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The goal of this research is to develop a reliable method to derive nucleation rates and time lags from times
of nucleation observed in sets of molecular dynamics simulations of supercooled clusters undergoing
spontaneous freezing. What is taken explicitly into account, which was missing in prior analyses, is the kinetics
of transient nucleation. Failure to consider this aspect of nucleation has led to substantially larger errors than
the statistical errors associated with the stochastic process. It is found that analyses simultaneously including
the transient nucleation parameter as well as the nucleation time lag and the steady-state nucleation rate are
too ill-conditioned to yield satisfactory results. A procedure to circumvent this problem and to estimate
uncertainties is formulated.

Introduction

In a previous paper,1 the derivation of nucleation rates from
molecular dynamics (MD) simulations of freezing in sets of
supercooled clusters was discussed. In particular, the statistical
errors to be expected when nucleation events are few, were
analyzed. Although steady-state nucleation in clusters obeys a
first-order rate law, the problem differs from the somewhat
analogous problem of radioactive decay rates. For one thing, at
least two parameters must be derived, not only the rate constant,
but also the nucleation time-lag, which does not apply to
radioactive decay. Complicating the problem is the phenomenon
of transient nucleation, which, as it turns out, adds a third
parameter.2 In addition, in MD simulations, the total number,
No, of clusters in the set is known exactly, and the numbern,
having undergone at least one nucleation event, is also known
exactly, whereas the stochastically determined times are very
much a matter of chance and can vary widely from set to set.
Therefore, it seemed appropriate consider the times as the
uncertain “y” variable in least squares analyses and the variable
ln(Nn/No) to be the accurately known “x” variable, whereNn is
the number of clusters not to have experienced the formation
of a critical nucleusbeforethenth nucleation.1 The recommended
weights and standard deviations to be expected for such an
analysis were correctly determined in a previous paper, provided
that the decay of unfrozen clusters obeyed the first-order law

whereK represents the productJsVc with Js the steady-state
nucleation rate,Vc the volume of the clusters,t > to the time of
nucleation, andto the nucleation time-lag. In real processes, this
analysis is wrong because the period of transient nucleation is
ignored. This leads to a large systematic error in eq 1 at short
nucleation times.1 How this neglect can remedied is described
in the following.

Procedure

First, let us examine the effect of transient nucleation on the
decay curve for a system of unfrozen clusters. The most general
treatment of transient nucleation that is relatively simple to

incorporate into an analysis of cluster data is that of Wu.2 His
method of moments yields an explicit expression for the ratio
R(t) in the development of nucleation rateJ(t), where

with the ratio expressed in Wu’s notation as

This ratio differs from unity during the time it takes for the
buildup of precursors that ultimately leads to a steady-state rate
Js of production of critical nuclei. Wu then integrates eq 2 to
obtain a relation for the accumulated number of critical nuclei,
N(t), in the freezing of a fixed volume,Vl, of supercooled liquid
or glass, or

assuming that the nuclei formed do not significantly deplete
the volumeVl accessible to further nucleation. Wu’s parameters
a andb are defined by

with M corresponding to the first moment of a distribution of
embryos encountered. MomentM is a quantity Wu regards as
a free parameter to be derived in the analysis of experimental
data. It is evident that the lowest value the moment can have is
for 2M/to2 to be unity. If the moment were to possess that value,
eq 4 would reduce to

and
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making the time dependence of eq 1 valid. It is convenient to
introduce the reduced moment

to characterize transient nucleation. Reasonable values for this
parameter will be discussed subsequently.

Now consider a set ofNo supercooled clusters, each with
volume Vc, making NoVc the total volume available for
nucleation. Each time a critical nucleus appears in one of the
clusters, let us remove it from the set, leavingNl clusters which
have not experienced a nucleation and, therefore, leaving a total
volume ofNlVc. For this convention, the rate of change inNl is
no longer given by eqs 2-4 but rather by

so that

This expression reduces to eq 1 whenb2 ) -2a ) ln MR when
MR approaches unity. Equation 1 has been used to date in all
of our analyses of data from MD runs, but is rigorously
applicable only in the case for which the momentM has its
minimum value. Such conditions are unrealistic.

The above relation 10 is obviously appropriate for small
clusters which, in accord with Kashchiev’s criterion,3 exhibit
mononuclear freezing. For larger clusters, several critical nuclei
may form before the clusters completely freeze.4 In MD
simulations, it is not a simple matter to establish the times of
nucleation for nuclei later than the first, making the convention
of the previous paragraph a convenient and particularly simple
way to handle the problem when polynuclear freezing occurs.

Inversion of the Equation for N(t). To carry out least
squares analyses in which times, not numbers of clusters in
which nucleation has occurred, are taken to be the uncertain
“y” variable, it is necessary to invert eq to the formt(Nl/No). In
view of the complexity of eq 10, it is much simpler to fit the
inverse empirically than to carry out the inversion analytically.
The result for the reduced nucleation time,t/to, can be expressed,
as expected from the form of eq 10, in terms of the variable

in Wu’s case, or

in the case of clusters, and the fitting parameterMR of eq 8. A
satisfactory representation is given by

How well this representation agrees with Wu’s result, eq 4, is
illustrated in Figure 1 for several representative values ofMR.
Over the range of physically significant moments the represen-
tation is entirely adequate for our purposes. IfMR is given its
minimum (but unrealistic) value, unity, then the result is
equivalent to eq 1.

Practical Derivation of Js and to. Insofar as the author is
aware, there are no simple rules for estimating the value of the
parameterMR characterizing transient nucleation. In the well-

known treatment of Greer and Kelton5 numerically simulating
the crystallization of the glass lithium disilicate, the result can
be represented quite well withMR in the range of 1.1 to 1.2.
Another treatment frequently cited6 is that of Kashchiev7 whose
expression forJ(t)/Js can be approximated by assigning the value
of approximately 1.4 toMR. Figure 1 compares Kashchiev’s
representation with those of Wu for several different values of
MR.

Although Wu2 suggested determiningMR by letting it be a
free variable in analyses of experimental data, it is found that
whenJs, to, andMR are all varied freely, the solution tends to
be extremely ill-conditioned. It is more reasonable to constrain
MR to a plausible value. To get some idea of errors arising
because of uncertainty in the parameterMR, it would be
reasonable to carry out analyses assigning values toMR in the
range of, say, 1.1 to 1.4, or perhaps a little higher in successive
analyses. The variation in results for nucleation rate and time-
lag should give some idea of the magnitudes of uncertainties
in the derived kinetic quantities. Certainly, the results taking
into account transient nucleation should be more reliable than
those of analyses based solely on eq 1.

We consider two options for analyzing nucleation rates from
the nucleation times found in sets of molecular dynamics runs,
namely:

Option 1: Adopt a reasonable value forMR, adjust the
parametersJs andto in eq 12 by least squares to fit the observed
MD nucleation timest.

Option 2: Derive the parametersJs and to by least squares,
using eq 1 as the fitting function, and then correct for systematic
errors involved in the neglect ofMR.

Although Option 1 appears to be the more reasonable and
straightforward, in some respects Option 2 is superior in practice.
How this conclusion was reached is described next. To
determine the relative effectiveness of the two options, to find
the systematic errors and establish the statistical uncertainties
in the parametersJs andto for data sets with small numbers of
nucleation events, it is simplest to carry out model calculations.
First, many realistic sets ofNo stochastic times are generated,
each set to correspond to nucleation times in a collection ofNo

clusters. Such a set of times can be created by dividing times
from 0 to∞ into a large number,NB, of equally probable time
bins, that is, into bins for which the probability of nucleation

MR ≡ 2M/to
2 (8)

J(t)
Js

) 1
Js

dN/dt
NlVc

)
-(dNl/Nl)/dt

K
(9)

-ln(Nl/No) ) K ∫o

t
R(t)dt ) KS(t) (10)

g(t) ) N(t)/JsVlto (11a)

g(t) ) - ln(Nn/No)/Kto (11b)

t/to ≈ 1 + g - (1 - 0.5/MR
2.5) exp[- 1.82g1/2/(MR - 1)0.41]

(12)

Figure 1. Time development of integrated nucleation functiong(t),
cf. eq 7-12 of text, for reduced moments of 1 (dashed line) and 1.2,
1.4, and 1.8 (from lower to higher curves). Wu theory, solid lines;
representation of eq 12, decorated squares; Kashchiev theory, circles
closely following the Wu curve forMR ) 1.4.
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in each is 1/NB. A given bin i is associated with a timeti.
Therefore, a set ofNo times can be generated using a random
number generator to select a set ofNo independent bins. Times
are then treated as they would be in an experiment or an MD
simulation, and analyzed by a least squares procedure to derive
the parametersJs andto corresponding to an assumed value of
MR.

In our previous paper,1 such an analysis was based on eq 1,
and consequently neglected the period of transient nucleation.
It was found that results were very insensitive to whether the
number of bins,NB, was 100 or 100 000. In the present work
with a more complex set of time bins, accurate results require
NB to be much larger than 100. We tookNB to be 10 000. When
eq 1 is the basis, it is elementary to relateti to the bin number
i analytically. When transient nucleation is taken into account,
however, the construction of equally probable time bins is more
complicated. Consider a set of bins, 1, 2, ...,i, ....NB, each of
which represents a time betweenti andti + ∆ti with t1 ) 0 and
tNB + ∆tNB ) ∞. For each of theNB bins, the probability
∫ti

ti+∆ti P(t)dt of a nucleation event is 1/NB, where

As defined above,ti is the initial time for a bini. Finding the
time ti associated with bin numberi can be done by numerically
carrying out the integration

for a given value ofMR. As long asNB is a large number, bin
i corresponds to timeti, the upper limit of the integral, and it
makes little difference whetherti is the initial or some
intermediate time in the bin. To implement the stochastic
generation of times by random selections of time bins, one can
form a table of t(i) from the results of eq 14, a procedure taking
only a few seconds on today’s PC computers. Wheni becomes
large, say beyond about 0.7NB, the erfc functions contributing
to R(t) andS(t) nearly vanish so that the asymptotic solution to
eq 14 is

For each set of events, times are sorted and subjected to a least-
squares analysis to determine the parametersJs andto. Inasmuch
as the original values ofJs and to fed into the treatment at the
outset are known, the systematic errors and standard deviations
from the mean of the parameters in an ensemble ofNs sets of
results (each set involvingNo stochastic times) are readily
determined. Least squares calculations can be carried out with
various weight functions,w(t) for each option. In our prior
analysis based on eq 1, the optimum weight function was found
to be reasonably well represented by1

expressing the fact that stochastically selected time bins get
considerably wider, the greater the time. In the present analysis,
the optimum weight function was not determined. It was found,
however, that for option 1, when unit weights were chosen
instead of the weights of eq 16, smaller standard errors inJs

andto were obtained. On the other hand, the opposite was true

for option 2. Therefore, in results reported in the following,
unit weights were used in analyses based on Option 1 and the
arctangent weight for Option 2.

Results

Obviously, the accuracy of the rates and time lags derived
from stochastically generated times of nucleation events depends
on the number of nucleation events available in the analyses.
Illustrative results showing this dependence for both of the
options are presented in Figures 2 and 3. The corresponding
statistical uncertainties are plotted in Figures 4 and 5. In these
figures the reduced moment adopted was 1.2. For reasons stated
in the previous section, a unit weight function was incorporated
into Option 1, and the arctangent function of eq 16, into Option
2. When analyzing sets with no more thanNo ) 50 clusters,
runs of at least 30 000 independent sets were carried out to
establish parameter means and variances. For sets with a larger
number of clusters, fewer runs were needed to achieve
comparable statistical accuracy.

Note that the asymptotic values of the rates and time lags
for sets with very large numbers of clusters (largeNo) are

Figure 2. Dependence of the mean nucleation rateJs
LS derived by

least-squares analysis, uponNo, the number of clusters in a set, where
Js

in is the nucleation rate from which the numerous sets of stochastic
times were generated. Upper curve, Option 1, the result of fitting times
by a Wu function. Lower curve, Option 2, fitting times by a straight
line. A reduced moment of 1.2 was assumed in generating times and
in the Wu function. Horizontal dashed lines represent the limiting rate
for very largeNo.

Figure 3. Dependence of the mean nucleation time lagtoLS derived
by least-squares analysis, uponNo, the number of clusters in a set, where
toin is the time lag from which the sets of stochastic times were
generated. Upper curve, Option 1, the result of fitting times by a Wu
function. Lower curve, Option 2, fitting times by a straight line. A
reduced moment of 1.2 was assumed in generating times and in the
Wu function. Horizontal dashed lines represent the limiting time lag
for very largeNo.
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indicated by the dashed lines. For Option 2 the deviations from
unity in Figures 2 and 3 are real. For Option 1, the small
deviations from unity were caused by minor imperfections in
the numerical integration of eq 14 and/or in the empirical
representation of eq 12.

From inspection of Figures 2 and 3, it can be seen that the
fitting of the (curved) g(t) data with a function specifically
representing the effect of transient nucleation, namely Option
1, does indeed yield better values of rates and time lags, on
average, than does Option 2 which fits the curve as well as
possible with a straight line. There is a price to be paid for this
greater apparent accuracy yielded by Option 1, however, because
it comes at the cost of larger standard errors, as revealed in
Figures 4 and 5. Therefore, if analyses based on Option 2 are
corrected for systematic errors of the sort displayed in Figures
2 and 3, they may give more accurate results than those of
Option 1. Of course, if the set of nucleating particles were
extremely large, the uncertainties would decrease to the point
of being of little concern. Figures 4 and 5 demonstrate that, at

intermediate to largeNo, the statistical errors do decrease as
expected for the derivation of two independent parameters from
No measurements. Table 1 indicates that the uncertainties can
be very large, particularly in the case of nucleation rates. Indeed,
the uncertainty whenNo is small can be larger than the correct
(input) value of the parameter. In such a case, it is important to
note that the effective “3σ” error limit of the nucleation rate is
not simply three times therms deviation from the mean. This
is because of the extreme skewness of the probability distribution
in the derived rate, as discussed in the appendix.

Finally, it is necessary to get some idea of how large the
errors in derived parameters might be if the reduced moment
MR assumed in a least-squares analysis differs from the actual
moment, the moment upon which the nucleation times are based.
Unfortunately, little is known about howMR depends on the
composition or the preparation of the system. Table 1 shows
effects of various combinations of assumed vs actual moments,
using ranges of values discussed in the foregoing. For most of
the tabulated combinations, the statistical uncertainty in the
nucleation rate is substantially greater than that in the time lag.

Discussion

It is intuitively obvious that the compromise fitting of the
curved shape of time vs-ln(Nn/No) (cf. Figure 1) with a straight
line (i.e., the use of Option 2) must yield values for the slope
(rate) and intercept, (time lag) that are too small. Therefore,
the results in Figures 2 and 3 for Option 2 are readily accounted
for, qualitatively. What is less obvious is why the nucleation
rates for Option 1 depend as observed uponNo, the number of
clusters in a set of runs. A little reflection helps to account for
the decrease in the derivedJs asNo decreases from large values.
This is due to the fact that the maximum stochastic time is
unlimited because the time bins randomly selected bear no
explicit relation toNo. In contrast, the maximum value of-ln-
(Nn/No) is limited. Its upper limit is-ln(1/No), which is smaller
with smaller values ofNo. This imbalance biases the derived
slope Js to be smaller than the slope that was fed into the
generation of stochastic times. This having been said, it is true,
nevertheless, that the larger the numberNo, the greater the
number of random selections, and hence, the greater the chance
that the maximum time will be large.

These considerations do not explain the very sharp increase
in the derivedJs asNo decreases below about 16. What can be
said about the behavior of sets with very few clusters is that
the chance distribution of the scant number of nucleation times
in a given set does not give a reliable portrayal of the functions
of eqs 10-12. Accordingly, the uncertainty in the derivedJs

becomesVery large, larger even thanJs itself, and becauseJs

Figure 4. Dependence uponNo of the standard deviation from the
mean ofJs

LS/Js
in, amplified by the factor (No - 2)1/2. A horizontal line

would indicate the result for statistically distributed errors and uncor-
related parameters (rate and time lag). Upper curve, for Option 1, where
stochastically generated times were fitted by a Wu function. Lower
curve, for Option 2, fitting times by a straight line. A reduced moment
of 1.2 was assumed in generating times and in the Wu function. Option
2, although giving a poorer representation of the nucleation times, gives
a substantially smaller spread in the derived rates.

Figure 5. Dependence uponNo of the standard deviation from the
mean oftoLS/toin on the number of clusters in a set, amplified by the
factor (No - 2)1/2 discussed in caption 4 along with conditions of
analyses. Upper curve, for Option 1, where stochastically generated
times were fitted by a Wu function. Lower curve, for Option 2, fitting
times by a straight line. Option 2, although giving a poorer representa-
tion of the nucleation times, gives a substantially smaller spread in the
derived time lags.

TABLE 1: Illustrative Examples of Mean Systematic Errors
in Derived Parameters and in the Corresponding Standard
Deviations for Various Combinations of Reduced Moments

MR
in MR

LS Js
LS/Js

in σJs/Js
in to

LS/to
in σto/to

in

1.0 1.0 0.978a 0.266 1.020a 0.132
1.2 1.0 0.875 0.229 0.839 0.164
1.2 1.2 1.028a 0.501 1.045a 0.354
1.2 1.4 1.221 0.997 1.245 0.564
1.4 1.0 0.833 0.196 0.728 0.174
1.4 1.2 0.946 0.380 0.905 0.338
1.4 1.4 1.056a 0.650 1.056a 0.488

MR
in is the moment applying to the stochastic generation of nucleation

times andMR
LS is the moment adopted in the least squares analyses of

nucleation times. in all cases, the number of clusters in a set was 20,
a typical number in published studies. a Results converged to unity,
within numerical error, in the limit of very largeNo.
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cannot be negative, the mean of this wide distribution must be
at a value larger than the correct (input) value ofJs. This is
strikingly illustrated in the distribution functions in the appendix.

Why the option yielding more accurate values of the rate and
time lag (Option 1) also gives greater statistical uncertainties is
due to the strong correlation between the derived parametersJs

andto in the least-squares fits of Option 1. This correlation arises
from the form ofg(t) implied by eqs 10-12. A similar but
weaker correlation exists in Option 2.

As noted in the foregoing, it is evident why the derived
parameters yielded by Option 2 are smaller than those based
on Option 1. A rationale for the results in Table 1 follows the
same line of reasoning. If the true value ofMR is greater than
the value adopted for the least-squares analysis, the situation is
analogous to a comparison of Option 1 (MR > 1) with Option
2 (MR ) 1) and the derivedJs and to will be too small. If the
situation is reversed, the results will be reversed.

Although the results found in this study can be understood
qualitatively, a statistical analysis was necessary to establish
quantitatively the magnitudes of the uncertainties and the
corrections for systematic errors. Errors assessed in previous
analyses of molecular dynamics investigations of spontaneous
nucleation neglected to take transient nucleation properly into
account and therefore overestimated the reliability of the derived
results.

Appendix

A few words should be said about the interpretation of the
standard deviations in the figures and in Table 1. Figure 6 shows
how extraordinarily skewed the probability distribution of least
squares values of nucleation rates can be for a case for which
there are only a few nucleation events available for analysis. In
the particular case illustrated, 60 000 sets ofNo ) 10 events
were analyzed via Option 1 withMR taken to be 1.2. Inspection
of the figure shows how misleading our typical notion can be
about the meaning of the standard deviation in such cases. For
the illustrated case, the standard deviation from the mean is

twice the mean value of the rate and nearly4-fold greater than
the rate adopted in the generation of the sets of stochastic times
analyzed by least squares. Obviously, ifσ is taken as the square
root of the variance, the notion of(3σ as a measure of the
limit of error is totally meaningless. It is somewhat surprising
to see the actual mean value identified by the vertical line in
Figure 6 so far from the value of the rate from which the
stochastic times were based. What leads to the problem, of
course, is the extremely slow decay of the very long tail of the
probability function. What would correspond to error limits
comparable to the 3σ limits of a Gaussian distribution, for
example, would be to equate the area of the probability
distribution function bounded by the very asymmetric integration
limits (from the mean value to the mean value plus or minus
the “effective 3σ limit”) to the same area as that corresponding
to a Gaussian distribution between the mean and the( 3σ limits.
Clearly, subtracting three times the actual standard deviation
from the mean leads to a negative rate, an absurd result, and
adding the same quantity falls far short of the true upper limit
of error. The way to avoid such enormous and complicated
uncertainties is to use larger samples of nucleation events. By
the time the horizontal portions of the curves in Figures 4 and
5 have been reached, error analyses become more straightfor-
ward. Figure 7 shows how the probability distribution narrows
and becomes less skewed as the number of nucleation events
is increased. It also suggests how the mean rate can drop below
the input rate for intermediate sizes of sets of clusters.
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Figure 6. Highly skewed probability distribution of nucleation rates
derived from nucleation times for sets of clusters when the number of
clusters in each set is onlyNo ) 10. The data were acquired in 60 000
independent sets of least squares determinations of rates using Option
1 with MR ) 1.2. The heavy vertical line far to the right of the
probability maximum is the mean rate which, itself, is 77% higher than
the rate used to generate the sets of stochastic nucleation times that
were fed into the least squares analyses. Moreover, the standard
deviation from the mean is twice the value of the mean, illustrating
the effect of the extremely long tail of the distribution. As the number
of clusters in a set increases, the distribution narrows and becomes
less skewed as shown in Figure 7.

Figure 7. Probability distributions in nucleation rates from least squares
analyses of sets of 10, 20, 40, 80, and 320 clusters per set withMR )
1.2, with curves for 20 and 80 dashed to help distinguish between the
long tails. Distributions were based on at least 30 000 independent least
squares analyses for each curve except for 320. They closely resemble
log-normal distributions, approaching more closely, the greater isNo.
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