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We examine the volume of phase space sampled by a nonstationary wave packet when the spectral function
consists of a single clump or of a series of them. The relaxation laws are expressed in terms of reduced time
variablesr, whose definition involves either the average density of states (for a single clump) or appropriately
weighted average densities of states (when the spectrum consists of many clumps). Introducing reasonable
approximations, very simple generic relaxation laws are derived for the Mét)dN.,, which measures the
fraction of available phase space that has been sampled by tidraer certain assumptions, these laws are
found to depend neither on the number nor on the individual features (shapes and widths) of the clumps.
However, they strongly depend on the nature (regular or chaotic) of the underlying dynamics. When the
dynamics is regular, the relaxation law is expressed in terms'ofwhereas the corresponding equation in

the chaotic limit is slightly more complicated and involves termgiAandz~2 In 7. Phase space is thus
explored according to essentially different relaxation laws in the regular and chaotic limits, the difference
being appreciable during the entire relaxation. These laws reflect in the time domain the difference in the
distribution of nearest-neighbor level spacings observed in the energy domain (Poisson or Wigner statistics).

I. Introduction spacings (i.e., an absence of zero spacings). The purpose of this

The aim of the present article is to contribute to the study of artlcle IS to use th|§ d'°h°f°",‘y to uncover some generic
intramolecular dynamics taking place in a vibrationally excited Q|ﬁerences in the tl'me domain betvyeqn the o!ynamlcs of
isolated molecule, thus studied under collision-free conditions. |_ntr_a_mo|ecu|ar vibrational energy redistribution in the two
The process by which vibrational energy is redistributed, denoted limiting cases.

IVR for short, has been extensively studied by a large variety ~ TO contribute to this problem, we concentrate on a typical
of approaches that all make use of the time-dependent picturespectral profile that seems to be of fairly general occurrence.
of spectroscopy-* There exists a fascinating connection Atlow energy resolution, the profil{E) consists of a number
between intramolecular dynamics and spectroscopy, based orPf peaks, each of which is found, at higher resolution, to be a
the fact that the Fourier transform of an optical specti() clump of numerous narrow liné8:1°2%27 For example, in the
generates an autocorrelation functi@{t). When properly ~ stimulated emission pumping spectrum of acetylene in the
studied (e.g., when applied to homogeneously broadened27 900 cn* energy regiort? a typical clump is 1 or 2 cmt
Spectra)’ this function can provide information on the relaxation wide and consists of 59100 narrow lines. This structure derives
process in the time domafl® We are especially interested from the fact that, as a result of the Frardkondon principle,
here in the case of congested molecular spectra, measured dhe oscillator strength is spread over a small number of
high energies, where detailed assignment in terms of traditional vVibrational modes (bright states) that interact with a quasi-
quantum numbers is impossible because the density of states igontinuum of so-called dark states. A clump structure corre-
very high and the amplitude of the nuclear motions very large. SPonds to an intermediate situation in which previously good
In that case, the characteristics of the classical dynamics thatquantum numbers have lost their value and is thus intermediate
underlies the relaxation process are known to appear in thebetween the regular and chaotic limits. For such a spectral
energy domain. For example, on the basis of the frequency profile, how does phase space exploration proceed?
distribution of nearest-neighbor energy spacings, two limits can  In previous articles of this seriésl® we have studied the
be definecP610.1422 regular dynamics, which leads to a Poisson time behavior of the quantum measing) initially introduced
distribution for adjacent spacings, and chaotic dynamics, which by Stechel and Helléx® This quantity measures the effective
implies a Wigner distribution for nearest-neighbor energy number of phase-space cells visited by the system during the
. _ relaxation process up to time Accepting that the spectrum
jc_I;L?Je"t‘garlg_ggggsﬁ’:‘;r)‘geggi_ggggflge addressed. Electronic mail: o3 pe described by a continuous function (i.e., replacing

f Permanent address: Chemistry Department, Moscow State University, SUmmations over discrete Franekondon factors by integra-
Moscow 119899, Russia. tions over energy), we could shéwthat the functionN(t)
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approaches its limiting valudl, as —1/t in the regular case  previous studi€s'%-12 have shown the advantages of using the

and as—In t/t? when the dynamics is chaotic. This result is measureN(t) instead of the survival probabilityC(t)|? in the

general, but requires further clarification on an important point. derivation of generic patterns of behavidihe functionN(t)

It might be suspected that the differences in the asymptotic has been showr®to increase from an initial value of 1 ait=

behaviors are detectable only at very long times, i.e., when the O to a final valueN., according to the law

relaxation process is nearly completed. In such a case, the

derived result would be of academic interest only. N ™ =N, 1+ 29 (2.4)
However, by studying théraction of phase space that has

been sampled by time (rather than its absolute magnitude),

and by expressing the relaxation laws in terms of suitable

reduced dimensionless time variables, we show here that a 1 2

distinction between regular and chaotic dynamics can be N, == Zpk (2.5)

established in the time domain where relaxation effectively takes

place and not only in the limit of extremely long times.

with

Furthermore, under certain assumptions, the derived relaxation ) = Zpk pn[Sin(wnktIZh)/(wnktIZh)]z
laws are found to be generic. By this we mean that they do not k=1 =kl
depend on the number and individual features (shapes and _ ;
widths) of the clumps but depend only on the nature of the A pkn: lp” Smcz(w""t/Zh) (2.6)
underlying dynamics.
The paper is organized as follows. Section Il describes the w, =E,— E (2.7)

continuous model for the spectrum. In section Ill, we consider
the relaxation of a single clump of levels. Different symmetric

and asymmetric spectral profiles are studied, and generic
relaxation laws are derived, both in the regular and in the chaotic
limits. In the chaotic case, a reasonable approximation for the
distribution function of all energy spacings is introduced. The

relaxation laws are shown not to depend on the details of the
spectral profile when appropriate dimensionless reduced time
variables are adopted. Section IV deals with a spectrum that
consists of a series of individual clumps. An averaging procedure
over the clumps is proposed, which leads to the same generic
relaxation laws as in section Ill with suitably modified

parameters. Concluding remarks are presented in section V.

Our analysis of phase space sampling is based on the
mathematical properties of eqs 22.7 and, in particular, on
the properties of the sinc function. This function was first
derived by Helle He smoothed the spectral profiléE) and
defined an envelopk(E) as the result of the integration of the
autocorrelation function between time§ and+T. Heller noted
the arbitrary nature of the procedure. However, we shéwed
that a siné function arises quite naturally by associating a
measure to the density operator of an average distribution
represented by a statistical ensemble in which the weights of
the different states are determined by the dynamics of the
system. It may also be mentioned that asymptotic laws were
found not to be modified if the siddunction is averaged over,
i.e., is replaced by a Lorentzian decredke.

Consider an optical spectruiE) generated by a pure initial Thus, eqs 2.42.7 are an exact quantum mechanical result
state (i.e., homogeneously broadened). The funcki& is if two assumptions are accepted: (i) the inverse participation
required to be normalized, i.e., for an electronic spectrum,  ratio is a reliable measure of phase space sampling and (i) the

o underlying spectrum is a line spectrum.
Im I(E) dE = Zpk =1 (2.1) Very short times will be henceforth disregarded: they

correspond to large energy gaps, i.e., to the interclump

relaxation, and have no relevance to the problem dealt with here.

As shown in a previous paper of this seri@shen the spectrum

is congested, i.e., when the energy gapg are small, it is

advantageous to replace the discrete summations by integrations

+oo . over the continuous variabl&andw. The individual Franck
CH = g/:w I(E) exp(-iEt/R) dE (2.2) Condon factorgy are replaced by a continuous functip(E)

) such that (E) = p(E) D(E), whereD(E) is the density of states.
Different measures have been proposed to evaluate thegquation 2.5 then becomes

volume of phase space available to a nonstationary wave packet

Il. Continuous Model

where the quantitiegc are Franck-Condon factors. Its Fourier
transform generates an autocorrelation func@¢t from which
we wish to extract information in the time domain.

in the infinite time limit or, equivalently, the effective number o +°°[I(E)]2
of quantum states that significantly contribute to the dynamics. N, '= f [p(E)]’D(E) dE = f ——dE (2.8)
These definitions can be grouped in a general forAfuta o ~ D(E)
Nogt = (Z pr P (2.3) Furthermore, it is profitable to take into account the statistical
theory of energy level&:1517.18The usual energy gaps are

replaced by rescaled dimensionless quantitredefined as
wherep is an arbitrary parameter. Stechel and Héfl@dvocate

the choiced = 1, which defines the so-called inverse participa- @ = G(E + w) — G(E) (2.9)
tion ratio. Alternatively, the limij{s — O generates the entropic

measure of phase space which, as shown by Levine etwhereG(E) is the dimensionless integrated density of states,
al.263L3has a more fundamental significance. Here, however, j e
we adopt Heller's measure, which leads to simple and tractable
equations. In that formalism, the number of phase space cells

E ’ U
sampled as a function of time is denoted 44).6 Several GE = /E, D(E) dE (2.10)
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The procedure leads o
St = ["g(w) sind(wt/2h) do (2.11)
where

9@ = [TIEIE+ 0)D o E]dE  (2.12)

The dimensionless functioD,[@(w,E)] represents the

density of all rescaled energy spacings (and not only the nearest-

neighbor spacings). Finally, we also consider a simplified
version of this function, which has already been studied in the
literaturg?®21.22

dw) = [TIENE+ o) dE (2.13)

lll. Relaxation of a Single Clump

A. General Equations. Consider a spectral profilé&(E)
restricted to a single clump of states. The clump may possibly
have an internal structure (e.g., may possibly exhibit several
maxima) but must obey two mathematical requirements. First,
the intensity vanishes at both ends of its profile. Second, the
clump has to be sufficiently narrow for its density of stdi¢E)
to be taken as a constant, denoedn such a case, the rescaled
frequencies are simply given by

w = Do (3.1)
Within each clump, the reduced variakteno longer depends
on E but onw alone.

An important role will be played by the width of the clump,
which is defined as follows:

u=00) "=/ NEPdE)* (3.2)

This can be justified by noting that if the densiiyis constant
within the width of the clump, then (2.8) and (3.2) lead to

u=N,_/D (3.3)
which shows that the quantity has the dimension of energy
and can be interpreted as the effective width of the clump.

B. Models. Different functions were examined to parametrize
the shape of the overall clump envelope. Two symmetric bell-
shaped functions were considered first: an inverted parabola
I(E) = 0.750% — E?)/b® (with —b < E < b) and a Gaussian
function I(E) = exp(~Eb?)/bv/z. Then, to examine asym-
metric profiles, we turned to the functioh€) = E" exp(—E/
b)/(b™1n!), where 0< E < « and where the exponemt is
allowed to vary between 0 and 10. Next, we tried two functions
presenting a double maximum, vi2(E) = E? exp(—|E|/b)/

43, as well as the sum of two inverted parabolas of different
widths. Finally, we considered a spectroscopic profile exhibiting
2n + 1 regular maxima, i.e., the functidgE) = 2 cog(E/b)/

(2n + L)oo [with —(2n + 1)7b/2 < E < (2n + 1)zb/2]. In all

of these examples, the paramekehas the dimension of an
energy and is simply related to the width of the clump

C. Regular Dynamics. It has been shown earli€rthat in

Pavlov-Verevkin and Lorquet

To proceed further, we note that the distribution functipn
is equal to a constaAt;*>which we denoté e, and which can
be determined from the normalization conditibg0) = 1. In
the AppendixKegis shown to be equal to + 1/N.. Since the
continuous model implies a large number of levels, the term
1/N. will henceforth be everywhere neglected with respect to
1 andKeg will be simply replaced by one. From (2.12), (3.2),
and (3.4), one has

Sedt) = mhlut (3.5)
This result remains true even if the clump displays two or
more maxima, provided only that the density of states can be
assumed to remain constant within the energy range spanned
by the clump.

If the efficiency of phase space sampling is to be assessed,
the most interesting part of the relaxation law concerns the long-
time behavior of the functiorgeqt). The value ofN. for a
typical clump is, e.g., of the order of 100. L&tbe the time
such thatS is reduced to the very small valuge(T) =
Sed0)/Ne, = 0.5N... From (2.4), it follows thalNeg(T) = 0.5N..
Thus, by a timeT such thaSe(T) is considerably reduced with
respect to its initial value and reaches its asymptotic behavior,
Nreg(T) has reached only half of its final value. Therefore, the
simple asymptotic law (3.5) can be expected to reproduce
adequately the behavior df(t) in the dynamically interesting
time range. Substituting (3.3) and (3.5) into (2.4) leads to

-

N, reg

Note that it is more instructive to examine the ral(t)/N.,
rather than the absolute valud(t). The ratio gives direct
information on the stage of the relaxation. Furthermore, measur-
ing the time in terms of the reduced variable

T =t/27hD

(3.6)

-1
H@)

(3.7)

provides a very simple law

[N(D)/IN,], o= L+ 1/0)7* (3.8)

e
Results for the different model spectra are given in Figure 1.
D. Time ScalesNote the difference in the time scales of the

two parts of Figure 1. Although the difference between the

individual models and the approximation expressed by eq 3.5

is very conspicuous for the functior&et) examined in the

short-time range, it is no longer noticeable on the plot of the
functions representin4t) during the period of time necessary
for complete relaxation. The important point is th&tq(t)
reaches its asymptotic behavior much faster thdagt).

Therefore, whe.. is large, the leading term of the asymptotic

expression oBe((t) suffices to derive an expression Nfeqt)

valid everywhere except at short times.

Heller introduced the concept of break time, defined as the
time after which no new region of phase space can be visited.
He recognized the approximate nature of this concept and
proposed for it the values#iD, which corresponds to = 1,
thus toN/N, = 0.5 andS = 1/2N.. Therefore, an interesting
part of the relaxation law takes place at times larger than the
break time (in practice betweern= 1 and, e.g.7 ~ 30). How
can this be understood? Two remarks can be made. First, the

the regular case the relaxation proceeds according to a generagiensity of state® provides information on average energy gaps.

asymptotic law given by

Sedt) = 7hg(O)t  (t— o) (3.4)

The break time would be better defirtédis 2rh/3, with 6 equal
to the smallest energy gap between two optically active levels
and not to the average quanty . As a result, the relaxation
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S in chaotic than in regular systems. We now try to quantify
05 Heller's conjectures.

The exact distribution functio®(z) valid for all of the
rescaled spacings is not known in the chaotic case. However,
its qualitative behavior is quite simpté!°>For small values of
the rescaled spacings, it coincides with a Wigner nearest-
neighbor distribution. Thus, at the origin, the function is equal
to zero with a slope equal te/2. For larger values ofo, it
tends to a constant vall@naes as in the regular case. The value
of the constanKchaosis determined by the conditioN(0) = 1.

0.2

g

utﬂ/‘h As shown in the Appendix, it can be safely taken equal to 1.
104N(t)/Neo Thus, a reasonable approximation D, is given by the
following piecewise defined function:
_Jawl2 w=<2n
Dy () = {1 o= 2t (3.9)
08
From (2.11), (2.12), (2.13), and (3.1), one has
Sthaoft) = Set) — S(B) + S(1)
o e 8800 with
wut/h
Figure 1. Upper part: behavior of the functio®t) in reduced time Sedt) = ﬁ:oq(a)) siné(wt/2h) dw
units ut/h for the regular case. The broken lines represent the exact
results for the various clump profiles enumerated in section Il.B. The 27D .
solid line is the approximation provided by (3.5). Lower part: Fraction SO = ﬁ) o(w) sinc(wt/2H) do
of sampled phase space as a functioptfi. The exact results for all oD
of the spectral profiles and for (3.5) are indistinguishable. St = fo 7 (7Dw/2)g(w) Sincz(a)t/Zh) do
can be expected to end at valueg ¢drger than 1. Second, the  The functionSeq(t) has been calculated in section III.C. Its

break time is a qualitative concept corresponding to the first asymptotic behavior is given by (3.5). To calculate the integrals

zero of the sin¢function. However, for a given energy splitting, S(t) andSy(t), new variables are introducerl= ut/h andx =
the sin@ function does not die out after its first zero, but wlu. Taking (3.3) into account, one gets

decreases asymptotically &2 on the average, thus giving rise
to dynamics after the break time. S =u ZIHN”q(,uX) siné(x2) dx

Short-time behavior is also strongly influenced by the 0
systematic effects studied by Wolynes and by Gruebele con- gng
cerning energy flow in a phase space of reduced dimen-
sionality3#:33-35 |n an effort to capture the generic features of S,(t) = (TuN,/2) le’TN”xq(ﬂx) siné(xz2) dx
IVR, these authors have developed the logical idea that @ Jo
transitions between states that are close to each other in quantum The upper bound of these integrals is so small that a Taylor
space occur more readily than those between distant states
Furthermore, vibrational coupling constants have been shown

to be characterized by scalir_1_g properties. As a rgsult, energy isguished from that of an exact calculation. (This can be
expected to flow along specific pathways, especially during the | nqerstood as follows. From its definition [(2.13)(w) is a
|n|t|allstages of .the .relaxatlon. This model .has received bell-shaped function whose width is approximately twice as
experimental confirmatiohThe corresponding regime, denoted large as the width of the clump. A small valuexfmplies a
“correlated intermediate time scale dynamics”, ends at the time ,5,e ofe small with respect to this width.) This approximation

at which|C(t)|* fluctuates about its averadé.™, i.e., atr = (which was extensively checked by numerical calculations) leads
1, in reduced units. The short-time regime is of course of ¢,

extreme importance if one aims at controlling molecular
reactivity* However, our purpose is to estimate the efficiency t) = 20N &
= sinc(xz2) dx
of spontaneous IVR and, therefore, we concentrate on the S0 0 (xz2)
1 time scale. , = (2/2) Si(2daN,) + (aN,JD)[cos(ZaN,) — 1]
In summary, it makes sense to study the dynamics after the
break time. The essential result derived in section I11.C is that, gnd
in that range, the fraction of phase space that has been sampled

expansion of the integrand limited to its first term (i.e., replacing
g(ux) by q(0)) suffices to give a result that cannot be distin-

by timet depends in practice only on the density of states of S = (7N /D)[In(2z/7N,) + y — Ci(2z/nN,)]
the clump, independently of its structure (i.e., shape, width, and
spectral moments). where Si and Ci are the sine and cosine integralsyaadtuler’s

E. Chaotic Dynamics.Heller also pointed out that the break ~ constant.
time is probably better defined for a Wigner surmise due to the ~ Altogether, one arrives at the following expression
mutual repulsion of energy leveldde argued that, as a result
of that repulsionN(t) must approach its final value more rapidly Sthaodl) = (ANJD)INQRZAN,) +y +1]  (3.10)
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Figure 2. Solid line: distribution function for rescaled energy spacings
in the chaotic case. Dashed line: piecewise defined linear approximation
[(3.9)]. The slope at the origin is equal 2.
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Figure 3. Fraction of sampled phase space in the single-clump case
as a function of the reduced parametet t/27AD: (solid line) regular
dynamics; (broken line) chaotic limit.

The leading term in (3.10) i52 In z in agreement with our
previous result? However, numerical studies show that this term
dominates the expansion only when the relaxation is nearly
completed. Therefore, the use of the whole eq 3.10, involving
both thez"2 andz 2 In z terms is necessary to get the correct
result in the physically interesting domain. This remark turns

Pavlov-Verevkin and Lorquet

splittings are discriminated against. As a result, the valee
1 is more closely related to the last stages of the relaxation.

IV. Averaging over Many Clumps

If the whole spectrum consists of a long series of not too
dissimilar clumps, then the overall relaxation law is intuitively
expected to result from some kind of an average over the
behavior of each individual clump. However, the exact nature
of the averaging procedure is not immediately obvious.

A clump structure is characterized by the fact that the
normalized spectral profild(E) splits into a sequence of
nonintersecting unnormalized functiongE)

I(E) = Zik(E) (4.1)

It is more convenient to rewrite (4.1) in terms of normalized
clump functionsl«(E)

€)=Y alE) (4.2)
with weighting coefficients equal to
a, = fgkik(E) dE (4.3)

whereQy is the energy range whetgE) or I(E) are different
from zero. The coefficientsk are thus normalized according
to g = 1.

The existence of a clump structure implies that the relaxation
process is characterized by more than one time $€afe?’
Equation 2.6 clearly shows that the terms that makeS{tp
gradually fade away as time goes on. The larger the frequency
wnk the faster its contribution vanishes. It is therefore advanta-
geous to split the summation and to group the large interclump
energy gaps in a teri®(t) that corresponds to a fast interclump
relaxation process, whereas small intraclump frequencies build
up a second contribution, denot&gt), that is responsible for
the long-time relaxatio®? In other words,S(t) has already
reduced to a negligible value when intraclump relaxation takes
place. As already said, the present work is not concerned with
the short time scale. Thereforgt) has to be equated with
S(t). Equation 2.4 then can be rewritten in the form

out to have important consequences in the many-clump case

studied in the next section.

It is again advantageous to measure the time in terms of the

reduced variable defined in (3.7). Using this variable and
(3.10), (2.4) can be rewritten in the form

|

This result can be compared with (3.8), derived for the regular

Ne)

-1
\ - { 1+ (i)[ln(m) +yt 1]} (3.11)

o |chaos

N(®)

= L+ 2NLS,01

= (4.4)

In the long-time limit,Sy(t) splits into a sum of contributions
Sx(t). Each term is associated with a particular clump and has
an expression derived in section III.

S(t) = Zaﬁsk(t) (4.5)

case. In both cases, the fraction of sampled phase space is found We now show that it is possible to derive a suitable averaging

to depend only on the density of states of the clump, irrespective
of its shape and width. The appropriate reduced time variable
to be used is the same in both regimes, ie5 t/27hAD.

procedure that casts (4.4), with a functigit) defined by (4.5),
in the form found for the single-clump spectrum. First, we
substitute (4.2) and (3.2) into (2.8) and note that profiles

Therefore, both laws can be plotted on the same diagram, ascorresponding to different indices do not overlap. This leads to

has been done in Figure 3, which thus clearly displays that
regular and chaotic dynamics are characterized by a different
behavior in the physically interesting time domain.

We note that, as pointed out by Heller, the concept of break

time becomes more useful in the chaotic case, because small

the following expression for N

2

3
E=Y—

u Dy

[ (EN*
Dy

(4.6)

k

N =2 acks



Expansion in Phase Space

Next, we introduce three kinds of weighted means of the
intraclump densities of states that will appear in the following
developments. The weighting coefficients are defined as

2

ay i

= 4.7)
Zakzlﬂk
The first one is the weighted arithmetic mean
D in = ZCka (4.8)
The second one is the weighted harmonic mean
akz
My
Dlam= —2 (4.9)
a 1
e Dy

Third, strange as it may seem, we also defliidlas the

geometric mean of the weighted arithmetic and harmonic means

of the average densities of states of the various clumps.
112

G Dy
[DU= \ DDQrith[Dl-—l‘larmz (4-10)

Zwm

Equation 4.6 can then be rewritten in the form
I:Dmarm

N, = (4.11)

2

&

Uy

2

A. Regular Case.Let us first consider the regular case.
Substituting (3.5) into (4.5), one has

mh
s0-(7

From (4.11), the produd{..S(t) that appears in (4.4) becomes

2

Uy

(4.12)

NS0 = (T Dl (4.13)
Then, (4.4) becomes
-1
NOF _ ’1 . 2D e DDma""] (4.14)
No g t

Introducing a reduced time variable similar to that defined
in (3.7)
7 = t27AMD (4.15)

leads to an extremely simple relaxation law valid for the regular
case:
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1 -1
] ole2)
N, reg T
Thus, a suitable definition of the average density of states is
seen to make (4.14) and (4.16) identical to those obtained for
the single clump case [(3.6) and (3.8)].
B. Chaotic Case.The situation is more complicated in the
chaotic case, where two termis{In t andt=2) are necessary
to generate a satisfactory relaxation law for an individual clump
[(3.11)]. Reducing the expansion 8&f(t) tot~2In t gives good
results at extremely long times only.
Substituting (3.3), (3.10), (4.5), (4.7), and (4.11), into (4.4)
leads to

(4.16)

N(7)

N

0

chaos
2

27h
1+ t_ZDDmarmZ Cka

-1
+y+1 } (4.17)

2t
In

In the chaotic case, it turns out advantageous to define the
reduced time variable as

T = t/(27h(DL) (4.18)

N(z)

N

0

This leads to
1
={1+ (— In(47) +y + 1] —
chaos 2.7'[1,'2

sekaciEl
— ch —]In[— (4.19)
277%| \ DLty (D D

Comparing (3.11) and (4.19), the relaxation law valid for a
many-clump spectrum is seen to differ from that pertaining to
a single clump by an additional term. To estimate the role of
the last term, we calculate it for a simplified model defined by
the following assumptions.

(i) The number of clumps is large enough to replace the
summation over the peaks by an integration over the energy.
(i) Note that the quantitiegy, a, and thus the weighting
coefficients ¢y are random variables because there is no
systematic trend in the widths and intensities of the clumps.
Therefore, the corrective term will be averaged over all possible
spectral profiles within the energy range < E < E,, which

amounts to taking the weighting coefficiergsall equal.

(iii) However, in contradistinction to the coefficientg, the
densities of stateBy increase rapidly with the energy and thus
as a function of the indek A simple solution can be obtained
if this increase is parametrized by an exponential law:

D(E) = Aexp@E) (4.20)
This procedure leads to
_ 1 e _ D(E) — D(Ey
DGyt = E,-EJa D(E) dE = TwE—E) (4.21)
DDmarm:
1 & dE 1t «(E,— E)D(E) D(E)
[Ez “eloE T oe-oey P

D= ‘/DDQrithE[Dmarm: \/D(El) D(Ez) (4-23)
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The corrective term

D:Dmarm 2 Dk Dk
ch —|In[—
D:Dgrith (D (D
then becomes

(D
1 marmezD(E) In[D(E) dE =
E, — EY D, & DO | DO

%Zti)lnp—l (4.24)
with
_ D(E)
°=DE) (4.25)

Pavlov-Verevkin and Lorquet
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Figure 4. Fraction of sampled phase space in the many-clump case
as a function of the reduced parameater t/27AD: (solid line) regular

To summarize, the correct expression for the many-clump dynamics; (broken line) chaotic situation. Parameter 20 [p = ratio
case is given by (4.19). The evaluation of this expression of the densities of states of the last and first clumps; see (4.25)]. To

requires a detailed analysis of the spectrum. If that information
is not available, then a much simpler expression, based on

assumptions-tiii can be used:

o

_ 1 _

e i)

o Jchaos

Note that the physically interesting range of the relaxation

corresponds te = 1. Therefore, whep < 10, the second term

show the influence op, the fraction N(7)/New)]chaosiS also reported for
p = 0 (thin dotted line).

their number. They remain valid even if the spectrum is
characterized by a rich variety of shapes and widths. Of course,
our averaging procedure makes sense only provided that the
dynamical regime does not switch from regular to chaotic as
the energy increases.

The origin of the simplicity of the regular case with respect
to the chaotic limit lies in the number of terms to be retained in
the expansion of(t). For the regular case, a single terntia

of the right-hand side of (4.26) can be neglected with an suffices for nearly the entire time range (i.e., excluding very
accuracy better than 10%. Thus, when the densities of the firstshort times only). By contrast, in the chaotic limit, the relaxation

and last clumps of the spectrum do not differ by several orders |aw that has to be averaged contains two terms, vi2.and

of magnitude, the relaxation law simplifies to

N(z)

-1
N - { 1+ (Zﬂirz)[ln(m +yt 1]} (4.27)

o Jchaos

t=2 In t. Each one requires a different average over the
characteristics of the individual clumps.

In principle, (4.16), (4.28), and (4.19) require a detailed
analysis of the spectrum. If that information is not available,

Comparing with (3.11), the relaxation law for the many- and then the much simpler expressions (4.26) and (4.29) can be
single-clump cases are seen to coincide with a suitable choicePTOPOSed. They are expressed in terms of the same reduced time

of DO.

C. Regular Case Again.To compare regular and chaotic

variabler [(4.18)], and involve parametef®Jand p that are
simply related to the densities of states of the first and last

dynamics, the relaxation laws have to be expressed in terms ofClUMPs of the spectrum [(4.23) and (4.25)]. -
the same time variable. Equations 4.14 and 4.16 describe the However, (4.26) and (4.29) are based on assumptions i

regular case in terms of the harmonic méBd,m and of the

associated reduced time variablg(4.15)]. It is thus necessary

to recast them in terms of the reduced time variab]ét.18)]
appropriate to the more complicated chaotic limit.

-1
(D
I P D Harm (4.28)
reg T |:IDQrith

N(7)

N

00

One should be aware of the fact that, as a result of assumption
ii, they provide a correction that has been averaged over all
possibilities; i.e., they describe an average situation. Thus, they
propose generic relaxation laws; i.e., they provide a reference
against which particular cases are to be examined.
Particularly interesting is the result that both kinds of

dynamics, regular and chaotic, obey generic (i.e., model
independent) laws expressed in terms of the same reduced time

This equation can be seen as the many-clump generalization ofvariabler. Equations 4.19 and 4.28, or eqs 4.26 and 4.29, are
(3.8), because in the single-clump case (4.28) reduces to (3.8)thus directly comparable. The latter two can be plotted on the
Here again, if a detailed analysis of the spectrum is not same diagram, as has been done in Figure 4, where the relaxation

available, a much simpler expression, based on assumptidns i

can be used:

-1
(4.29)

N@ _ 1+ Inp
Ne, req T

V. Generic Relaxation Law in Reduced Units

laws of the regular and chaotic limits are compared. A value of

p = 20 has been adopted, which means that the density of the
last clump is assumed to be 20 times higher than that of the
first clump. Apart from showing that the influence of the
averaging procedure over many clumps is hardly noticeable in
this case, Figure 4 demonstrates that phase space is not explored
at the same rate in the regular and chaotic limits. The difference
in behavior remains appreciable during the entire relaxation.

Equations 4.16 (or eq 4.28) and 4.19 provide simple relaxation Equations 4.26 and 4.29 (or more fundamentally eqs 4.16, 4.28
laws that are independent of the shapes of the clumps and ofand 4.19) express in the time domain the difference in the
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distribution of nearest-neighbor level spacings observed in the the difference

energy domain.
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Appendix. Density of Rescaled Energy Spacings

At time t = 0, the number of sampled phase space cells is

required to be equal to 1, i.eN(0) = 1. Hence, from (2.4), it
follows that

S0)=0.5(1— 1/N,) (A.1)

Consider first the regular case. Then, the rescaled density

D,(w) is a constant, so that (2.12) transforms into

9(0) = Kreg [ 1E) I(E + ) dE = Ko (@) (A.2)
with g(w) defined by (2.13). From (2.11),
SO0) =Ko . dE [ do I(E) I(E + ) =

Kieg s 0() dov (A.3)

AN@® = N(t) — Ny ft) =

2N_S(t)
[1+ 2N_SO][L + 2N, () — 25(0)]

(A.10)

This expression admits a maximum whs(t) = 0.5[N.,2 —

N»] ~2 equal to

AN, =+ (N + CleNA + ... (A1)

An error of one-fourth of a phase space cell in the evaluation

of the total volume is entirely negligible.
The chaotic caséchaos IS dealt with in a similar way.
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