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It long has been known that advantages attend employing, as a basic internuclear coordinate for determining
a molecular potential energy surface, a variableS ) 1 - R0/R, whereR0 is a reference distance near to half
of an equilibrium distance. For a diatomic molecule, starting from numerical or analytical representations of
the energy,W(R) ) W(S), it is shown how to generate the analytical series,W(S) ) σ(S)∑n bnPn(S), where
Pn(S) are orthogonal polynomials with weight functionσ(S) over the range (-1,1) for S. By rearrangement,
there result the series forW(R) in inverse powers ofR. For neutral diatomics, the Jacobi polynomials,Pn

1,6 (S)
with weight function (1+ S)(1 - S)6, seem particularly appropriate when the potential for large R is of
special interest.

Consider a prototypical diatomic molecule in the Born-
Oppenheimer approximation, with ground-state potential energy
W(R) a function of the internuclear distanceR and equilibrium
distanceRe. Parr and White introduced1 and Simons, Parr, and
Finlan (SPF) applied and treated in some detail2 a power series
for W(R) in the variable (1- Re/R). This expansion has since
seen many applications.3-7 In the present paper, we refine,
systematize, and extend the SPF approach.

We adopt as the expansion variable a generalization of the
SPF variable

with R0 as a reference point more or less nearRe. ThenS )
{-∞, -1, 0, 1} for R ) {0, R0/2, R0, ∞}. Note that the
transformation of variables fromR to S forces the simple pole
atR) 0 to the edge of the real line without increasing its order,
whereas at the same time the problem of discerning the
asymptotic decay ofW(R) asR f ∞ has been changed to the
problem of finding the behavior ofW(S) at S) 1. We now set
out to suitably representW(S) as a power series

or some truncation thereof. We hope to thereby find a useful
analytical expression forW(S) that can be systematically
improved as the amount of data available increases. We also
want to obtain a reasonable potential energy surface even when
the number of terms included is small. In Figure 1 are shown
W(R) andW(S) for the hydrogen molecule.

The original SPF work well demonstrates the power and the
promise of eq 2. See, for example, Figure 5 in SPF,2 which
compares a sixth-order potential of the form of eq 2 with the
RKR potential for carbon monoxide. Input for the SPF calcula-
tions were four Dunham coefficients and two boundary condi-
tions atS ) 1 (R f ∞). The dissociation energy for carbon
monoxide was predicted within seven percent of the experi-
mental value.

The method can be improved, and made completely system-
atic, with the modifications we now describe. We may assume

W(S) is known in advance, whether from ab initio calculations,
inference from experiment, or otherwise. We choose to use
information aboutW(S) only in the “significant” region fromR
) R0/2 to R f ∞, that is, the region fromS ) -1 to 1. This
suggests eschewing series inS in favor of series of orthogonal

S≡ 1 - R0/R (1)

W(S) ≡ ∑
n

anS
n (2)

Figure 1. Potential energy surface for the hydrogen molecule.23 (a)
W(R) vs R. (b) W(S) vs S.
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polynomials inS, Pn(S), orthogonal over the interval (-1,1) with
respect to some appropriate weighting factor,σ(S). Thus, we
have

and

For a givenW(S), R0, and choice of orthogonal polynomials,
the coefficientsbn are uniquely determined by this procedure,
and the procedure is systematic and readily implemented.

A reasonable (though not mandatory) choice forR0/2 is the
turning point on the potential energy surface,W(R0/2) ) W(∞)
) 0, with the last equality setting our choice of energy zero.
One must choose among the available sets of polynomials
orthogonal over (-1,1); in the limit, different choices should
give the sameW(S).

By inserting eq 1 into eq 3, one findsW(R) as a sum of
polynomials in (1- R0/R), from which rearrangement yields a
sum of inverse powers ofR. (More simply, noting thatS - 1
) - R0/R, the coefficients in the 1/Rexpansion may be obtained
from the coefficients of the Taylor series expansion ofW(S)
aboutS ) 1.) The coefficients of the Taylor series, in turn,
may be efficiently computed using the recurrence relation for
dPn(S)/dS.) In principle, even the very small (but important)
long-range terms inW(R) (such as 1/R6) will be determined
correctly by this procedure.

Appealing as weight functions are the Jacobi polynomials,
Pn

R,â(S), n ) 0, 1, 2, ...,8 for which the weight function is

so that

with

Thebn are most readily computed if the input potential energy
surface is evaluated at the abscissas of the appropriate Gauss-
Jacobi quadrature formula.9,10

Experience will tell which choices ofR andâ will be best
for a particular application. Consider firstR ) â ) 0, σ(S) )
1. Then

and

where thePn(S) are the classic Legendre polynomials. The full
expansion of eq 8 is essentially (but see the next paragraph)
the SPF expansion already known to be useful and quite
accurate.2 Truncated at three terms, it is the reasonably good
Fues potential,11 which is a quadratic in 1/R. Note that eq 9
provides immediate access to the parameters in the potential,

though when the expansion is severely truncated one would
generally prefer empirical values of the coefficients.

Consider nextR ) â ) 1, σ(S) ) (1 + S)(1 - S), producing

Because (1+ S)(1 - S) ) (R0/R) - 2)(R0/R), the zeroth order
term here already recovers the form of the Fues potential. This
formula provides an efficient way to generate the SPF potential.

As a more drastic change from the original SPF method,
accounting for the trueR f ∞ behavior and responding to our
desire to extract long-range coefficients from accurate potentials,
we takeâ to be the leading-order term in the asymptotic series
in 1/R (mimicking the wayW(R) f 0 asR f ∞); for a neutral
diatomic,â ) 6. If one choosesR0 so thatW(R0/2) ) 0, it is
also appropriate to takeR ) 1 (which mimics the wayW(R) f
0 as R f (R0/2). (If W(R0/2) * 0, then R ) 0 is more
appropriate.) Then, for a neutral diatomic molecule, we will
haveσ(S) ) (1 + S)(1 - S)6

and

Implementation of eqs 8, 10, and 11 are equally easy. Note that
because (1+ S)(1 - S)6 ) (R0/R - 2)(R0/R)6 the series
generated using eq 11 yield, upon rearrangement, asymptotic
series in (R0/R)6 and higher powers of (R0/R). Such expansions
overcome the primary shortcoming associated with the original
SPF method: the difficulty of satisfying the appropriate
asymptotic constraints.12

Finally, one could go on to a weight function which recovers
both theR f 0 and theR f ∞ limits, for example

wherea and b are chosen to produce the correct asymptotic
decay,W(R) ∼ Z1Z2/R asR f 0 andW(S) ∼ (Z1Z2/R0) (1 - S)
asSf - ∞. The set of orthogonal polynomials associated with
eq 13 is found through repeated application of the generalized
Christoffel theorem,13 which tells how recursion coefficients are
modified whenσ(S) is modified by a polynomial divisor.

The preceding methods for forcing asymptotic constraints on
potential energy functions are similar to the “reproducing kernel”
techniques employed by Ho, Rabitz, and co-workers.14,15Indeed,
the orthogonal polynomial expansion may be generated using
the reproducing kernel from the theory of orthogonal polynomi-
als16

where

Here,Pn(S) are the orthogonal polynomials associated with the

W(S) ) σ(S)∑
n

bnPn(S) (3)

bn ≡ ∫-1

1
Pn(S)W(S) dS (4)

σ(S) ) (1 + S)R(1 - S)â (5)

W(S) ) [(1 + S)R(1 - S)â]∑
n

bn Pn
R,â(S) (6)

bn ≡ ∫-- 1

1
Pn

R,â(S)W(S) dS (7)

W(S) ) ∑
n ) 0

∞

bnPn(S) (8)

bn ≡ ∫-1

1
Pn(S)W(S) dS (9)

W(S) ) (1 + S)(1 - S)∑
n

bn Pn
R,â(S) (10)

W(S) ) [(1 + S)(1 - S)6]∑
n

bn Pn
1,6(S) (11)

bn ≡ ∫- 1

1
Pn

1,6(S)W(S) dS (12)

σ(S) )
(1 + S)(1 - S)6

((S+ a)2 + b2)3
(13)

W(S) ) σ(S)∫-1

1
KM(S,S′)W(S′) dS′ (14)

KM(S,S′) ≡ ∑
n)0

M

Pn(S)Pn(S′) ≡

1

aM

‚
PM(S′)PM+1(S) - PM(S)PM+1(S′)

S- S′
(15)
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measureσ(S) and aM is the recursion coefficient for the
orthonormal polynomials associated with the weightσ(S)

For anyσ(S) of interest, recursion coefficients (thence orthogo-
nal polynomials) can be generated using standard subroutines;17

this provides computationally efficient techniques for generating
representations of the potential energy surface.

Rearrangements to series in 1/R are routine for any of the
truncated forms. In the limit where the expansions are not
truncated, there result asymptotic series in 1/R: the very 1/R
series that have been the subject of so much attention in the
past.18

Rapid convergence of any of these formulas to the original
givenW(S) is guaranteed by the fact that, as illustrated in Figure
1, W(S) is smooth on [-1,1]. In particular, becauseW(S) is
differentiable to all orders, the asymptotic decay of the expansion
coefficients,bn, is faster than any polynomial inn-1. (In more
detail, limnf∞(bn/nκ) f 0 for any finite κ.)19 Accurate ap-
proximation of the potential energy surface should result even
when the expansions are truncated at low order.

The fact that information fromS < -1 has been not been
used as input does not preclude the final calculatedW(S) from
being accurate in the repulsive portions of the surface: This is
because analytic functions which are identical on any interval
of finite length are identical over their entire extent of analyticity;
if W(S) is analytic in some ellipse containing the interval [-1,1],
thenW(S) will be accurately approximated within this ellipse.
(One may argue that truncated series should quickly approach
this optimal result: The asymptotic decay of the expansion
coefficients for functions analytic in an ellipse decay as
geometric series,|bn| ∼ pn where 0ep < 1 depends on the
size of the ellipse.19) In the not unreasonable (but, to the authors’
knowledge, unproved) case in whichW(S) is everywhere
analytic (excepting, of course,S f (∞), the orthogonal
expansion technique proposed here gives an accurate depiction
of the entire potential energy surface and the magnitudes of
the expansion coefficients decay faster than any geometric series.

These results certainly improve the methods for dealing with
SPF potentials for diatomic molecules. It will be highly
interesting to apply the same ideas to polyatomic molecules. In
the spirit of the “central force field” of the classical theory of

vibrations,20 take the set of all scalar internuclear distances as
internal coordinates and replace each internuclear distance with
an appropriate SPF coordinate. Note that1/2N(N - 1) g 3N -
6 for N g 3, with equality holding forN ) 3 and 4. Provided
the redundancy problem is addressed, central force coordinates
can also be used forN > 4.21,22
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