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We examine the volume of phase space sampled by a nonstationary wave packet when the spectral function
consists of a single clump or of a series of them. The relaxation laws are expressed in terms of reduced time
variablesτ, whose definition involves either the average density of states (for a single clump) or appropriately
weighted average densities of states (when the spectrum consists of many clumps). Introducing reasonable
approximations, very simple generic relaxation laws are derived for the ratioN(τ)/N∞, which measures the
fraction of available phase space that has been sampled by timeτ. Under certain assumptions, these laws are
found to depend neither on the number nor on the individual features (shapes and widths) of the clumps.
However, they strongly depend on the nature (regular or chaotic) of the underlying dynamics. When the
dynamics is regular, the relaxation law is expressed in terms ofτ-1, whereas the corresponding equation in
the chaotic limit is slightly more complicated and involves terms inτ-2 and τ-2 ln τ. Phase space is thus
explored according to essentially different relaxation laws in the regular and chaotic limits, the difference
being appreciable during the entire relaxation. These laws reflect in the time domain the difference in the
distribution of nearest-neighbor level spacings observed in the energy domain (Poisson or Wigner statistics).

I. Introduction

The aim of the present article is to contribute to the study of
intramolecular dynamics taking place in a vibrationally excited
isolated molecule, thus studied under collision-free conditions.
The process by which vibrational energy is redistributed, denoted
IVR for short, has been extensively studied by a large variety
of approaches that all make use of the time-dependent picture
of spectroscopy.1-4 There exists a fascinating connection
between intramolecular dynamics and spectroscopy, based on
the fact that the Fourier transform of an optical spectrumI(E)
generates an autocorrelation functionC(t). When properly
studied (e.g., when applied to homogeneously broadened
spectra), this function can provide information on the relaxation
process in the time domain.5-13 We are especially interested
here in the case of congested molecular spectra, measured at
high energies, where detailed assignment in terms of traditional
quantum numbers is impossible because the density of states is
very high and the amplitude of the nuclear motions very large.
In that case, the characteristics of the classical dynamics that
underlies the relaxation process are known to appear in the
energy domain. For example, on the basis of the frequency
distribution of nearest-neighbor energy spacings, two limits can
be defined:5,6,10,14-22 regular dynamics, which leads to a Poisson
distribution for adjacent spacings, and chaotic dynamics, which
implies a Wigner distribution for nearest-neighbor energy

spacings (i.e., an absence of zero spacings). The purpose of this
article is to use this dichotomy to uncover some generic
differences in the time domain between the dynamics of
intramolecular vibrational energy redistribution in the two
limiting cases.

To contribute to this problem, we concentrate on a typical
spectral profile that seems to be of fairly general occurrence.
At low energy resolution, the profileI(E) consists of a number
of peaks, each of which is found, at higher resolution, to be a
clump of numerous narrow lines.10,16,23-27 For example, in the
stimulated emission pumping spectrum of acetylene in the
27 900 cm-1 energy region,16 a typical clump is 1 or 2 cm-1

wide and consists of 50-100 narrow lines. This structure derives
from the fact that, as a result of the Franck-Condon principle,
the oscillator strength is spread over a small number of
vibrational modes (bright states) that interact with a quasi-
continuum of so-called dark states. A clump structure corre-
sponds to an intermediate situation in which previously good
quantum numbers have lost their value and is thus intermediate
between the regular and chaotic limits. For such a spectral
profile, how does phase space exploration proceed?

In previous articles of this series,7-10 we have studied the
time behavior of the quantum measureN(t) initially introduced
by Stechel and Heller.5,6 This quantity measures the effective
number of phase-space cells visited by the system during the
relaxation process up to timet. Accepting that the spectrum
can be described by a continuous function (i.e., replacing
summations over discrete Franck-Condon factors by integra-
tions over energy), we could show10 that the functionN(t)
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approaches its limiting valueN∞ as -1/t in the regular case
and as-ln t/t2 when the dynamics is chaotic. This result is
general, but requires further clarification on an important point.
It might be suspected that the differences in the asymptotic
behaviors are detectable only at very long times, i.e., when the
relaxation process is nearly completed. In such a case, the
derived result would be of academic interest only.

However, by studying thefraction of phase space that has
been sampled by timet (rather than its absolute magnitude),
and by expressing the relaxation laws in terms of suitable
reduced dimensionless time variables, we show here that a
distinction between regular and chaotic dynamics can be
established in the time domain where relaxation effectively takes
place and not only in the limit of extremely long times.
Furthermore, under certain assumptions, the derived relaxation
laws are found to be generic. By this we mean that they do not
depend on the number and individual features (shapes and
widths) of the clumps but depend only on the nature of the
underlying dynamics.

The paper is organized as follows. Section II describes the
continuous model for the spectrum. In section III, we consider
the relaxation of a single clump of levels. Different symmetric
and asymmetric spectral profiles are studied, and generic
relaxation laws are derived, both in the regular and in the chaotic
limits. In the chaotic case, a reasonable approximation for the
distribution function of all energy spacings is introduced. The
relaxation laws are shown not to depend on the details of the
spectral profile when appropriate dimensionless reduced time
variables are adopted. Section IV deals with a spectrum that
consists of a series of individual clumps. An averaging procedure
over the clumps is proposed, which leads to the same generic
relaxation laws as in section III with suitably modified
parameters. Concluding remarks are presented in section V.

II. Continuous Model

Consider an optical spectrumI(E) generated by a pure initial
state (i.e., homogeneously broadened). The functionI(E) is
required to be normalized, i.e., for an electronic spectrum,

where the quantitiespk are Franck-Condon factors. Its Fourier
transform generates an autocorrelation functionC(t) from which
we wish to extract information in the time domain.

Different measures have been proposed to evaluate the
volume of phase space available to a nonstationary wave packet
in the infinite time limit or, equivalently, the effective number
of quantum states that significantly contribute to the dynamics.
These definitions can be grouped in a general formula28-30

whereâ is an arbitrary parameter. Stechel and Heller5,6 advocate
the choiceâ ) 1, which defines the so-called inverse participa-
tion ratio. Alternatively, the limitâ f 0 generates the entropic
measure of phase space which, as shown by Levine et
al.,25,26,31,32has a more fundamental significance. Here, however,
we adopt Heller’s measure, which leads to simple and tractable
equations. In that formalism, the number of phase space cells
sampled as a function of time is denoted asN(t).6 Several

previous studies7,10-13 have shown the advantages of using the
measureN(t) instead of the survival probability|C(t)|2 in the
derivation of generic patterns of behavior. The functionN(t)
has been shown7,10 to increase from an initial value of 1 att )
0 to a final valueN∞ according to the law

with

Our analysis of phase space sampling is based on the
mathematical properties of eqs 2.4-2.7 and, in particular, on
the properties of the sinc function. This function was first
derived by Heller.6 He smoothed the spectral profileI(E) and
defined an envelopeIT(E) as the result of the integration of the
autocorrelation function between times-T and+T. Heller noted
the arbitrary nature of the procedure. However, we showed7

that a sinc2 function arises quite naturally by associating a
measure to the density operator of an average distribution
represented by a statistical ensemble in which the weights of
the different states are determined by the dynamics of the
system. It may also be mentioned that asymptotic laws were
found not to be modified if the sinc2 function is averaged over,
i.e., is replaced by a Lorentzian decrease.10

Thus, eqs 2.4-2.7 are an exact quantum mechanical result
if two assumptions are accepted: (i) the inverse participation
ratio is a reliable measure of phase space sampling and (ii) the
underlying spectrum is a line spectrum.

Very short times will be henceforth disregarded: they
correspond to large energy gaps, i.e., to the interclump
relaxation, and have no relevance to the problem dealt with here.
As shown in a previous paper of this series,10 when the spectrum
is congested, i.e., when the energy gapsωnk are small, it is
advantageous to replace the discrete summations by integrations
over the continuous variablesE andω. Τhe individual Franck-
Condon factorspk are replaced by a continuous functionp(E)
such thatI(E) ) p(E) D(E), whereD(E) is the density of states.
Equation 2.5 then becomes

Furthermore, it is profitable to take into account the statistical
theory of energy levels.14,15,17,18The usual energy gapsω are
replaced by rescaled dimensionless quantities$ defined as

whereG(E) is the dimensionless integrated density of states,
i.e.,

∫-∞

+∞
I(E) dE ) ∑

k

pk ) 1 (2.1)

C(t) ) ∫-∞

+∞
I(E) exp(-iEt/p) dE (2.2)

Neff ) (∑
k

pk
1+â)-1/â (2.3)

N(t)-1 ) N∞
-1 + 2S(t) (2.4)

N∞
-1 ) ∑

k

pk
2 (2.5)

S(t) ) ∑
k)1

pk ∑
n)k+1

pn[sin(ωnkt/2p)/(ωnkt/2p)]2

≡ ∑
k)1

pk ∑
n)k+1

pn sinc2(ωnkt/2p) (2.6)

ωnk ) En - Ek (2.7)

N∞
-1 ) ∫-∞

+∞
[p(E)]2D(E) dE ) ∫-∞

+∞[I(E)]2

D(E)
dE (2.8)

$ ≡ G(E + ω) - G(E) (2.9)

G(E) ) ∫0

E
D(E′) dE′ (2.10)
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The procedure leads to10

where

The dimensionless functionD$[$(ω,E)] represents the
density of all rescaled energy spacings (and not only the nearest-
neighbor spacings). Finally, we also consider a simplified
version of this function, which has already been studied in the
literature19,21,22

III. Relaxation of a Single Clump

A. General Equations. Consider a spectral profileI(E)
restricted to a single clump of states. The clump may possibly
have an internal structure (e.g., may possibly exhibit several
maxima) but must obey two mathematical requirements. First,
the intensity vanishes at both ends of its profile. Second, the
clump has to be sufficiently narrow for its density of statesD(E)
to be taken as a constant, denotedD. In such a case, the rescaled
frequencies are simply given by

Within each clump, the reduced variable$ no longer depends
on E but onω alone.

An important role will be played by the width of the clump,
which is defined as follows:

This can be justified by noting that if the densityD is constant
within the width of the clump, then (2.8) and (3.2) lead to

which shows that the quantityµ has the dimension of energy
and can be interpreted as the effective width of the clump.

B. Models.Different functions were examined to parametrize
the shape of the overall clump envelope. Two symmetric bell-
shaped functions were considered first: an inverted parabola
I(E) ) 0.75(b2 - E2)/b3 (with -b e E e b) and a Gaussian
function I(E) ) exp(-E2/b2)/bxπ. Then, to examine asym-
metric profiles, we turned to the functionsI(E) ) En exp(-E/
b)/(bn+1n!), where 0e E e ∞ and where the exponentn is
allowed to vary between 0 and 10. Next, we tried two functions
presenting a double maximum, viz.,I(E) ) E2 exp(-|E|/b)/
4b3, as well as the sum of two inverted parabolas of different
widths. Finally, we considered a spectroscopic profile exhibiting
2n + 1 regular maxima, i.e., the functionI(E) ) 2 cos2(E/b)/
(2n + 1)bπ [with -(2n + 1)πb/2 e E e (2n + 1)πb/2]. In all
of these examples, the parameterb has the dimension of an
energy and is simply related to the width of the clumpµ.

C. Regular Dynamics. It has been shown earlier10 that in
the regular case the relaxation proceeds according to a general
asymptotic law given by

To proceed further, we note that the distribution functionD$

is equal to a constant,14,15which we denoteKreg, and which can
be determined from the normalization conditionN(0) ) 1. In
the Appendix,Kreg is shown to be equal to 1- 1/N∞. Since the
continuous model implies a large number of levels, the term
1/N∞ will henceforth be everywhere neglected with respect to
1 andKreg will be simply replaced by one. From (2.12), (3.2),
and (3.4), one has

This result remains true even if the clump displays two or
more maxima, provided only that the density of states can be
assumed to remain constant within the energy range spanned
by the clump.

If the efficiency of phase space sampling is to be assessed,
the most interesting part of the relaxation law concerns the long-
time behavior of the functionSreg(t). The value ofN∞ for a
typical clump is, e.g., of the order of 100. LetT be the time
such thatS is reduced to the very small valueSreg(T) )
Sreg(0)/N∞ ) 0.5/N∞. From (2.4), it follows thatNreg(T) ) 0.5N∞.
Thus, by a timeT such thatSreg(T) is considerably reduced with
respect to its initial value and reaches its asymptotic behavior,
Nreg(T) has reached only half of its final value. Therefore, the
simple asymptotic law (3.5) can be expected to reproduce
adequately the behavior ofN(t) in the dynamically interesting
time range. Substituting (3.3) and (3.5) into (2.4) leads to

Note that it is more instructive to examine the ratioN(t)/N∞
rather than the absolute valueN(t). The ratio gives direct
information on the stage of the relaxation. Furthermore, measur-
ing the time in terms of the reduced variable

provides a very simple law

Results for the different model spectra are given in Figure 1.
D. Time Scales.Note the difference in the time scales of the

two parts of Figure 1. Although the difference between the
individual models and the approximation expressed by eq 3.5
is very conspicuous for the functionsSreg(t) examined in the
short-time range, it is no longer noticeable on the plot of the
functions representingNreg(t) during the period of time necessary
for complete relaxation. The important point is thatSreg(t)
reaches its asymptotic behavior much faster thanNreg(t).
Therefore, whenN∞ is large, the leading term of the asymptotic
expression ofSreg(t) suffices to derive an expression ofNreg(t)
valid everywhere except at short times.

Heller introduced the concept of break time, defined as the
time after which no new region of phase space can be visited.6

He recognized the approximate nature of this concept and
proposed for it the value 2πpD, which corresponds toτ ) 1,
thus toN/N∞ ) 0.5 andS ) 1/2N∞. Therefore, an interesting
part of the relaxation law takes place at times larger than the
break time (in practice betweenτ ) 1 and, e.g.,τ ≈ 30). How
can this be understood? Two remarks can be made. First, the
density of statesD provides information on average energy gaps.
The break time would be better defined5,7 as 2πp/δ, with δ equal
to the smallest energy gap between two optically active levels
and not to the average quantityD-1. As a result, the relaxation

Sreg(t) ) πp/µt (3.5)

[N(t)
N∞ ]

reg
) (1 + 2πpD

t )-1

(3.6)

τ ) t/2πpD (3.7)

[N(τ)/N∞]reg ) (1 + 1/τ)-1 (3.8)

S(t) ) ∫0

+∞
g(ω) sinc2(ωt/2p) dω (2.11)

g(ω) ) ∫-∞

+∞
I(E)I(E + ω)D$[$(ω,E)] dE (2.12)

q(ω) ) ∫-∞

+∞
I(E)I(E + ω) dE (2.13)

$ ) Dω (3.1)

µ ≡ q(0)-1 ) (∫-∞

+∞
[I(E)]2 dE)-1 (3.2)

µ ) N∞/D (3.3)

Sreg(t) ) πpg(0)/t (t f ∞) (3.4)
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can be expected to end at values ofτ larger than 1. Second, the
break time is a qualitative concept corresponding to the first
zero of the sinc2 function. However, for a given energy splitting,
the sinc2 function does not die out after its first zero, but
decreases asymptotically ast-2 on the average, thus giving rise
to dynamics after the break time.

Short-time behavior is also strongly influenced by the
systematic effects studied by Wolynes and by Gruebele con-
cerning energy flow in a phase space of reduced dimen-
sionality.3,4,33-35 In an effort to capture the generic features of
IVR, these authors have developed the logical idea that
transitions between states that are close to each other in quantum
space occur more readily than those between distant states.
Furthermore, vibrational coupling constants have been shown
to be characterized by scaling properties. As a result, energy is
expected to flow along specific pathways, especially during the
initial stages of the relaxation. This model has received
experimental confirmation.4 The corresponding regime, denoted
“correlated intermediate time scale dynamics”, ends at the time
at which |C(t)|2 fluctuates about its averageN∞

-1, i.e., atτ )
1, in reduced units. The short-time regime is of course of
extreme importance if one aims at controlling molecular
reactivity.4 However, our purpose is to estimate the efficiency
of spontaneous IVR and, therefore, we concentrate on theτ >
1 time scale.

In summary, it makes sense to study the dynamics after the
break time. The essential result derived in section III.C is that,
in that range, the fraction of phase space that has been sampled
by time t depends in practice only on the density of states of
the clump, independently of its structure (i.e., shape, width, and
spectral moments).

E. Chaotic Dynamics.Heller also pointed out that the break
time is probably better defined for a Wigner surmise due to the
mutual repulsion of energy levels.6 He argued that, as a result
of that repulsion,N(t) must approach its final value more rapidly

in chaotic than in regular systems. We now try to quantify
Heller’s conjectures.

The exact distribution functionD$($) valid for all of the
rescaled spacings is not known in the chaotic case. However,
its qualitative behavior is quite simple.14,15For small values of
the rescaled spacings, it coincides with a Wigner nearest-
neighbor distribution. Thus, at the origin, the function is equal
to zero with a slope equal toπ/2. For larger values of$, it
tends to a constant valueKchaos, as in the regular case. The value
of the constantKchaosis determined by the conditionN(0) ) 1.
As shown in the Appendix, it can be safely taken equal to 1.
Thus, a reasonable approximation forD$ is given by the
following piecewise defined function:

From (2.11), (2.12), (2.13), and (3.1), one has

with

The functionSreg(t) has been calculated in section III.C. Its
asymptotic behavior is given by (3.5). To calculate the integrals
Sa(t) andSb(t), new variables are introduced:z ) µt/p andx )
ω/µ. Taking (3.3) into account, one gets

and

The upper bound of these integrals is so small that a Taylor
expansion of the integrand limited to its first term (i.e., replacing
q(µx) by q(0)) suffices to give a result that cannot be distin-
guished from that of an exact calculation. (This can be
understood as follows. From its definition [(2.13)],q(ω) is a
bell-shaped function whose width is approximately twice as
large as the width of the clump. A small value ofx implies a
value ofω small with respect to this width.) This approximation
(which was extensively checked by numerical calculations) leads
to

and

where Si and Ci are the sine and cosine integrals andγ is Euler’s
constant.

Altogether, one arrives at the following expression

Figure 1. Upper part: behavior of the functionS(t) in reduced time
units µt/p for the regular case. The broken lines represent the exact
results for the various clump profiles enumerated in section III.B. The
solid line is the approximation provided by (3.5). Lower part: Fraction
of sampled phase space as a function ofµt/p. The exact results for all
of the spectral profiles and for (3.5) are indistinguishable.

D$($) ) {π$/2 $ e 2/π
1 $ g 2/π (3.9)

Schaos(t) ) Sreg(t) - Sa(t) + Sb(t)

Sreg(t) ) ∫0

∞
q(ω) sinc2(ωt/2p) dω

Sa(t) ) ∫0

2/πD
q(ω) sinc2(ωt/2p) dω

Sb(t) ) ∫0

2/πD
(πDω/2)q(ω) sinc2(ωt/2p) dω

Sa(t) ) µ∫0

2/πN∞q(µx) sinc2(xz/2) dx

Sb(t) ) (πµN∞/2)∫0

2/πN∞xq(µx) sinc2(xz/2) dx

Sa(t) ) ∫0

2/πN∞sinc2(xz/2) dx

) (2/z) Si(2z/πN∞) + (πN∞/z2)[cos(2z/πN∞) - 1]

Sb ) (πN∞/z2)[ln(2z/πN∞) + γ - Ci(2z/πN∞)]

Schaos(t) ) (πN∞/z2)[ln(2z/πN∞) + γ + 1] (3.10)
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The leading term in (3.10) isz-2 ln z, in agreement with our
previous result.10 However, numerical studies show that this term
dominates the expansion only when the relaxation is nearly
completed. Therefore, the use of the whole eq 3.10, involving
both thez-2 andz-2 ln z terms is necessary to get the correct
result in the physically interesting domain. This remark turns
out to have important consequences in the many-clump case
studied in the next section.

It is again advantageous to measure the time in terms of the
reduced variableτ defined in (3.7). Using this variable and
(3.10), (2.4) can be rewritten in the form

This result can be compared with (3.8), derived for the regular
case. In both cases, the fraction of sampled phase space is found
to depend only on the density of states of the clump, irrespective
of its shape and width. The appropriate reduced time variable
to be used is the same in both regimes, i.e.,τ ) t/2πpD.
Therefore, both laws can be plotted on the same diagram, as
has been done in Figure 3, which thus clearly displays that
regular and chaotic dynamics are characterized by a different
behavior in the physically interesting time domain.

We note that, as pointed out by Heller, the concept of break
time becomes more useful in the chaotic case, because small

splittings are discriminated against. As a result, the valueτ )
1 is more closely related to the last stages of the relaxation.

IV. Averaging over Many Clumps

If the whole spectrum consists of a long series of not too
dissimilar clumps, then the overall relaxation law is intuitively
expected to result from some kind of an average over the
behavior of each individual clump. However, the exact nature
of the averaging procedure is not immediately obvious.

A clump structure is characterized by the fact that the
normalized spectral profileI(E) splits into a sequence of
nonintersecting unnormalized functionsik(E)

It is more convenient to rewrite (4.1) in terms of normalized
clump functionsIk(E)

with weighting coefficientsak equal to

whereΩk is the energy range whereik(E) or Ik(E) are different
from zero. The coefficientsak are thus normalized according
to Σak ) 1.

The existence of a clump structure implies that the relaxation
process is characterized by more than one time scale.10,23-27

Equation 2.6 clearly shows that the terms that make upS(t)
gradually fade away as time goes on. The larger the frequency
ωnk, the faster its contribution vanishes. It is therefore advanta-
geous to split the summation and to group the large interclump
energy gaps in a termS1(t) that corresponds to a fast interclump
relaxation process, whereas small intraclump frequencies build
up a second contribution, denotedS2(t), that is responsible for
the long-time relaxation.10 In other words,S1(t) has already
reduced to a negligible value when intraclump relaxation takes
place. As already said, the present work is not concerned with
the short time scale. Therefore,S(t) has to be equated with
S2(t). Equation 2.4 then can be rewritten in the form

In the long-time limit,S2(t) splits into a sum of contributions
S2k(t). Each term is associated with a particular clump and has
an expression derived in section III.

We now show that it is possible to derive a suitable averaging
procedure that casts (4.4), with a functionS2(t) defined by (4.5),
in the form found for the single-clump spectrum. First, we
substitute (4.2) and (3.2) into (2.8) and note that profiles
corresponding to different indices do not overlap. This leads to
the following expression for N∞

Figure 2. Solid line: distribution function for rescaled energy spacings
in the chaotic case. Dashed line: piecewise defined linear approximation
[(3.9)]. The slope at the origin is equal toπ/2.

Figure 3. Fraction of sampled phase space in the single-clump case
as a function of the reduced parameterτ ) t/2πpD: (solid line) regular
dynamics; (broken line) chaotic limit.

[N(τ)
N∞ ]

chaos
) {1 + ( 1

2πτ2)[ln(4τ) + γ + 1]}-1

(3.11)

I(E) ) ∑
k

ik(E) (4.1)

I(E) ) ∑
k

akIk(E) (4.2)

ak ) ∫Ωk
ik(E) dE (4.3)

N(t)
N∞

) [1 + 2N∞S2(t)]
-1 (4.4)

S2(t) ) ∑
k

ak
2S2k(t) (4.5)

N∞
-1 ) ∑

k

ak
2∫Ωk

[Ik(E)]2

Dk

dE ) ∑
k

ak
2

µkDk

(4.6)
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Next, we introduce three kinds of weighted means of the
intraclump densities of states that will appear in the following
developments. The weighting coefficients are defined as

The first one is the weighted arithmetic mean

The second one is the weighted harmonic mean

Third, strange as it may seem, we also define〈D〉 as the
geometric mean of the weighted arithmetic and harmonic means
of the average densities of states of the various clumps.

Equation 4.6 can then be rewritten in the form

A. Regular Case.Let us first consider the regular case.
Substituting (3.5) into (4.5), one has

From (4.11), the productN∞S2(t) that appears in (4.4) becomes

Then, (4.4) becomes

Introducing a reduced time variable similar to that defined
in (3.7)

leads to an extremely simple relaxation law valid for the regular
case:

Thus, a suitable definition of the average density of states is
seen to make (4.14) and (4.16) identical to those obtained for
the single clump case [(3.6) and (3.8)].

B. Chaotic Case.The situation is more complicated in the
chaotic case, where two terms (t-2 ln t and t-2) are necessary
to generate a satisfactory relaxation law for an individual clump
[(3.11)]. Reducing the expansion ofS2k(t) to t-2 ln t gives good
results at extremely long times only.

Substituting (3.3), (3.10), (4.5), (4.7), and (4.11), into (4.4)
leads to

In the chaotic case, it turns out advantageous to define the
reduced time variable as

This leads to

Comparing (3.11) and (4.19), the relaxation law valid for a
many-clump spectrum is seen to differ from that pertaining to
a single clump by an additional term. To estimate the role of
the last term, we calculate it for a simplified model defined by
the following assumptions.

(i) The number of clumps is large enough to replace the
summation over the peaks by an integration over the energy.

(ii) Note that the quantitiesµk, ak, and thus the weighting
coefficients ck are random variables because there is no
systematic trend in the widths and intensities of the clumps.
Therefore, the corrective term will be averaged over all possible
spectral profiles within the energy rangeE1 e E e E2, which
amounts to taking the weighting coefficientsck all equal.

(iii) However, in contradistinction to the coefficientsck, the
densities of statesDk increase rapidly with the energy and thus
as a function of the indexk. A simple solution can be obtained
if this increase is parametrized by an exponential law:

This procedure leads to

ck )
ak

2/µk

∑
k

ak
2/µk

(4.7)

〈D〉arith ) ∑
k

ckDk (4.8)

〈D〉harm)

∑
k

ak
2

µk

∑
k

ak
2

µk

1

Dk

(4.9)

〈D〉 ) x〈D〉arith〈D〉harm) [∑k

ckDk

∑
k

ck/Dk]1/2

(4.10)

N∞ )
〈D〉harm

∑
k

(ak
2

µk
)

(4.11)

S2(t) ) (πp

t )∑
k

ak
2

µk

(4.12)

N∞S2(t) ) (πp
t )〈D〉harm (4.13)

[N(t)
N∞ ]

reg
) [1 +

2πp〈D〉harm

t ]-1

(4.14)

τ′ ) t/2πp〈D〉harm (4.15)

[N(τ′)
N∞ ]

reg
) (1 + 1

τ′)-1

(4.16)

[N(τ)

N∞
]

chaos

)

{1 +
2πp2

t2
〈D〉harm∑

k

ckDk[ln( 2t

πpDk
) + γ + 1]}-1

(4.17)

τ ) t/(2πp〈D〉) (4.18)

[N(τ)

N∞
]

chaos

) {1 + ( 1

2πτ2)[ln(4τ) + γ + 1] -

( 1

2πτ2)(〈D〉harm

〈D〉arith
)1/2

∑
k

ck( Dk

〈D〉) ln( Dk

〈D〉)}-1

(4.19)

D(E) ) A exp(RE) (4.20)

〈D〉arith ) 1
E2 - E1

∫E1

E2D(E) dE )
D(E2) - D(E1)

R(E2 - E1)
(4.21)

〈D〉harm)

[ 1
E2 - E1

∫E1

E2 dE
D(E)]-1

)
R(E2 - E1) D(E1) D(E2)

D(E2) - D(E1)
(4.22)

〈D〉 ≡ x〈D〉arith〈D〉harm) xD(E1) D(E2) (4.23)
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The corrective term

then becomes

with

To summarize, the correct expression for the many-clump
case is given by (4.19). The evaluation of this expression
requires a detailed analysis of the spectrum. If that information
is not available, then a much simpler expression, based on
assumptions i-iii can be used:

Note that the physically interesting range of the relaxation
corresponds toτ g 1. Therefore, whenF e 10, the second term
of the right-hand side of (4.26) can be neglected with an
accuracy better than 10%. Thus, when the densities of the first
and last clumps of the spectrum do not differ by several orders
of magnitude, the relaxation law simplifies to

Comparing with (3.11), the relaxation law for the many- and
single-clump cases are seen to coincide with a suitable choice
of 〈D〉 .

C. Regular Case Again.To compare regular and chaotic
dynamics, the relaxation laws have to be expressed in terms of
the same time variable. Equations 4.14 and 4.16 describe the
regular case in terms of the harmonic mean〈D〉harm and of the
associated reduced time variableτ′ [(4.15)]. It is thus necessary
to recast them in terms of the reduced time variableτ [(4.18)]
appropriate to the more complicated chaotic limit.

This equation can be seen as the many-clump generalization of
(3.8), because in the single-clump case (4.28) reduces to (3.8).

Here again, if a detailed analysis of the spectrum is not
available, a much simpler expression, based on assumptions i-iii
can be used:

V. Generic Relaxation Law in Reduced Units

Equations 4.16 (or eq 4.28) and 4.19 provide simple relaxation
laws that are independent of the shapes of the clumps and of

their number. They remain valid even if the spectrum is
characterized by a rich variety of shapes and widths. Of course,
our averaging procedure makes sense only provided that the
dynamical regime does not switch from regular to chaotic as
the energy increases.

The origin of the simplicity of the regular case with respect
to the chaotic limit lies in the number of terms to be retained in
the expansion ofS(t). For the regular case, a single term int-1

suffices for nearly the entire time range (i.e., excluding very
short times only). By contrast, in the chaotic limit, the relaxation
law that has to be averaged contains two terms, viz.,t-2 and
t-2 ln t. Each one requires a different average over the
characteristics of the individual clumps.

In principle, (4.16), (4.28), and (4.19) require a detailed
analysis of the spectrum. If that information is not available,
then the much simpler expressions (4.26) and (4.29) can be
proposed. They are expressed in terms of the same reduced time
variableτ [(4.18)], and involve parameters〈D〉 andF that are
simply related to the densities of states of the first and last
clumps of the spectrum [(4.23) and (4.25)].

However, (4.26) and (4.29) are based on assumptions i-iii.
One should be aware of the fact that, as a result of assumption
ii, they provide a correction that has been averaged over all
possibilities; i.e., they describe an average situation. Thus, they
propose generic relaxation laws; i.e., they provide a reference
against which particular cases are to be examined.

Particularly interesting is the result that both kinds of
dynamics, regular and chaotic, obey generic (i.e., model
independent) laws expressed in terms of the same reduced time
variableτ. Equations 4.19 and 4.28, or eqs 4.26 and 4.29, are
thus directly comparable. The latter two can be plotted on the
same diagram, as has been done in Figure 4, where the relaxation
laws of the regular and chaotic limits are compared. A value of
F ) 20 has been adopted, which means that the density of the
last clump is assumed to be 20 times higher than that of the
first clump. Apart from showing that the influence of the
averaging procedure over many clumps is hardly noticeable in
this case, Figure 4 demonstrates that phase space is not explored
at the same rate in the regular and chaotic limits. The difference
in behavior remains appreciable during the entire relaxation.
Equations 4.26 and 4.29 (or more fundamentally eqs 4.16, 4.28
and 4.19) express in the time domain the difference in the

(〈D〉harm

〈D〉arith
)1/2[∑k

ck( Dk

〈D〉) ln( Dk

〈D〉)]
1

E2 - E1x〈D〉harm

〈D〉arith
∫E1

E2D(E)

〈D〉
ln[D(E)

〈D〉 ] dE )

1
2(F + 1

F - 1) ln F - 1 (4.24)

F ≡ D(E2)

D(E1)
(4.25)

[N(τ)
N∞ ]

chaos
) {1 + ( 1

2πτ2)[ln(4τ) + γ + 1] -

( 1

2πτ2)[12(F + 1
F - 1) ln F - 1]}-1

(4.26)

[N(τ)
N∞ ]

chaos
) {1 + ( 1

2πτ2)[ln(4τ) + γ + 1]}-1

(4.27)

[N(τ)
N∞ ]

reg

) [1 + 1
τx〈D〉harm

〈D〉arith
]-1

(4.28)

[N(τ)
N∞ ]

reg
) [1 + 1

τ
ln F

F1/2 - F-1/2]-1

(4.29)

Figure 4. Fraction of sampled phase space in the many-clump case
as a function of the reduced parameterτ ) t/2πpD: (solid line) regular
dynamics; (broken line) chaotic situation. ParameterF ) 20 [F ) ratio
of the densities of states of the last and first clumps; see (4.25)]. To
show the influence ofF, the fraction [N(τ)/N∞]chaosis also reported for
F ) 0 (thin dotted line).
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distribution of nearest-neighbor level spacings observed in the
energy domain.
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Appendix. Density of Rescaled Energy Spacings

At time t ) 0, the number of sampled phase space cells is
required to be equal to 1, i.e.,N(0) ) 1. Hence, from (2.4), it
follows that

Consider first the regular case. Then, the rescaled density
D$(ω) is a constant, so that (2.12) transforms into

with q(ω) defined by (2.13). From (2.11),

The double integral can be evaluated as follows. Squaring
(1.2), one gets

Adopting as new integration variablesE ) E1 andω ) E2 -
E1, and noting that the integrand is invariant with respect to
the interchange ofE1 andE2 and hence is now an even function
of the new variableω, leads to

Comparing with (A.1) and (A.3), one obtains

Thus, in practice,Kreg is extremely close to 1.
The sensitivity ofN(t) to an approximation onKreg can be

studied as follows. From (2.4), (2.11), and (A.6), the correct
number of phase space cells sampled at timet is given by

wheres(t) is defined as

whereas the approximation which consists of admittingKreg )
1 leads to

The error associated with this approximation is thus given by

the difference

This expression admits a maximum whens(t) ) 0.5[N∞
2 -

N∞]-1/2 equal to

An error of one-fourth of a phase space cell in the evaluation
of the total volume is entirely negligible.

The chaotic case,Kchaos, is dealt with in a similar way.

References and Notes

(1) Uzer, T.Phys. Rep.1991, 199, 73.
(2) Dynamics of molecules and chemical reactions; Wyatt, R. E.,

Zhang, J. Z. H., Eds.; Marcel Dekker: New York, 1996.
(3) Dynamical information from molecular spectra by statistical and

related methods. Symposium in print; Nemes, L., Ed; ACH Models
Chemistry No. 134; Akade´miai Kiadó: Budapest, 1997; pp 539-694.
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I(E) I(E + ω) dE ) Kregq(ω) (A.2)
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(A.5)

Kreg ) 2S(0) ) 1 - 1/N∞ (A.6)

N(t) ) [N∞
-1 + 2(1 - N∞

-1)s(t)]-1 (A.7)

s(t) ≡ ∫0

+∞
q(ω)[sin(ωt/2p)/(ωt/2p)]2 dω (A.8)

Napp(t) ) [N∞
-1 + 2s(t)]-1 (A.9)

∆N(t) ) N(t) - Napp(t) )
2N∞s(t)
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(A.10)

∆Nmax ) 1/4 + (1/8N∞) + (5/64N∞
2) + ... (A.11)
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