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The energy landscape of two-dimensional lattice polymers is investigated, using the so-called lid algorithm.
We find that a multitude of pockets around local energy minima exist that exhibit approximately exponentially
growing local densities of states. This behavior is similar to the energy landscape of e.g. two- and three-
dimensional covalent lattice networks and the energy landscape of spin glasses. However, in contrast to these
systems, we find that two classes of polymer landscapes exist, depending on the length of the polymers. As
a consequence, short polymers appear to show a much more “liquidlike” behavior, while long polymers
resemble much more closely the glassy covalent networks.

Introduction

One of the major classes of complex systems that exhibit
glassy behavior, such as a glass transition1,2 or non-Debye
relaxations,3 are the polymers.4-6 Since they can be synthesized
in many well-controlled variations, they have become important
from the theoretical point of view as well, serving as a
touchstone for many theories and models for glassy or amor-
phous systems. When trying to find common ground between
polymers and the plethora of other complex systems, one needs
to abstract on two levels: on one hand, one wishes to
concentrate on the general properties of polymers, without
getting lost in the details of the specific interaction (the “ideal”
polymer), while, on the other hand, one wants to find a bridge
that connects the realm of polymers with that of other complex
systems, e.g. spin glasses,7 clusters,8-10 individual proteins and
polymers,11-14 covalent network glasses,15 problems in evolu-
tion,16 structure prediction in chemistry,17,18 or combinatorial
optimization problems.19

The study of the “ideal” polymer has made great advances
in the past decade with the development of lattice polymer
models.20 Here, one no longer tries to account for each individual
atom in a polymersinstead one combines several atoms, perhaps
even whole side branches of the polymer, into a single building
unit. For this unit, an effective interaction both within the
polymer (nearest neighbors along the backbone) and with all
other polymers is defined. This allows us to concentrate on the
abstract polymer and its properties. To allow for the efficient
simulation of polymer properties and their dynamical behavior,
a second fruitful approximation has been made, i.e., to place
these building units on a lattice. In this way, Monte Carlo
simulations have become possible that have been used to
elucidate much of the behavior of polymers.21-27

The bridge that connects these successful abstract models with
other complex systems is their energy landscape and its
properties;10,18,28,29 e.g., the relaxation of a system can be
visualized as a random walk on the energy landscape of the
system, and many low-temperature properties of glasses have
been ascribed to certain features of the energy landscape like
double-well potentials30,31or their extension, the so-called soft
potentials.32,33 However, with current computer resources it is

not yet possible to gain a complete picture of the whole
landscape of a nontrivial system. Thus, we have concentrated
on studying representative subregions of the landscape (called
pockets), which are operationally defined as those regions of
the energy landscape that can be reached from a local minimum
without crossing a sequence of barriers, the so-called lids. This
lid algorithm19,34has already been successfully applied to several
complex systems,15,19,35,36and certain features common to all
examples have been found, in particular approximately expo-
nentially growing local densities of states and densities of local
minima around these pockets.

In this work we present investigations of the application of
the lid algorithm to 2D-lattice polymers and compare the results
with those found for other complex systems.

Model

The model we use for the 2D-lattice polymers is similar to
the bond-fluctuation model employed in MC simulations,20

where we envision the building units of the polymers to be
analogous to carbon atoms connected via covalent bonds.Np

()1-24) polymers of lengthlp ()3-180) were placed on square
S× S2D lattices (S) 10-32) with side lengthsX ) Sa, where
a is the spacing of the lattice.NA ) Np lp is the total number of
building units, andV ) S2 is the total area of the system in
units of a2. We have performed landscape explorations for 48
different systems (defined byNp, lp, and S) covering a large
number of densitiesF ) NA/V, with up toNA ) 180 building
units. To simulate an infinite system, periodic boundary
conditions were employed.

The lattice constanta was chosen such that the equilibrium
distance between two units was on the order of 2a. In this way,
we abstract in this mesoscopic model from the local vibrations
and distortions and concentrate on the topological aspects of
the polymer configurations instead. Thus, the local densities of
state for the pockets in configuration space will represent the
excess entropy or so-called configurational entropy of the
systemsa quantity usually associated with the peak in the
specific heat near the glass transition.5,6

The interaction potential between neighbors along the polymer
consisted of two terms. The first is a radially symmetric two-
body term that equals plus infinity forr < 1.6a, has a minimum
at≈2.2a, goes to zero atr ) 3.2a, and equals infinity again for† Part of the special issue “R. Stephen Berry Festschrift”.
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r > 3.2a (covalent bonds were not allowed to be destroyed!).
As a consequence, the maximal allowed density wasFmax )
1/4. Second, we employed a three-body term as a function of
the angle (0° e |θ| e 180°) between units along the polymer,
which is infinite for |θ| < θ0 ) 80°, has a broad minimum at
|θ| ) θmin ) 120°, and reaches zero smoothly for|θ| ) 180°.
ChoosingV3(|θ| ) 180°) ) 0 sets the zero of the energy, while
the choices ofθ0 andθmin mimic the preferred bond angle for
sp2-hybridized carbon atoms. If the individual units become very
large, one might want to choose different values forθ0 andθmin,
e.g.θmin ≈ 180° for rodlike polymers orθ0 ) 0° for “floppy”
polymers.

The exact functional form of the potential is not critical for
the results but is given for completeness (settinga ) 1):

Building units that are not neighbors along a chain only interact
via a hard sphere potential, withVHS(r) ) ∞ for r < 1.6 and
VHS(r) ) 0 for r g 1.6. To focus on the effects most typical for
polymers, we did not introduce v. d. Waals or hydrogen bond
interactions for nonneighbor building units. (Of course, such
terms might prove crucial for the landscape of e.g. proteins and
should be included in that case.) Since the configuration space
of the lattice polymers is discrete, the landscapes we study are
not continuous but instead defined on a so-called metagraph.
The connectivity of this metagraph was given by the so-called
moveclass: the neighbors of a configuration could be reached
by moving one building unit to a neighboring lattice point.

Local minima of the energy landscapes of each of the 48
systems studied were found using simulated annealing, on the
average for each system about 20 distinct minima. Overall, over
200 of the corresponding pockets were investigated in detail,
with the remaining ones containing too few states to warrant a
detailed study (N(Lmax) < 10). (The total computational effort
involved was about 2 years on three high-end work stations.)
Typical local minimum configurations for a 14× 14 lattice are
shown in Figure 1. Each of these minimaxi served as a starting
point for an exhaustive search using the lid algorithm,19,34where
for a sequence of energy lidsLk the number of accessible states
N(Lk;xi), accessible minimaM(Lk;xi), local density of states
D(E;Lk,xi), and local density of minimaDM(E;Lk,xi) were
determined. Since the configuration space of the lattice polymers
is discrete, each state and minimum inside a pocket aroundxi

below a lidL could be counted individually.
The size of such a local region in configuration space

corresponds to the number of statesN(Lmax) that are accessible
without crossing a limiting lidLmax that connects the pocket to
another region of the landscape which contains a configuration
with a lower energy. (One can visualize this process by picturing
a source of water atxi. As the water levelL rises, neighboring
valleys are flooded and the accessible phase space volumeN(L)
increases, until forL ) Lmax a deeper minimum is found and
the process stops.) Due to the periodic boundary conditions of
the system, certain configurations were equivalent by symmetry;

V2(r) ) { +∞ : r < 1.6

1/3(r - 1.6)(r - 3.2)2(r - 7.1): 1.6e r e 3.2

+∞ : r < 3.2
(1)

V3(θ) )

{ +∞ : |θ| < θ0 ) 80°

-5.8× 10-8(|θ| - 80)(|θ| - 180)2|θ| : 80° e |θ| e 180°
(2)

Figure 1. Minimum configurations of lattice polymers on a 14× 14
lattice: (a)Np ) 1, lp ) 36; (b) Np ) 12, lp ) 3; (c) Np ) 6, lp ) 6.
The 3× 3 ) 9 unit cells are shown. To avoid overloading the pictures,
only the outline of the unit cell is given; the grid points of the underlying
lattice are not included.
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this was checked during the counting, and they were counted
only once. Note that the lid algorithm is an exhaustive search
procedure, in contrast to the closely related threshold algo-
rithm,37 which is based on a careful analysis of many random
walks below a sequence of energy lids. Thus, we get a complete
(but in a sense “static”) picture of the local regions of the
landscapes we investigate.

Results

The results show that while many properties of the pockets
are common to all polymers considered, the polymers could be
divided into two distinct classes, “long” polymers consisting
of 10 or more building units and “short” polymers consisting
of up to 6 building units. (Of the long polymers, 90% or more
of the pockets exhibited “long-polymer”-like behavior, and
similarly, over 90% of the short polymer pockets showed “short-
polymer”-like behavior, respectively.) Polymers with lengths
between exhibited behavior common to both, depending on the
specific pocket considered. For the range of unit cells consid-
ered, this assignment to a given group did not depend on the
size of the systemV or the overall number density of building
units NA/V ) Nplp/V.

In the description of the results, let us begin with the
properties common to both classes of polymers. For simplicity,
we always use the energyEmin of the deepest minimum in the
pocket as the zero of the energy scale,Emin ) 0. In all systems,
the local densities of statesD(E;L) exhibited approximately
exponential growth as a function of energy for fixed value of
the lid L, D(E;L) ∝ exp(RDE) (cf. Figures 2 and 3), whereRD

indicates the rate of growth inD(E;L). The same holds true for
the density of minimaDM(E;L) within a pocket, with the growth
in the case ofDM(E;L) being about equal or slightly slower than
for D(E;L), flattening forE close to the lidL. If one investigates
the dependence ofRD on the size of the system, the number of
building units, and the length of the polymers, one finds a more
complex behavior than e.g. for the case of network glasses.15,36

Nevertheless, some basic features can be distilled from the
analysis: for a fixed densityNA/V and sizeV, RD decreases
slightly with increasing polymer lengthlp. This is not unex-
pected, since small polymers tend to have slightly more freedom
for minor readjustments. However, the major trends are
analogous to those in two- and three-dimensional covalent
networks:15,36increasing density for fixed volume decreases the

rate of growth ofD(E;L), and increasing size for fixed density
leads to a larger value ofRD.

Using a simple free-volume model that already successfully
describes the dependence ofRD for 2D-covalent networks,15 we
find

whereVA ()4) is the volume/atom in an ordered high-density
(F ) Fmax ) 1/4) state of the polymers. In contrast to the 2D-
network glass (RD ∝ V), in the case of 2D polymers the growth
should be proportional toV1/2, since the freedom of movement
of the polymers is essentially restricted to moves perpendicular
to the polymer backbone. (Quite generally, we find for a network
in d dimensionsRD ∝ V, while for a polymer ind dimensions
RD ∝ V(d-1)/d.) The polymers studied obey this rule only
moderately well, as can be seen in Figure 4, where the product
of the inverse rate of growth〈Ei〉 ()〈1/Ri〉) is averaged over all
pocketsi for long polymers (lp > 6) of a given number density

Figure 2. Number of accessible statesN(L) (squares), accessible
minimaM(L) (circles), density of statesD(E;L ) 0.09) (triangles), and
density of minimaDM(E;L ) 0.09) (diamonds) per energy interval∆E
) 0.01 eV/atom within a pocket as a function ofL (eV/atom) andE
(eV/atom), respectively, for a system of 2 polymers of lengthlp ) 18
on a 14× 14 lattice.

Figure 3. Number of accessible statesN(L) (squares), accessible
minima M(L) (circles), density of statesD(E;L ) 0.052) (triangles),
and density of minimaDM(E;L ) 0.052) (diamonds) per energy interval
∆E ) 0.01 eV/atom within a pocket as a function ofL (eV/atom) and
E (eV/atom), respectively, for a system of 12 polymers of lengthlp )
3 on a 14× 14 lattice. (The drop inD(E;L ) 0.052) andDM(E;L )
0.052) forE ) 0.052 is a cutoff effect: the number of states forL >
0.052 exceeded the working memory capability of the computer (784
MB). Generating the data for this relatively small system required the
equivalent of ca. 2 weeks on a DEC-R 433 MHz workstation.)

Figure 4. Plot of the productY ) 〈Ei〉(1 - NAVA/V) of the inverse
growth factor〈Ei〉 averaged over all pocketsi for polymers of a given
number densityNA/V ) 0.18 with the factor (1- NAVA/V) vs S) V0.5

(cf. eq 4). The solid line shows the fitf(V) ) V-0.38. The curve that
would correspond to the simple model (cf. eq 3),f(V) ) V-0.5, is shown
as a dashed line.

RD ) V1/2(1 - VANA/V) (3)

10888 J. Phys. Chem. A, Vol. 106, No. 45, 2002 Schön



NA/V ) 0.18 and the factor (1- VANA/V) is plotted vsS )
V0.5. [As mentioned above, short polymers do exhibit slightly
faster rates of growth than long ones; e.g. for the shortest ones
studied (lp ) 3), RD(lp ) 3;S ) 14) ≈ 1.3RD(lp ) 18;S ) 14).
Thus, they were not included in the average in Figure 4, although
their increase as function of system sizeV appears to follow eq
4 but probably with a slightly different valueγ.] Assuming a
simple power law

we find for the best fitγ ) -0.38. For comparison, we also
plot the curvef(V) ) V-0.5, which would correspond to the
simple parameter free model in eq 3.

The properties described above are shared by all polymer
systems. The major difference between the two classes lies in
the growth of the number of accessible statesN(L) and the
general features of the barrier structure.

While for long polymersN(L) grows smoothly exponentially,
with the rate of growthRN similar to the one of the local density
of statesRD, for short polymers this exponential growth is
interrupted by a large jump inN(L) at some critical energy value
LC (cf. Figure 3). This value can actually be correlated with the
energy that is needed in the system to allow for reptation-like
movements of short polymers. Once this point has been reached,
a large number of nearly equivalent configurations becomes
accessible to the system. The fact that these newly accessible
configurations are essentially equivalent can be deduced from
a comparison of the density of states of the pocketD(E;L <
LC) until L ) LC (which closely parallelsN(L < LC): RN ≈ RD

for L < LC) andD(E;L > LC). One finds thatD(E;L > LC) ≈
g(NA,V)D(E;L < LC), whereg is the degeneracy of the ground
state of the accessible region of the polymer system (g ) 102-
104, for the system sizes considered here). Note that despite
this enormous enlargement of the accessible configuration space
no deeper local minima are found. Thus, on this level, the energy
landscape consists of a multitude of basically equivalent pockets
that all join at a certain critical valueEc ) (Emin + LC) of the
energy barrier (cf. Figure 5).

In contrast (cf. Figure 2), the growth ofN(L) for long
polymers exhibits no major jumps, beyond those that would be
associated with the addition of a large subvalley as one is used
from other complex systems such as the TSP19 or covalent
network glasses.15 [The size of the jumps due to adding the
phase space volume of one or more subvalleys depends on the
number of states already present at the lid value. The relative
increase in volume is the relevant quantity; pictorially, this is

already implied in the logarithmic scale of plots ofN(L).] In
particular, we find a considerably smaller degeneracy of the
ground state within the accessible pocket (g ) 1-50). Further-
more, the large side pockets join the main pocket at many
different lids, and the overall shape of the density of states of
these side pockets is similar to the main pocket though scaled
down, of course. This is shown for a typical midsized pocket
(N(L) ≈ 104) in Figure 6. Thus, we do not deal with many nearly
equivalent subpockets that join at some fixed energy barrierE
) Ec. Instead, we encounter a hierarchy of barriers strongly
reminiscent of analogous results for other complex sys-
tems.19,36,38

Discussion

The general consequences resulting from the approximately
exponential growth of the local densities of states are shared
by all polymer systems. In particular, they all show the typical
metastable behavior caused by the existence of local exponential
growth, which has already been discussed in detail in earlier
work:15,19,39If T > Ei, the pocket will essentially be invisible
despite its depthL; i.e., regarding the dynamics on the complex
landscape as a whole, the probability that the system will enter
the exponential traps is very small, since the number of low-
lying states inside the trap is only an exponentially small fraction
of the states located at the rim of the pocket. Thus, the system
“floats” above them, essentially moving on a rather smooth
“effective” landscape with comparatively small energy barriers.
In contrast, forT < Ei, the system will reside somewhere at the
bottom of the pocket in one of the many local minima, facing
an energy barrierL it needs to cross before leaving the pocket;
i.e., the system encounters the full very rugged landscape
consisting of a multitude of traps of depthL . Ei > T. For this
reason,Ei has been denoted the trapping temperature of the
pocket. Thermodynamically, this behavior results in a peak in
the specific heat nearT ) Ei (cf. Figure 7), a behavior
reminiscent of glasses.

However, the different features of the energy landscape for
long and short polymers have important consequences for the

Figure 5. Schematic drawing of the landscape for small polymers,
with corresponding lumped tree graph. The height of the barriers
between the local minima corresponds to the energyEc, above which
the equivalent pockets of the landscape can communicate.

Figure 6. Plot of the density of statesD(E;L ) 0.007) (hollow squares)
per energy interval∆E ) 0.0005 eV/atom for a midsize pocket in a
system of 10 polymers of length 18 on a 32× 32 lattice, together with
the densities of statesDi(E) of four substantial side pockets (hollow/
full circles, full squares, hollow triangles) that join the main pocket at
various energies. (The merging occurs at or right above the energy for
the last data point of the side pocket’sDi(E).) Note the overall similarity
of the shape of the densities of states of the side pockets with the one
belonging to the main pocket: a relatively sharp increase followed by
a slower (average) growth. Due to the smaller size of the side pockets
(Ni(Lmax) ≈ 103), the curvesDi(E) are more jagged thanD(E) for the
full pocket.

〈Ei〉 (1 - VANA/V) ∝ Vγ (4)
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behavior of the polymer when crossing the trapping temperature.
For long polymers, the analogy with e.g. 2D networks holds:15

the exponentially growing pockets are large enough to act as
traps (D(E;L) ≈ exp(E/Ei) in the range of 0e E e L, with L >
> Ei) and possess a (possibly self-similar) hierarchy of barriers
Bint, the largest ones being comparable to the depthL of the
pocket,Bint ≈ L.

Furthermore, the trapping temperatureEi goes to zero as the
system sizeV increases. Again, the fact that one nevertheless
observes local equilibration in pockets for low temperatures
suggests the following scenario: Beyond a certain system size,
the pockets can become so large that due to the high internal
ruggedness the equilibration time for the whole pocket exceeds
the escape time from the pocket for temperatures close toEi.
[The escape time from the pockets is approximatelyτesc≈ exp-
(L/T - L/Ei) for T < Ei, while the internal equilibration time of
the pocket is controlled by the highest internal barriers (Bint)
and the growth in the density of states of the individual
subvalleys (characterized byEint), together with the possibly
labyrinthine structure of the rugged landscape in the pocket.
Thus, we expectτeq > exp(Bint/T - Bint/Eint). Since in the long-
polymer case,Bint is only slightly smaller thanL andEint ≈ Ei,
we expect that the equilibration time be approximately equal
or even exceed the escape time,τeq ≈ τesc, for T ≈ Ei for very
large pockets.] As a consequence, on one hand the very large
pocket as a whole can only achieve local equilibrium forT
significantly belowEi, while on the other hand at least some,
and perhaps the majority, of the subvalleys will lose metastabil-
ity already atT ≈ Eint g Ei (cf. Figure 8). [This phenomenon
that the accessible (locally equilibrated) phase space volume
of a pocket can be considerably smaller than the pocket itself
has also been observed during investigations of the energy
landscape of MgF2 with the threshold algorithm.40] This quantity
Eint might well remain finite even asEi f 0, suggesting that
even in the thermodynamic limit finite effective trapping

temperatures might be present. [Note that we can use the simple
model forR(V) represented above in eq 3 to estimate from the
energy scales involved that a polymer system containing a few
thousand building units should be large enough to reach the
limit of local ergodicity and allow the modeling of many aspects
of the glass transition,Tg ≈ Ei ≈ 0.5 eV for NA ) 72 (V )
400,F ) 0.72Fmax), and thusTg will be in the realistic range of
≈0.05 eV forNA ≈ 7000. Of course, this estimate presupposes
that trapping really constitutes a major contribution to the
formation of glasses.]

In contrast, the short-polymer system partly evades the local
equilibration issue, since enlarging the system size does not
increaseEc and just increasesg(V). Thus whileD(E;L) overall
increases, the change in its slope and the concomitant decrease
in Ei is comparatively small and still follows approximately eq
3. Here, we need to distinguish between the increase in the
number of individual polymers, which contribute to the decrease
in Ei, and the increase in the number of equivalent subpockets.
Clearly, since the local degrees of freedom of the individual
polymers are only indirectly coupled to each other, the config-
uration space will again separate into weakly connected locally
ergodic subspaces of a certain size.

But due to the splitting of the energy landscape into a
multitude of equivalent subpockets, the behavior of the system
takes place on several time scales: one for equilibration among
many subpocketsτ1 (which for large subregions of the landscape
cannot be done before leaving the whole pocket; cf. Figure 8)
and one for equilibrating in a subpocketτ2. But the fact thatτ1

grows quickly and soon exceeds the escape time for the whole
subregion does not affect the short-polymer system in the same
way as the large-polymer system, since the individual subpockets
are essentially equivalent regarding their physical properties.
Thus, it isτ2 and notτ1 that dominates the behavior as far as
the overall physics is concerned! Furthermore,τ2 does not
increase as fast asτ1 with growing system size, and due to the
small size of these subpockets, ergodic barriers within the
subpockets that in the end result in a finite value of the trapping
temperature only appear after a considerable increase in total
system size.

Figure 7. Plot of the expectation value of the energy〈E〉 (eV/atom)
(solid line) and the specific heatCV (kB) (dashed line) as a function of
temperatureT (eV/atom) for a large pocket belonging to a system of 2
polymers of lengthlp ) 18 on a 14× 14 lattice (cf. Figure 2 for the
density of states of the pocket). In this instance, the depth of the pocket
D ≈ 0.09 eV/atom exceeds the trapping temperatureEi ≈ 0.0093 eV/
atom by a factor of at least 10. Thus, forT < Ei, the system is trapped
at the bottom of the pocket, as seen by the curve〈E〉(T). For T ≈ Ei,
the system moves to the top of the pocket, which gives rise to the
peak in the specific heat. Note thatCV(T) and 〈E〉(T) have been
calculated from the density of states restricted to the pocket, and thus
they only describe the physics forT ≈ Ei. ForT > Ei the system moves
to the rim of the pocket and a much larger part of the landscape becomes
accessible, and thus, e.g.CV(T) will not drop toward zero as shown
but start increasing again at some point or reach some limiting value
for T > Ei.

Figure 8. Schematic drawing of the fraction of a pocket (shaded) seen
by a random walker out of equilibrium, resulting in an effective (quasi-
equilibrium) density of states smaller than the actual one in the pocket.
The time needed to equilibrate within the whole pocket is larger than
the escape timeτescfrom the pocket. However, within the shaded region,
the system is close to equilibrium fort , τesc. The (possibly very
complicated) internal energy barrier structure of the pocket that controls
the size of the shaded region is not shown in this schematic, which
stresses the accessible phase space volume.
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Thus, the short-polymer system exhibits a rapidly increasing
number of equivalent locally ergodic regions, each with slowly
but continually decreasing (identical) trapping temperatures, for
increasing system size. Only when the barrier structures of these
individual regions become complex enough does their ergodicity
get broken and the trapping temperature reaches a finite limit
value. But this takes place for much larger system sizes than
for the long polymers, since short polymers interfere with each
other much less than long polymers. A similar effect has been
seen in MCssimulations of polymers of various lengths,23 where
an order of magnitude difference in cooling rates was needed
to allow alp ) 10 system to reach a similar low energy state as
a lp ) 3 system. Conversely, we would have to impose a very
high cooling rate to reach a disordered metastable configuration
at low temperatures.

This type of behavior is much more like the one one would
expect for a liquid than for a glassy state: except for very low
temperatures, the system moves on the energy landscape well
above the many local minima corresponding to possible
(amorphous) structures (T > Ei!) without major potential energy
barriers barring the way (except those that prevent large changes
of the density of the system or the destruction of the individual
polymers), leading e.g to a rather low viscosity. Note that, for
a realistic system, the v.d.W.-intermolecular interactions between
the individual polymers (which have been ignored in this
analysis, to avoid the mixing of energy scales) need to be taken
into account. Because of the energy barriers associated with
the attraction between spatially close polymers, this interaction
will also contribute to the viscosity and the solidification, of
course. However the resulting formation of crystalline and/or
glassy states on this energy level belongs more properly to the
energy landscape of simple liquids, which is not part of this
discussion, although it could also be analyzed using the lid
algorithm.

Instead, we can perhaps draw an analogy to the liquid-
nematic transition in liquid crystals.41,42 The low-energy states
of the lattice polymers presented here exhibit partly parallel
arrangements of the individual chain molecules, with the
(degenerate) ground state for a fixed density consisting of a
perfectly parallel alignment of the polymers. Such an (on the
average) aligned arrangement is also characteristic for the
nematic phase and coincides with a loss of rotational symmetry
in the system. But it is just this degree of freedom that is frozen
out when the lattice polymers get trapped, while the further
development toward more and more crystalline order only
occurs if additional polymer-polymer interactions are taken into
account. Furthermore, we note that liquid crystalline phases
appear to be replaced by glassy phases once the length of the
molecules involved exceeds some limit.41 Again, this would
qualitatively agree with our observations for the change of the
behavior with polymer length in our model polymers.

Finally, recent studies of the crystallization of (essentially
two-dimensional) polymers have shown ordered domains of
aligned polymers or polymer sections of a characteristic size
of 2-10 nm being formed during freezing.43 Both the visual
impression and the characteristic size of the domains are strongly
reminiscent of the results presented here. The typical alignments
in the local minimum configurations of the long-lattice polymers
(cf. Figure 1) and the estimated size of the locally equilibrated
domains of several thousand backbone-C atoms are both in
qualitative and even semiquantitative agreement with these
experimental observations.

While these results open up new and exciting avenues of
investigation of polymers and related systems, we need to

analyze which results are independent of the particular aspects
of the model we have employed. Neglecting weak (van der
Waals) interactions among the polymers leads to an artificial
degeneracy of the minima of the system, including the ground
state. Introducing such an interaction would lift this degeneracy
to a certain extent, and e.g., the local minima sketched in Figure
5 would be shifted to slightly different energies. However, as
long as this additional interaction is weak, the general statements
and deductions about the pockets and their effect on the
properties of the system would still apply.

A second issue is the use of a finite simulation cell. If we
were to employ a very large cell, e.g. 100× 100, we expect
that even systems with long polymers such aslp ) 18 will
exhibit many nearly equivalent arrangements resulting in very
similar subregions of the landscape that are all connected above
some critical energy value. Thus, the picture associated with
Figure 5 would also apply for large polymers as long as the
unit cell is big enough. However, the individual nearly
equivalent subregions will be very large and retain their high
internal complexity. Thus, we expect that their local structure
will continue to control the thermodynamic behavior of the
polymer, e.g. the existence or nonexistence of a glass transition.
This expectation is supported by the observation that e.g. the
properties of the pockets belonging to a system with 10 polymers
of length 18 on a 32× 32 lattice are still very similar to those
belonging to a system consisting of one polymer of length 180
on the same lattice or those of 2 polymers of length 18 on a 14
× 14 lattice.

Finally, we would like to point to the other complex systems
where such an exhaustive analysis of pockets of the energy
landscape has been performed: spin glasses;35,38 the traveling
salesman problem (TSP);19 2D- and 3D-network glasses.15,36

In all instances approximately exponentially growing local
densities of states were observed that appear to be a general
characteristic of such systems. The differences among these
systems lie mainly in the details of the barrier structure: (self-
similar) hierarchies for e.g. 2D-/3D-networks and long polymers
contrasting multiple equivalent small pockets for e.g. short
polymers. Exploring and classifying these structures should be
a major goal for future investigations. In particular, it is also
necessary to go beyond the simple single- or multiple-lump tree-
graph models of energy landscapes9,12,37,44,45that have been
created in the past for the description and analysis of continuous
energy landscapes of polymers, clusters, and solids, if one wants
to understand the influence of entropic barriers on the dynamics
and thermodynamcis of complex systems.
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(1) Götze, W.; Sjögren, J.Rep. Prog. Phys.1992, 55, 241.
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