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Two classes of cyclic, successive first-order linear, irreversible chemical reactions are found to exhibit chemical
oscillations, and we elucidate how they show up. Furthermore, these are applied to stationary open systems
where a starting chemical species is pumped in as a sinuasoidal function of time and an intermediate species
is pumped out as the same function, and spectra for the rates of participating species are obtained which
show sharp resonance peaks that are missing in nonoscillating systems. Hence, the present cyclic model
suggests that even such simple reactions can undergo resonance motion which can produce strong harmonic
activities similar to the usual ones of under damped harmonic oscillators.

It has been known for a quite sometime that nonlinear
chemical reactions lead to oscillations.1 However, these have
not been accounted for linear systems such as successive first-
order chemical reactions until quite recently. Suzuki and Morita2

showed that ordinary cyclic successive first-order chemical
reactions in fact exhibit oscillations. In this paper, we shall
present more examples showing stronger linear chemical
oscillations than the previous case2 and clarify how this can be
explained.

As stated previously,2 a cyclic condition plays a pivotal role
for a successive reaction to oscillate. A restoring force has been
obtained from the cycle. Hence, we shall confine ourselves to
the cyclic reaction in this paper. Moreover, to gain the maximum
strength of the restoring force, we neglect the backward reactions
for a while. This also makes theoretical treatments much easier.
Thus, let us first consider the irreversible reaction in Figure
1for which the rate equations are given by

To treat these equations, we find it convenient to introduce the
method of the Laplace transform. By setting the initial condition
in the following

where δ0,j is the Knonecker delta, we immediately find the
expressions

where

and the Laplace transform of a function,g(t) has been written
through the expressiong(s) ) ∫0

∞g(t)e-st dt. It is immediately
seen from eq 3 that the dynamic behavior ofa0(t) is determined
irrespective of how each site other than site 0 is arranged as far
as the cycle is constructed withk1, k2, k3, ..., kN. Furthermore,
we note that the second term on the right-hand side in eq 4
arises from the cyclic condition. Without this term,f(s) becomes
the ordinary successive irreversible reaction with both ends
at sites 0 andN - 1. Hence, we see the cyclic condition
shifts from f (s) ) (s + k1)(s + k2)...(s + kN) to f(s) )
(s + k1)(s + k2)...(s + kN) - k1k2...kN, which can change the
dynamic behavior drastically from nonoscillatory to oscillatory.

In view of the cyclic property of the present reaction, we
can expressaj(s) for the more general case where the initial
concentration isaj(0) ) aL(0)δL,j with L ) 0, 1, 2, ...,N - 1
instead ofaj(0) ) a0(0)δ0,j based on the above results as
follows:

da0(t)

dt
) -k1a0(t) + kNaN-1(t)

daj(t)

dt
) -kj+1aj(t) + kjaj-1(t); j ) 1, 2, 3, ...,N - 1 (1)

aj(0) ) a0(0)δ0,j (2)

a0(s) )
(s + k2)(s + k3)...(s + kN)

f(s)
a0(0) (3)

f(s) ) (s + k1)(s + k2)...(s + kN) - k1k2...kN (4)

aj(s) )
k1k2...kj(s + kj+2)(s + kj+3)...(s + kN)

f(s)
a0(0);

j ) 1, 2, ...,N - 1 (5)

Figure 1. Irreversible successive cyclic first-order reaction.
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For the present linear case, we can use the usual superposition
principle whenaL(0) is more than one and less than or equal to
N - 1.

To get explicit time-behavior ofaj(t), we have to solve the
equation off(s) ) 0 which cannot be performed in general
except for smallN and simple cases such as the previous one2,
but numerically, it does not give difficulties. One obvious
solution iss ) 0 that leads to theaj(∞)

Suppose each solution,s ) -Rm, is not identical one another,
then we can express

where

For the case where the solution is not this type, we still can
expressaj(t) with the help of the residue theorem in complex
algebra. Becausekj > 0, we see that the real part ofRm must be
positive. Hence, in order foraj(t) to oscillate, we requireRm to
have a large value of nonzero imaginary part in comparison
with that of the real part, which physically corresponds to a
small damping for an oscillator.

To establish a general procedure to find such a solution seems
to be difficult, if not impossible. In this paper, let us consider
three cases a-c for kj ) (j)1/2, kj ) j andkj ) j2, respectively.
These have been chosen with a view that faster feeds through
the cycle increase the strength of oscillations while keeping the
same decaying transition rate ofk1. In Figures 2 and 3,a0(t) is
shown for various values ofN for cases a and b, where
oscillations occur. However, unexpectedly, we found no oscil-
lations for the case of c. This makes us believe there will be an
upper limit for K smaller than 2 wherekj ) jK for oscillations
to occur. To understand this, we have calculatedRm andC0,m

for N ) 20 and for cases a-c, and results are plotted in Figure
4. Obviously, we see the significant difference for (c) in
comparison with (a) and (b). Numbers of real roots for (c) at
smallers are greater, and the absolute values are bigger. We
see thatf(s) ass decreases oscillates strongly, which results in
intersecting with the real axis ofs that leads to the real roots
quite close to-kj with large absolute values. These are why
C0,m becomes extremely small for small real roots for case c.
Whereas profiles for cases a and b are roughly similar, which
is the case of appearance of oscillations. This should be
remembered with the previous simple case ofkj ) 1 where

s ) -1 + exp(2πm/N) and C0,m ) 1/N2. Hence, to get
oscillations from the cyclic reactions, we should have as few
as the real roots on the real negative axis ofs apart from
s ) 0 for oddN and froms ) 0 and another one at the smallest
s for evenN. Ideally greater absolute values ofC0,m with the
greater values of the imaginary parts of the roots at small
absolute values of the real parts forf(s) ) 0 will be just fit for
the oscillations. Note from the upper curves in Figure 4 that as
the powerK increases, they gradually deform from the simple
circle for K ) 0.

So far, we have been discussing the linear chemical oscillation
for a closed system where material exchange between the
chemical system and the external surroundings is prohibited so
that the system would stop oscillating eventually. Let us now
extend our considerations on open systems by bearing in mind
that our system is a beautifully simple linear case where
profound results must be found without carrying out elaborate
complex calculations. To this end, we can use some significant
conclusions from linear response theory.

The first example is a transient response of the system when
we inject a flux,p(t) ) da0(t)/dt so that the first equation in
eq 1 leads to

Figure 2. Time profiles ofa0(t) for case a wherekj ) (j)1/2 for several
values ofN.

Figure 3. Time profiles ofa0(t) for case b wherekj ) j for several
values ofN.

k1a0(t) ) kNaN-1(t) - p(t)

aj(s) ) aL(0)
k1k2...kj(s + kj+2)(s + kj+3)...(s + kL)kL+1...kN

f (s)
;

j ) 0, 1, 2, ...,L (6)

aj(s) )

aL(0)
(s + k1)(s + k2)...(s + kL)kL+1...kj(s + kj+2)(s + kj+3)...(s + kN)

f(s)
;

j ) L + 1, L + 2, ...,N - 1 (7)

aj(∞) ) 1

kj+1(1
k1

+ 1
k2

+ ... + 1
kN

)
(8)

aj(t) ) aj(∞) + ∑
m)1

N-1

Cj,me-Rmt (9)

Cj,m )
k1k2...kj

(k1 - Rm)(k2 - Rm)...(kj+1 - Rm)( 1
k1 - Rm

+ 1
k2 - Rm

+ ... + 1
kN - Rm

)
(10)
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Substitution of this expression into that for da1(t)/dt in eq 1
gives a set of simultaneous rate equations whose homogeneous
terms are similar to those in eq 1 for theN - 1 system where
a0(t) andk1 are missing with a single inhomogeneous term,-p(t)
for the rate equation fora1(t). Namely, apart from the inhomo-
geneous term, the resulting system is regarded as if the 0 site is
absent from the cycle in Figure 1 where theN - 1 site is directly
connected to the 1 site withkN skipping the 0 site. With this in
mind and the linear character of the system, the Laplace
transforms foraj(s) with j ) 1, 2,...,N - 1 can be readily written
down from eqs 3 and 5 as follows:

where

Note that if p(t) is regarded as a simple pumping-in term in
addition toda0(t)/dt, the final expression foraj(s) in eqs 3 and
5 is obtained just after replacinga0(0) by p(s). Hence its
mathematical structure is identical to the previous case without
this additional term so that we will not consider this case any
further. By using the convolution theorem for the Laplace
transform and the fact thatf1(s) can be written asf1(s) ) sg1(s),
we can express

whereBj(t) is a function obtained by taking the inverse Laplace
transform of the coefficient of-p(s) for aj(s) in eqs 11 and 13

after replacingf1(s) by g1(s). This is a typical result from linear
response theory where an after-effect, daj(t)/dt, takes place after
injection ofp(t) with a system function,Bj(t). Typically, if we
choose an infinitively sharp spike like pulse forp(t) )
Dδ(t - τ), we see that

so that the observed signal, daj(t)/dt, is solely determined by
the system function,Bj(t), apart from the-D term. This is based
on a similar usual technique for cardiac testing.

The above is for the transient effect which is related to the
stationary motion in view of the linear response theory. To get
this stationary motion where oscillations persist, we have to
make the system open by feeding the starting chemical species
at the rate ofp(t) ) da0(t)/dt as in the previous case and by
pumping out the same amount,-q(t) ) - daL(t)/dt, from the
system wherep(t) ) -q(t). In this way, we can keep the total
concentration ofaj(t) with j ) 1, 2, 3, ...,L - 1, L + 1, ...,
N - 1 independent of time. By using considerations on deriving
eqs 6, 7, 11, and 13, we find by assumingaj(0) ) 0 for j )
0, 1, 2, ...,N - 1 that

Figure 4. Complex plane plots forRm (upper plots) and forC0,m (lower plots) for cases a-c from the left to the right.

a1(s) ) -p(s)
(s + k3)(s + k4)...(s + kN)

f1(s)
(11)

f1(s) ) (s + k2)(s + k3)...(s + kN) - k2...kN (12)

aj(s) ) -p(s)
k2k3...kj(s + kj+2)(s + kj+3)...(s + kN)

f1(s)
;

j ) 2, 3, ...,N - 1 (13)

daj(t)

dt
) -∫0

t
(t - u)Bj(u) du ) -∫0

t
Bj(t - u)p(u) du;

j ) 1, 2, ...,N - 1 (14)

daj(t)/dt ) -DBj(t - τ); t g τ

aj(s) )

-p(s)
k2k3...kj(s + kj+2)(s + kj+3)...(s + kL)(s + kL+2)...(s + kN)

f2(s)
-

q(s)
k2...kj(s + kj+2)(s + kj+3)...(s + kL)kL+2...kN

f2(s)
; j ) 1, 2, ...,L (15)

aj(s) )

-p(s)
k2k3...kLkL+2...kj(s + kj+2)(s + kj+3)...(s + kN)

f2(s)
-

q(s)
(s + k2)...(s + kL)kL+2...kj(s + kj+2)(s + kj+3)...(s + kN)

f2(s)
;

j ) L + 1, L + 2, ...,N - 1 (16)
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where

Now, if we set

substitute this in the above equations by noting the relation
similar to eq 14, and puts ) iω, we find expressions for
chemical spectra,Sj(ω) ) Sj′(ω) - iSj′′(ω)

for daj(t)/dt which lead to the frequency dependent amplitudes,
Sj′(ω) andSj′′(ω), for alternating functions, cosωt and sinωt,
respectively. Because we know that the integrants forSj(ω)
except for e-iωt can be decomposed into a series such as in
eq 9 where each term with 1/[xm + i(ω - ym)] in which Rm )
xm + iym, we will find a resonance term whereω ) ym with
small xm which gives a strong value forSj(ω). It must be
emphasized that, because the poles are determined solely from
f2(s) ) 0, Rm must appear for all daj(t)/dt with different Cj,m,
which leads to the resonance for all daj(t)/dt, unlessCj,m is
different enormously for the active mode. Hence, the present
linear cycle model suggests that all of the chemical species
become excited at the same frequency. These resonances are
missing for the overdamped case where allxm are large such as
for small N and case c. In other words,Rm specifies whether
each oscillator is an under- or over-damped one. The smaller
xm except for xm ) 0 is, the more chance the system will
oscillate. These spectra could show up sharply even for small
oscillations in the time domain whereCj,m are dominant, whereas
for the spectra,xm are decisive. In Figure 5, we show|Sj(ω)|
for the special case ofkj ) 1 with N ) 100 andL ) 75. It is
seen that the sharp peaks at the lowestω do not depend
sensitively on values ofj, whereas those at higher frequencies
do.

If we are allowed to suppose each chemical site is an active
part in a biological system, the feed is implied to be a food,
and it is consumed in a body at siteL, we will understand how
the system is stationary and cyclic and each site can resonate
with a dominant frequency. However, if at least one ofki

becomes zero because of a fatal nature, the system suddenly
becomes nonresonance so that the system will never be able to
recover.

The present model can also be applied to a catalytic reaction
which must be cyclic, and this study suggests the reaction is
oscillatory.

Now let us discuss the linear chemical oscillation for the
previous closed systems again in connection with the principle
of detailed balancing3,4 that is valid in equilibrium. To this end,
we introduce reversible cyclic reactions. First, we consider the
case in ref 2 where

Here we must distinguish between the end of the reaction and
equilibrium, whose concentrations of a chemical species at the
j site are represented byaj(∞) andaj

e, respectively. We imagine

that the system reaches equilibrium after a long time following
the end of the reaction. The principle of detailed balancing
requires the condition of

if the system maintains the same reaction scheme in A as that
in the reaction dynamics. Scheme A gives rise to

by assuming∑j
N-1aj(0) ) 1 at timet ) 0. Hence, if we put

we see that this does not allow eq 20 to hold except for the
case ofk ) k′ where no oscillations are possible. This is due to
the introduction of the cyclic boundary conditions in A where
eachAj must be identical after “forgetting” the initial values.

We did not suppose that our reaction in A did persist until
equilibrium. Rather, the end of the reaction is far from
equilibrium, so that it can change state before equilibrium where
our system can reorganize the state so as to satisfy properties
at equilibrium including the principle (see ref 5 for a nice
example to understand the point). We think of an interesting
case where

which satisfies the principle up to equilibrium without changing
in state. Note that the equilibrium concentration,aj

e, happens to
give the same value asaj(∞) in A in eq 21. If our system
switches to this system after the end of the reaction by
equilibrium, we see that, without changing the concentration at
all, we can in fact change the state that satisfies the principle.
The solution for scheme B is expressed in terms of the
generating functionG(m, t) (see ref 2)

where

Another interesting reaction which also satisfies the principle
without switching states is

f2(s) ) (s + k2)(s + k3)...(s + kL)(s + kL+2)...(s + kN) -
k2k3...kLkL+2...kN (17)

p(t) ) P + Q cosωt (18)

Sj(ω) ) ∫0

∞ daj(t)

dt
e-iωt dt (19)

‚‚‚y\z
k′

k
Aj+2y\z

k′

k
Aj+1y\z

k′

k
Ajy\z

k′

k
Aj-1y\z

k′

k
‚‚‚

with j ) 0, 1, 2, ...,N - 1; AN ) A0; andA-1 ) AN-1 (A)

kaj
e ) k′aj+1

e (20)

aj(∞) ) 1/N (21)

aj(∞) ) aj
e (22)

‚‚‚h
k

k
Aj+2y\z

k′

k′
Aj+1h

k

k
Ajy\z

k′

k′
Aj-1y\z

k′

k
‚‚‚

for evenN with j ) 0, 1, 2, ...,N - 1; AN ) A0;
andA-1 ) AN-1 (B)

G(m, t) ) e-(k+k′)t{G(m, 0) cosh∆t + sinh∆t
∆

[(k +

k′) cosâmG(m, 0) + i sin âm(k - k′)F(m, 0)]} (23)

âm ) 2πm
N

∆ ) x(k - k′)2 + 4kk′ cos2 âm

F(m, 0) ) ∑
j)0

N-1

(-1)jâm
j aj(0)

‚‚‚y\z
k

k′
Aj+2y\z

k′

k
Aj+1y\z

k

k′
Ajy\z

k′

k
Aj-1y\z

k

k′
‚‚‚

for evenN with j ) 0, 1, 2,...,N - 1, AN ) A0 and
A-1 ) AN-1 (C)
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This leads to

and the equilibrium concentrations

for evenj with evenN and

for odd j with evenN. Even though we tried to obtainaj(t) for
reactions B and C, we have not found oscillations.

Hence, our system in A is valid to reaction dynamics far from
equilibrium (see ref 6 for various examples of nonlinear
systems), which is not quite in harmony with the principle of
the detailed balance. In fact, it is quite an unbalanced system,

Figure 5. Plots of|Sj(ω)| for the special case ofP ) 0, Q ) 1, kj ) 1, N ) 100, andL ) 75. Values ofj are 1, 2, ...,L - 1 (the top figure) and
j ) L + 1, L + 2, ...,N - 1 (the bottom figure) viewed from the right-hand side from the upper to the lower curves, respectively.

G(m, t) ) e-(k+k′)t{G(m, 0) cosh∆t + sinh∆t
∆

[cosâm(k +

k′)G(m, 0) + (cosâm - 1)(k - k′)F(m, 0)]} (24)

aj
e ) 2

N
k′

k + k′ (25a)

aj
e ) 2

N
k

k + k′ (25b)
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whereas reactions B and C are balanced ones similar to reaction
A when k ) k′ which does not lead to oscillations. This gives
rise to imaginary values ofRm for Scheme A and real ones for
Schemes B and C. In other words, the systems satisfying the
principle of detailed balancing lead to real values ofRm, whereas
the oscillating ones yield imaginaryRm.

Finally, we emphasize that examples of oscillating linear
cyclic reactions are not only restricted to those in ref 2 and the
present paper, but they can be found in many other cyclic
systems where the above guidance will be useful.
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