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The energy landscape of two-dimensional lattice polymers is investigated, using the so-called lid algorithm.
We find that a multitude of pockets around local energy minima exist that exhibit approximately exponentially
growing local densities of states. This behavior is similar to the energy landscape of e.g. two- and three-
dimensional covalent lattice networks and the energy landscape of spin glasses. However, in contrast to these
systems, we find that two classes of polymer landscapes exist, depending on the length of the polymers. As
a consequence, short polymers appear to show a much more “liquidlike” behavior, while long polymers
resemble much more closely the glassy covalent networks.

Introduction not yet possible to gain a complete picture of the whole
landscape of a nontrivial system. Thus, we have concentrated
on studying representative subregions of the landscape (called
pockets), which are operationally defined as those regions of
the energy landscape that can be reached from a local minimum
without crossing a sequence of barriers, the so-called lids. This
lid algorithm'934has already been successfully applied to several
complex system¥19:3536and certain features common to all
examples have been found, in particular approximately expo-
Shentially growing local densities of states and densities of local
minima around these pockets.

In this work we present investigations of the application of
the lid algorithm to 2D-lattice polymers and compare the results
with those found for other complex systems.

One of the major classes of complex systems that exhibit
glassy behavior, such as a glass transktfoar non-Debye
relaxations are the polymer$:® Since they can be synthesized
in many well-controlled variations, they have become important
from the theoretical point of view as well, serving as a
touchstone for many theories and models for glassy or amor-
phous systems. When trying to find common ground between
polymers and the plethora of other complex systems, one need
to abstract on two levels: on one hand, one wishes to
concentrate on the general properties of polymers, without
getting lost in the details of the specific interaction (the “ideal”
polymer), while, on the other hand, one wants to find a bridge
that connects the realm of polymers with that of other complex
systems, e.g. spin glasseslusters® 10 individual proteins and

polymersti~14 covalent network glassé® problems in evolu- Model
tion,'6 structure prediction in chemist®;!® or combinatorial The model we use for the 2D-lattice polymers is similar to
optimization problems? the bond-fluctuation model employed in MC simulatiéfs,

The study of the “ideal” polymer has made great advances where we envision the building units of the polymers to be
in the past decade with the development of lattice polymer analogous to carbon atoms connected via covalent bas.
models?® Here, one no longer tries to account for each individual (=1—24) polymers of lengtl, (=3—180) were placed on square
atom in a polymer-instead one combines several atoms, perhaps S x S2D lattices §= 10—32) with side lengthX = Sa where
even whole side branches of the polymer, into a single building a is the spacing of the lattic&a = N, I, is the total number of
unit. For this unit, an effective interaction both within the building units, andv = £ is the total area of the system in
polymer (nearest neighbors along the backbone) and with all units ofa?2. We have performed landscape explorations for 48
other polymers is defined. This allows us to concentrate on the different systems (defined bi,, I,, andS) covering a large
abstract polymer and its properties. To allow for the efficient number of densitiep = Na/V, with up toNa = 180 building
simulation of polymer properties and their dynamical behavior, units. To simulate an infinite system, periodic boundary
a second fruitful approximation has been made, i.e., to place conditions were employed.
these building units on a lattice. In this way, Monte Carlo The lattice constard was chosen such that the equilibrium
simulations have become possible that have been used tadistance between two units was on the orderafl@ this way,
elucidate much of the behavior of polyméts?’ we abstract in this mesoscopic model from the local vibrations

The bridge that connects these successful abstract models wittand distortions and concentrate on the topological aspects of
other complex systems is their energy landscape and itsthe polymer configurations instead. Thus, the local densities of
propertiest®182829¢ g the relaxation of a system can be state for the pockets in configuration space will represent the
visualized as a random walk on the energy landscape of theexcess entropy or so-called configurational entropy of the
system, and many low-temperature properties of glasses havesystem-a quantity usually associated with the peak in the
been ascribed to certain features of the energy landscape likespecific heat near the glass transitfgh.
double-well potentiaf®-31or their extension, the so-called soft The interaction potential between neighbors along the polymer
potentials’?:33 However, with current computer resources it is consisted of two terms. The first is a radially symmetric two-
body term that equals plus infinity for< 1.6a, has a minimum
T Part of the special issue “R. Stephen Berry Festschrift”. at~2.2a, goes to zero at= 3.2a, and equals infinity again for
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r > 3.2a (covalent bonds were not allowed to be destroyed!).
As a consequence, the maximal allowed density was =
1/4. Second, we employed a three-body term as a function of
the angle (0 < |0] < 180°) between units along the polymer,
which is infinite for|6| < 6y = 80°, has a broad minimum at
|6] = Omin = 12C°, and reaches zero smoothly féi = 180°.
ChoosingVs(|0| = 180°) = 0 sets the zero of the energy, while
the choices 0Py and 6min mimic the preferred bond angle for
sp-hybridized carbon atoms. If the individual units become very
large, one might want to choose different valuesdgand 6 min,
e.g.0min ~ 180 for rodlike polymers oy = 0° for “floppy”
polymers.

The exact functional form of the potential is not critical for
the results but is given for completeness (settarrg 1):

+oo:r<1.6
V,(r) ={ 1/3¢ — 1.6)¢ — 3.27(r — 7.1): 1.6<r < 3.2

+oo:r <3.2
(1)

V3(0) =
400 |0] < 0,=80°

—5.8x 10 %(|0] — 80)(0| — 180¥|0| : 80° < || < 180C°
)

Building units that are not neighbors along a chain only interact
via a hard sphere potential, withs(r) = o for r < 1.6 and
Vus(r) =0 forr = 1.6. To focus on the effects most typical for
polymers, we did not introduce v. d. Waals or hydrogen bond
interactions for nonneighbor building units. (Of course, such
terms might prove crucial for the landscape of e.g. proteins and
should be included in that case.) Since the configuration space
of the lattice polymers is discrete, the landscapes we study are
not continuous but instead defined on a so-called metagraph.
The connectivity of this metagraph was given by the so-called
moveclass: the neighbors of a configuration could be reached
by moving one building unit to a neighboring lattice point.

Local minima of the energy landscapes of each of the 48
systems studied were found using simulated annealing, on the
average for each system about 20 distinct minima. Overall, over
200 of the corresponding pockets were investigated in detail,
with the remaining ones containing too few states to warrant a
detailed studyN(Lmay < 10). (The total computational effort
involved was about 2 years on three high-end work stations.)
Typical local minimum configurations for a 14 14 lattice are
shown in Figure 1. Each of these minimaserved as a starting
point for an exhaustive search using the lid algoriffi#fwhere
for a sequence of energy lidls the number of accessible states
N(Lk;%), accessible minimaM(L;x), local density of states
D(E;LxX), and local density of minimaDw(E;Lk,X) were
determined. Since the configuration space of the lattice polymers
is discrete, each state and minimum inside a pocket argund
below a lidL could be counted individually.

The size of such a local region in configuration space
corresponds to the number of stal{& may) that are accessible
without crossing a limiting lid_max that connects the pocket to
another region of the landscape which contains a configuration
with a lower energy. (One can visualize this process by picturing
a source of water a§. As the water level rises, neighboring ) . ! . .
valleys are flooded and the accessible phase space vil(ime gg;z 1('61)'\,1""2“;”; Czonsfg_u(rg)t'ﬁnszoiéafuf g.()l(f)n,\elrszog ? 12164
increases, until fot. = Lmaxa deep_er minimum 1s founo_l _and The 3x 3 = 9 unit cells are shown. To avoid o(/erloapéiing the pictures,
the process stops.) Due to the periodic boundary conditions of only the outline of the unit cell is given; the grid points of the underlying
the system, certain configurations were equivalent by symmetry; lattice are not included.
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Figure 2. Number of accessible statéd§(L) (squares), accessible
minimaM(L) (circles), density of statd3(E;L = 0.09) (triangles), and
density of minimaDu(E;L = 0.09) (diamonds) per energy intervaE

Figure 3. Number of accessible staté§(L) (squares), accessible

minima M(L) (circles), density of stateB(E;L = 0.052) (triangles),

- A p and density of minim®y(E;L = 0.052) (diamonds) per energy interval

_\%Otl eViatom V\;'.th'? af pocket ?S a f?rzlctloln lofeVi, aft?rpi) t?;nclg AE = 0.01 eV/atom vyithin a pocket as a functionlofeV/atom) and

(eViatom), respectively, for a system of 2 polymers of lerig E (eV/atom), respectively, for a system of 12 polymers of lerigth

on a 14x 14 lattice. 3 0n a 14x 14 lattice. (The drop iD(E.L = 0.052) andDy(E.L =
0.052) forkE = 0.052 is a cutoff effect: the number of states ffor

this was checked during the counting, and they were counted0.052 exceeded the working memory capability of the computer (784

only once. Note that the lid algorithm is an exhaustive search MB). Generating the data for this relatively small system required the

procedure, in contrast to the closely related threshold algo- equivalent of ca. 2 weeks on a DEC433 MHz workstation.)

rithm 37 which is based on a careful analysis of many random

walks below a sequence of energy lids. Thus, we get a complete

T T — T T T T

(but in a sense “static”) picture of the local regions of the 045 ¢
landscapes we investigate. 0.4 f
0.35 |
Results
03

The results show that while many properties of the pockets , 55|
are common to all polymers considered, the polymers could be

- . L o 02
divided into two distinct classes, “long” polymers consisting

of 10 or more building units and “short” polymers consisting 015 r

of up to 6 building units. (Of the long polymers, 90% or more 0.1t

of the pockets exhibited “long-polymer”-like behavior, and 0.05 -

similarly, over 90% of the short polymer pockets showed “short- . . . . . . .
polymer”-like behavior, respectively.) Polymers with lengths 00 5 10 15 20 25 30 35 40
between exhibited behavior common to both, depending on the S

specific pocket considered. For the range of unit cells consid- Figure 4. Plot of the producty = [E{1 — NaVa/V) of the inverse
ered, this assignment to a given group did not depend on thegrowth factor(E;Uaveraged over all pocketdor polymers of a given

. . - number densitNa/V = 0.18 with the factor (1= NaVa/V) vs S= V05
size of the syster or the overall number density of building (cf. eq 4) TheyiAO”d line shows the fitV) =( V*O{;B.AT\r?e eurve that

units Na/V = Np'_p/\_/- ) ) would correspond to the simple model (cf. eqf8y) = V05, is shown
In the description of the results, let us begin with the as a dashed line.

properties common to both classes of polymers. For simplicity,

we always use the enerd, of the deepest minimum in the  rate of growth ofD(E;L), and increasing size for fixed density
pocket as the zero of the energy scé@gi, = 0. In all systems,  leads to a larger value afp.

the local densities of statd3(E;L) exhibited approximately Using a simple free-volume model that already successfully
exponential growth as a function of energy for fixed value of describes the dependenceogffor 2D-covalent network> we

the lid L, D(E;L) O exp@pE) (cf. Figures 2 and 3), wherep find

indicates the rate of growth ID(E;L). The same holds true for

the density of minim@®y(E;L) within a pocket, with the growth op = V1'2(1 — V,N./V) 3

in the case oDy (E;L) being about equal or slightly slower than

for D(E;L), flattening forE close to the lid_. If one investigates ~ whereVa (=4) is the volume/atom in an ordered high-density
the dependence @fp on the size of the system, the number of (p = pmax = 1/4) state of the polymers. In contrast to the 2D-
building units, and the length of the polymers, one finds a more network glassdp O V), in the case of 2D polymers the growth
complex behavior than e.g. for the case of network gla¥s&s.  should be proportional t922, since the freedom of movement
Nevertheless, some basic features can be distilled from theof the polymers is essentially restricted to moves perpendicular
analysis: for a fixed densitiNa/V and sizeV, op decreases  to the polymer backbone. (Quite generally, we find for a network
slightly with increasing polymer length,. This is not unex- in d dimensionsup OV, while for a polymer ind dimensions
pected, since small polymers tend to have slightly more freedomop O V@Dd) The polymers studied obey this rule only
for minor readjustments. However, the major trends are moderately well, as can be seen in Figure 4, where the product
analogous to those in two- and three-dimensional covalent of the inverse rate of growtt;((=[1/0;[)J is averaged over all
networks!>3¢increasing density for fixed volume decreases the pocketsi for long polymers|, > 6) of a given number density
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Figure 5. Schematic drawing of the landscape for small polymers, 0 0001 0002 0003 0004 0005 0006 0.007 0.008
with corresponding lumped tree graph. The height of the barriers E
between the local minima corresponds to the en&gybove which Figure 6. Plot of the density of statd3(E;L = 0.007) (hollow squares)
the equivalent pockets of the landscape can communicate. per energy intervaAE = 0.0005 eV/atom for a midsize pocket in a
system of 10 polymers of length 18 on a 8232 lattice, together with

Na/V = 0.18 and the factor (= VaNa/V) is plotted vsS = the densities of statds;(E) of four substantial side pockets (hollow/

V05 [As mentioned above, short polymers do exhibit slightly full circles, full squares, hollow triangles) that join the main pocket at

faster rates of growth than long ones; e.g. for the shortest onesYarious energies. (The merging occurs at or right above the energy for
studied [, = 3), ao(lp = 3;:5= 14) ~ 1.30p(l, = 18S = 14) the last data point of the s_@e pockdDgE).) Note Fhe overall S|m_||ar|ty

» UDAp ~ ~UDAp ™ 2Oy ) of the shape of the densities of states of the side pockets with the one
Thus, they were not included in the average in Figure 4, although pejonging to the main pocket: a relatively sharp increase followed by

their increase as function of system sizappears to follow eq  a slower (average) growth. Due to the smaller size of the side pockets
4 but probably with a slightly different valug.] Assuming a (Ni(Lmay ~ 10°), the curveD;(E) are more jagged thab(E) for the
simple power law full pocket.

Q1 — V,N,/V) OV (4) alregdy implied. in the Ioggrithmic scale of plots W{L).] In
particular, we find a considerably smaller degeneracy of the
ground state within the accessible poclgt(1-50). Further-
more, the large side pockets join the main pocket at many
different lids, and the overall shape of the density of states of
these side pockets is similar to the main pocket though scaled
down, of course. This is shown for a typical midsized pocket
(N(L) ~ 10% in Figure 6. Thus, we do not deal with many nearly
equivalent subpockets that join at some fixed energy barier

= E.. Instead, we encounter a hierarchy of barriers strongly

reminiscent of analogous results for other complex sys-
tems!9.:36.38

we find for the best fity = —0.38. For comparison, we also
plot the curvef(V) = V=95 which would correspond to the
simple parameter free model in eq 3.

The properties described above are shared by all polymer
systems. The major difference between the two classes lies in
the growth of the number of accessible stai{t) and the
general features of the barrier structure.

While for long polymers\(L) grows smoothly exponentially,
with the rate of growttoy similar to the one of the local density
of statesap, for short polymers this exponential growth is
interrupted by a large jump IN(L) at some critical energy value
Lc (cf. Figure 3). This value can actually be correlated with the
energy that is needed in the system to allow for reptation-like = The general consequences resulting from the approximately
movements of short polymers. Once this point has been reachedexponential growth of the local densities of states are shared
a large number of nearly equivalent configurations becomes by all polymer systems. In particular, they all show the typical
accessible to the system. The fact that these newly accessiblenetastable behavior caused by the existence of local exponential
configurations are essentially equivalent can be deduced fromgrowth, which has already been discussed in detail in earlier

Discussion

a comparison of the density of states of the podR€E;L < work:1519.39|f T > E;, the pocket will essentially be invisible
Lc) until L = L¢ (which closely parallel®N(L < L¢): an = op despite its depth; i.e., regarding the dynamics on the complex
for L < L¢) andD(E;L > L¢). One finds thaD(E;L > L¢) ~ landscape as a whole, the probability that the system will enter
d(Na,V)D(E;L < L¢), whereg is the degeneracy of the ground the exponential traps is very small, since the number of low-
state of the accessible region of the polymer systgm (0?— lying states inside the trap is only an exponentially small fraction

104, for the system sizes considered here). Note that despiteof the states located at the rim of the pocket. Thus, the system
this enormous enlargement of the accessible configuration spacéfloats” above them, essentially moving on a rather smooth
no deeper local minima are found. Thus, on this level, the energy “effective” landscape with comparatively small energy barriers.
landscape consists of a multitude of basically equivalent pocketsIn contrast, fofT < E;, the system will reside somewhere at the

that all join at a certain critical valuE; = (Emin + Lc) of the bottom of the pocket in one of the many local minima, facing
energy barrier (cf. Figure 5). an energy barriek it needs to cross before leaving the pocket;
In contrast (cf. Figure 2), the growth dfi(L) for long i.e., the system encounters the full very rugged landscape

polymers exhibits no major jumps, beyond those that would be consisting of a multitude of traps of degth> E; > T. For this
associated with the addition of a large subvalley as one is usedreason,E; has been denoted the trapping temperature of the
from other complex systems such as the TS covalent pocket. Thermodynamically, this behavior results in a peak in
network glasse¥® [The size of the jumps due to adding the the specific heat neal = E (cf. Figure 7), a behavior
phase space volume of one or more subvalleys depends on theeminiscent of glasses.

number of states already present at the lid value. The relative However, the different features of the energy landscape for
increase in volume is the relevant quantity; pictorially, this is long and short polymers have important consequences for the
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Figure 7. Plot of the expectation value of the enerdiJ(eV/atom)
(solid line) and the specific he&@ (ks) (dashed line) as a function of
temperaturd (eV/atom) for a large pocket belonging to a system of 2
polymers of lengtH, = 18 on a 14x 14 lattice (cf. Figure 2 for the
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Figure 8. Schematic drawing of the fraction of a pocket (shaded) seen
by a random walker out of equilibrium, resulting in an effective (quasi-

density of states of the pocket). In this instance, the depth of the pocket gquilibrium) density of states smaller than the actual one in the pocket.

D ~ 0.09 eV/atom exceeds the trapping temperakire 0.0093 eV/
atom by a factor of at least 10. Thus, fbr< E;, the system is trapped

at the bottom of the pocket, as seen by the culigT). For T ~ Ej,

the system moves to the top of the pocket, which gives rise to the
peak in the specific heat. Note th&,(T) and [ET) have been

The time needed to equilibrate within the whole pocket is larger than
the escape timess.from the pocket. However, within the shaded region,
the system is close to equilibrium far< 7es, The (possibly very
complicated) internal energy barrier structure of the pocket that controls
the size of the shaded region is not shown in this schematic, which

calculated from the density of states restricted to the pocket, and thussiresses the accessible phase space volume.

they only describe the physics for~ E;. For T > E; the system moves

to the rim of the pocket and a much larger part of the landscape become
accessible, and thus, e @v(T) will not drop toward zero as shown
but start increasing again at some point or reach some limiting value
for T > E.

behavior of the polymer when crossing the trapping temperature.

For long polymers, the analogy with e.g. 2D networks hdfds:

S‘[emperatures might be present. [Note that we can use the simple

model fora(V) represented above in eq 3 to estimate from the
energy scales involved that a polymer system containing a few
thousand building units should be large enough to reach the
limit of local ergodicity and allow the modeling of many aspects
of the glass transitiony ~ Ej ~ 0.5 eV forNa = 72 (V =

the exponentially growing pockets are large enough to act as400, p = 0.72omay), and thusTgy will be in the realistic range of

traps D(E;L) ~ expE/E) in the range of < E < L, withL >
> E;) and possess a (possibly self-similar) hierarchy of barriers
Bin,, the largest ones being comparable to the déptif the
pocket,Bin: ~ L.

Furthermore, the trapping temperatleggoes to zero as the
system sizeV increases. Again, the fact that one nevertheless
observes local equilibration in pockets for low temperatures

~0.05 eV forNa ~ 7000. Of course, this estimate presupposes
that trapping really constitutes a major contribution to the
formation of glasses.]

In contrast, the short-polymer system partly evades the local
equilibration issue, since enlarging the system size does not
increaseE; and just increasey(V). Thus whileD(E;L) overall
increases, the change in its slope and the concomitant decrease

suggests the following scenario: Beyond a certain system size,in E; is comparatively small and still follows approximately eq
the pockets can become so large that due to the high internal3. Here, we need to distinguish between the increase in the
ruggedness the equilibration time for the whole pocket exceedsnumber of individual polymers, which contribute to the decrease

the escape time from the pocket for temperatures clogg. to
[The escape time from the pockets is approximately~ exp-
(L/T — L/E) for T < E;, while the internal equilibration time of
the pocket is controlled by the highest internal barriéig;)(
and the growth in the density of states of the individual
subvalleys (characterized ), together with the possibly
labyrinthine structure of the rugged landscape in the pocket.
Thus, we expecteq > expBind/ T — Bin/Eint). Since in the long-
polymer caseBjy is only slightly smaller thai. andEjn; =~ E;,

we expect that the equilibration time be approximately equal
or even exceed the escape ting,~ tes for T ~ E; for very

in E;, and the increase in the number of equivalent subpockets.
Clearly, since the local degrees of freedom of the individual
polymers are only indirectly coupled to each other, the config-
uration space will again separate into weakly connected locally
ergodic subspaces of a certain size.

But due to the splitting of the energy landscape into a
multitude of equivalent subpockets, the behavior of the system
takes place on several time scales: one for equilibration among
many subpockets; (which for large subregions of the landscape
cannot be done before leaving the whole pocket; cf. Figure 8)
and one for equilibrating in a subpocket But the fact that

large pockets.] As a consequence, on one hand the very largegrows quickly and soon exceeds the escape time for the whole

pocket as a whole can only achieve local equilibrium Tor
significantly belowE;, while on the other hand at least some,
and perhaps the majority, of the subvalleys will lose metastabil-
ity already atT ~ Ejn = E; (cf. Figure 8). [This phenomenon

subregion does not affect the short-polymer system in the same
way as the large-polymer system, since the individual subpockets
are essentially equivalent regarding their physical properties.
Thus, it ist2 and notz; that dominates the behavior as far as

that the accessible (locally equilibrated) phase space volumethe overall physics is concerned! Furthermorg,does not
of a pocket can be considerably smaller than the pocket itself increase as fast ag with growing system size, and due to the
has also been observed during investigations of the energysmall size of these subpockets, ergodic barriers within the

landscape of MgFwith the threshold algorithrff] This quantity
Eint might well remain finite even ak; — 0, suggesting that
even in the thermodynamic limit finite effective trapping

subpockets that in the end result in a finite value of the trapping
temperature only appear after a considerable increase in total
system size.
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Thus, the short-polymer system exhibits a rapidly increasing analyze which results are independent of the particular aspects
number of equivalent locally ergodic regions, each with slowly of the model we have employed. Neglecting weak (van der
but continually decreasing (identical) trapping temperatures, for Waals) interactions among the polymers leads to an artificial
increasing system size. Only when the barrier structures of thesedegeneracy of the minima of the system, including the ground
individual regions become complex enough does their ergodicity state. Introducing such an interaction would lift this degeneracy
get broken and the trapping temperature reaches a finite limit to a certain extent, and e.g., the local minima sketched in Figure
value. But this takes place for much larger system sizes than5 would be shifted to slightly different energies. However, as
for the long polymers, since short polymers interfere with each long as this additional interaction is weak, the general statements
other much less than long polymers. A similar effect has been and deductions about the pockets and their effect on the
seen in MG-simulations of polymers of various lengtfsyhere properties of the system would still apply.
an order of magnitude difference in cooling rates was needed A second issue is the use of a finite simulation cell. If we
to allow alp, = 10 system to reach a similar low energy state as were to employ a very large cell, e.g. 180100, we expect
al, = 3 system. Conversely, we would have to impose a very that even systems with long polymers suchlgs= 18 will
high cooling rate to reach a disordered metastable configurationexhibit many nearly equivalent arrangements resulting in very
at low temperatures. similar subregions of the landscape that are all connected above

This type of behavior is much more like the one one would some critical energy value. Thus, the picture associated with
expect for a liquid than for a glassy state: except for very low Figure 5 would also apply for large polymers as long as the
temperatures, the system moves on the energy landscape welnit cell is big enough. However, the individual nearly
above the many local minima corresponding to possible equivalent subregions will be very large and retain their high
(amorphous) structured ¢ E;!') without major potential energy internal complexity. Thus, we expect that their local structure
barriers barring the way (except those that prevent large changedVill continue to control the thermodynamic behavior of the
of the density of the system or the destruction of the individual Polymer, e.g. the existence or nonexistence of a glass transition.
polymers), leading e.g to a rather low viscosity. Note that, for This expectation is supported by the observation that e.g. the
a realistic system, the v.d.W.-intermolecular interactions between Properties of the pockets belonging to a system with 10 polymers
the individual polymers (which have been ignored in this of length 18 on a 3% 32 lattice are still very similar to those
analysis, to avoid the mixing of energy scales) need to be takenb€longing to a system consisting of one polymer of length 180
into account. Because of the energy barriers associated withon the same lattice or those of 2 polymers of length 18 on a 14
the attraction between spatially close polymers, this interaction x 14 lattice.
will also contribute to the viscosity and the solidification, of Finally, we would like to point to the other complex systems
course. However the resulting formation of crystalline and/or Where such an exhaustive analysis of pockets of the energy
glassy states on this energy level belongs more properly to thelandscape has been performed: spin gla¥s&she traveling
energy landscape of simple liquids, which is not part of this Salesman problem (TSP};2D- and 3D-network glassés®

discussion, although it could also be analyzed using the lid In all instances approximately exponentially growing local
algorithm. densities of states were observed that appear to be a general

characteristic of such systems. The differences among these

systems lie mainly in the details of the barrier structure: (self-
| similar) hierarchies for e.g. 2D-/3D-networks and long polymers
contrasting multiple equivalent small pockets for e.g. short
polymers. Exploring and classifying these structures should be
a major goal for future investigations. In particular, it is also
necessary to go beyond the simple single- or multiple-lump tree-
graph models of energy landscap&s’’4445that have been
created in the past for the description and analysis of continuous
energy landscapes of polymers, clusters, and solids, if one wants
to understand the influence of entropic barriers on the dynamics
and thermodynamcis of complex systems.

Instead, we can perhaps draw an analogy to the liquid
nematic transition in liquid crystaf$:#2The low-energy states
of the lattice polymers presented here exhibit partly paralle
arrangements of the individual chain molecules, with the
(degenerate) ground state for a fixed density consisting of a
perfectly parallel alignment of the polymers. Such an (on the
average) aligned arrangement is also characteristic for the
nematic phase and coincides with a loss of rotational symmetry
in the system. But it is just this degree of freedom that is frozen
out when the lattice polymers get trapped, while the further
development toward more and more crystalline order only
occurs if additional polymerpolymer interactions are taken into
account. Furthermore, we note that liquid crystalline phases .
appear to be replaced by glassy phases once the length of the Acknowl_edgmt_ent. | thank P Sibani and G .Stollhoff. for
molecules involved exceeds some lifitAgain, this would valyable discussions and K. E}lnder for a lucid mtroductlon to
qualitatively agree with our observations for the change of the :gg'ée poISy'r:nBeiorgod%:s. I;ug_?_lng_ was_kmd(ljy provided by the
behavior with polymer length in our model polymers. via and a habilitation stipend.
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