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A simple analytical procedure for estimating activation energies of elementary proton-transfer reactions is
proposed and successfully applied to a variety of cases. The procedure is based on a particular partition of
the electronic Hamiltonian, which allows the identification of the most important contributions to the activation
energy for proton hopping, and yields reliable potential energy profiles, comparable with those obtained at
the ab initio HF/MP2 level of computation.

Introduction

Research in bioenergetics is increasingly focusing attention
on the role played by H-bond chains in many processes, such
as proton transport across membranes1 and long-range electron
transfer (ET).2,3

It is an old concept,4-6 now widely accepted, that H-bond
chains constitute efficient pathways for proton transport, as
confirmed by kinetic measurements of proton transport in
gramicidin A.7 Indeed, that is not the only role that such chains
can play: it was also suggested that suitable combinations of
proton and hydrogen atom hoppings, along a H-bond chain
connecting two redox sites of a protein, can be a low energy
pathway for long-range electron transfer (ET).8 Such a hypoth-
esis goes beyond the known concept of ET coupled to proton
transfer (PT),9,10 inasmuch it assigns to hydrogen atoms the role
of electron carriers in long-range ET, thus allowing for an
alternative simple mechanism of long-range ET in proteins, in
which the indirect coupling provided by the high energy states
of the interposed species are no longer needed.11-13

That mechanism, called proton assisted electron transfer
(PAET), was successfully applied to ET between primary and
secondary quinone of photosynthetic reaction centers.14,15Apart
from this particular but important case, PAET is also in line
with the finding that hydrogen atom transfer can be a suitable
pathway for ET in systems consisting of amino acid residues
with an unpaired electron, in cases where the two redox partners
are connected by one or more H-bonds;16 moreover, both
experimental and theoretical evidence has been recently provided
in support of PAET in a DNA-acrylamide complex.17

The analysis of the kinetics of proton and hydrogen motions
in such H-bond chains is thus important for a better assessment
of their role in biosystems, but computations of reliable potential
energy surfaces are often ruled out by the size of the systems.
It is then necessary to find out a method which allows for
estimating potential energy profiles and surfaces from a few
experimental and/or theoretical data pertaining to equilibrium
points both of the separated moieties and of the H-bonded
complex, such as the strengths and the vibrational frequencies
of the X-H bonds in the isolated moieties, the energy
differences between the two possible equilibrium configurations

of the H-bond complex and their nuclear geometries and
vibrational frequencies. In this paper we give a contribution
along this direction by considering the simplest case of proton
transfer in linear H-bond complexes.

The Two Morse Model

Let us start by assuming that for proton-transfer reactions
the Born Oppenheimer approximation holds so that the usual
separation of nuclear and electronic motions can be invoked.
The electronic Hamiltonian operator for a generic

system, where A is a polyatomic molecule withN nuclei andn
- 1 electrons and B- is a polyatomic anion withM nuclei and
m electrons, can be partitioned as follows:

whereHAH andHBH are the electronic Hamiltonian operators
of the isolated A-H and B-H molecules, and

where Latin (Greek) indexes refer to electrons and nuclei of A
and B.

The partition of the total electronic Hamiltonian has been
done in such a way thatV does not involve the coordinates of
the H-bonded proton; the same partition, withV independent
of the proton coordinates, also holds for (A-H‚‚‚B)+ complexes,
with H° ) HAH+ + HBH+, and in all other cases where the two
equilibrium configurations differ for the position of a proton,
not of a whole hydrogen atom.

Let ψr
A andψs

B be the eigenfunctions ofHAH andHBH, with
eigenvaluesEr

A andEs
B:

If the overlap betweenψA and ψB were zero, there would
not be any difficulty in assigning a set ofn electrons{i} to
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A-H and a set ofm electrons{j} to B-H, so that the wave
functions of the total Hamiltonian can be expanded in terms of
simple product functions:

where the indext is a short notation forrs.
If overlap cannot be neglected, as in the case under

consideration, where the distances between atoms of the two
moieties can be less than 3 Å, the wave function must allow
for exchange of electrons, so that the simple product function
must be replaced by the antisymmetrized product of wave
functions:

whereA is the antisymmetrizing operator.
The electronic energy of the H-bond complex can be obtained

by starting from the Hamiltonian partition of eq 1, takingHAH

+ HBH as the unperturbed Hamiltonian and using perturbation
theory. However, in the case we are dealing with, the unper-
turbed wave functionΦo is not an eigenfunction ofHo; as shown
by Yaris and Murrell and Shaw,18,19that situation can be handled
by using Löwdin’s reduced resolvent technique.20

The total wave function is written as the action of a wave
operatorW on Φo:

By introducing the projection operatorO:

and its orthogonal complement,P ) 1 - O, it can be shown20

that

with

and R an arbitrary scalar chosen in such a way that [RO +
P (E - H )P ]-1 exists.

To obtain the energy expression, we multiply the Schro¨dinger
equation (H - E)|Φ〉 ) 0 on the left by〈ψo| and integrate
over all electron coordinates:

where, according to eqs 3 and 4,Eo is the sum of the energies
of the isolated, noninteracting A-H and B-H molecules:

Substituting expressions 7 and 9 in expression 11, the total
energy of the H-bond complex takes the form:

The second term on the right-hand side of the above expression
can be considered as the first order correction to the total energy.

The last term can be further written as the sum of different
contributions by expanding the inverse operator [Ro + P (E -
H )P ]-1 about the pointε - Ho, with ε being a complex
quantity with the dimension of energy,Eo + ix, so that there
will be no problem involving singularity ofu.20

By using only the first term of the expansion and taking the
limit ε f Eo, the following contribution to the total energy is
obtained:19

which can be considered as the equivalent of the second-order
energy correction of the Rayleigh-Schrödinger perturbation
theory.

Since the antisymmetrizing operator commutes with the
Hamiltonian operator andψo is an eigenfunction of the
unperturbed Hamiltonian, eq 14 can be rewritten in the form:

in which only the perturbationV is involved.
In conclusion, the energy expression up to the second order

of perturbation theory is

Until now no approximations have been done, inasmuch no
terms of the electronic Hamiltonian have been neglected; thus
eq 16 is rigorous at the second order of the perturbation theory.
Of course, eq 16 is valid only for nondegenerate case, as the
ground state of a H-bond complex is expected to be.

Let us now turn to the physical problem we whish to tackle
here, namely the modeling of the potential energy profiles for
proton motion between the two equilibrium sites of a H-bond
complex, by analyzing how the terms of eq 16 depend on the
coordinates of the H-bonded proton. We will consider only the
stretching coordinatesr, the most important coordinates in the
dynamics of proton transfer, even though generalization to a
complete set of proton coordinates is in line of principle possible.

The unperturbed energy of eq 16 is simply given by the sum
of the energy of the noninteracting A-H and B-H molecules
and therefore its dependence onr can be well represented by
the sum of two Morse functions.

As concerns the first-order contribution to the total energy,
we have already remarked that the perturbation operatorV does
not explicitly depend on the proton coordinates and therefore
on r, since in its expression, cf. eq 2, only the nuclei of A and
B but not H are involved. That is an important feature, because
it means that ther dependence of this term comes only from
the wave function dependence onr. Therefore, in the crude
adiabatic approximation, which certainly can be invoked for
small amplitude of vibrations, that term is a constant and does
not contribute at all to the potential energy for proton transfer.

The same also holds for the term at the numerator of the
second order energy contribution. Here the situation is slightly
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more complicated for the presence of the factor 1/(Eo - Et),
which is itself, of course, a function ofr. However, the majority
of these terms will be small, becauseEo - Et is large. Moreover,
only those electronic excited states for whichEt(r)’s exhibit
shapes different from that ofEo(r) will significantly contribute,
since in all other cases ther dependence of (Eo - Et) tends to
disappear on making the difference.

On the basis of the above considerations, we can tentatively
neglect the first and second-order energy corrections, so that
the potential energy for proton motion between the A and B
equilibrium sites can be written:

Thus we obtain the very simple result that the potential energy
for the motion of the H-bonded proton is given by the sum of
the A-H and B-H stretching potentials of the noninteracting
partners. The latter ones can be well represented by two Morse
functions:

whereR denotes the A-B distance in the H-bond complex, a
parameter, andr°A andr°B are the equilibrium bond distances
of A-H and B-H, respectively.

According to the theoretical derivation above, the two Morse
potential should be able to predict potential energy profiles for
proton hopping in linear H-bond complexes, only from the
knowledge of the potential energy of proton stretching of the
two separated partners, on the condition that terms appearing
in the expressions of the first and the second energy corrections
give negligibly small contributions. To test if that condition is
satisfied, we will compare the potential energy profiles obtained
by eq 18 with those obtained by HF/MP2 computations. The
results, discussed in the next section, show that the agreement
is good, especially when the heavy atom distances are not too
long, usually shorter than 3 Å, which represents the region of
the potential energy surface of major interest for biochemical
systems, where the heavy atoms are usually nitrogens and
oxygens. Those results can be easily rationalized on the light
of the energy expression given by the second-order perturbation
theory: for longer heavy atom distances, the wave function
dependence on the proton coordinates becomes significant, so
that the first and the second-order energy corrections begin to
contribute.

Results

To test the potentialities and limitations of the proposed
potential, we have compared potential energy profiles and
vibrational states, a much stringent test, predicted by the two
Morse potential with their counterparts obtained from potential
energy profiles computed at the HF/MP2 level of the theory,
for simple both symmetric and non symmetric A-H‚‚‚B system,
at different A-B distances (hereafterR).

All the ab initio computations have been performed by the
Gaussian94 package,21 using the standard 6-31g** basis set.
Potential energy profiles have been computed optimizing all
geometrical parameters, butR, at the MP2 level of the theory.
For the computations of the vibrational frequencies, the HF/
MP2 potential energy profiles have been fitted by fourth or
eighth degree polynomials, for single or double minimum
potentials. To our experience polynomial interpolation has
revealed preferable to cubic spline, which requires very dense
grids. Vibrational states have been computed by the variational

method, using a basis of harmonic wave functions centered at
the equilibrium points, in the case of single minimum potentials,
and midway between the two heavy atoms for double well
potentials. The completeness of the chosen basis has been
verified in each case. Analytical solutions of the one-dimensional
Schrödinger equation with the two Morse potential should also
be possible by using the method recently developed by Ska´la
et al.,22 but for the lowest energy states the variational method
yields results sufficiently accurate for our purposes.

Symmetric Systems.We have considered the following
complexes: H5O2

+, HF2
-, H3O2

-, and N2H7
+, which have been

extensively studied in the past.23-33 For the first three complexes,
ab initio HF/MP2 computations predict single minimum nuclear
configurations, with the proton lying midway between the two
heavy atoms, whereas for N2H7

+ two shallow minima separated
by a barrier of only 0.19 kcal/mol are predicted.

For symmetric H-bond complexes, the potential energy
function of eq 18, hereafterV(r), has three parameters, which
have to be determined from properties of the separated moieties
and of the H-bond complex. To keep things as simple as
possible, we have started by fixingD’s, R’s, andr°’s from the
dissociation energies, the stretching vibrational frequencies and
the equilibrium bond distances of H2O, HF, and NH3. The
adopted parameters are reported in Table 1.

We have used dissociation energies instead of protonation
affinities, because the latter ones, when used in conjunction with
vibrational frequencies to determine theR’s, yield very low
values, causing an unreasonable slow rise of the potential energy
profiles in the region of short X-H distances, which signifi-
cantly affect the energies of the vibrational states. Thus,
considering that in symmetric systems the main role played by
DX-H is that of determining the curvature ofV(r) around the
equilibrium configuration, which indeed depends on the product
R2D, dissociation energies can be used if theR parameters are
chosen consistently.

With the parameters of Table 1, we have obtained, at different
R, the activation energies for proton hopping reported in Table
2 and summarized in Figures 1-4a as potential energy
surfaces.34

The activation energies predicted byV(r) are in good
agreement with those predicted by HF/MP2 computations,
especially atRdistances not too longer than those corresponding
to the fully optimized HF/MP2 nuclear configurations. AtR
values corresponding to the HF/MP2 minimun energy nuclear
configurations, the two Morse potential predicts single minimum
potential energy profiles for proton motion for all the four cases
investigated, in agreement with HF/MP2, but for N2H7

+, for
which the latter method predicts a double minimum potential
but with a barrier of only 0.19 kcal/mol. At slightly longerR
distances, the agreement is still excellent, the activation energies
predicted by the two methods differ for a few tenths of kcal/
mol, the largest discrepancy being 1.0 kcal/mol for N2H7

+ at R
) 2.8 Å.

As the heavy atom distance increases, and with it the proton
elongation for going from one equilibrium point to the other,

E(r) ) Eo
A(r) + Eo

B(r) (17)

E(r) ) DAH(1 - e-R(r-r°A))2 + DBH(1 - eâ(r-R+r°B))2 (18)

TABLE 1: Parameters for the X-H Bonds Considered in
This Work, Determined from Dissociation Energies,
Vibrational Frequencies, and Equilibrium Bond Lengths of
Water, Ammonia, HF, and HI 44,45

D (kcal/mol) R (Å-1) r° (Å)

O-H 119.0 2.26 0.96
N-H 110.0 2.23 1.01
F-H 146.7 2.18 0.92
I-H 70.6 1.76 1.61

7020 J. Phys. Chem. A, Vol. 106, No. 30, 2002 Alfano et al.



the wave function dependence onr becomes appreciable and
V(r) moves away from its computed counterpart. The effects
of the neglected terms begin to be significant forR longer than
2.8 Å, but for our purposes this is not dramatic, because proton
transfer usually occurs afterR as decreased to values at which
tunneling becomes effective, so that only the region of the
potential energy surface corresponding to relatively shorterR
is really important.

On the contrary, with the parameters of Table 1,V(r) yields
vibrational states whose energies are significantly different from
those obtained by using the potential energy profiles computed
at HF/MP2 level of theory. For instance, for H5O2

+ the energy
of the lowest three vibrational states are overestimated by ca.
300, 800, and 1100 cm-1, a difference which can significantly
affect the predicted rates for proton transfer. That discrepancy
can be due to the fact that until now we have used a set of
parameters which refer to a generic X-H bond and not to the
specific one in the A-H molecule. For instance, for the cationic
H5O2

+ and N2H7
+ complexes we have used parameters deter-

mined from properties of H2O and NH3, rather than of H3O+

and NH4
+, as the theoretical basis of the two Morse potential

would suggest. Since the adoption of a different set of
parameters for each molecule is not very convenient, a way out
is that of fixing some of the parameters from properties of the
H-bond complex, rather than of the isolated partners. Among
the three parameters appearing inV(r), the most suitable for
being fixed from properties of the complex is certainlyr°,
because the equilibrium A-H and B-H bond distances in
A-H‚‚‚B are often experimentally known and, at any rate, the
easiest to be computed.

In the cases of two minima separated by a potential energy
barrier, r°’s can be easily set from the computed X-H

Figure 1. (a) Potential energy surface for H5O2
+ as a function of the

H-bonded proton (r) and heavy atoms (R) stretching coordinates from
parameters reported in Table 1. Contour line spacing is 2 kcal/mol.
The energy dependence on R has been modeled by aσ/R12 potential.34

(b-d) Potential energy profiles for proton transfer at different heavy
atom distances predicted by HF/MP2 computations, circles, and by
V(r,R), full lines, settingr°’s from the HF/MP2 optimized O-H bond
lengths and using for the other parameters the values reported in Table
1.

TABLE 2: Predicted Activation Energies (kcal/mol) for
Proton Hopping at Different Values of the Heavy Atom
DistanceR, Using the Parameters of Table 1

∆E#

R (Å) V(r) MP2

H5O2
+ 2.37

2.60 1.5 1.7
2.75 5.8 6.1
2.90 13.91 12.3

H3O2
- 2.45

2.70 3.6 3.5
2.90 13.91 10.7

HF2
- 2.28

2.54 0.8 1.2
2.75 10.2 7.9

N2H7
+ 2.59 0.2

2.80 2.9 3.9
3.00 10.8 11.0

Figure 2. (a) Potential energy surface for H3O2
- as a function of the

H-bonded proton (r) and heavy atoms (R) stretching coordinates from
parameters reported in Table 1. Contour line spacing is 2 kcal/mol.
The energy dependence on R has been modeled by aσ/R12 potential.34

(b-d) Potential energy profiles for proton transfer at different heavy
atom distances predicted by HF/MP2 computations, circles, and by
V(r,R), full lines, settingr°’s from the HF/MP2 optimized O-H bond
lengths and using for the other parameters the values reported in Table
1.
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equilibrium distances, whereas for single minimum potential
we have resorted to the curvatures at the equilibrium points
computed at HF/MP2 level of theory. The results obtained by
fixing r°’s from the equilibrium position of the H-bonded
protons, leaving the other two parameters unchanged, are
reported in Table 3.

The agreement is more than satisfactory, even for the lowest
lying vibrational states. The activation energies predicted by
V(r) are slightly better than those obtained by fixing all the
parameters from properties of the isolated partners, whereas the
shapes of the potential energy profiles predicted by the two
methods are now very similar each other, as testified both by
the data in Figures 1-4 (b-d) and by the energies of the
vibrational states reported in Table 3. The largest difference
between the vibrational energies predicted byV(r) and by HF/
MP2 computations is nowca.150 cm-1. Moreover, for N2H7

+

at R ) 2.595 Å, that obtained by HF/MP2 full geometry
optimization, we also obtain a double minimum potential for
proton hopping with a barrier between the two minima of 0.15
kcal/mol, cf. Figure 4b.

The energy splitting between the symmetric and the anti-
symmetric combinations of the two localized vibrational states,
which are physically the most interesting quantity, being related
to transition times, are also well predicted. AtR ) 2.75 Å, V(r)

yields an energy difference of 72.6 cm-1, versus 77.6 obtained
by HF/MP2; atR ) 2.9 Å, the computed energy differences
are 1.8 and 2.3 cm-1, respectively.

The same level of accuracy has been obtained also for the
other complexes; all results are reported in table 3 and Figures
2-4.

Asymmetric Systems.In the case of asymmetric H-bond
complexes, the choice of the parameters becomes more involved,
because theDX-H’s play now a role in determining the energy
differences between the two possible equilibrium sites. Thus,
whishing to set parameters from properties of the separated
partners, the use of protonation affinities become necessary in
order to obtain the right energy difference between the two
possible equilibrium configurations A-H‚‚‚B and A‚‚‚H-B.
The other possibility is that of fixing the parameters from
properties of the H-bond complex. Usually, the data available
from experiments or computations are, in the case of double
well potentials, the two equilibrium distances,rAH andrBH and
the energy difference between the two equilibrium proton sites.
Thus, a practical choice is that of fixingr°’s from the known
equilibrium distances and of changing the X-H dissociation
energies of the separated partners by an equal but opposite

Figure 3. (a) Potential energy surface for HF2
- as a function of the

H-bonded proton (r) and heavy atoms (R) stretching coordinates from
parameters reported in Table 1. Contour line spacing is 2 kcal/mol.
The energy dependence on R has been modeled by aσ/R12 potential.34

(b-d) Potential energy profiles for proton transfer at different heavy
atom distances predicted by HF/MP2 computations, circles, and by
V(r,R), full lines, settingr°’s from the HF/MP2 optimized O-H bond
lengths and using for the other parameters the values reported in Table
1.

Figure 4. (a) Potential energy surface for N2H7
+ as a function of the

H-bonded proton (r) and heavy atoms (R) stretching coordinates from
parameters reported in Table 1. Contour line spacing is 2 kcal/mol.
The energy dependence on R has been modeled by aσ/R12 potential.34

(b-d) Potential energy profiles for proton transfer at different heavy
atom distances predicted by HF/MP2 computations, circles, and by
V(r,R), full lines, settingr°’s from the HF/MP2 optimized O-H bond
lengths and using for the other parameters the values reported in Table
1.
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amount∆, to be determined from the energy difference between
the two equilibrium site. TheR values can be either kept frozen
to the values reported in Table 1, since the curvatures around
the minima can be adjusted by a suitable choice of ther°’s, or
slightly changed consistently with the changes made on the
dissociation energies.

We have considered the following three asymmetric sys-
tems: NH4

+‚‚‚H2O, NH3‚‚‚H-I, and F‚‚‚H2O, which have
already been investigated at HF/MP2 level.35-37

For NH4
+‚‚‚H2O, MP2 computations predict a stable mini-

mum for the proton bound to the nitrogen atom and a shallow
one for NH3‚‚‚H3O+, atR ) 2.9 Å, which disappears at shorter
R.35 The energy difference between the two minima atR ) 3.0
Å is 24.98 kcal/mol at MP2 level of the theory, withr°N-H

)1.05 andr°O-H ) 1.06 Å. By fixing r°’s and∆ from the MP2
X-H distances and energy difference of the two equilibrium
points and settingR’s from the same force constants used for
obtaining the values in Table 1,V(r) yields a barrier to proton
hopping of 3.5 kcal/mol, starting from the less stable minimum,
to be compared with 3.35 obtained at HF/MP2 level.21

Keeping the same parameters, V(r) yields (i) atR e 2.8 Å a
single minimum profile, in accordance with HF/MP2; (ii) atR
) 2.9 a barrier of 0.80 kcal/mol and an energy difference
between the two minima of 20.7 kcal/mol, versus 0.86 and 22.8
predicted by HF/MP2; (iii) atR ) 3.2 an energy difference of
32.6, (28.2 MP2) and a barrier of 11.8 (10.6) kcal/mol.

The changes of the equilibrium X-H bond lengths asR

changes are also well predicted. AtR ) 2.9,V(r) predicts 1.11
and 1.07 Å for O-H and N-H, respectively, versus 1.095 and
1.05 predicted by HF/MP2, whereas atR ) 3.2 the N-H bond
distance is 1.04 for both methods and the O-H one is 1.04
from the analytical potential versus 1.034 predicted by HF/MP2
computations.

Very similar results are obtained both by leaving theR
unchanged and by imposing for each value ofR the computed
MP2 energy difference. All the results are summarized in Table
4, together with the parameters used in each case.

For NH3‚‚‚H-I, we have used theR values reported in Table
1 and changed the dissociation energies of(28 kcal/mol in order
to have the same energy difference between minima as in MP2
computations, ca. 3 kcal/mol in favor of the neutral form.36 At
R ) 3.574 Å,V(r) yields a double well profile, with the two
minima separated by a barrier of 4.2 kcal/mol, slightly higher
than 3.5 predicted by MP2. Keeping fixed these parameters,
V(r) yields atR ) 3.37 a double minimum potential with the
two equilibrium nuclear configurations at about the same energy
and atR ) 3.3 Å a single minimum potential, in both cases in
good agreement with MP2 computations.

Finally we have considered the F-‚‚‚H2O complex, for which
HF/MP2 full optimization yields a single minimum potential,
with R ) 2.38 Å andrO-H ) 1.11 Å. At R ) 2.8 Å HF/MP2
computations predicts a double well potential with the two
minima located atrO-H ) 1.03 Å andrF-H ) 1.02 Å and an
energy difference of 6.9 kcal/mol in favor of the F-‚‚‚H2O form.

TABLE 3: Adopted Parameters and Predicted Activation Energies (kcal/mol) and Vibrational Levels (cm-1) for the Four
Symmetrical Systems of Figures 1-4

∆E# n ) 0 n ) 1 n ) 2

R (Å) r° V(r) MP2 V(r) MP2 V(r) MP2 V(r) MP2

H5O2
+ 2.37 0.920 740 689 2407 2331 4389 4386

2.60 0.940 1.53 1.77 567 518 1112 1080 2372 2305
2.75 0.950 6.26 6.13 1064 1073 1137 1150 2536 2530
2.90 0.965 13.09 12.27 1341 1321 1343 1323 3610 3500

H3O2
- 2.70 0.956 3.81 3.50 833 796 1062 1042 2257 2195

2.90 0.965 13.09 10.65 1339 1239 1340 1243 3608 3196
HF2

- 2.28 0.890 964 903 3043 2908 5387 5254
2.54 0.906 1.27 1.21 488 480 1127 1126 2407 2409
2.75 0.923 9.32 7.91 1249 1176 1267 1203 3096 2804

N2H7
+ 2.59 0.969 0.15 0.19 366 371 1307 1392 2708 2917

2.80 0.995 3.94 3.91 831 833 1022 1031 2177 2190
3.00 1.011 11.83 10.96 1263 1224 1266 1228 3362 3213

TABLE 4: Adopted Parameters and Predicted Energy Differences and Activation Energies for the Three Asymmetrical
Systems Discussed in the Texta

∆E ∆E#

A-H‚‚‚B R ∆ RAH RBH r°AH r°BH V(r) MP2 V(r) MP2

NH4
+‚‚‚H2O 3.0 30.0 1.98 2.61 1.02 0.98 b 25.0 3.51 3.35

3.2 32.6 28.2 11.8 10.6
2.9 20.7 22.8 0.80 0.86

e2.8 c c c c
3.2 27.0 2.00 2.57 b 28.2 13.0 10.6
2.9 31.5 1.97 2.63 b 22.8 1.1 0.86
3.2 21.3 2.23 2.26 b 28.2 13.4 10.6
3.0 24.7 25.0 3.61 3.35
2.9 21.8 22.8 0.35 0.86

NH3‚‚‚HI 3.57 28.0 2.23 1.76 0.99 1.60 b 3.0 4.2 3.5
3.37 0 ∼0 0.6 1
3.30 c c

F-‚‚‚H2O 2.80 17.3 2.18 2.26 0.93 0.95 b 6.9 13.8 12.1
2.38 c c
3.0 8.2 8.3 27.5 22.5
3.0 17.8 2.18 2.26 0.94 0.97 b 8.3 26.2 22.5
2.8 25.5 2.40 2.05 0.93 0.96 b 6.9 13.3 12.1
3.0 23.6 2.38 2.07 0.94 0.97 b 8.3 26.4 22.5

a All energies are in kcal/mol, distances in Å,R in Å-1. bImposed from MP2 computations.c Single minimum potential.

Estimating Activation Energies J. Phys. Chem. A, Vol. 106, No. 30, 20027023



From these values we have set the twor° and the∆ parameters,
cf. Table 4, with which, keeping theR values of Table 1,V(r)
yields a barrier to proton hopping of ca. 13.8 kcal/mol, 1.7 kcal/
mol higher than that predicted by HF/MP2 computations.
Keeping fixed all parameters,V(R) yields a single minimum
potential energy profile atR ) 2.38, in agreement with HF/
MP2, and atR ) 3.0 Å a double well potential characterized
by an energy difference between the two minima of 8.2 kcal/
mol, 8.3 from HF/MP2, and a barrier of 27.5 kcal/mol, 22.5
from HF/MP2, cf. Table 4.

A better agreement can be obtained if the∆ and ther°’s
parameters are allowed to change as R changes: the results for
H2O‚‚‚F- are shown in Figure 5, see also Table 4, which testifies
that not only the energy of the stationary points but also the
shape of the potential energy profiles for proton motion are well
predicted by the two Morse potential.

Discussion and Conclusions

The numerical tests discussed previously suggest that the
approximations on which the two Morse potential holds are
justified, at least in the region of the potential energy surfaces
(PES) of relatively short heavy atom distances. Thus the first
conclusion which can be drawn is that, among all terms which
contribute to determine the potential energy profile for proton
motion between the two equilibrium sites of a H-bond complex,
the additive contribution of the A-H and B-H stretching
potentials of the separated partners plays a prominent role. That

result has important implications, not only for it offers a
powerful interpretative key for understanding the properties of
H-bond complexes, but also for it allows to build up potential
energy profiles for proton hopping from the knowledge of a
few properties of the complex and of the separated partners.
Thus the two Morse potential must be considered as a well
sound theoretical model for representing proton-transfer reac-
tions between H-bonded molecules rather than a fitable potential
for interpolating ab initio results.

Of course, as any theoretical model, it is based on approxima-
tions, which pose limits to its applicability. One of the major
limitation of the two Morse potential is in treating H-bonds with
relatively large heavy atom distances. The results reported in
Tables 3 and 4 indicate that barriers to proton hopping are
always overestimated with respects to HF/MP2 counterparts as
R increases. This is very probably due to the fact that variations
of the wave function become appreciable for proton displace-
ment from the equilibrium position longer than 0.4 Å, so that
if the activated state is located at longer distance, the contribution
of the first- and second-order corrections can no longer be
neglected. That effect is not dramatic, because it is known that
proton transfer reactions usually take place afterRhas decreased
to values short enough for tunneling occurs. Thus, to study the
dynamics of proton transfer it is sufficient to have an accurate
representation of the potential energy surface (PES) in the region
of relatively shortR, in which the approximations done appear
to be justified. In the previous section we have shown that
accurate PES can be constructed at the cost of only two reliable
ab initio computations, one for each proton position, for a few
values of theR around the region in which proton tunneling is
possible.

Another limitation is in treating systems characterized by
single minimum potentials with an accuracy high enough to
obtain reliable energies for the low lying vibrational states. In
that case problems are simply due to the fact that parametrization
become more difficult, because of the limited number of
information, so that one has to resort to properties, such as the
curvature around the equilibrium point, which cannot be easily
obtained from ab initio computations for large systems.

Finally, it must be remarked that the partition of the electronic
Hamiltonian employed here does not hold for hydrogen atom
transfer and therefore the two Morse potential is not applicable
to these cases.

Among all other advantages which emerge by themselves,
we remark the easiness of the parametrization, a very important
point for our purposes, the estimate of potential energy barriers
for proton transfer in complex systems, for which only a limited
number of experimental or theoretical data are usually available,
and the fact that the two Morse potential offers the possibility
of having analytical expressions of the potential energy profiles
for proton hoppings, which represents a great advantage for
dynamical computations.

About 50 years ago, Lippincott and Schroeder have suggested,
to our knowledge without any theoretical justification, a potential
energy function for treating the vibrational spectra of linear
H-bonds which was based on the sum of two Morse type
functions, somewhat different from the usual ones, for the A-H
and B-H stretching vibrations plus terms for modeling the
interaction between the two heavy atoms.38,39 Both the A-H
equilibrium distances and the frequency shifts of several
A-H‚‚‚B complexes in crystals were well predicted. The
theoretical treatment described above allows for understanding
why Lippincott and Schroeder treatment of small proton
oscillations in H-bonded systems worked so well: for small

Figure 5. Potential energy profiles for proton motion in the H2O‚‚‚F-

complex predicted by HF/MP2 computations, circles, andV(r,R), full
lines.
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amplitude of vibration the wave function dependence on the
proton coordinates can be safely neglected, so that the only term
which contributes to the potential energy is the unperturbed one,
which is well modeled by the function used by Lippincott and
Schroeder. Of course, all the results of Lippincott and Schroeder
are further evidence that for small oscillations around the
equilibrium points the first and the second order corrections to
the total energy, cf. eq 16, can be neglected.

The two Morse potential is fundamentally different from the
empirical valence bond (EVB) model proposed by Warshel,40,41

which has been used by Miller and co-workers42 and by Sagnella
et al.43 for H-bonded systems. The EVB model is a general way
of representing analytically the PES for a reactive system. It is
based on the two state model, namely, on the assumption that
the wave function of the system can be written in the whole
region of nuclear coordinates as a linear combination of two
valence bond wave functions, one for the reactants the other
for the products. In the EVB model, the coupling between these
two reference states, as well as its dependence on the reactive
coordinates, plays a fundamental role, but its form is not known
a priori and must be obtained by fitting the computed energies
around the transition state. On the contrary, the two Morse
potential is not so general, resulting from a partition of total
Hamiltonian operator which applies only to proton transfer, but
it allows the estimates of energy barriers for proton hopping
without any information on the activated state. It is therefore
particularly suitable for experimentalists and in all those cases
where the size of the system under consideration makes the
evaluation of the whole potential energy surfaces for proton
hopping computationally too demanding. We have already used
the two Morse potential for representing proton motions driven
by electron transfer in photosynthetic reaction center,14 so the
interested reader can find there an example of application to
large systems.

Acknowledgment. The financial support of the University
of Salerno is gratefully acknowledged. We are deeply indebted
to prof. G. Del Re for suggesting us the use of Lo¨wdin’s
resolvent technique and for many helpful discussions.

References and Notes

(1) Nagle, J. F.; Morowitz, H. J.Proc. Nat. Acad. Sci. U.S.A.1978,
75, 298.

(2) Okamura, M. Y.; Feher, G.Annu. ReV. Biochem.1992, 61, 861.
(3) Stowell, M. H. B.; McPhillips, T. M.; Rees, D. C.; Soltis, S. M.;

Abresch, E.; Feher, G.Science1996, 276, 812.
(4) Mitchell, P.Nature1961, 191, 144;Science1979, 206, 1148.
(5) Onsager, L.Science1967, 156, 541.
(6) Onsager, L.Science1969, 166, 1359.
(7) Hille, B. Ionic Channels of Excitable Membranes; Sinauer Associ-

ates Inc.: Sunderland, MA, 1992.

(8) Del Re, G.; Peluso, A.; Minichino, C.Can. J. Chem.1985, 63,
1487.

(9) Cukier, R. I.J. Phys. Chem.1994, 98, 2377.
(10) Cukier, R. I.; Nocera, D. G.Annu. ReV. Phys. Chem.1998, 49,

337.
(11) Peluso, A.; Brahimi, M.; Carotenuto, M.; Del Re, G.J. Phys. Chem

1998, 102, 10333.
(12) Peluso, A.; Brahimi, M.; Del Re, G.Chem. Phys. Lett.1999, 299,

511.
(13) Di Donato, M.; Borrelli, R.; Capobianco, A.; Monaco, G.; Improta,

R.; Brahimi, M.; Peluso, A.AdV. Quantum Chem.2000, 36, 301.
(14) Peluso, A.; Di Donato, M.; Saracino, G. A. A.J. Chem. Phys.2000,

113, 3212.
(15) Peluso, A.; Di Donato, M.; Saracino, G. A. A.; Improta, R.J. Theor.

Biol. 2000, 207, 101.
(16) Siegbahn, P. E. M.; Blomberg, M. R. A.; Crabtree, R. H.Theor.

Chem. Acc.1997, 97, 289.
(17) Taylor, J.; Eliezer, I.; Sevilla, M. D.J. Phys. Chem. B2001, 105,

1614.
(18) Yaris, R.J. Chem. Phys.1966, 44, 3894.
(19) Murrell J. N.; Shaw G.J. Chem. Phys.1967, 46, 1768.
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