CH3CN, a diverse set. For1-6, new experimental
measurements of [R]D have been carried out. In the case of7,
[R]D values are taken from the literature.2

According to the canonical treatment of the theory of optical
rotatory power,6 the optical rotation at a frequencyν of an
isotropic dilute solution of a chiral molecule is given by

whereφ(ν) is the rotation in radians per centimeter. In eq 1,
â(ν) is given by

âRâ(ν) is the frequency-dependent electric dipole-magnetic
dipole polarizability of the chiral molecule. In eq 2, 0 and k
label ground and excited electronic states andµel

e andµmag
e are

the electronic electric and magnetic dipole moment operators.
In eq 1, γLF(ν) is the “local field correction factor” (i.e., the
ratio of the microscopic electric field acting on the chiral
molecule to the macroscopic electric field of the light wave) of
Lorentz,7 given by

whereεs(ν) andns(ν) are the dielectric constant and refractive
index of the solvent, respectively. In eq 1, bothγLF(ν) andâ(ν)
are solvent-dependent.

A variety of ab initio methods have recently been applied to
the calculation of optical rotation.3,8 In all calculations to date,
solvent effects onâ have been ignored. The local field correction
has either been ignored (γLF ) 1) or included using eq 3. None
of these calculations satisfactorily take account of solvent effects.
Calculations ignoring solvent effects onâ and with γLF ) 1
predict solvent-independent optical rotations. Optical rotations
calculated ignoring solvent effects onâ and using eq 3 forγLF,
while solvent-dependent via the solvent dependence ofεs and
ns(ν), are equally unsatisfactory since the Lorentz treatment of
the local field correction has been discredited for many years.
As further evidence of the inadequacy of this approach to the
inclusion of solvent effects, we note that in recent studies of
the sodium D line specific rotations, [R]D, of a large set of rigid,
chiral organic molecules, it was found that the mean absolute
deviation of [R]D values predicted using DFT, a state-of-the-
art functional (B3LYP), and a large basis set including diffuse
functions (aug-cc-pVDZ), from experimental values was sub-
stantially smaller when the local field correction was ignored
than when eq 3 was used.3

In formulating a theory of solvent effects on optical rotations,
there are two choices to be made: (1) the quantum-mechanical
methodology and (2) the solvent model. To date, the most
accurate quantum-mechanical methodology already implemented
is DFT,3 and DFT is consequently used in this work. With
respect to the solvent, one must choose between continuum and
atomistic solvent models. The former are computationally more
tractable. In this work, we use the polarizable continuum model

(PCM), a continuum solvent model already well-developed and
widely used in treating solvent effects on molecular properties.9

Theory

Given material equations of the form

Maxwell’s equations lead to optical rotation at frequencyν in
radians per centimeter given by6

In eq 4,ε is the dielectric constant; the magnetic permeability
has been approximated as unity.DB and BB are related to the
electric and magnetic polarizations per unit volume,PB and IB,
via

where, in a solution,

In eq 7, Nm and Ns are the numbers of solute and solvent
molecules/cm3, respectively.pbm and pbs are the electric dipole
moments of solute and solvent molecules induced by the
electromagnetic field.mbm andmbs are the corresponding induced
magnetic dipole moments.

In the canonical theory,6 the induced molecular moments are
expanded in terms of the microscopic (effective) electromagnetic
fields, eb andhB:

whereRi andâi are the electric dipole polarizability and electric
dipole-magnetic dipole polarizability, respectively. The mi-
croscopic and macroscopic electric fields are then connected
using the Lorentz approximation:6,7

Microscopic and macroscopic magnetic fields are taken to be
equal. Assuming a chiral solute and an achiral solvent, so that
âm * 0 andâs ) 0, and a dilute solution, so that the solution
dielectric constant is equal to that of the pure solvent,g is related
to âm via

whence follows eq 1 forφ(ν) with γLF given by eq 3. We note
thatγLF is the result of two effects, which, following Onsager’s
notation, can be termed the “reaction-field” and the “cavity-
field” effects, respectively. While the cavity-field effect depends
only on the external macroscopic field, the reaction-field effect

φ(ν) ) 16π3Nν2

c2
γLF(ν)â(ν) (1)

â(ν) ) 1
3

Tr[âRâ(ν)]

âRâ(ν) )
c

3πh
Im[∑k*0

〈0|(µel
e )R|k〉〈k|(µmag

e )â|0〉

νk0
2 - ν2 ] (2)

γLF(ν) )
εs(ν) + 2

3
)

ns(ν)2 + 2

3
(3)

DB ) εEB - gḢB

BB ) HB + gĖB (4)

φ(ν) ) 4π2ν2

c
g(ν) (5)

DB ) EB + 4πPB

BB ) HB + 4π IB (6)

PB ) Nmpbm + Nspbs

IB ) Nmmbm + Nsmbs (7)

pbi ) Ri eb - (âi

c)ḣB

mb i ) (âi

c) ĕB (i ) m, s) (8)

eb ) EB + 4
3

πPB (9)

g(ν) )
4πNm

c (εs(ν) + 2

3 )âm(ν) (10)
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is related to the solute dipole moment induced by the external
field in the presence of the solvent.

In order to incorporate all contributions of the solvent on the
optical rotation of a solute in an integrated and self-consistent
manner, we here modify the canonical theory as follows. As in
our previous treatment of the electric response properties of
molecular solutes to external static or oscillating electric
fields,9c,gwe introduce the concept of “effective polarizabilities”,
specifically the effective electric polarizability,R̃, and the
effective electric dipole-magnetic dipole polarizability,ẫ.
Through such properties, we can directly represent the solvent-
modified response of the solute to the macroscopic electro-
magnetic fields without the need to introduce a correction factor
such asγLF (eq 3) but at the same time including the complete
solvent effect. By introducing the effective polarizabilities, the
induced molecular moments can be expanded directly in terms
of the macroscopic Maxwell fieldsEB andHB:

Then

and

The advantage of this modification is that it allows solvent
effects to be introduced in a more general way. In the following
exposition, we shall show how the effective polarizabilityẫm

is calculated using the DFT/PCM methodology.
The IEF-PCM. In the PCM, originally developed in 19815

and reformulated in the so-called IEF version in 1997,4 a solute
molecule, treated quantum mechanically, is placed within a
volume, the “solute cavity”. The shape and dimensions of the
cavity are determined by the molecular structure; in practice,
the cavity is the envelope of spheres placed on the nuclei of
the solute molecule. The cavity is surrounded by a continuum
dielectric. The solute molecule polarizes the dielectric; the
dielectric polarization, in turn, generates an electrostatic field
at the solute molecule, modifying its electron density,F. The
solute molecule-solvent interaction,VMS, is expressed in terms
of the interaction of the electrostatic potential of the solute
molecule with an apparent charge density,σ(s), on the surface
of the cavity representing the polarization of the dielectric:

V(s) is the electrostatic potential of the solute molecule
calculated on the cavity surface,Σ. The surface charge density,
σ(s), is partitioned into contributions from the nuclei and
electrons of the solute,σN(s) and σe(F;s), respectively. The
dependence ofσe on the solute molecule electron densityF is
indicated explicitly. The surface charge density,σ(s), is a
function of the solute molecule charge density,F, the cavity,
and the solvent dielectric constant,εs.

In the presence of the macroscopic Maxwell electric field of
frequencyω ) 2πν,

the complete Hamiltonian of the solute molecule can be written

whereH° is the Hamiltonian in vacuo and the time-dependent
perturbation,V′(t), is given by

(repeated indices are summed over). In eq 17, a new apparent
surface charge density,σω

ex(s), has been introduced, represent-
ing the response of the solvent to the external field after creation
of the solute cavity in the solvent. This term describes the cavity-
field effect that we have previously introduced as one of the
two terms included in the Lorentz “local field correction”. This
surface charge density must be added to those representing the
solute-solvent interaction,σN and σe, to fully describe the
response of the solvent to the combined action of the field of
the solute molecule and the external field.σex is a function of
the cavity and the solvent dielectric constant.9c,g In computing
VMS and V′(t), surface charge densities are discretized by
partitioning the cavity surface intoK small portions (tesserae)
of areaak. To thekth tessera, we associate a point chargeqk )
akσ(sk), which is placed at the geometrical center,sk, of the
tessera. The chargesqk are obtained by solving a matrix equation
of the type:

whereQ is a square matrix that depends on the solvent dielectric
constantε and the geometrical parameters defining the molecular
cavity, andV is a vector collecting (electronic or nuclear)
potential values computed on tesserae. Within this framework,
the surface integrals in eqs 14 and 17 then reduce to summations
over K tesserae.

Equation 17 expresses the time-dependent perturbation on
the solute molecule in terms of the external Maxwell electric
field, and it allows us to directly calculate the linear response
of the molecule to this field, that is, the effective polarizabilities
of the molecule. In the following section, we shall show how
to calculate the effective polarizabilityẫm required to predict
the optical rotation via eq 13.

DFT/PCM Calculation of ẫ(ν). Before presenting the
expressions used to calculateẫm of solvated molecules within
the DFT/PCM framework, we summarize the basic theory for
isolated molecules. As shown in the Introduction, the frequency-
dependent electric dipole-magnetic dipole polarizability tensor,
âRâ, can be expressed in terms of a sum of products of electric
and magnetic transition dipoles between ground and excited
states (see eq 2). Such sum-over-states has been reexpressed
within the framework of time-dependent linear-response theory
for self-consistent field (SCF), either Hartree-Fock (HF) or
DFT, multiconfigurational SCF, and coupled-cluster wave
functions.10

For SCF wave functions, in the limit of a static field, the
explicit evaluation of the sum-over-states can be avoided by
rewriting âRâ in terms of electric and magnetic field derivatives
of the ground-state electronic wave function.11 This expression
can be generalized to the frequency-dependent case using linear
response theory, when

pbi ) R̃iEB - (ẫi

c)ḢB
mb i ) (ẫi

c)ĖB (i ) m, s) (11)

g )
4πNm

c
ẫm (12)

φ(ν) )
16π3Nmν2

c2
ẫm (13)

VMS ) ∫Σ
V(s)[σN(s) + σe(F;s)] ds (14)

EB ) EBω(eiωt + e-iωt)/2 (15)

H ) H° + VMS + V′(t) (16)

V′(t) ) -1/2(µel
e )RER

ω(eiωt + e-iωt)

- 1/2∫Σ
V(s)

∂σω
ex(s)

∂ER
ω

ER
ω(eiωt + e-iωt) ds (17)

qx ) -Q(ε)Vx (x ) e, N) (18)
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whereER andHâ are electric and magnetic field, respectively,
and superscripts denote differentation with respect to the variable
indicated. The atomic basis functions,øµ, are magnetic-field-
dependent to ensure the gauge independence ofâ, andDx are
the following half-derivative density matrices:

wherecµi are the time-dependent molecular orbital coefficients
and single superscripts denote differentiation with respect to
the variable indicated.

The gauge-independent atomic orbital (GIAO) magnetic-field-
dependent basis functions,øµ, used in eq 19 are given by12

whereRµ is the position vector of basis functionøµ andøµ(0)
denotes the usual field-independent basis function.

The change in the molecular orbital coefficients with respect
to oscillating applied electric or magnetic field perturbations
required to compute the half-derivative matrices of eq 20 is
determined from the time-dependent equation

with the orthonormality condition

whereC, S, andE are orbital coefficient, overlap, and orbital
energy matrices. The Fock matrix,F, is

whereh is the one-electron Hamiltonian,P is the density matrix,
and the (antisymmetrized) two-electron integrals include a
coefficient for Hartree-Fock exchange, which is one for
Hartree-Fock, zero for pure DFT, and nonzero for hybrid
methods.øxc is the exchange-correlation contribution to the
Fock matrix.Exc is the exchange-correlation energy, which is
a functional of the spin densities and density-gradient invariants
(collection denoted byú) represented byf, a general first-order
real exchange-correlation functional, which is frequency-
independent and does not include an explicit magnetic-field-
dependent term.13

The one-electron Hamiltonian for a system subjected to an
oscillating (electric or magnetic) field can be expressed as14

whereh0 describes the unperturbed system in a stationary state
and h′(ω) is the response to a single oscillatory perturbation
described byL . The time-dependent stationary-value condition
(eq 22) can be rewritten in terms of the density matrix in the
molecular orbital basis as

Expressing the relaxed density matrix as

and expanding to first order inU yields the two coupled
equations

after collecting terms in e(iωt, projecting out the occupied-virtual
blocks, substitutingX ia ) Uia and Y ia ) Uai

/ and introducing

where i and j refer to occupied orbitals anda and b refer to
virtual orbitals. Expressing eq 28 in terms of the orbital rotation
Hessian,A + B, and the magnetic Hessian,A-B, where

yields the following coupled system of equations:15

For real perturbations (electric fields),Rx ) Ry, and for pure
imaginary perturbations (magnetic fields),Rx ) -Ry, where
the occupied-virtual block of theR matrix is

and the superscript pert refers to an electric or magnetic field
perturbation, -(µel

e )RER or -(µmag
e )âHâ, respectively. The

above coupled perturbed (CP) equations (eq 31) are solved for
X andY together forming the products (A + B)(X + Y) and
(A - B)(X - Y) (where (X + Y) is symmetric, (X - Y) is
antisymmetric, and (A + B)(X - Y) ) (A - B)(X + Y) ) 0)
and using a separate expansion space for each perturbation at
each frequency.16 The derivatives of the molecular orbital
expansion coefficients have real and imaginary parts for both
electric and magnetic perturbations

which are used to construct the half-derivative density matrices
in eq 20.

FPS- SPF) i
∂

∂t
P (26)

P ) P0 + 1
2
(U e-iωt + U+ eiωt) (27)

(εi - εa)Xai - Rai
/ - G′(X*,Y)ia ) -ωXai

(εi - εa)Yai - Ria - G′(Y*,X)ia ) ωXai (28)

G′(M*,N)ia ) 〈ib||aj〉Mbj + 〈ij ||ab〉Nbj + ø′xc(M + N)bj

ø′xc )
∂øxc

∂ú
∂ú
∂P

(29)

(A + B)ia,jb ) 〈ib||aj〉 + 〈ij ||ab〉 + ø′ia,jb + (εa - εi)δai,bj

(A - B)ia,jb ) 〈ij ||ab〉 + 〈ib||aj〉 + (εa - εi)δai,bj (30)

(A - ωI B

B+ A + ωI )(XY )) (Rx

Ry
) (31)

Rov ) hov
pert + Gov

pert(P)ov - FSov
pert + G(Soo

pert)ov (32)

cµp
pert(real)(ω) ) ∑

q

(Xqp + Ypq)cµq

cµp
pert(imag)(ω) ) ∑

q

(Xqp - Ypq)cµq (33)

âRâ(ω) )
hc

3π
Im〈∂Ψ(ω)

∂ER
|∂Ψ(ω)

∂Hâ
〉 )

hc

3π
Im[∑

µν

Dµν
ER〈øµ|øν

Hâ〉 + ∑
µν

Dµν
ERHâ〈øµ|øν〉] (19)

Dµν
ER ) ∑

i

cµi
ER(real)cνi

Dµν
ERHâ ) ∑

i

cµi
ER(real) cνi

Hâ(imag) + ∑
i

cµi
ER(imag) cνi

Hâ(real) (20)

øµ(H) ) exp[- i
2c

(H × Rµ)‚r ]øµ(0) (21)

FC - i
∂

∂t
(SC) ) SCE (22)

∂

∂t
(C+SC) ) 0 (23)

F ) h + G(P); G(P)µν ) 〈µλ||νσ〉Pλσ + øxc(P)µν

øxc )
∂Exc

∂ú
∂ú
∂P

; Exc ) ∫f(ú) dr (24)

h ) h0 + h′(ω); h′(ω) ) 1
2
(L e-iωt + L+ eiωt) (25)
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In the presence of a continuum dielectric using the IEF-PCM,
the frequency-dependent perturbation defined in eq 25 can be
rewritten as (see eq 17)

where we have assumed that the oscillating field is the Maxwell
electric field with strengthE and melec is the electric dipole
integrals matrix (namely,L ) m‚E). In eq 34,V is the vector
collecting the potential integrals computed on the cavity tesserae
andqex is the vector of the apparent charge induced on the cavity
by the external oscillating field. Equation 34 when summed to
the Hamiltonian modified by the solvent terms described byqN

andqe, allows one to take into account the complete reaction
of the solvent to the combined action of the internal (due to the
solute) and the external fields.

Approximate solutions of the time-dependent equations
resulting from the effective Hamiltonian can be obtained using
the same procedures formulated for isolated molecules. Equa-
tions 22 and 26 are still valid but the Fock operatorF has to be
modified to include solvent terms:

whereFvac is the Fock matrix for the isolated molecule in the
presence of the oscillating field. The first two solvent-induced
terms,j andX(P), reflect the constant and the density-matrix-
dependent components of the reaction potentialVMS defined in
eq 14 and are defined as sums over all cavity tesserae of products
of electronic potential integrals and solvent apparent charges.
In the last term,m̃ is the matrix related to the apparent charges,
qex(ω;s), induced by the external oscillating field, namely,9c

where we have made explicit the dependence of the apparent
charges and of the resultingm̃ matrix on the frequencyω of
the applied field; such dependence is obtained by using a
frequency-dependent dielectric constant,ε(ω), to compute the
apparent charges.

The first-order variations of the molecular orbital coefficients
are still obtained by solving the system of eq 31 in which now
both orbitals and orbital energies are modified with respect to
the isolated molecule and the orbital rotation Hessian becomes17

and thehov
pert to be used in theR matrix reduces to

In eq 37, the solvent-induced integrals are

where we have introduced a new charge matrixq defined in

the molecular orbital basis as

whereQ is the dielectric matrix defining the solvent apparent
charge. This matrix depends on the cavity geometry and on the
solvent dielectric constantε, and thus, in the present case in
which an oscillating field is applied, it will depend on the
frequency-dependentε(ω). The inclusion of the additional
solvent terms in the CP equations will lead to different values
of the derivatives of the molecular orbital expansion coefficients
for an electric perturbation,cµi

ER, and thus to solvent-modified
half-derivative density matrices (eq 20).

The mixed nature of the electric dipole-magnetic dipole
polarizability ẫ requires an additional CP procedure containing
a magnetic perturbation. Due to the imaginary nature of this
perturbation, solvent-induced terms do not appear in the
correspondinghov

pert matrix and only contribute to the first-order
expansion term of the Fock operator through a term induced
by the dependence of the atomic orbital basis set on the magnetic
field;9a,9d as a consequence, the derivatives of the molecular
orbitals with respect to the magnetic field, which are used to
construct the half-derivative density matrices in eq 20, will also
be modified by the solvent.

As a final note, it is important to remark that both solvent
contributions to the electric perturbation, namely,B and m̃
matrices of eqs 37 and 38, are obtained in terms of solvent
charges, which are calculated using the value of the dielectric
constant at the frequency of the external field. In the present
case, this is the sodium D line frequency and thus the value for
ε(ω) coincides with the so-called optical dielectric constant,εopt,
defined as the square of the refractive index. For polar solvents,
εopt is much smaller than the staticε0 analogue; the solvent
response determined byεopt is thus much smaller than that in
the presence of a static field. This situation is usually defined
as the “nonequilibrium” solute-solvent regime, while that
corresponding to a full solvent response is termed the “equi-
librium” regime.18

Experimental and Computational Methods

Specific rotations, [R]D, of 1-6 were measured at 25°C using
a Perkin-Elmer model 241 polarimeter. Single enantiomers of
1-6, purchased from Aldrich, were used:1, (1R)-(-)-1, [R]D

) -50.5° (neat); 2, (1R)-(+)-2, [R]D ) 44.1° (c ) 10,
C2H5OH); 3, (1R)-(+)-3, [R]D ) 50.7° (neat);4, (1S)-(-)-4,
[R]D ) -22° (neat); 5, (1R)-(-)-5, [R]D ) -101° (c ) 2,
C6H5CH3); 6, (1S)-(-)-6, [R]D ) -142° (neat). Solvents were
as follows: C6H12, spectro grade, Aldrich; CCl4, anhydrous,
Aldrich; C6H6, spectro grade, Aldrich; CHCl3, spectro grade,
Aldrich; (CH3)2CO, spectro grade, Aldrich; CH3OH, spectro
grade, Aldrich; CH3CN, spectro grade, Aldrich. Solution
concentrations were 0.1 M. All samples were close to 100%
ee. Measured [R]D values were not corrected to 100% ee.

DFT calculations of [R]D were carried out using the B3LYP
functional and the aug-cc-pVDZ basis set3 at B3LYP/6-31G*
equilibrium geometries. IEF-PCM calculations were carried out
using molecular cavities obtained from intersecting spheres
centered on heavy atoms: the radii used for the carbon-centered
spheres were 2.04 Å, 2.28 Å (if the carbon was bonded to one
or two hydrogens), and 2.8 Å (if the carbon was bonded to three
hydrogens), and the radius used for oxygen was 1.5 Å. The
solvents were described in terms of their static and optical
dielectric constants: 2.028 (ε(0) ) εopt) for C6H12, 2.228 and
2.129 for CCl4, 2.247 and 2.244 for C6H6, 4.90 and 2.085 for

h′ )
1

2
∑

R
mR

elecER(e-iωt + eiωt) +

1

2
∑

R
∑

s

V(s)
∂qex(s)

∂ER

ER(e-iωt + eiωt) (34)

F′ ) Fvac + [j + X(P)] +
1

2
∑

R
m̃R(ω)ER(e-iωt + eiωt) (35)

m̃R(ω) ) ∑
s

V(s)
∂qex(ω;s)

∂ER

(36)

(A + B)ia,jb ) 〈ib||aj〉 + 〈ij ||ab〉 + ø′ia,jb +
(εa - εi)δai,bj + 2Bai,bj (37)

hov
pert ) mov

elec+ m̃ov (38)

Bai,bj ) ∑
s

Vai(s)qbj(s) (39)

qbj ) -Q(ε)Vbj (40)
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CHCl3, 20.7 and 1.841 for (CH3)2CO, 32.63 and 1.758 for
CH3OH, and 36.64 and 1.806 for CH3CN. All calculations were
carried out using the Gaussian program.19

Results

Experimental [R]D values of1-7 in the seven chosen solvents
are given in Table 1 and plotted in Figure 1. The most striking

feature of these results is that the variation of [R]D with solvent
is highly molecule-dependent. No two molecules exhibit the
same ordering of [R]D values with respect to solvent variation.
This is particularly surprising in the case of very similar
molecules. Thus, one might expect the [R]D values of fenchone,
1, and camphor,2, two very similar molecules, to exhibit similar
solvent dependence. Instead, the ordering of [R]D for 2, CH3OH

TABLE 1: Calculated and Experimental [r]D Values for 1-7a

gas C6H12 CCl4 C6H6 CHCl3 (CH3)2CO CH3OH CH3CN

1S-(+)-Fenchone,1
dyn 67.4
stat 51.8
dyn/neq 85.3 86.4 85.8 93.2 97.7 97.7 98.1
dyn/g•vac 78.3 79.2 79.5 83.3 86.2 86.3 86.6
dyn/eq 85.3 86.6 85.8 96.3 103.9 104.7 104.8
stat/eq 64.4 65.2 64.5 71.6 76.6 77.1 77.3
Lorentz 90.6 92.8 95.6 91.9 86.4 84.6 85.5
expt 45.6 55.2 60.1 62.1 51.3 60.9 55.7

(1R,4R)-(+)-Camphor,2
dyn 60.7
stat 36.0
dyn/neq 64.0 63.8 64.4 58.9 53.5 52.6 52.9
dyn/neq/lf 70.3 70.2 71.1 64.2 57.6 56.4 56.7
dyn/eq 63.9 64.3 64.4 67.4 69.7 70.0 70.1
stat/eq 38.1 38.4 38.4 40.3 41.6 41.9 41.9
Lorentz 81.6 83.6 86.1 82.8 77.8 76.2 77.0
expt 57.1 43.3 38.3 39.3 47.3 36.8 42.6

1R-(+)-R-Pinene,3
dyn 41.9
stat 41.3
dyn/neq 44.7 44.6 44.2 46.6 48.4 49.1 48.6
dyn/eq 45.0 44.5 44.5 37.9 23.9 21.9 20.9
stat/eq 44.6 44.4 44.3 39.3 28.1 26.5 25.7
Lorentz 56.3 57.7 59.4 57.2 53.7 52.6 53.2
expt 49.1 54.4 50.2 58.1 54.2 56.3 59.9

1R-(+)-â-Pinene,4
dyn 26.4
stat 8.1
dyn/neq 26.2 30.2 26.6 26.5 26.1 26.0 26.1
dyn/eq 26.2 30.3 26.6 29.3 32.3 32.6 32.6
stat/eq 5.9 9.0 6.0 6.7 7.7 7.7 7.7
Lorentz 35.5 36.4 37.4 36.0 33.8 33.1 33.5
expt 18.4 25.1 29.9 18.1 15.2 15.9 12.9

1S-(+)-Camphorquinone,5
dyn 142.4
stat 48.3
dyn/neq 146.4 147.6 146.7 157.7 165.7 166.9 166.5
dyn/eq 146.5 146.6 146.6 138.4 124.3 122.3 121.4
stat/eq 48.4 48.2 48.2 45.6 42.5 42.1 41.9
Lorentz 191.4 196.1 201.9 194.2 182.6 178.7 180.7
expt 94.4 91.9 103.3 97.6 117.1 111.6

1R-(+)-Verbenone,6
dyn 258.7
stat 164.1
dyn/neq 286.8 288.5 290.6 286.6 281.3 278.8 280.3
dyn/g•vac 282.1 282.9 284.6 277.8 270.5 268.4 269.4
dyn/eq 286.7 290.1 290.6 307.2 315.7 315.5 316.1
stat/eq 182.0 183.8 184.3 192.5 194.4 193.5 193.9
Lorentz 347.7 356.2 366.8 352.9 331.7 324.7 328.3
expt 175.3 175.2 171.6 183.5 179.8 169.6 171.7

2R-(+)-Methyloxirane,7
dyn 17.5
stat 22.5
dyn/neq 14.7 14.2 14.1 11.6 9.2 8.9 9.4
dyn/eq 14.7 14.2 14.1 10.6 7.0 6.5 7.2
stat/eq 19.5 19.0 18.9 15.3 11.7 11.2 11.8
Lorentz 23.5 24.1 24.8 23.9 22.4 21.9 22.2
expt 11.9 18.7 30.6 8.5 8.2 7.2 6.0

a All [ R]D values are in degrees [dm g/cm3]-1. All calculations were carried out using the B3LYP functional and the aug-cc-pVDZ basis set. See
text for details on the different solvation models used to obtain the various sets of results.
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Figure 1. Calculated and experimental [R]D values for1-7 in the various solvents: ([) dynamic/nonequilibrium; (*) experiment.
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< C6H6 < CHCl3 < CH3CN < CCl4 < (CH3)2CO < C6H12, is,
with the exception of CHCl3, exactly opposite to that for1,
C6H12 < (CH3)2CO < CCl4 < CH3CN < C6H6 < CH3OH <
CHCl3.

[R]D values calculated for1-7 using the IEF-PCM are also
given in Table 1 and Figure 1. DFT calculations use the B3LYP
functional and the aug-cc-pVDZ basis set. The parameterẫ is
calculated at the sodium D line frequency:ẫ(D). The “non-
equilibrium” solvent model is used, while the cavity-field effect
(the second term in the rhs of eq 17) is not included. We refer
to these calculations as “dynamic/nonequilibrium” (rows indi-
cated as dyn/neq in Table 1).

We note, first, that for each molecule predicted [R]D values
are very similar for the three nonpolar, low-dielectric-constant
solvents C6H12, CCl4, and C6H6. Likewise, [R]D values are also
quite similar for the three polar, high-dielectric-constant solvents
(CH3)2CO, CH3OH, and CH3CN. [R]D for the solvent of
intermediate polarity and dielectric constant, CHCl3, is inter-
mediate. Thus, calculated [R]D values vary essentially mono-
tonically with solvent dielectric constant. As observed previously
for PCM calculations of other properties,9 the variation is
nonlinear and exhibits “saturation” with increasing dielectric
constant. At the same time, the IEF-PCM calculations predict
changes in [R]D with solvent, which vary widely with molecule,
both in magnitude and sign. Thus, for1, [R]D varies from 85.3°
(C6H12) to 98.1° (CH3CN), a range of 12.8°, [R]D increasing
with increasing dielectric constant. For2, [R]D varies from 52.6°
(CH3OH) to 64.0° (C6H12), a range of 11.4°, [R]D decreasing
with increasing dielectric constant.

Comparison of experimental and calculated variations in [R]D

with solvents shows reasonably good correlation between theory
and experiment for the solvents C6H12, (CH3)2CO, CH3OH, and
CH3CN but poor correlation for the solvents CCl4, C6H6, and
CHCl3. The calculated and experimental changes in [R]D from
C6H12 to (CH3)2CO, CH3OH, and CH3CN and from C6H12 to
CCl4, C6H6, and CHCl3 are compared in Figures 2 and 3,
respectively. From C6H12 to (CH3)2CO, CH3OH, and CH3CN,
both calculated and experimental [R]D values increase for1, 3,

and5 and decrease for2, 4, 6, and7. Quantitative agreement is
also quite good: the average of the absolute magnitudes of the
differences between calculated and experimental changes in [R]D

from C6H12 to (CH3)2CO, CH3OH, and CH3CN is 3°. On the
other hand, for the changes from C6H12 to CCl4, C6H6, and
CHCl3, the correlation between theory and experiment is very
poor. Experimental changes are on average much larger than
predicted changes. The average of the absolute magnitudes of
the differences between calculated and experimental changes
in [R]D from C6H12 to CCl4, C6H6, and CHCl3 is 8°.

The finding that the dynamic/nonequilibrium DFT/PCM
calculations for C6H12, (CH3)2CO, CH3OH, and CH3CN account
quite well for the observed changes in [R]D in these solvents
suggests that the latter are primarily electrostatic in origin.
Conversely, the finding that calculations for CCl4, C6H6, and
CHCl3 account poorly for the observed changes in [R]D in these
solvents suggests that the changes are not primarily electrostatic
in origin.

For comparison to the dynamic/nonequilibrium DFT/PCM
calculations, we have also carried out calculations referred to
as “static/equilibrium” calculations, in whichẫ is calculated in
the static limit (ν ) 0) and the “equilibrium” solvent model is
used. The functional and basis set are again B3LYP and aug-
cc-pVDZ. The results are given in Table 1 (rows indicated as
stat/eq). In molecules1, 4, and 7, the variation in [R]D with
solvent predicted by the static/equilibrium calculations is very
similar to that predicted by the dynamic/nonequilibrium calcula-
tions. However, for the molecules2, 3, 5, and6, the results are
quite different for the polar high-dielectric-constant solvents,
and in much worse agreement with experiment. Overall, it is
clear that the static/equilibrium calculations of solvent variations
in [R]D are much less accurate than the dynamic/nonequilibrium
calculations.

In the static/equilibrium calculations, there are two major
changes relative to the dynamic/nonequilibrium calculations: (1)
the change fromẫ(D) to ẫ(0) and (2) the change from the
nonequilibrium solvent model to the equilibrium solvent model.
In order to define which of these changes is more important in

Figure 2. Comparison of calculated dynamic/nonequilibrium and
experimental variations in [R]D values for1-7 in (CH3)2CO, CH3OH,
and CH3CN. ∆[R]D is the difference in [R]D from that in C6H12. The
line is of slope+1.

Figure 3. Comparison of calculated dynamic/nonequilibrium and
experimental variations in [R]D values for1-7 in CCl4, C6H6, and
CHCl3. ∆[R]D is the difference in [R]D from that in C6H12. The line is
of slope+1.
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the change in predicted solvent effects on [R]D, we have carried
out calculations in whichẫ is computed at the sodium D line
frequency but the equilibrium solvent model is used. The results
of these “dynamic/equilibrium” calculations are given in Table
1 (rows indicated as dyn/eq). The variations in [R]D with solvent
are very similar to those predicted by the static/equilibrium
calculations; thus, the differences between the dynamic/non-
equilibrium and static/equilibrium results originate predomi-
nantly in the difference in the solvent model.

All IEF-PCM calculations of [R]D discussed above have been
carried out using DFT/PCM molecular geometries calculated
using B3LYP and the 6-31G* basis set. In order to examine
the contribution to the variation in [R]D with solvent of the
solvent-induced change in molecular geometry, we have carried
out dynamic/nonequilibrium calculations of [R]D for two
molecules,1 and6, using the molecular geometries obtained in
the absence of solvent: “gas phase” geometries. The results
are given in Table 1 (rows indicated as dyn/g•vac). In both1
and 6, [R]D values calculated using gas-phase geometries are
intermediate between [R]D values calculated in the absence of
solvent and DFT/PCM values, and much closer to the latter.
The differences between [R]D values calculated with and without
solvent perturbation of the molecular geometry increase with
increasing solvent dielectric constant. The changes in [R]D from
C6H12 to (CH3)2CO, CH3OH, and CH3CN are in somewhat
worse agreement with experiment when solvent effects on the
molecular geometry are not included. This supports the conclu-
sions that (1) changes in solute molecular geometry due to
interaction with the solvent are a significant factor in the
variation in [R]D and (2) changes in solute molecular geometry
due to interaction with the solvent are reliably predicted by the
DFT/PCM methodology.

Since experimental [R]D values for gaseous1-7 are not
available, we are not able to compare predicted changes in [R]D

from the gas phase to solutions to experiment. [R]D values in
C6H12 are uniformly closest to the gas-phase [R]D values.
Interestingly, there is considerable variation in the magnitude
of the predicted change in [R]D from the gas phase to C6H12. In
2, 3, 4, 5, and7, the changes are small, less than 5°. However,
in 1 and 6, the changes are much larger: 18° and 28°,
respectively. We have no qualitative explanation at present for
the much larger changes for1 and6; in particular, we cannot
explain why the change in1 is much larger than that in the
very similar molecule2.

For comparison to the predictions of the DFT/PCM meth-
odology, we have also examined the results predicted using gas-
phase DFT calculations for [R]D together with the Lorentz local
field correction factor, eq 3. The results for1-7 are given in
Table 1 (rows indicated as Lorentz). For the solvents studied
here, (n2 + 2)/3 varies from 1.26 to 1.42. Thus, gas-phase [R]D

values are increased by 26%-42%. The predicted ordering of
[R]D values is that of (n2 + 2)/3, namely, CH3OH < CH3CN <
(CH3)2CO < C6H12 < CHCl3 < CCl4 < C6H6, independent of
the solute molecule. Since the ordering of experimental [R]D

values varies substantially with the solute molecule, and, for
the molecules1-7, in no case exhibits the ordering of the
solvent (n2 + 2)/3 values, it is clear that eq 3 does not correctly
describe the variation in [R]D with solvent. In Figures 4 and 5,
we compare the predicted changes in [R]D from C6H12 to
(CH3)2CO, CH3OH, and CH3CN and to CCl4, C6H6, and CHCl3
respectively, with the experimental changes. The correlation is
very poor for both groups of solvents. Overall, the variations
predicted using eq 3 are much smaller than the observed
variations.

Discussion

We have applied the state-of-the-art IEF-PCM methodology
to the prediction of solvent effects on optical rotations using
DFT. Our work constitutes an extension of prior applications
of the PCM to solvent effects on frequency-dependent molecular
polarizabilities and magnetic properties.9

DFT/nonequilibrium PCM calculations of [R]D for seven
molecules successfully predict variations in [R]D for the solvents
C6H12, (CH3)2CO, CH3OH, and CH3CN; for the solvents CCl4,
C6H6, and CHCl3, DFT/PCM calculations are much less
successful. The IEF-PCM is an electrostatic model. We therefore
infer that for the solvents (CH3)2CO, CH3OH, and CH3CN

Figure 4. Comparison of variations in experimental [R]D values for
1-7 in (CH3)2CO, CH3OH, and CH3CN, ∆[R]D, to values calculated
using gas-phase DFT [R]D values and the Lorentz local field correction
factor (eq 3). The line is of slope+1.

Figure 5. Comparison of variations in experimental [R]D values for
1-7 in CCl4, C6H6, and CHCl3, ∆[R]D, to values calculated using gas-
phase DFT [R]D values and the Lorentz local field correction factor
(eq 3). The line is of slope+1.
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Figure 6. Comparison of experimental [R]D values for1-7 with respect to solvent ET30 values. ET30 values are as follows: C6H12, 30.9; CCl4,
32.4; C6H6, 34.3; CHCl3, 39.1; (CH3)2CO, 42.2; CH3CN, 45.6; CH3OH, 55.4. In the plots, we also report the lines obtained with a best fitting
procedure on the C6H12, (CH3)2CO, CH3CN, and CH3OH values.
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variations in [R]D are predominantly electrostatic in origin while
for CCl4, C6H6, and CHCl3 this is not the case. Support for this
analysis is provided by plots of [R]D versus the solvent polarity
parameter ET30, which is derived from the solvatochromic
effect of a solvent on the electronic absorption of the dye,
pyridinium-N-phenoxide betaine.20 As seen in Figure 6, for all
seven molecules1-7, [R]D values for C6H12, (CH3)2CO,
CH3OH, and CH3CN vary approximately linearly with ET30
while [R]D values for CCl4, C6H6, and CHCl3 deviate substan-
tially from linearity. This finding is not unprecedented.21

The excellent agreement of DFT/PCM and experimental
variations in [R]D for C6H12, (CH3)2CO, CH3OH, and CH3CN
is contingent on the use of the nonequilibrium PCM. Calcula-
tions using the equilibrium PCM are in poor agreement with
experiment. It is clear that the nonequilibrium model is
physically more appropriate. It is gratifying that it is simulta-
neously in better agreement with experiment.

The IEF-PCM calculations discussed above have not included
the cavity-field correction (the second term in eq 17). For one
molecule,2, we have carried out dynamic/nonequilibrium DFT/
PCM calculations in which the cavity-field contribution is
included with the results given in Table 1 (row indicated as
dyn/neq/lf). The absolute magnitude of [R]D increases uniformly
by ∼10% on inclusion of the cavity-field correction; the changes
in [R]D with variation of solvent are very little affected. The
quality of the agreement between the DFT/PCM calculations
and experiment is essentially unmodified.

Our work constitutes a major advance in the treatment of
solvent effects on optical rotations. While there have been many
experimental studies of solvent effects on optical rotations since
the 1930s, they have been universally analyzed using eqs 1-3.
Indeed, a molecular parameterΩ′, termed “the molecular
rotivity”, has been defined by1

to correct experimental specific rotations for the “local-field”
effect, and solvent effect studies have frequently focused on
the variation inΩ′ with solvent (see, for example, ref 2). The
usefulness ofΩ′ rests, of course, on the validity of the Lorentz
expression forγLF (eq 3). The continued use of eqs 1-3 is quite
surprising, given the recognition as long ago as the 1930s of
the serious deficiencies of the Lorentz treatment of the local
field. The classic work of Onsager, which introduced the concept
of the reaction field and constituted an enormous step forward
in understanding solvent (dielectric) effects was published in
1936.22 Despite the widespread application of Onsager’s work
and its further development, notably by Kirkwood, for reasons
which are entirely unclear, eqs 1-3 have remained unchallenged
until now, with the notable exception of the single paper of
Applequist,23 in which solvent effects on the optical rotation of
CHFClBr were predicted using an atom dipole interaction model
for optical rotation and a spherical cavity continuum dielectric
solvent model. One could hypothesize that to some extent this
stasis has originated in the fact that, until recently, useful first
principles calculations of optical rotations have been beyond
the power of quantum chemists. However, even the recent papers
in which ab initio Hartree-Fock methods have been used to
calculate optical rotations have continued to use eqs 1-3,
including solvent effects via eq 3.8a-8l The major deficiencies
of this approach to including solvent effects have been made
clear empirically by our DFT calculations for 28 rigid organic
molecules.3 Using B3LYP and the aug-cc-pVDZ basis set, the

mean absolute deviation of calculated [R]D values from experi-
mental values was 23.1° when solvent effects were totally
ignored (γLF ) 1). When eq 3 was used to include solvent
effects, the deviation increased to 54.0°. The results reported
here further document the erroneous predictions of solvent
effects arrived at when eqs 1-3 are used. Both qualitatively
and quantitatively, for the seven solvents studied, predicted
solvent effects are in very poor agreement with experiment. It
is clear that continued use of this approach to the prediction of
solvent effects on optical rotations is neither theoretically nor
experimentally supportable.

The conclusions reached above are based on a relatively small
set of molecules and solvents. Studies on a much larger range
of molecules and solvents are required to confirm the reliability
of our conclusions. In addition, it would be of great interest to
include optical rotation measurements under solvent-free condi-
tions (i.e., in the gas phase) in future studies. Gas-phase values
of [R]D for 1-7 are not currently available, and consequently,
it has not been possible in this work to compare calculated and
experimental absolute solvent effects. Instead, we have been
limited to comparisons of calculated and experimental changes
in [R]D from one solvent to another. Recent developments in
polarimetric instrumentation, specifically the application of
cavity ring down techniques to the measurement of optical
rotation, have enhanced the sensitivity of polarimetric instru-
mentation and facilitated measurements on gases at low pres-
sures.24 Such measurements, in combination with measurements
in solutions, will permit the reliability of DFT/PCM calculations
to be assessed more definitively.

As implemented here, the IEF-PCM includes only electro-
static solute-solvent interactions. We have concluded that for
some solvents this is a serious limitation. The inclusion of
nonelectrostatic effects is therefore important if a larger range
of solvents is to be treated successfully. Nonelectrostatic effects,
including dispersion and repulsion interactions, have previously
been incorporated into the framework of the PCM to compute
electric response properties,25 but extensions to the calculation
of optical rotations have not been formulated yet; further studies
in this direction are surely required.

Conclusion

There is an enormous body of literature relating to the
quantitative prediction of solvent effects on molecular properties.
However, since the formulation of the quantum mechanical
theory of optical rotation, when solvent effects were included
via the Lorentz local-field approximation, the treatment of
solvent effects on the optical rotations of chiral molecules has
been virtually ignored. Our work brings to bear on this problem
a state-of-the-art methodology for treating solvent effects: the
IEF-PCM. The IEF-PCM approach to solvent effects is com-
bined with the most accurate quantum-mechanical technique
currently available for the calculation of the electric dipole-
magnetic dipole polarizability,âRâ(ν), which uses DFT. To-
gether, the combination of DFT and IEF-PCM permits, for the
first time, calculations of solvent effects on optical rotation in
which solute-solvent interactions are explicitly included.

The [R]D values of the seven chiral molecules,1-7, that we
have studied exhibit widely varying solvent effects in the seven
chosen solvents. We have shown that, for some solvents, DFT/
PCM calculations predict variations in [R]D in excellent agree-
ment with experiment. For other solvents, agreement is poor.
Within the PCM, solute-solvent interactions are entirely
electrostatic in nature. We therefore conclude that the quality
of the agreement between DFT/PCM and experimental solvent

Ω′ ) R
(ns

2 + 2)/3
(41)
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variations in [R]D reflects the degree to which solute-solvent
interactions are in fact purely electrostatic. For the molecules
studied, the solvent effects in C6H12, (CH3)2CO, CH3OH, and
CH3CN are found to be predominantly electrostatic; in C6H6,
CCl4, and CHCl3, the opposite is found to be the case.

Thus, our general conclusions are that (1) the DFT/PCM
methodology reliably models the electrostatic contributions to
solvent effects on optical rotations and (2) the importance of
electrostatic contributions to solvent effects on optical rotations,
relative to other contributions, varies considerably with the
nature of the solvent.
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