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We present a novel scheme to calculate electronicg-tensor values of doublet-state systems within a density
functional method and discuss the implementation and results of first applications. The method employs
two-component eigenfunctions of the Kohn-Sham equation where spin-orbit effects are taken into account
self-consistently. Therefore, theg-tensor can be treated as first-order property with respect to the perturbation
by external magnetic field alone. The Zeeman energy splitting, an inherently relativistic effect, is naturally
and transparently determined by the two-component ground-state wave function (Kramers doublet) without
invoking virtual states. Abandoning the widely accepted perturbative treatment of the spin-orbit term makes
the present method also applicable to molecular systems with considerable spin-orbit interaction. Conceivable
improvements of the method performance are proposed and discussed.

I. Introduction

Electron paramagnetic resonance (EPR) spectrosopy is widely
employed to study radicals, coordination compounds, and solid
materials characterized by the presence of unpaired electrons.1-3

EPR spectra are helpful for clarifying interrelations between
electronic and structural features of various molecular systems
relevant to physical, chemical, and biological problems. Along
with the hyperfine coupling constants, theg-tensor is one of
the fundamental EPR parameters. Nevertheless,g-tensors at-
tracted significant attention of the research community that deals
with high-level quantum-chemical calculations only during the
past few years.4-17

Several factors induced these recent theoretical activities.
First, amazing progress in the computer hardware and software
drastically enhanced the power offirst-principles electronic
structure calculations. Complex molecular systems can now be
treated at the level of realistic models and computational results
can be achieved with an accuracy close to that of experimental
methods. This breakthrough enhanced the interest in calculating
“properties” in general. Second, during the past decade experi-
ence has been accumulated with calculations of features that
characterize the response of molecules to a magnetic field,
foremost the response measured by nuclear magnetic reso-
nance.18 Third, the advent of the high-field (high-frequency)
EPR technique (e.g., W-band, 95 GHz; F-band, 150 GHz)
opened the way to resolveg-tensor components of much smaller
anisotropy than by using conventional (X-band, 9 GHz)
spectrometers.19-21 This novelty is of particular importance for
spectra of organic radicals: there, at common lower fields, only
slightly split g-tensor components usually overlap with the
hyperfine structure. Resolvedg-tensor components were dem-

onstrated to furnish very delicate (often unique) details of the
structure of radical species and their environment as well as of
the local behavior of their wave functions.19-21 It is no surpise
that semiempirical electronic structure calculations striving for
precise g-tensor values of organic radicals again became
frequently cited22,23 after a relatively long quiet period that
followed the era of semiempirically calculated magnetic reso-
nance parameters.1,3,24

Recent high-level computations ofg-tensor components using
wave function methods have been initiated by Lushington et
al. at the restricted open-shell Hartree-Fock (ROHF)4 and
multireference configuration interaction (MRCI)5 levels. A
response approach for calculating theg-tensor based on a
combined perturbation treatment of the orbital Zeeman effect
and spin-orbit interaction was developed.7 Applications of this
method (e.g., to medium-size organic radicals8) resulted in a
rather encouraging accuracy already at the ROHF level. Density
functional (DF) calculations of electronicg-tensors were
pioneered by van Lenthe et al.16 and by Schreckenbach and
Ziegler.10 One more DF tool to calculateg-tensors was
implemented very recently.13

All the schemes mentioned, except that of van Lenthe,16 share
the feature of perturbational description of spin-orbit interac-
tions. Such a treatment of spin-orbit effects is attractive because
conventional quantum chemical codes operating with real (one-
component) solutions are readily available. Nevertheless, the
applicability of perturbational approaches can be questioned in
at least two aspects. First, these methods generally require the
summation over (formal) electronic excitations characterized by
energies and spatial behavior of virtual (unoccupied) states; the
accuracy of these features is usually not very high and the sum
over states has to be truncated at some point, without a guarantee
of rapid convergence, when the excited states are ordered with
respect to the energy.3,23Second, perturbation theory is accurate
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only for small spin-orbit interactions. However, deviation of
g-values from the free-electron valuege is essentially a
relativistic (spin-orbit) phenomenon in systems with quenched
orbital momentum. Relativistic effects are known to grow
roughly as the square of the atomic number Z.25 Thus,
deficiencies of the perturbation approach can become non-
negligible already in molecules of rather light atoms.10

A fruitful assumption is that scalar relativistic (mass-velocity
and Darwin) effects are of only minor importance forg-tensors
of molecules of light elements. This leads to the idea of
confining the calculation of theg-tensor to two-component wave
function formalism, with spin-orbit interactions included self-
consistently and scalar relativistic interactions neglected. In such
a general Hartree-Fock (GHF) approach,9 g-tensors of small
inorganic radicals are calculated with errors of about 5× 10-4

compared to experiment.9 This accuracy is better than in the
DF approach10 and almost as good as in demanding MRCI
calculations,5 but for systems that contain heavy elements this
promising GHF approach would need to be improved. Account-
ing for often mandatory scalar relativistic and computationally
expensive electron correlation effects would significantly restrict
the size of species tractable by this method.

One can build an efficient approach for calculatingg-tensors
on the basis of a DF method that partly takes correlation effects
into account and goes beyond the common one-component
(“nonrelativistic”) formulation. In a fully relativistic four-
component Dirac method, the perturbation operator for calculat-
ing electron Zeeman splitting in an applied magnetic field reads
rather simple.3 This approach to theg-tensor has first been
implemented in the framework of the Dirac scattered-wave XR
(DSW-XR) method.26 Its applications to GanAsm clusters showed
qualitative agreement with experiment.14,15 Unfortunately, the
crude muffin-tin approximation of the electronic potential used
in a SW scheme represents a serious obstacle to precise
calculations ofg-values, as required, e.g., for organic radicals.

If one abandons this shape approximation of the potential
and turns from the four-component Dirac method with both
electronic and positronic solutions to a two-component Kohn-
Sham method (which describes only electronic states), one arives
at probably the most attractive formulation of theg-tensor
problem to date. In such a method the eigenfunctions include
spin-orbit and scalar relativistic effects self-consistently. Thus,
only the applied magnetic field needs to be considered as a
perturbation. This feature makes schemes, such as those
applicable to both light and heavy (e.g., transition metal)
molecular systems, in a rather economic fashion. Also, a
transparent rationalization of the calculatedg-values in terms
of the (spin-)density distribution of the singly occupied molec-
ular orbital (SOMO) becomes possible. A DF scheme to
calculateg-tensors, like that just outlined, has been implemented
within the zeroth-order regular approximation (ZORA)16 and
recently validated for radicals containing a metal atom17 and
for transition metal complexes of biological relevance.27-29

In the following, we communicate on the development,
implementation, and benchmark applications of a novel scheme
for DF calculations ofg-tensors which is also based on two-
component solutions of Kohn-Sham (KS) equations but uses
an alternative formalism by Douglas and Kroll (DK).30-32 The
implementation is undertaken in the parallel program
PARAGAUSS,33 and theg-tensor module is a part of the latest
release of this code.34 Our approach tog-tensor calculations,
based on a variationally stable relativistic DF method,32 is
applicable to doublet states of systems without restricitions in
type, since heavy elements with a large spin-orbit interaction

may be treated as well. Furthermore, the present approach
affords a direct relation ofg-values to the ground-state wave
function, the accuracy of which can be improved in a systematic
way, if required.

The paper is organized as follows. In section II, we describe
the formalism including the newly derived expression for the
DK Zeeman Hamiltonian. In section III, we describe compu-
tational details. In section IV, we discuss this methodology, the
importance of various contributions to the spin-orbit interaction
as well as the computational parameters involved, and we
compare calculated results for touchstone radicals to those of
other relevant calculations and experiment. We summarize the
conclusions in section V.

II. Method

We have chosen the two-component Douglas-Kroll Kohn-
Sham approach to relativistic density functional theory with self-
consistent account of spin-orbit interaction as framework for
g-tensor calculations. In this way, we will avoid the drawbacks
of the double-perturbation approach which is inherently limited
to molecular species of rather light atoms. To this end, we need
to (i) define the form of the Zeeman HamiltonianĤZ that
describes the energy change of molecular systems in the
presence of an external magnetic fieldBB and (ii) relate the matrix
elements ofĤZ to parameters of the “experimental” spin
HamiltonianĤ in order to derive expressions for the components
of the g-matrix.

A. Zeeman Hamiltonian in the Two-Component Douglas-
Kroll Kohn -Sham Method. The Hamiltonian of the four-
component Dirac-Kohn-Sham method can be written using
the effective one-particle potentialυeff which describes the
interaction in a many-electron system:31

Here pb is the mechanical momentum,c is the speed of light,
andRb, â are the Dirac 4×4 matrixes.ĤD describes electronic
(E > 0) as well as positronic (E < 0) solutions. The positronic
solutions are irrelevant in chemistry; rather, they cause signifi-
cant complications. One way to get rid of the positronic solutions
is to carry out a unitary DK transformationU of the Dirac
HamiltonianĤD:

here, the Pauli matrixesσb ) (σx,σy,σz) are introduced.U
decouples (with the accuracy to all orders) the four-component
equation into two two-component equations: an electronic one,
Ĥ(2)

DKΨ(2) ) EΨ(2), and a positronic one,Ĥ(2)
-DKΨ(2)

- ) E-Ψ(2)
- .

Note that solutions ofĤ(4)
DK andĤD, ΨDK andΨ, respectively,

are related to each other via the transformationU:

When calculating expectation values of operators one has to
take this, so-called,picture changeinto account.35

For the first-order energy change∆EZ of a system

ĤD ) cRb‚pb + âc2 + υeff (1)

Ĥ(4)
DK ) UĤDU† ) U (c2 + υeff cσb‚pb

cσb‚pb -c2 + υeff
)U† )

(Ĥ(2)
DK 0

0 Ĥ(2)
-DK ) (2)

ΨDK ) UΨ ≡ ΨU (3)

Ĥ0
DΨ0 ) E0Ψ0 (4)
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caused by a Zeeman perturbationĤD,Z,

a naive approach based on the DK wave functionΨ0
U (mixed

pictures) would lead to erroneous result:

This reflects the fact that the Zeeman operator,

which perturbs the Dirac HamiltonianĤ0
D, is off-diagonal (odd),

and nonzero matrix elements can only appear between the
electronic and the positronic solutions.ĤD,Z has been derived
from eq 1 via the common minimal substitution to a (gauge-
invariant) momentum

In this way, one introduces the magnetic fieldBB via

Within the DK formalism the correct expression for the first-
order energy change∆EZ in the external magnetic fieldBB as
described byĤD,Z is

Obviously, the transformation of the Dirac Zeeman operator
ĤD,Z to DK oneĤZ ≡ UĤD,ZU† is obligatory.

In the present implementation,31,32 Ĥ(4)
DK is diagonal up to

second-order in (υeff/E)

Thus, the transformationU ) U1U0 of the Dirac Zeeman
operatorĤD,Z is required to getĤZ. The free-electron Foldy-
Wouthyusen transformation

can be expressed in a simple analytical form. Here, the
relativistic generalization of the kinetic energy

includes the rest mass term and

are relativistic kinematic factors. If matrix elements are to be
calculated via a completely consistent picture for bothĤZ and
the wave functions, the considerably more complicated unitary

transformationU1 has to be applied31,32

As first approximation, which permits computation of the major
contributions to the expectation value〈Ψ0

U|UĤD,ZU†|Ψ0
U〉, one

employs the transformationU0 only, so that

This is the approximation chosen in the present work. Note that
the last expression can be rewritten as

to reflect the equivalence of applying the transformation either
to the operator or to the wave function.

Let us consider the transformationĤD,Z f Ĥ(2)
DK,Z )

L+U0ĤD,ZU0
†L+

†, (here,L+ simply projects out the electronic
part of the 4×4 matrix) in more detail using eq 12:

Therefore,

Kp and (σb‚pb) commute becauseKp is a function ofp2 which
commutes with the components ofpb. With the help of the Pauli
relation, we write

Employingpb ) - i∇ and

we obtain for any wave functionΨ:

Here the relationpb‚ABΨ ) (pb‚AB)Ψ + AB‚pbΨ was used, where
parentheses indicate thatpb acts only onAB. The term (pb‚AB)Ψ
vanishes since we invoke the Coulomb gauge∇AB ) 0. The
relationBB ) ∇ × AB, eq 24, was used to obtain the termσb‚BBΨ.
The operatorAB‚pb yields

with LB ) rb × pb. For the third tem we have with eq 24

(Ĥ0
D + ĤD,Z)Ψ ) (E0 + ∆EZ) Ψ (5)

∆ẼZ ) 〈Ψ0
U|HD,Z|Ψ0

U〉 = 0 (6)

ĤD,Z ) (0 σb‚AB
σb‚AB 0 ) (7)

pb f πb ) pb + AB/c (8)

AB ) 1
2
(BB × rb) (9)

∆EZ ) 〈Ψ0
U|UĤD,ZU†|Ψ0

U〉 (10)

Ĥ(4)
DK,1 ) U1U0Ĥ

DU0
†U1

† ) (Ĥ(2)
DK,1 O[(υeff/E)2]

O[(υeff/E)2] Ĥ(2)
DK,1 ) (11)

U0 ) Ap(1 + âRp) ) Ap(1 + KpâRb‚pb) )

Ap(1 Kpσb‚pb
-Kpσb‚pb 1 ) (12)

Ep ) cxp2 + c2 (13)

Ap ) x(Ep + c2)/2Ep (14)

Kp ) c/(Ep + c2) (15)

Rp ) Kp(Rb‚pb) (16)

U1 ) x1 + W1
2 + W1 (17)

W1;p,p′ ) Ap(Rp

υeff;p,p′

Ep + Ep′
-

υeff;p,p′

Ep + Ep′
Rp′)Ap′ (18)

∆EZ = 〈Ψ0
U|U0Ĥ

D,ZU0
†|Ψ0

U〉 (19)

〈Ψ0
U|U0Ĥ

D,ZU0
†|Ψ0

U〉 ) 〈U0
†Ψ0

U|ĤD,Z|U0
†Ψ0

U〉 (20)

Ĥ(2)
DK,Z ) L+U0Ĥ

D,ZU0
†L+

†

) L+Ap (1 Kpσb‚pb
-Kpσb‚pb 1 )(0 σb‚AB

σb‚AB 0 ) ×

(1 -Kpσb‚pb
Kpσb‚pb 1 )ApL+

† (21)

ĤZ ≡ Ĥ(2)
DK,Z ) Ap[Kp(σb‚pb)(σb‚AB) + (σb‚AB)(σb‚pb)Kp]Ap (22)

(σb‚pb) (σb‚AB) ) pb‚AB + iσb‚(pb × AB) (23)

BB ) ∇ × AB (24)

[(σb‚pb) (σb‚AB)] Ψ ) [pb‚AB + σb‚BB - σb‚(AB × ∇)]Ψ )
[σb‚BB + AB‚pb - iσb‚(AB × pb)]Ψ (25)

AB‚pb ) 1
2
(BB × rb)‚pb ) 1

2
BB‚( rb × pb) ) 1

2
BB‚LB (26)

σb‚(pb × AB) ) 1
2

σb‚[(BB × rb) × pb] ) 1
2
(σb‚ rb) (BB‚pb) -

1
2
(σb‚BB) ( rb‚pb) (27)
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Similarly, for the second term of eq 22 we obtain

and we can apply analogous chain of transformations such as
for simplification of eq 25.

The Zeeman Hamiltonian, eq 22, reads

We substitute eqs 26 and 27 to obtain finally:

The first termσb‚BB is the electronspin Zeemaninteraction, the
next termLB‚BB describes theorbital Zeemaninteraction due to
the orbital motion of the electron in the magnetic fieldBB.3 The
last term is reminiscent of the spin-orbit Zeeman gaugecor-
rection term;3 we neglected it in the following. In fact, assuming
that Kp commutes with the brackets, this term equals to zero.
We note here in passing, that the issue of gauge invariance of
the DK Zeeman Hamiltonian is complicated: the wave functions
in practical calculations do not correspondexactly to any
particular picture because not all terms of the total DK
Hamiltonian are treated on the same footings. For instance, an
accurate relativistic description of the kinetic energy and nuclear
attraction interactions by applying bothU0 andU1 transforma-
tions is straightforward.31 However, relativistic effects on the
exchange-correlation potential become quite complicated al-
ready when introduced by the free-electron transformationU0

and thus are usually neglected in practical calculations.36

Alternatively to the above procedure, one can derive a
Zeeman operatorĤZ linear in the external magnetic fieldBB
within the DK formalism if one applies afield-dependentDK
transformationU(BB) to the Dirac-Kohn-Sham Hamiltonian

where the fieldBB is introduced via the gauge-invariant me-
chanical momentumπb, eq 8. This way to define the DK Zeeman
operator has the advantage of removing the (partial) inconsis-
tency of the approach just outlined connected to the application
of a DK transformation independent of the magnetic field to
obtain a Zeeman operatordependent on magnetic field. All
necessary algebra has already been given above; the only
difference is that we now use the canonical momentumπb
everywhere instead ofpb.

As before, we limit ourselves to the free-electron transforma-
tion U0:

where the relativistic energyEπ and kinematic factorsAπ, Kπ
are defined as in eqs 13-15:

With these settings the Dirac Hamiltonian transformed to a DK
form by U0(BB)

in a two-component form, after elimination of the positronic
solutions, reads:

For the valence electrons that define theg-tensors, the kinetic
energy is small compared to the rest energy. Therefore, the
expression for the relativistic energyEπ, eq 33, can be expanded
in a power series of [(σb‚πb)/c]:

InsertingEπ in the HamiltonianĤ(2)
DK(BB), one obtains:

Neglecting the dependence of the kinematic factorsAπ, Kπ on
the magnetic field and collecting only the terms linear inBB yields

The first item of Ĥ(BB) corresponds to the Pauli form of the
Zeeman HamiltonianĤZ (eq 22), and the second and third terms
are corrections of the orderp2/c2 andVeff/c2, respectively, and
are usually ignored.3 If we follow this strategy, we obtain the
Zeeman Hamiltonian in the form

It differs from that defined by eq 22 by the absence of the
kinematic factors only. Note that the relativistic corrections due
to the kinematic factors aresmall and essentiallyisotropic for
the systems considered in the present study, thus they do not
affect the calculated splitting ofg-tensor components.

To finalize eq 30, we correct for small quantum electrody-
namics effects (thus far neglected) by introducing a factorge/2
in the electron spin Zeeman term;ge ) 2.002319 is theg-factor
of free electrons.3 Finally, the DK Zeeman operatorĤZ with
only spin and orbital Zeeman contributions retained, becomes

Ĥ(4)
DK(BB) ) U0(BB)ĤD(BB)U0

†(BB) (34)

Ĥ(2)
DK(BB) ) Eπ + AπυeffAπ + AπKπσb‚πbυeffσb‚πbKπAπ (35)

Eπ ) c2 + 1
2
(σb‚πb)2 - 1

8c2
(σb‚πb)4 + O((σb‚πb)6) (36)

Ĥ(2)
DK(BB) ) c2 + 1

2
(σb‚πb)2 - 1

8c2
(σb‚πb)4 + AπυeffAπ +

AπKπσb‚πbυeffσb‚πbKπAπ (37)

Ĥ(BB) ) 1
2c

[(σb‚pb)(σb‚AB) + (σb‚AB)(σb‚pb)]

- 1

8c3
[(σb‚pb)2((σb‚pb)(σb‚AB) + (σb‚AB)(σb‚pb)) + hc]

+ 1
c
ApKp[(σb‚pb)υeff(σb‚AB) + (σb‚AB)υeff(σb‚pb)]KpAp

(38)

ĤZ ) 1
2c

[(σb‚pb)(σb‚AB) + (σb‚AB)(σb‚pb)] ) 1
2c

(σb + LB)‚BB (39)

ĤZ )
gec

4Ep
σb‚BB (40)

+ 1
2
Ap[Kp(LB‚BB) + (LB‚BB)Kp]Ap (41)

(σb‚AB) (σb‚pb)Ψ ) [AB‚pb + iσb‚(AB × pb)]Ψ (28)

ĤZ ) c
2Ep

σb‚BB + Ap[Kp(AB‚pb) + (AB‚pb)Kp]Ap (29)

- iAp[Kpσb‚(AB × pb) - σb‚(AB × pb)Kp]Ap

ĤZ ) c
2Ep

σb‚BB + 1
2
Ap[Kp(LB‚BB) + (LB‚BB)Kp]Ap +

1
2
Ap{Kp[(σb‚BB)( rb‚∇) - (σb‚ rb)(BB‚∇)] - [(σb‚BB)( rb‚∇) -

(σb‚ rb)(BB‚∇)]Kp}Ap (30)

ĤD(BB) ) cRb‚πb + âc2 + υeff (31)

U0(BB) ) Aπ(1 + KπâRb‚πb), U0
†(BB) ) (1 + Rb‚πbâKπ)Aπ

(32)

Eπ ) cx(Rb‚πb)2 + c2, Aπ ) x(Eπ + c2)/2Eπ,

Kπ ) c/(Eπ + c2) (33)
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In the four-component Dirac picture, the Zeeman operator is
represented by one term only;3 in the DK approach, it splits
into groups of terms, like in those in eqs 40 and 41. This is
convenient to analyze the effects responsible for the energy
splitting in a magnetic field. The purely relativistic nature of
the Zeeman interaction follows immediately from eqs 40 and
41 and the definitions ofEp, Ap, andKp, eqs 13-15: limcf∞
(ĤZ) ) 0. This result once again emphasizes the necessity of a
relativistic treatment of magnetic interactions.

Finally, we give the expression for the derivatives of the DK
Zeeman Hamiltonian with respect to the componentsBk

0, k )
x, y, z of a uniform magnetic fieldBB0:

This eq 42 will be used in the following subsection as well as
in the calculations ofg-tensors presented in section IV.

B. Relation of Zeeman Hamiltonian to Spin Hamiltonian.
EPR spectroscopy deals with the transition between levels split
at most by a few cm-1. Hence only levels that are (nearly)
degenerate without a magnetic field are of immediate interest.
A common representation of such a group of levels after
application of a magnetic field rests on the concept of an
“effective spin” S̃ ) (n/2)σb. The latter is a fictitious angular
momentum such that the degeneracy of the group of levels
involved is set equal to (2S̃+ 1), the same as that in an ordinary
spin multiplet.1 For example, a Kramers doublet with just two
levels (n ) 1) is assigned an effective spinS̃ ) 1/2. The EPR
g-tensor (which actually is not a tensor but merely a matrix1)
parametrizes the interaction between the external magnetic field
BB0 and the effective spinS̃. For doublet states the spin
HamiltonianĤ reads

Here,µB is the Bohr magneton,µB ) ep/2mc, or in atomic
units,µB ) R/2 (with R ) 1/c being the fine structure constant);
e andm are the charge and mass of an electron, respectively,
andp is Planck’s constant. In terms of the spin Hamiltonian,
the ground-state energy change∆E in the field BB0 is1

Here,G ) ggT, a true tensor widely used in the experimental
determination ofg-values,1,2 has been introduced. After diago-
nalization,G furnishes the main axes and the main components
of the g-“tensor” via gkk ) xGkk. Note that according to the
spin Hamiltonians employed for interpreting experimental
data,1,3 only the energy contribution linear in the magnetic field
is needed. Therefore, theg-tensor components are related to
the experimental energy splitting∆E as follows:

The energy defined as∆EZ, eq 10, can be calculated, thus
connecting theory and EPR experiment by∆EZ ) ∆E. Note
thatG is defined here completely generally as the response of

the Zeeman splitting∆E in the magnetic fieldBB0. The price to
be paid for this advantage is the requirement to work with at
least two-component eigenfunctions that becomecomplex.25

For a Kramers doublet ground state one can assume that the
two spinors of the unpaired electron degenerate in the absence
of a magnetic field completely determine the magnetic Hamil-
tonian, since the Zeeman interaction is usually much smaller
than the energy difference between the ground and excited
levels.1 Commonly, this is a good assumption in a spin-restricted
DF treatment. Without a magnetic field, a DF calculation yields
two degenerate solutions, formally connected to each other by
time-reversal symmetry. In the spin-restricted case, the spinors
of the paired electrons are also connected to each other by time-
reversal symmetry. Since all of them are occupied, they do not
contribute to the matrix elements of the corresponding KS
determinants of the magnetic Hamiltonian.37 Therefore, the only
nonzero contributions emerge from the two degenerate spinors
of the unpaired electron, i.e., from the Kramers pairΦ1, Φ2

obtained atBB0 ) 0. Due to its relation with theg-matrix, it is
more convenient to discuss the square of the energy change
∆EZ(BB0) in the fieldBB0 described byĤZ, eq 10, in terms of the
standard first-order perturbation treatment. For a case of doubly
degenerate states one has

or after taking the second derivative:

Gkl is a first-order property as it can be expressed in terms of
the first derivatives of the energy, eq 47. To obtain eq 47, the
Hellmann-Feynman relationΦij

k ≡ ∂/∂Bk
0 〈Φi|ĤZ|Φj〉BB0)0 )

〈Φi|∂ĤZ/∂Bk
0|BB0)0|Φj〉 was used. It is valid forΦi, Φj indepen-

dent ofBB0 as solutions of the Hamiltonian without a magnetic
field. The linear approximation of the 2×2 Zeeman Hamiltonian
ĤZ defined by its matrix elements

can be compared to the spin Hamiltonian derived from eq 43:

Therefore, the (real) valuesgkl can be expressed in terms of the
matrix elementsΦij

k asgkx ) 4c ReΦ12
k ) 4c ReΦ21

k , gky ) -4c
ImΦ12

k ) 4c ImΦ21
k , andgkz ) 4c ReΦ11

k ) -4c ReΦ22
k .

To calculate theg-values, the code PARAGAUSS34 has been
extended by new types of integrals〈øi

l,a,R|∂ĤZ/∂Bk
0|øj

l′,b,â〉 over
primitive Gaussian functionsøi

l,a,R of angular momemtuml and
exponentR located at centera. These integrals are symmetry
adapted according to the irreducible representation of the
appropriate double group, multiplied by contraction coeffiecients
and combined into molecular integralsΦij

k. The integration to

∂ĤZ

∂Bk
0

)
gec

4Ep
σk + 1

2
Ap(KpLk + LkKp)Ap (42)

Ĥ ) µBBB0‚g‚S̃ (43)

∆E ) µB[(Bx
0gxx + By

0gyx + Bz
0gzx)

2 + (Bx
0gxy + By

0gyy +

Bz
0gzy)

2 + (Bx
0gxz + By

0gyz + Bz
0gzz)

2]1/2

) µB[∑
k,l

Bk
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account for relativistic kinematic factors, eq 42, was carried out,
before the contraction step, by means of a transformation into
(approximate) momentum space as usually done in the DK
approach.31,38 The complete procedure of calculatingΦij

k was
coded and parallelized in line with that available in PARAGAUSS
for calculating dipole integrals.33

III. Computational Details

All-electron calculations have been carried out using the
program PARAGAUSS,33,34a newly developed parallel imple-
mentation of the linear combination of Gaussian-type orbitals
fitting-functions DF (LCGTO-FF-DF) method.39 The two-
component relativistic wave functions32,36of a Kramers doublet
representing an unpaired electron were employed to calculate
g-tensors as explained in the previous section. Restricted open-
shell Kohn-Sham (ROKS) approximation has been adopted.
Gradient-corrected (GGA) exchange40 and correlation41 func-
tionals (BP) were used in theg-tensor calculations and for the
geometry optimization. For comparison,g-tensors were also
computed in the local density approximation (LDA), with the
Vosko-Wilk-Nusair (VWN) exchange-correlation (XC) func-
tional.42

Two different Gaussian-type basis sets are used in the
LCGTO-FF-DF method: one to describe the KS orbitals and
another to represent the charge density when calculating the
classical Coulomb (Hartree) interaction between electrons. In
g-tensor calculations, the following specially constructed orbital
basis sets were used that ensure the accuracy ofg-values to
better than 10-4: (13s,8p,7d) for C, N, O, F; (8s,5p,1d) for H.
For the former atoms, a (13s,8p) basis set43 was extended by 7
d-exponents, identical to the p-exponents (except for the smallest
one). For H, the analogous procedure was applied to derive 5
p-exponents from the s-exponents,43 (except for the three most
diffuse ones); the polarization d exponent of H was set to 1.0.
The initial orbital basis sets for 3d-44 and 4d-atoms45 were
extended in a similar fashion to obtain the following sets of
primitive basis functions: Ti (15s,11p,6d,5f); Rh, Pd (18s,13p,-
9d,8f,8g). This considerable extension of basis sets mainly
reflects anindirect sensitivity of g-values to basis complete-
ness: the additional functions withl+1 or evenl+2 (wherel
is the maximum angular momentum of the occupied atomic
orbitals) are required only for the special transformations when
calculating the relativistic contribution to the electron-electron
Hartree interactions.36 In the code, these transformations precede
the basis contraction step. Thus, one can considerably reduce
the computational effort using very compact contractions for
the most expensive exponents withl+1 andl+2. In the present
work we use the following contractions: [5s,4p,1d] for H; [8s,-
7p,3d] for C, N, O, F; [10s,11p,6d,1f] for Ti; [10s,12p,9d,3f,-
1g] for Pd, Rh: they were shown to cause deviation of the
calculatedg-values by less than 1×10-5. The auxiliary fitting
basis sets were constructed in a standard fashion by doubling
the s- and p-exponents of the orbital basis functions;39 they were
augmented by standard sets of 5 p- and 5 d-type polarization
functions.39

To test the present method forg-tensor calculations and the
implementation in PARAGAUSS, two sets of inorganic and
organic radicals were calculated: (i) CO+, CN, NO2, NF2, HCO,
C3H5, TiF3, RhC, PdH; (ii) phenyl (Ph) C6H5, biphenyl radical
anion (BPh-) C6H5-C6H5

-, 1,4-benzoquinone radical anion
(BQ-) C6H4O2

-, and tetramethyl-1,4-benzoquinone radical
anion (duroquinone, DQ-) C6(CH 3)4O2

-. Set (i) allows a critical
comparison with both experimentalg-tensors46-52 and results
of other high-level calculations.5,6,9,10,13,16,17Experimental equi-

librium geometries were used for molecules of the set i, except
those for TiF316 and C3H5,10 which for consistency were taken
from the cited calculations. Thez-axis was always oriented along
the main symmetry axis; the molecules belonging to point group
C2V (NO2, NF2) were located in theyz-plane. For set ii of organic
radicals,first-principlescalculated data are scarce.8 But these
radicals with very smallg-tensor anisotropy53-55 are indispen-
sable to establish the performance of the newg-tensor tool for
prototypes of biologically important EPR-activeorganicspecies.
Geometric parameters of these radicals were optimized at the
GGA BP level. The planar organic radicals were oriented in
the xy-plane with the substituting-C6H5 or O groups or the
missing H atom pointing along thex-axis. A common gauge
origin at the center of mass has been employed.

IV. Results and Discussion

In Table 1 the calculatedg-tensor values for a series of
benchmark doublet-state radicals are presented and compared
with results of other high-level calculations and experimental
data. The computedg-components reproduce the experimental
numbers for the main-group molecules in this touchstone set i:
the relative shifts∆g of the maing-components, their signs,
and the general trends traced from the EPR spectra. Transition
metal radicals exhibit a somewhat less favorable situation which
we address below in some detail. Let us begin with the main-
group species.

The calculated spin Zeeman shift∆σ, eq 40, is essentially
negligible for molecules of light atoms. Thus, the overall shift
values∆g are defined alone by the orbital Zeeman contribution
∆L, eq 41. The present calculations systematically overestimate
the g-tensor anisotropy for main-group molecules. This mani-
fests an overestimation of the spin-orbit interaction as the
driving force ofg-shifts. This spin-orbit overestimation in the
spin-orbit coupled DK method is known56 for the commonly
used restriction of the DK transformation to the nuclear potential
only (i.e., neglecting the two-electron spin-orbit coupling
terms).30,31,57Recently, an improved relativistic treatment of the
Hartree part of the electron-electron interaction has been
suggested and implemented in the code PARAGAUSS.36 (The
underlying transformation is partly carried out in a numeric
fashion which requires a specially augmented orbital basis set
described in section III.) For molecules without very heavy
atoms, this alternative treatment does not cause significant
changes of common observables.36 However,g-tensor values
are much more sensitive to the relativistic electron-electron
terms. The leading orbital Zeeman contribution∆L to g-shifts
has been reduced in absolute value by as much as 30% (or more)
for all radicals under study when the Hartree potential was
affected by the relativistic transformation. Thus, the accuracy
of the calculatedg-tensor components for molecules composed
of very light atoms has been improvedconsiderably and
systematicallyat the present level of approximation that uses
wave functions obtained with Hartree part of the two-electron
spin-orbit couplings taken into account.36 Nevertheless, as
follows from atomic calculations, even accounting for electron-
electron spin-orbit terms still causes a slight overestimation
of the spin-orbit splitting for p-orbitals.56 This is the rational-
ization for overestimation of theg-tensor anisotropy in the main-
group molecules.

Another part of the electron-electron interaction is the XC
potential. Although it is smaller in magnitude than the Hartree
contribution, it should also be subjected to the relativistic
transformation to obtain further improved two-component wave
functions when determiningg-values. Work in this direction is
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in progress. One can also profit from using special relativistic
exchange-correlation functionals modified due to relativistic
kinematics of the electrons and, probably more important in
the present context, due to the Breit contribution to the electron-
electron interaction. Such functionals are now available at both
LDA and GGA levels.58 Notwithstanding very minor effect of
these relativistic corrections on many molecular observables,59

a notable alteration of so sensitive indicator asg-tensor is
anticipated.

One more potential measure for improving the precision of
calculatedg-values in the present implementation is to go
beyond the ROKS approach, taking spin polarization effects
into account. Spin polarization effects were estimated within a
one-component DF method tosystematically decreasethe
absolute∆g values by as much as 20% (HCO, NO2), making
results for already light molecules notably more accurate.16 In
all g-tensor calculations with self-consistent treatment of spin-
orbit interaction reported so far, spin polarization effects have
been neglected. This is a principal limitation because spin-
orbit interactions eliminate spin as a “good” quantum number.
Fortunately, there exists a way to partly overcome this limita-
tion: a very recent implementation of the so-called noncollinear
spin density functional (NCSDF) approach in the spin-orbit
part of PARAGAUSS showed promising results for energies.32

Also, our first attempts of using a SOMO from a NCSDF
calculation together with its fictitious Kramers partner in an
otherwise standard calculation of theg-tensor within the present
ROKS scheme gave encouraging restults. For instance, the
largest∆gyy shift of NO2 has been reduced in absolute value
(improved) by more than 10% in such a NCSDF evaluation.
Spin polarization effects ong-tensors calculated in a two-
component NCSDF method employing properly constructed
determinantal wave functions have yet to be quantified.

As already mentioned, the gauge origin in this work has been
chosen in the center of the nuclear charges (masses). A test
displacement of the gauge origin for the CO+ radical by 2 au
along thez axis, a typical uncertainty, resulted in a variation of
g⊥ by less than 10-5. The effect for other radicals in Table 1
was of the same order. This change is even below the commonly
achieved experimental accuracy. Therefore, the unphysical
feature of the gauge dependence of calculatedg-values is of

minor importance when very good basis sets are employed as
done in the present calculations. Further test studies have shown
that gauge effects may also be neglected for organic radicals of
moderate size (Table 2). However, measures to ensure gauge
invariance may become relevant for large asymmetric molecules.

For molecules of main-group elements (Table 1), the calcu-
lated deviations from experimentalg-values are of similar size
as in other computations.5,6,9,10,13,16For the most thoroughly
studied gas-phase NO2 and matrix-isolated HCO molecules, the
present∆g values are very close to those of the methodologically
similar ZORA DF approach.16 (The still remained difference is
mainly a consequence of neglecting two-electron XC spin-
orbit couplings in the present work.) The latter two sets of
g-shifts are slightly larger in absolute values than in a pertur-
bative DF procedure,10 probably due to the inclusion of spin
polarization in the latter scheme. All three sets of DFg-shifts
consistently overestimate the experimental values. The two-
component GHF method9 performs better for∆g, but it slightly
underestimates the experimental shifts. Inspection of Table 1
shows that the data for the other main-group molecules confirm
these trends assystematic: DF methods (except that by Malkina
et al.13) overestimate∆g-values, and the GHF method tends to
slightly underestimate them. This is an encouraging message

TABLE 1: Calculated and Experimental ∆g × 105 Values of Small Test Molecules

species component exp.a MRCIb ROHFc GHFd DFe DFf DFg present

CO+ ⊥ -240 -238 -125 -280 -313 -246 -350
| -18 -18 -4 -14 -9 -22

CN ⊥ -200 -198 -251 -270
| -6 -14 -20

NO2 xx 390 357 259 337 416 340 500 472
yy -1130 -1030 -708 -1101 -1372 -1123 -1600 -1513
zz -30 -54 -57 -62 -76 -69 -60 -72

NF2 xx -10 -45 -74 -62 -37
yy 620 565 762 629 1027
zz 280 289 468 393 603

HCO xx 150 207 275 228 330 303
yy 0 -18 -27 -22 -20 -20
zz -750 -686 -947 -748 -1230 -1076

C3H5 xx 0 -12 -7 -13
yy 80 77 60 96
zz 40 66 50 76

TiF3 ⊥ -11130 -2658 -7970 -4526
| -1110 -112 -100 -28

RhC ⊥ 5178 5028 4680
| 158 -202 -173

PdH ⊥ 29088 29478 24735
| -3732 -2772 -1818

a CO+,46 CN,47 NO2,48 NF 2 (cited from ref 10), HCO,49 C3H5,50 TiF3,51 RhC,52 PdH.52 b MRCI.5 c ROHF.6 d GHF.9 e One-component UKS.10

f One-component UKS.13 g Two-component ROKS (ZORA).16,17

TABLE 2: Calculated and Experimental ∆g × 105 Values of
Organic Radicals

species component exptla,b calcd

C6H5 xx -2 ( 50 -16
(Ph) yy -92 ( 50 -129

zz 108( 50 72
C6H5-C6H5

- xx 107( 2 142
(BPh-) yy 32 ( 2 46

zz -5 ( 2 -13
C6(CH3)4O2

- xx 438( 5 711
(DQ-) yy 291( 5 357

zz -14 ( 5 -28
C6H4O2

- xx 473( 5 907
(BQ-) yy 306( 5 362

zz -6 ( 5 -30

a Ph,53 BPh-,54 and DQ-.55 b Experimental data for BQ- corrected
for hydrogen-bond effect with isopropyl alcohol solvent, assuming that
they are the same as for DQ- when the latter is compared to an
absolutely water-free solution in 2-methyltetrahydrofuran.55
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because the systematic deviations can be reduced step by step
when improvements of theg-tensor calculations are possible
in a rigorous fashion, like in the present method.

As discussed elsewhere,9-13,16,17 transition metal radicals
represent more critical cases for calculations ofg-tensors than
main-group systems. Our results for TiF3, RhC, and PdH (Table
1) are in line with previously calculated data for d-metal
molecules: the agreement with experiment is qualitative and
general features of EPR line splittings are reproduced. A key
difference is the lack of the systematic overestimation of the
g-tensor anisotropy. One can try to get an explanation based
again on the analysis of spin-orbit effects in atoms as described
at the DK level with two-electron spin-orbit couplings. Indeed,
for d (and f) atomic states the spin-orbit effects are shown to
be slightly but systematicallyunderestimatedcompared to those
computed at the most accurate four-component Dirac level.56

When a transition metal atom is present in a radical, both p
and d states of the constituting atoms contribute to theg-shift.
Depending on the relative weights of both contributions, the
overall effect may be either an overestimation or and underes-
timation, with the latter being probably more common for
SOMO with a notable d character (see Table 1).

One can invoke further effects which may well cause
difference in d-metal molecules. It is, for instance, the influence
of the XC potential on the precision of the computedg-values.
As for comparison of the LDA vs GGA calculations, the latter
resulted in a slight reduction of theg-tensor anisotropy (by
5-10%) for essentially all molecules listed in Tables 1 and 2.
This is an improvement for the main-group molecules, but not
for the d-metal species. Theg-tensor calculated for TiF3 features
the worst agreement with experiment, no matter whether LDA
or GGA is used. Obviously, this is an indication of a general
situation that the commonly used XC potentials are still far from
optimal for describing very delicate magnetic response properties
(and thus electronic structure details) of transition metal systems.
More specifically, complexes in the electron configuration 3d1,
like TiF3, are probably less accurately described by common
XC potentials due to the known deficiency of these methods to
reproduce proper electron localization, in particular in such
compact states as 3d. If this is indeed an important reason, one
can hope to reach a significant improvement by employing DF
approaches corrected for self-interaction.60

Organic radicals (Table 2) also furnish a critical test for the
precision and reliability ofg-tensor calculations because the
involved anisotropy ofg-tensors is small. Thus, small uncertain-
ties in the geometry would translate into variations of the
g-tensor which are comparable to the anisotropy. Furthermore,
environmental effects ong-tensors of organic radicals, which
are commonly studied in matrixes, often can be seen in measured
g-shifts but are hard to model. Notwithstanding the smallg-shifts
observed for hydrocarbon and benzoquinone anion radicals of
medium size, the present method is able to reproduce not only
the signs, but also the relative values of the measuredg-tensor
components. The whole variety of the conceivable improve-
ments discussed above is also applicable to these biologically
relevant organic radicals. Important for future applications is
the finding that tiny changes of EPR line positions caused by
the formation of intermolecular hydrogen bonds of organic
molecules are almost quantitatively reproduced within the
present DF method.61

V. Conclusions

We developed a novel scheme for calculating EPRg-tensor
values of doublet-state systems within a relativistic DF method

and presented its implementation as well as first applications.
The formalism is based on the two-component eigenfunctions
of the Kohn-Sham equations which include spin-orbit effects
self-consistently. Therefore, theg-tensor can be considered as
first-order property with respect to the perturbation by the
external magnetic filed alone. The Zeeman energy splitting, an
inherently relativistic effect, is naturally and transparently
determined by the two-component ground-state wave function
without invoking virtual states. Since the widely accepted
perturbative treatment of spin-orbit interaction is avoided, the
method is also applicable to molecular systems with spin-orbit
interaction of considerable strength.

Test calculations ofg-tensors for small inorganic main-group
and transition metal molecules as well as organic radicals
demonstrated that the present method exhibits an accuracy
sufficient for successful assigning and interpreting EPR spectra.
This statement holds even without the further conceivable
improvements proposed for the newly implemented scheme. The
most important and straightforward future developments of
PARAGAUSS for EPR calculations comprise an extension of
the relativistic treatment of the exchange-correlation interaction
and the inclusion of spin polarization effects. Implementation
of both improvements is under way.
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