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Short strong hydrogen bonds are modeled with two resonating bonding structures issued from a valence bond
analysis. A formula giving the bond dissociation energy as a function of the difference in proton affinities
(∆PA) is demonstrated. This equation is expanded in Taylor series and compared to similar equations found
in the literature. It is found that the correlations either from experimental data or derived from the Marcus
equation can be justified by the same valence bond arguments.

Introduction

One might oversimplify the hydrogen bonding “puzzle”1 by
considering only two types of hydrogen bonding: the one
occurring in neutral systems such as the water dimer [HOs
H‚‚‚OH2], and the one of charged systems such as the proton-
bonded water dimer [H2O‚‚‚H+‚‚‚OH2]. The present study is
devoted to this second type of interaction, which involves
somewhat larger bonding energies (25-50 kcal/mol vs 5-10
kcal/mol).

Different approaches have been, and are being, used to better
understand and/or predict the hydrogen bonding strength. One
might categorize them into two families. One based on the
partitioning of the energy,2 which usually provides a deep
understanding of the different contributions to the hydrogen
bond strength, and one based on fits of experimental or
computed values,3-6 which usually provides useful equations
to predict the actual bond strength. The present contribution
will focus on this second strategy, which has provided a rather
large set of equations for the hydrogen bond strength. We shall
find in the following a general theoretical basis to the experi-
mental correlations and possibly unify these equations through
a simple valence bond analysis.

We will consider hereafter the proton-bonded dimers as
intermediates in a formal proton-transfer reaction between two
bases. For instance in [AHB]+, the transfer of an H+ from
A-H+ to the B moieties, leads to A+ +H-B. One of the names
of this type of hydrogen bonded complexes, “low barrier
hydrogen bonds” (LBHB), comes from the shape of the potential
energy surface for this type of reaction. The proton transfer in
these systems involves indeed a low barrier, or is even barrierless
(Figure 1). In this latter case, the potential energy surface is a
single well and the proton can be considered as shared by the
two bases A and B.

Among other contributions on the subject, those from
Scheiner illustrate particularly well why some of these bonds
are often named “short strong hydrogen bonds” (SSHB).7 When
the distance between the bases is large, the proton is localized
on one of the bases because a significant barrier appears for
the proton-transfer process.8,9 The barrier is reduced, and even
disappears, for a short distance between the two bases. A
straightforward effect of a barrierless proton transfer is that
symmetrical, or quasi-symmetrical, hydrogen bonded species
are to be obtained. This disappearing/appearing barrier that

depends on the distance between the bases can be driven by
conformational restrictions that are likely to facilitate/impede
the proton transfer, in biological systems for instance.10 The
geometrical parameters in these especially short bonds thus
receive a large amount of attention, especially through crystal
structure analysis.11

Among the short strong hydrogen bonded species, quasi-
symmetrical proton-bonded dimers (A‚‚‚H+‚‚‚B) are probably
the most fascinating because the proton can be considered as
shared between the two bases on a very flat potential energy
surface. They have been the subject of numerous studies, some
of them aiming to relate the bond dissociation energy (Figure
1, DAH+B) to the difference between the proton affinities of the
bases (|∆PA|). Various equations (eqs 1-4) have thus been
proposed in the literature. Despitenonlinearcorrelations found
in early works,6 a number of fits of experimental or computed
bond strengths were based onlinear correlation.3,4,12 This
apparent disagreement is explained by the fact that within a
reduced range of|∆PA|, and when the atoms A and B are of
the same type, the correlation seems to be very much linear.
The set of molecules used for the fit and/or the starting
hypothesis obviously predetermines the results, and the linear
equations thereby obtained differ sometimes strongly one from
the others. For instance, eqs 1 and 2 both propose a linear
variation of the dissociation energy as a function of|∆PA|, but
the slope in eq 1 was found to be close to-0.5,4 while for the
same type of systems,-OH+O-, the slope of eq 2 was
-0.30.3,12

Figure 1. Shape of the potential energy surface as a function of the
proton-transfer coordinate (barrierless process).

DAH+B ) DAH+A -0.5× |∆PA| (1)
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Marcus theory13 can be used to find a common ground for
these two first eqs 1 and 2. When applied to two parabolas with
negative curvatures (inverted barrier),14 Marcus theory leads to
eq 3, whereD is the average of the dissociation energies of the
symmetrical proton-bonded dimersDAH+A andDBH+B. This third
proposal can easily be related to the two first equations: as far
as the slope is concerned, eq 3 would be equivalent to eq 1 if
the positive second order term in|∆PA| is simply neglected.
Similarly for eq 2, one can consider that the slope of-0.30
accounts for the positive second-order term of eq 3. The
equations (1-3) can thus be understood from the same
“cornerstone”, Marcus theory. This being said, the nature of
the bonding remains in fact very much unclear.

The fourth description (eq 4), with an exponential variation
of the dissociation energy with|∆PA|, has been more recently
proposed on the basis of an even larger scale of|∆PA|.5b This
latter proposal apparently does not fit with the other descriptions,
although all four equations were properly gauged on experi-
mental facts. A rational, physically grounded formulation
appears to be needed to understand, and possibly unify, these
different equations.

In a recent work on the subject,15 we adapted a formula
derived from the resonant description of odd electron bonds16

to the case of these short strong hydrogen bonds:

We shall see in the present contribution the proper demon-
stration of this equation, based on the resonance between two
hydrogen-bonded structures. Although the resulting eq 5 does
not, at a first glance, resemble the previously published
equations, simple Taylor series will make the necessary link
between eq 5 and the other equations (1-4).

Valence Bond Description of the Hydrogen Bonds

The valence bond (VB) description of the hydrogen bonding
involves the distribution of the electrons among the orbitals that
are believed to be active in the hydrogen bonding, i.e., in the
corresponding proton-transfer reaction. Considering the reaction
A-H+ ‚‚‚ :B f A: ‚‚‚ +H-B, a total of only four electrons are
to be considered as active. Six VB structures are thus obtained,
as depicted in Scheme 1.17 The structuresIV -VI are expected
to have a small contribution to the total wave function: they
bear a large charge separation, and/or the hydrogen is negatively
charged.

To simplify our understanding, and to obtain an analytical
straightforward resolution, one can reduce the 6× 6 valence
bond description to an interaction between only two structures.
Such a reduction is grounded on the small contribution of
structureVI to the wave functions. Scheme 2 shows how the
different VB structuresI-V could be grouped in such a way
that only two chemically meaningful structures (1-2) remain
to consider. The structureII describes indeed the covalent
contribution to the A-H bond, while I and IV are the
corresponding ionic structures. Similarly,III is the covalent
structure of the B-H bond whileI andV are the corresponding
ionic valence bond structures.

These structures1 and 2 can no longer be called “valence
bond” structures as they rather representgroupsof valence bond
structures. Because they correspond to two different bonding
schemes, we shall simply call them in the following “bonding
structures”. The interaction between these two bonding structures
(1-2) is easily described with a 2× 2 reduced Hamiltonian
(Scheme 3). One can consider that structure1 (for instance) is
lower in energy than2 and defines the origin of the energies in
the reduced Hamiltonian. The energy of the second structure
(2) can easily be related to this origin: in a nonsymmetrical
system such as [AH+B], going from1 to 2 requires to remove
the proton from A-H+ (which involves-PA(A)) and pass it
to B (which involves PA(B)). Structure2 is thus|∆PA| higher
in energy than1. The second diagonal term of the matrix is
thus set to the difference between the proton affinities of the
bases A and B:|∆PA|. The off-diagonal term can be set to the
yet undefined (negative) value-D, without further consideration
in a first step. Neglecting the overlap, the lowest root resulting
from the Hamiltonian diagonalization leads us directly to eq 5
as a definition of the dissociation energy of an unsymmetrical
[AH+B] system.

Before going further in the analysis of the equation, we shall
first discuss our choice for the reduced Hamiltonian matrix

DAH+B ) a - b × |∆PA| with b∼0.30 (2)

{DAH
+

B ) D - |∆PA|/2 + |∆PA|2/16D
D ) (DAH

+
A + DBH

+
B)/2

(3)

DAH+B ) A × exp(-B × |∆PA|) (4)

DAH+B ) (x|∆PA|2 + (2D)2 - |∆PA|)/2 (5)

SCHEME 1

SCHEME 2

SCHEME 3
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elements. The difference in energy between the two bonding
structures1 and2 has been set to|∆PA|. This value accurately
describes the energy difference between the two bonding
structures atinfinite distance between the bases. In our case of
short strong hydrogen bonds, the distance between the bases is
obviously small and our value|∆PA| neglects many terms that
describe the interaction between the bases and the proton. These
terms are introduced in our description via the off diagonal term,
-D. A definition for D is obtained when eq 5 is compared to
eq 3. If the two bases are assumed to share a similar proton
affinity (i.e., if |∆PA| is smaller than 2D), which is usually the
case in SSHB, eq 5 can be expanded in Taylor series as shown
in eqs 6 and 7.15

When this is held to the zeroth order inx, the resulting linear
eq 8 corresponds to the Marcus eq 3 truncated to the first order
in |∆PA|.

Held to the first order in x, we obtained eq 9 that can be
compared to 3. The terms at the second order in|∆PA| differ
in the two equations, Marcus equation having a 2-fold smaller
second order correction. It should be noted that if this expansion
in Taylor series were to be held one step further, to the second
order inx, it would add a negative corrective term to (9),{-x2/8
) -|∆PA|4/128D3}. Marcus derived eq 3, which is truncated
to the second order in∆PA, already includes this correction in
its smaller second-order term in∆PA. It is thus understandable
as a corrected Taylor series expansion of eq 5. This analysis
prompted us to use the same definition forD: the average of
the dissociation energies of the symmetrical proton-bonded
dimers [AH+A] and [BH+B].

It is interesting to note that this definition forD also holds
for symmetrical systems such as [AH+A]. For such symmetrical
systems where A) B and |∆PA| ) 0, the Hamiltonian
diagonalization leads toε ) -DAH+A) -D, Scheme 4, which
gives a definition for D that is consistent with our previous
formulation: D) (DAH+A + DBH+B)/2, with A ) B.

Having at hand a new formula for the dissociation energy, it
is interesting to reach the exponential definition as presented
in eq 4. WhenD is factorized in eq 9, the Taylor series of exp(x)
for x ) (-∆PA/2D) is evidenced (10). The resulting eq 11 can

enlighten some interesting features of the original exponential
eq 4.

The comparison of the two equations (eqs 4 and 11) prompts
us to set A) D and B) 1/(2D), an assignment which is valid
for fully resonating hydrogen-bonded systems. This result is in
agreement with the relation between the symmetry of the proton
bonded complexes and the value of the product A× B.5b It has
been indeed proposed that a symmetrical proton bonded systems
(fully resonant) should have a A× B product of 0.50, a value
that is encountered in many cases.18

The curves in Figure 2 show how all the descriptions
discussed here are similar when∆PA is small beforeD. For
larger∆PA, the role of the second order correction in Marcus,
eq 3, is particularly well shown when the corresponding curve
is compared to the one obtained for eq 9. Among the ap-
proximations of eq 5, the exponential approximation is clearly
the closest to the original curve. It is thus not surprising that,
using a set of short strong hydrogen bonded systems with a
large scale of∆PA between the bases, Zeegers-Huyskens
obtained a goodexponentialfit. As mentioned by this author,
the product A× B must be close to 0.5 for strongly resonating
systems (single-well potentials), and any deviation from this
value should originate from the nature of the bonding (localized
proton for instance). From our analysis, A and B could also be
calculated using experimental or computed values forD. This
would involve only the dissociation energies of symmetrical
systems.

Applied to the dissociation energy of the slightly nonsym-
metrical proton bonded system CH3OH‚‚‚OH2, for instance, one
would need the dissociation energies of the corresponding
symmetrical proton-bonded dimers H2O‚‚‚H+‚‚‚OH2 and CH3-
OH‚‚‚H+‚‚‚HOCH3 (Table 1). WithD being calculated as the
average of these two dissociation energies, 31.5, one would
obtain A)31.5 and B)0.0159, in good agreement with the fitted
values obtained by Zeegers-Huyskens,5b A ) 31; B ) 0.0155.
Using eq5 for this case, the dissociation energy is underestimated
by 2.6 kcal/mol.

Of course, as the bonding deviates from a resonant situation,
i.e., when ∆PA gets large, the accuracy of the resonating
equation (eq 5) should get poorer, underestimating the dis-
sociation energy. An example is given in Table 1 with
H3N‚‚‚H+‚‚‚OH2 (∆PA ) 37.5 kcal/mol). For such a system,

SCHEME 4

DAH+B ) ((2D)2(|∆PA|2
(2D)2

+
(2D)2

(2D)2) - |∆PA|)/2
) D(xx + 1) - |∆PA|/2, with x ) |∆PA|2

(2D)2
(6)

xx + 1 ) 1 + x
2

- (x2

8) + ‚‚‚ (7)

DAH+B ) D - |∆PA|/2 (8)

DAH+B ) D - |∆PA|/2 + |∆PA|2/8D (9)

Figure 2. Shape of the DAH+B variations as a function of∆PA when
D is set to 20.

DAH+B ) D(1 + (-|∆PA/2D) + 1
2
(-|∆PA|/2D)2) (10)

DAH+B ) D exp(-|∆PA|/2D) (11)
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D is set to (31.6+24.8)/2) 28.2 and eq 5 underestimates the
experimental binding energy by 5.5 kcal/mol (Table 1). The
situation gets even worse as∆PA increases as it is the case in
MeH2N‚‚‚H+‚‚‚OH2 (∆PA ) 47.6 kcal/mol). Following the
same guideline for the calculation ofD, a deviation of about
6.6 kcal/mol from the experimental value is obtained.

These selected examples finally give us the opportunity to
discuss why the∆PA match is not the only criterion to predict
the hydrogen bond strength. There are indeed numerous
examples where bases with a large∆PA are more strongly
bonded together than bases with a smaller∆PA. In Table 1 for
instance,Dexp is smaller in H3N‚‚‚H+‚‚‚NH3 (24.8 kcal/mol)
than in MeOH‚‚‚H+‚‚‚OH2 (27.3 kcal/mol) although∆PA is
smaller in the former case (0.0 vs 15.4). Our analysis shows
that an other parameter,D must be also considered. In this
context, we shall just recall that one can defineD as the average
value of the hydrogen bond strengths in the “parent”symmetrical
systems, and that the hydrogen bond strength is an increasing
function of D. Applied to the example mentioned in Table 1,D
is simply larger in MeOH‚‚‚H+‚‚‚OH2 (31.5 kcal/mol) than in
H3N‚‚‚H+‚‚‚NH3 (24.8 kcal/mol), and compensates the∆PA
difference.

ThisD factor also enlightens as to why the hydrogen bonding
energies are often particularly large in anionic species such as
[B‚‚‚H‚‚‚F]-, i.e., involving F- as one of the two bases.5a One
of the “parent”symmetricalproton bonded dimers, [F‚‚‚H‚‚‚F]-,
simply bears one of the largest hydrogen bond strength known
to date (up to 44 kcal/mol).21 In such [B‚‚‚H‚‚‚F]- species the
D factor gets thus particularly large and, again, is likely to
balance the∆PA difference between the bases. It results from
this a large hydrogen bond strength.

Conclusion
Our eq 5 is a rational formulation of eqs 1-4, which were

gauged on experimental data. The formula is ground on the
resonance between two chemical structures and should apply
to the cases where the hydrogen bonding is indeed resonant in
nature (single-well potential, small∆PA). In these cases it is
expected to bear a reasonable accuracy (2-3 kcal/mol). In other
cases it can only be used to measure the resonance contribution
to the hydrogen bonding. As∆PA gets large, the resonance
contribution gets small, and other effects are likely to dominate
in the bonding. In these cases our equation is likely to
underestimate the dissociation energy.

Acknowledgment. James Bouquant, Norbert Hoffmann,
Isabelle Bruant-Coˆte and Armelle Coudrain are gratefully
acknowledged for stimulating discussions on the subject.

References and Notes
(1) (a) Gilli, G; Gilli, P. J. Mol. Struct.2000, 552, 1-15. (b) Jeffrey,

G. A. An introduction to Hydrogen Bonding; Oxford University Press: New
York, 1997.

(2) (a) On weak hydrogen bonds (such as the water dimer) see Energy
and Charge Distribution Decomposition; Morokuma, K.J. Chem. Phys.
1971, 55, 1236-1244. (b) The partition of the pertubative energy: Daudey,
J. P.Int. J. Quantum Chem.1974, 8, 29-43. (c) For a partition to analyze
the difference between weak and short strong hydrogen bonds, see Remer,
L. C.; Jensen, J. H.J. Phys. Chem. A2000, 104, 9266-9275. (d) For a
partition into charge transfer and resonance assistance, see for instance:
Guerra, C. F.; Bickelhaupt, F. M.; Snijders, J. G. Baerends, E. J.Chem.
Eur. J. 1999, 5, 3581-3594.

(3) Meot-Ner, M.J. Am. Chem. Soc.1984, 106, 1257-1264.

(4) Larson, J. W.; McMahon, T. B.J. Am. Chem. Soc.1982, 104,
6255-6261.

(5) (a) Zeegers-Huyskens, T.Chem. Phys. Lett.1986, 129, 172-175.
(b) Zeegers-Huyskens, T.J. Mol. Struct.1988, 177, 125-141.

(6) (a) Davidson, W. R.; Sunner, J.; Kebarle P.J. Am. Chem. Soc.
1979, 101, 1675-1680. (b) Desmeules, P. J.; Allen L. C.J. Chem. Phys.
1980, 72, 4731-4748.

(7) Scheiner, S.J. Am. Chem. Soc.1981, 103, 315-320.

(8) For an elegant discussion on the origin of the barrier height, see
Goez, M.; Heun, R.Angew. Chem., Int. Ed. Engl.1998, 37, 3052-3054.

(9) Solvation and tunneling effect further complicate this question. See
for instance (a) Marx, D.; Tuckerman, M. E.; J.; Hutter, Parinello, M.Nature
1999, 397, 601-604. (b) Imura, K.; Ohoyama, H.; Naaman, R.; Che, D.-
C.; Hashinokuchi, M.; Kasai, T.J. Mol. Struct.2000, 552, 137-145. (c)
Zundel, G.J. Mol. Struct.2000, 552, 81-86.

(10) See for instance (a) Vishveshwara, S.; Madhusudhan, M. S.; Maizel,
J. V., Jr.Biophysical Chemistry2001, 89, 105-117. (b) Vishveshwara, S.;
Madhusudhan, M. S.; Maizel, J. V., Jr.J. Mol. Struct.2000, 552, 97-109.
It should be noted here that conformational restrictions are not expected to
lead to stronger hydrogen bonds, they only act on the barrier height of the
proton transfer.

(11) (a) For a recent review on the hydrogen bonding in the solid state,
see Steiner, T.Angew. Chem. Int. Ed. Engl. 2002, 41, 48-76. For more
specific analysis see for instance (b) Harris, T. K.; Zhao, Q.; Mildvan, A.
S. J. Mol. Struct.2000, 552, 97-109. (c) Grabowski, S. J.; Pogorzelska,
M. J. Mol. Struct.2001, 559, 201-207. (d) Madsen, G. K. H.; Wilson, C.;
Nymand, T. M.; McIntyre, G. J.; Larsen, F. K.J. Phys. Chem. A1999,
103, 8684-8690.

(12) A slope of 0.5 has been attributed to the equal sharing of the proton
between the two basis (ref 4). Different slopes for the linear correlations
(b, in eq 2) have been obtained for a variety of nonsymmetrical systems by
Meot-Ner et al.; they range from 0.16 up to 0.43. (a) For NH+‚‚‚N, b )
0.23; NH+‚‚‚O, b ) 0.26, OH+‚‚‚O, b ) 0.30 see ref 3. (b) In nitriles,b
ranges from 0.31 to 0.43: C≡NH+‚‚‚O, b ) 0.31; NH+‚‚‚N≡C, b ) 0.34;
C≡NH+‚‚‚N≡C, b ) 0.37; OH+‚‚‚N≡C, b ) 0.43 see Speller, C. V.; Meot-
Ner, M J.Phys. Chem.1985, 89, 5217-5222. (c) For some rather exotic
hydrogen bonds with a C atom, NH+‚‚‚C≡N, b ) 0.22;-N≡CH+‚‚‚O, b
) 0.25. see Meot-Ner, M; Sieck, L. W.; Koretke K. K.; Deakyne, C. A.J.
Am. Chem. Soc.1997, 119, 10430-10438. (d) For SH+‚‚‚O, b ) 0.16 see
Meot-Ner, M; Sieck L. W.J. Phys. Chem.1985, 89, 5222-5225.

(13) (a) Marcus, R. A.J. Phys. Chem.1968, 72, 891-899. (b) Cohen,
A. O.; Marcus, R. A.J. Phys. Chem.1968, 72, 4249-4256.

(14) (a) Scheiner, S.; Redfern, P.J. Phys. Chem.1986, 90, 2969-74.
(b) Magnoli, D. E.; Murdoch, J. R.J. Am. Chem. Soc.1981, 103, 7465-
7469 and references therein.

(15) Humbel, S; Hoffmann, N.; Coˆte, I.; Bouquant, J.Chem. Eur. J.
2000, 6, 1592-1600.

(16) Hiberty, P. C.; Humbel, S.; Archirel, P.J. Phys. Chem.1994, 98,
11697-11704.

(17) (a) Shaik, S; Shurki, A.Angew. Chem., Int. Ed. Engl.1999, 38,
586-625. (b) Harcourt, R. D.J. Phys. Chem. A1999, 103, 4293-4297.

(18) It should be noted that the exponential correlations for amines and
nitriles, proton bonded dimers afforded A× B ) 0.14 and 0.30, respectively.
The other correlations ranged A× B between 0.39 and 0.54. See ref 5b for
comments on the subject.

(19) Cunningham, A. J.; Payzant, J. D.; Kebarle, P.J. Am. Chem. Soc.
1972, 94, 7627-7632.

(20) Yamdagni, R.; Kebarle, P.J. Am. Chem. Soc.1973, 95, 3504-
3510.

(21) For recent measurements of the hydrogen binding energy in
[F‚‚‚H‚‚‚F]- see (a) 44.1 kcal/mol: Wenthold, P. G.; Squires, R. R.J. Phys.
Chem.1995, 99, 2002-2005; (b) 39 kcal/mol: Gronert, S.J. Am. Chem.
Soc.1993, 115, 10258-10266. For a recent computational study see (c)
Kawara, S; Uchimaru, T.; Taira, K.Chem. Phys.2001, 273, 207-216.

TABLE 1: Dissociation Energies of Selected Proton Bonded
Systems

∆PA D eq 5 Dexp

H2O H+ OH2 0 31.6 31.6 31.6a
MeOH H+ OHMe 0 31.4 31.4 31.4e
MeOH H+ OH2 15.4c 31.5 24.7 27.3d
H3N H+ NH3 0 24.8 24.8 24.8b
H3N H+ OH2 37.5d 28.2 15.1 20.6d
MeH2N H+ NH2Me 0 21.4 21.4 21.4b
MeH2N H+ OH2 47.6d 26.5 11.8 18.4d

a From ref 19.b From ref 20.c From ref 5b.d From ref 3.e From
ref 4.
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