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Short Strong Hydrogen Bonds: A Valence Bond Analysis
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Short strong hydrogen bonds are modeled with two resonating bonding structures issued from a valence bond
analysis. A formula giving the bond dissociation energy as a function of the difference in proton affinities
(APA) is demonstrated. This equation is expanded in Taylor series and compared to similar equations found
in the literature. It is found that the correlations either from experimental data or derived from the Marcus
equation can be justified by the same valence bond arguments.

Introduction

One might oversimplify the hydrogen bonding “puzZlby
considering only two types of hydrogen bonding: the one
occurring in neutral systems such as the water dimer-fHO
H---OH,], and the one of charged systems such as the proton-
bonded water dimer [pD:+-H*---OH,]. The present study is
devoted to this second type of interaction, which involves
somewhat larger bonding energies {Z® kcal/mol vs 5-10
kcal/mol).

Different approaches have been, and are being, used to better
understand and/or predict the hydrogen bonding strength. One
might categorize them into two families. One based on the
partitioning of the energy,which usually provides a deep
understanding of the different contributions to the hydrogen depends on the distance between the bases can be driven by
bond strength, and one based on fits of experimental or conformational restrictions that are likely to facilitate/impede
computed value$,® which usually provides useful equations the proton transfer, in biological systems for instatt@he
to predict the actual bond strength. The present contribution geometrical parameters in these especially short bonds thus
will focus on this second strategy, which has provided a rather receive a large amount of attention, especially through crystal
large set of equations for the hydrogen bond strength. We shallstructure analysist
find in the following a general theoretical basis to the experi- ~ Among the short strong hydrogen bonded species, quasi-
mental correlations and possibly unify these equations through symmetrical proton-bonded dimers ¢AH*---B) are probably
a simple valence bond analysis. the most fascinating because the proton can be considered as

We will consider hereafter the proton-bonded dimers as shared between the two bases on a very flat potential energy
intermediates in a formal proton-transfer reaction between two surface. They have been the subject of numerous studies, some
bases. For instance in [AHB] the transfer of an H from of them aiming to relate the bond dissociation energy (Figure
A—HT to the B moieties, leads to A TH—B. One of the names 1, Dan+*g) to the difference between the proton affinities of the
of this type of hydrogen bonded complexes, “low barrier bases |(APA|). Various equations (eqs—¥) have thus been
hydrogen bonds” (LBHB), comes from the shape of the potential proposed in the literature. Despitenlinearcorrelations found
energy surface for this type of reaction. The proton transfer in in early works® a number of fits of experimental or computed
these systems involves indeed a low barrier, or is even barrierlessbond strengths were based dinear correlation3#12 This
(Figure 1). In this latter case, the potential energy surface is aapparent disagreement is explained by the fact that within a
single well and the proton can be considered as shared by thereduced range ofAPA|, and when the atoms A and B are of
two bases A and B. the same type, the correlation seems to be very much linear.

Among other contributions on the subject, those from The set of molecules used for the fit and/or the starting
Scheiner illustrate particularly well why some of these bonds hypothesis obviously predetermines the results, and the linear
are often named “short strong hydrogen bonds” (SSHBJen equations thereby obtained differ sometimes strongly one from
the distance between the bases is large, the proton is localizedhe others. For instance, eqs 1 and 2 both propose a linear
on one of the bases because a significant barrier appears fowariation of the dissociation energy as a function®PA|, but
the proton-transfer proce&8.The barrier is reduced, and even the slope in eq 1 was found to be close-t6.5;* while for the
disappears, for a short distance between the two bases. Asame type of systems;OH"O—, the slope of eq 2 was
straightforward effect of a barrierless proton transfer is that —0.30312
symmetrical, or quasi-symmetrical, hydrogen bonded species
are to be obtained. This disappearing/appearing barrier that Dari+s = Dapea —0.5x |APA| 1
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Figure 1. Shape of the potential energy surface as a function of the
proton-transfer coordinate (barrierless process).
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Dppip = @ — b x |APA] with b~0.30 )

[DA,;B =D — |APA|/2 + |APA%/16D @)
D = (Dan’a t Dgn's)/2

Dups = A x exp(=B x |APA)) 4)

Marcus theor}? can be used to find a common ground for
these two first egs 1 and 2. When applied to two parabolas with
negative curvatures (inverted barriét)Marcus theory leads to
eq 3, whereD is the average of the dissociation energies of the
symmetrical proton-bonded dimebs+a andDgy*g. This third
proposal can easily be related to the two first equations: as far
as the slope is concerned, eq 3 would be equivalent to eq 1 if
the positive second order term jAPA| is simply neglected.
Similarly for eq 2, one can consider that the slope—@f.30
accounts for the positive second-order term of eq 3. The
equations (£3) can thus be understood from the same
“cornerstone”, Marcus theory. This being said, the nature of
the bonding remains in fact very much unclear.

The fourth description (eq 4), with an exponential variation
of the dissociation energy witlAPA|, has been more recently
proposed on the basis of an even larger scal@\BfA|.5" This
latter proposal apparently does not fit with the other descriptions,
although all four equations were properly gauged on experi-
mental facts. A rational, physically grounded formulation

appears to be needed to understand, and possibly unify, these

different equations.

In a recent work on the subjett,we adapted a formula
derived from the resonant description of odd electron b¥nds
to the case of these short strong hydrogen bonds:

Dan-s = (VIAPA* + (2D) — |APA)2  (5)

We shall see in the present contribution the proper demon-

stration of this equation, based on the resonance between two

hydrogen-bonded structures. Although the resulting eq 5 does

not, at a first glance, resemble the previously published 2

equations, simple Taylor series will make the necessary link
between eq 5 and the other equations4)L

Valence Bond Description of the Hydrogen Bonds

The valence bond (VB) description of the hydrogen bonding
involves the distribution of the electrons among the orbitals that
are believed to be active in the hydrogen bonding, i.e., in the
corresponding proton-transfer reaction. Considering the reaction
A—H* .- :B— A: --- TH—B, a total of only four electrons are

to be considered as active. Six VB structures are thus obtained,

as depicted in Scheme!1The structuresV —VI are expected
to have a small contribution to the total wave function: they
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These structure& and 2 can no longer be called “valence
bond” structures as they rather represgoupsof valence bond
structures. Because they correspond to two different bonding
schemes, we shall simply call them in the following “bonding
structures”. The interaction between these two bonding structures
(1-2) is easily described with a 2 2 reduced Hamiltonian
(Scheme 3). One can consider that structu(éor instance) is
lower in energy thar? and defines the origin of the energies in
the reduced Hamiltonian. The energy of the second structure

bear a large charge separation, and/or the hydrogen is negatively(2) can easily be related to this origin: in a nonsymmetrical

charged.

To simplify our understanding, and to obtain an analytical
straightforward resolution, one can reduce the ® valence
bond description to an interaction between only two structures.
Such a reduction is grounded on the small contribution of
structureVI to the wave functions. Scheme 2 shows how the
different VB structuresd —V could be grouped in such a way
that only two chemically meaningful structures—2) remain
to consider. The structurd describes indeed the covalent
contribution to the A-H bond, whilel and IV are the
corresponding ionic structures. Similarly| is the covalent
structure of the B-H bond whilel andV are the corresponding
ionic valence bond structures.

system such as [AFB], going from1 to 2 requires to remove
the proton from A-H™ (which involves—PA(A)) and pass it
to B (which involves PA(B)). Structur2 is thus|APA| higher
in energy thanl. The second diagonal term of the matrix is
thus set to the difference between the proton affinities of the
bases A and B]APA|. The off-diagonal term can be set to the
yet undefined (negative) valueD, without further consideration
in a first step. Neglecting the overlap, the lowest root resulting
from the Hamiltonian diagonalization leads us directly to eq 5
as a definition of the dissociation energy of an unsymmetrical
[AHTB] system.

Before going further in the analysis of the equation, we shall
first discuss our choice for the reduced Hamiltonian matrix
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elements. The difference in energy between the two bonding
structuresl and?2 has been set tAPA|. This value accurately
describes the energy difference between the two bonding
structures ainfinite distance between the bases. In our case of
short strong hydrogen bonds, the distance between the bases i
obviously small and our valug\PA| neglects many terms that
describe the interaction between the bases and the proton. Thesgn|ighten some interesting features of the original exponential
terms are introduced in our description via the off diagonal term, eq 4.
—D. A definition for D is obtained when eq 5 is compared to
eq 3. If the two bases are assumed to share a similar proton
affinity (i.e., if JAPA| is smaller than B), which is usually the
case in SSHB, eq 5 can be expanded in Taylor series as shown
in eqs 6 and 7°

When this is held to the zeroth ordeninthe resulting linear
eq 8 corresponds to the Marcus eq 3 truncated to the first order
in |APAY.

—-5 L

Figure 2. Shape of the Ry+g variations as a function cAPA when
B is set to 20.

Dpes = D[1+ (—|APA/2D) + %(—|APA|/2D)2 (10)

D,u+g = D exp(—|APA|/2D) (12)

The comparison of the two equations (egs 4 and 11) prompts
us to set A= D and B= 1/(2D), an assignment which is valid
for fully resonating hydrogen-bonded systems. This result is in
agreement with the relation between the symmetry of the proton
bonded complexes and the value of the produst B.5° It has
been indeed proposed that a symmetrical proton bonded systems
(fully resonant) should have a & B product of 0.50, a value

2
Dpia = ((2D)2('Aﬂ

(2D)? i

%) . ]APA\)/Z

_|APA?
X——

=D(Vx+1) — |APAI/2, with (2D)2 (6) that is encountered in many casés.
The curves in Figure 2 show how all the descriptions
2 discussed here are similar whePA is small beforeD. For
WXFi=1+%- (—) + e @) larger APA, the role of the second order correction in Marcus,
2 8 eq 3, is particularly well shown when the corresponding curve
is compared to the one obtained for eq 9. Among the ap-
Danig =D — |APAI/2 (8) proximations of eq 5, the exponential approximation is clearly
the closest to the original curve. It is thus not surprising that,
Dpyg =D — |APA|/2 + |APA|%/8D 9 using a set of short strong hydrogen bonded systems with a

large scale ofAPA between the bases, Zeegers-Huyskens
Held to the first order in x, we obtained eq 9 that can be obtained a goo@xponentiaffit. As mentioned by this author,
compared to 3. The terms at the second orddARA| differ the product Ax B must be close to 0.5 for strongly resonating
in the two equations, Marcus equation having a 2-fold smaller systems (single-well potentials), and any deviation from this
second order correction. It should be noted that if this expansion value should originate from the nature of the bonding (localized
in Taylor series were to be held one step further, to the secondproton for instance). From our analysis, A and B could also be

order inx, it would add a negative corrective term to (§);x%8

= —|APAJ%/128D3}. Marcus derived eq 3, which is truncated
to the second order IAPA, already includes this correction in
its smaller second-order term i&xPA. It is thus understandable

calculated using experimental or computed valuedXot his
would involve only the dissociation energies of symmetrical
systems.

Applied to the dissociation energy of the slightly nonsym-

as a corrected Taylor series expansion of eq 5. This analysismetrical proton bonded system @bH---OH,, for instance, one

prompted us to use the same definition Br the average of
the dissociation energies of the symmetrical proton-bonded
dimers [AH'A] and [BH'B].

It is interesting to note that this definition f@ also holds
for symmetrical systems such as [AA]. For such symmetrical
systems where A= B and |[APA| = 0, the Hamiltonian
diagonalization leads toe = —Dan+a= —D, Scheme 4, which
gives a definition for D that is consistent with our previous
formulation; D= (Dan*a + Dgn*s)/2, with A = B.

Having at hand a new formula for the dissociation energy, it
is interesting to reach the exponential definition as presented
in eq 4. WherD is factorized in eq 9, the Taylor series of exp(
for x = (—APA/2D) is evidenced (10). The resulting eq 11 can

would need the dissociation energies of the corresponding
symmetrical proton-bonded dimers®t--H"---OH, and CH-
OH---H*--*HOCH; (Table 1). WithD being calculated as the
average of these two dissociation energies, 31.5, one would
obtain A=31.5 and B=0.0159, in good agreement with the fitted
values obtained by Zeegers-Huyskéhg, = 31; B = 0.0155.
Using eg5 for this case, the dissociation energy is underestimated
by 2.6 kcal/mol.

Of course, as the bonding deviates from a resonant situation,
i.e., when APA gets large, the accuracy of the resonating
equation (eq 5) should get poorer, underestimating the dis-
sociation energy. An example is given in Table 1 with
H3N---H"---:OH, (APA = 37.5 kcal/mol). For such a system,
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TABLE 1: Dissociation Energies of Selected Proton Bonded (2) (a) On weak hydrogen bonds (such as the water dimer) see Energy
Systems and Charge Distribution Decomposition; Morokuma, X.Chem. Phys.
1971, 55, 1236-1244. (b) The partition of the pertubative energy: Daudey,
APA D eq5 Dexp J. P.Int. J. Quantum Cheni974 8, 29—43. (c) For a partition to analyze
H,O H' OH, 0 31.6 31.6 318 the difference between weak and short strong hydrogen bonds, see Remer,
MeOH H* OHMe 0 31.4 31.4 314 L. C.; Jensen, J. HJ. Phys. Chem. R200Q 104, 9266-9275. (d) For a
MeOH H* OH, 15.4 31.5 24.7 27.8 partition into charge transfer and resonance assistance, see for instance:
HsN H* NH5 0 24.8 24.8 2418 Guerra, C. F.; Bickelhaupt, F. M.; Snijders, J. G. Baerends, Eh&m.
HaN H* OH, 37.9 28.2 15.1 20.6 Eur. J.1999 5, 3581-3594.
MeH;N H* NHMe 0 21.4 21.4 214 (3) Meot-Ner, M.J. Am. Chem. S0d.984 106, 1257-1264.
+
MeH,N H* OH, 47.6 26.5 11.8 184 (4) Larson, J. W.; McMahon, T. BJ. Am. Chem. Socl982 104
aFrom ref 19.° From ref 20.¢ From ref 5b.¢ From ref 3.6 From 6255-6261.
ref 4. (5) (a) Zeegers-Huyskens, Them. Phys. Letfl986 129, 172-175.

(b) Zeegers-Huyskens, T. Mol. Struct.1988 177, 125-141.

D is set to (31.6-24.8)/2= 28.2 and eq 5 underestimates the (6) (a) Davidson, W. R.; Sunner, J.; Kebarle .Am. Chem. Soc.
experimental binding energy by 5.5 kcal/mol (Table 1). The ig;g %glﬁgﬁg%iga (b) Desmeules, P. J.; Allen L. @. Chem. Phys.
situation gets even worse AA increases as it is the case in - '

MeH,N-+-H+--OH, (APA = 47.6 kcal/imol). Following the (7) Scheiner, SJ. Am. Chem. Sod981, 103 315320,

- . - (8) For an elegant discussion on the origin of the barrier height, see
same guideline for the calculation of, a deviation of about e, M. Heun, RAngew. Chem., Int. Ed. Engl998 37, 3052-3054.

6.6 kcal/mol from the experlm_ental V‘f"'“e is obtained. . (9) Solvation and tunneling effect further complicate this question. See
These selected examples finally give us the opportunity to for instance (a) Marx, D.; Tuckerman, M. E.; J.; Hutter, ParinelloNdture
discuss why th\PA match is not the only criterion to predict 1999 397, 601-604. (b) Imura, K.; Ohoyama, H.; Naaman, R.; Che, D.-
i C.; Hashinokuchi, M.; Kasai, TJ. Mol. Struct.200Q 552, 137—145. (c)
the hydrogen bond strength. There are indeed numerousZundeL G0 Mol Struct 2000 552 81-86,
examples where bases with a larg®A are more strongly

. (10) See for instance (a) Vishveshwara, S.; Madhusudhan, M. S.; Maizel,
bonded together than bases with a smallBA. In Table 1 for J. V., Jr.Biophysical Chemistr2001, 89, 105-117. (b) Vishveshwara, S.;

instance,Dexp is smaller in HN--H*--*NH3 (24.8 kcal/mol) Madhusudhan, M. S.; Maizel, J. V., . Mol. Struct.200Q 552, 97—109.
than in MeOH--H™-+-OH, (27.3 kcal/mol) althoughAPA is It should be noted here that conformational restrictions are not expected to
smaller in the former case (0.0 vs 15.4). Our analysis shows lead to stronger hydrogen bonds, they only act on the barrier height of the
) e . . roton transfer.
that an other parameteR must be also considered. In this P (11) (a) For a recent review on the hydrogen bonding in the solid state
context, we shall just recall that one can defnas the average  o¢ sieiner, TAngew. Chem. Int. EcEngl 2002 41, 48-76. For more
value of the hydrogen bond strengths in the “paregthmetrical specific analysis see for instance (b) Harris, T. K.; Zhao, Q.; Mildvan, A.
systems, and that the hydrogen bond strength is an increasings. J. Mol. Struct.200Q 552, 97—-109. (c) Grabowski, S. J.; Pogorzelska,
function of D. Applied to the example mentioned in Tablé1, - J. Mol. Struct2001, 559, 201-207. (d) Madsen, G. K. H.; Wilson, C.;

I : . N d, T. M.; Mcintyre, G. J.; L , F. K. Phys. Chem. A99
is simply larger in MeOF++H*++-OH; (31.5 kcal/mol) than in 13’&“32%8690. clntyre arsen ys. hem 3

[ N
H_3N H NH3 (24.8 kcal/mol), and compensates theA (12) Aslope of 0.5 has been attributed to the equal sharing of the proton
difference. between the two basis (ref 4). Different slopes for the linear correlations
This D factor also enlightens as to why the hydrogen bonding (b,ineq2) havg been obtained for a variety of nonsymmetrical systems by
energies are often particularly large in anionic species such agMeot-Ner et al.; they range from 0.16 up to 0.43. (@) For'NN, b =
. . . - 0.23; NH"+-O, b = 0.26, OH'+--O, b = 0.30 see ref 3. (b) In nitrileh
[B---H---F]7, i.e., involving F as one of the two basé3One ranges from 0.31 to 0.43: £NH*+-:O, b = 0.31; NH"+--N=C, b = 0.34;
of the “parent’symmetricaproton bonded dimers, {FH---F]~, C=NH"-:N=C,b=0.37; OH"--"N=C, b = 0.43 see Speller, C. V.; Meot-
simply bears one of the largest hydrogen bond strength knownNer, M J.Phys. Chem1983 89, 5217-5222. (c) For some rather exotic

T : hydrogen bonds wita C atom, NH--:C=N, b = 0.22; —N=CH"---O, b
to date (up to 44 kcallmOF)l' In such [B--H---F]" species the = 0.25. see Meot-Ner, M; Sieck, L. W.; Koretke K. K.; Deakyne, CJA.

D factor gets thus particularly large and, again, is likely to Am. Chem. Sod997 119, 10430-10438. (d) For SH---O, b = 0.16 see
balance theAPA difference between the bases. It results from Meot-Ner, M; Sieck L. W.J. Phys. Cheml1985 89, 5222-5225.
this a large hydrogen bond strength. (13) (a) Marcus, R. AJ. Phys. Cheml96§ 72, 891-899. (b) Cohen,
. A. O,; Marcus, R. AJ. Phys. Chem1968 72, 4249-4256.

Conclusion _ _ _ (14) (a) Scheiner, S.; Redfern, ®.Phys. Chem1986 90, 296974

Our eq 5 is a rational formulation of eqs-4, which were (b) Magnoli, D. E.; Murdoch, J. RJ. Am. Chem. Sod.981, 103 7465~
gauged on experimental data. The formula is ground on the 7469 and references therein.
resonance between two chemical structures and should apply (15) Humbel, S; Hoffmann, N.; @e, I.; Bouquant, JChem. Eur. J
to the cases where the hydrogen bonding is indeed resonant ir¢000 6, 1592-1600.
nature (single-well potential, smaPA). In these cases it is (16) Hiberty, P. C.; Humbel, S.; Archirel, B. Phys. Cheml1994 98,
expected to bear a reasonable accuraey3(Rcal/mol). In other 11?1977)_1(1)7(; S Shurki AA ch Int, Ed. Engl99 38

H 7 7 a, aik, S; urki, AAngew. em., Int. . EN )y
cases it can only be us_ed to measure the resonance contr|but|0|g86_625_ (b) Harcourt, R. DJ. Phys. Chem. 4999 103 42934297,
to the hydrogen bonding. AAPA gets large, the resonance . ) )
tribution gets small. and other effects are likely to dominate (_18) It should be not_ed that the exponential correlations for amines and

.Con g ’ ' Yy A nitriles, proton bonded dimers afforded>AB = 0.14 and 0.30, respectively.
in the bonding. In these cases our equation is likely to The other correlations ranged-AB between 0.39 and 0.54. See ref 5b for
underestimate the dissociation energy. comments on the subject.

19) Cunningham, A. J.; Payzant, J. D.; KebarleJPAm. Chem. Soc.
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