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We present a novel scheme to calculate electrgrtensor values of doublet-state systems within a density
functional method and discuss the implementation and results of first applications. The method employs
two-component eigenfunctions of the Koh8ham equation where spiorbit effects are taken into account
self-consistently. Therefore, tlietensor can be treated as first-order property with respect to the perturbation
by external magnetic field alone. The Zeeman energy splitting, an inherently relativistic effect, is naturally
and transparently determined by the two-component ground-state wave function (Kramers doublet) without
invoking virtual states. Abandoning the widely accepted perturbative treatment of theospinterm makes
the present method also applicable to molecular systems with considerabtedpirinteraction. Conceivable
improvements of the method performance are proposed and discussed.

I. Introduction onstrated to furnish very delicate (often unique) details of the

) .. structure of radical species and their environment as well as of
Electron paramagnetic resonance (EPR) spectrosopy is widelyine |ocal behavior of their wave functiod&:2! It is no surpise

employed to study radicals, coordination compounds, and solid 5t semiempirical electronic structure calculations striving for
materials characterized by the pre_se_nce_ofunpalr_ed eleétrdns. precise g-tensor values of organic radicals again became
EPR spectra are helpful for clarifying interrelations between frequently cite@23 after a relatively long quiet period that

electronic and structural features of various molecular systemsc|q\ved the era of semiempirically calculated magnetic reso-
relevant to physical, chemical, and biological problems. Along nance parametefs:24

with the hyperfine coupling constants, theensor is one of R t high-level tati ts USi
the fundamental EPR parameters. Neverthelggensors at- ecent high-ievel compula |onsgn‘te_n_s_or components using
wave function methods have been initiated by Lushington et

tracted significant attention of the research community that deals .
with high-level quantum-chemical calculations only during the al. "’}t the restrlcted_ oper)-shgll Hartn.déock (ROHF} and
multireference configuration interaction (MREl)jevels. A

past few year$: 1’ :
response approach for calculating thdensor based on a

Several factors induced these recent theoretical activities. . . )
. . . combined perturbation treatment of the orbital Zeeman effect
First, amazing progress in the computer hardware and software . . . o )
and spir-orbit interaction was developédipplications of this

drastically enhanced the power #&fst-principles electronic method (e.g., to medium-size organic radiakesulted in a

structure calculations. Complex molecular systems can now berather encouracing accuracy already at the ROHE level. Densit
treated at the level of realistic models and computational results . ging ACy y . ’ y
functional (DF) calculations of electronig-tensors were

can be achieved with an accuracy close to that of experimental .
methods. This breakthrough enhanced the interest in calcuI.slting'o'_oneereOI by van Lenthe et #l.and by Schreckenbach and

“properties” in general. Second, during the past decade experi-.z'egler'10 One more DF tool to calculatgrtensors was
ence has been accumulated with calculations of features thatmPlemented very recentfy.
characterize the response of molecules to a magnetic field, All the schemes mentioned, except that of van Leftistare
foremost the response measured by nuclear magnetic resothe feature of perturbational description of sparbit interac-
nance!® Third, the advent of the high-field (high-frequency) tions. Such a treatment of sphorbit effects is attractive because
EPR technique (e.g., W-band, 95 GHz; F-band, 150 GHz) conventional quantum chemical codes operating with real (one-
opened the way to resolggtensor components of much smaller component) solutions are readily available. Nevertheless, the
anisotropy than by using conventional (X-band, 9 GHz) applicability of perturbational approaches can be questioned in
spectrometer&-21 This novelty is of particular importance for ~ at least two aspects. First, these methods generally require the
spectra of organic radicals: there, at common lower fields, only summation over (formal) electronic excitations characterized by
slightly split g-tensor components usually overlap with the energies and spatial behavior of virtual (unoccupied) states; the
hyperfine structure. Resolvagtensor components were dem-  accuracy of these features is usually not very high and the sum
over states has to be truncated at some point, without a guarantee
* Corresponding author. E-mail: neyman@ch.tum.de. FAX49+89 of rapid convergence, when the excited states are ordered with
28913622. respect to the energy?® Second, perturbation theory is accurate
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only for small spir-orbit interactions. However, deviation of may be treated as well. Furthermore, the present approach
g-values from the free-electron valug. is essentially a affords a direct relation of-values to the ground-state wave
relativistic (spin-orbit) phenomenon in systems with quenched function, the accuracy of which can be improved in a systematic
orbital momentum. Relativistic effects are known to grow way, if required.

roughly as the square of the atomic numbef®ZThus, The paper is organized as follows. In section I, we describe
deficiencies of the perturbation approach can become non-the formalism including the newly derived expression for the
negligible already in molecules of rather light atoifis. DK Zeeman Hamiltonian. In section I, we describe compu-

A fruitful assumption is that scalar relativistic (mass-velocity tational details. In section IV, we discuss this methodology, the
and Darwin) effects are of only minor importance ptensors importance of various contributions to the sporbit interaction
of molecules of light elements. This leads to the idea of @s well as the computational parameters involved, and we
confining the calculation of thg-tensor to two-component wave ~ compare calculated results for touchstone radicals to those of
function formalism, with spir-orbit interactions included self-  other relevant calculations and experiment. We summarize the
consistently and scalar relativistic interactions neglected. In suchconclusions in section V.
a general HartreeFock (GHF) approach g-tensors of small
inorganic radicals are calculated with errors of about 504 Il. Method
compared to experimeftThis accuracy is better than in the We have chosen the two-component Douglisoll Kohn—
DF approacH and almost as good as in demanding MRCI Sham approach to relativistic density functional theory with self-
calculations; but for systems that contain heavy elements this consistent account of spirorbit interaction as framework for
promising GHF approach would need to be improved. Account- g-tensor calculations. In this way, we will avoid the drawbacks
ing for often mandatory scalar relativistic and computationally of the double-perturbation approach which is inherently limited
expensive electron correlation effects would significantly restrict to molecular species of rather light atoms. To this end, we need
the size of species tractable by this method. to (i) define the form of the Zeeman Hamiltonidt? that
One can build an efficient approach for calculatgtensors describes the energy change of molecular systems in the
on the basis of a DF method that partly takes correlation effects presence of an external magnetic fiéldnd (ii) relate the matrix
into account and goes beyond the common one-componentelements ofH? to parameters of the “experimental” spin
(“nonrelativistic”) formulation. In a fully relativistic four- HamiltonianH in order to derive expressions for the components
component Dirac method, the perturbation operator for calculat- of the g-matrix.
ing electron Zeeman splitting in an applied magnetic field reads ~ A. Zeeman Hamiltonian in the Two-Component Douglas-
rather simplé. This approach to theg-tensor has first been  Kroll Kohn —Sham Method. The Hamiltonian of the four-
implemented in the framework of the Dirac scattered-wage X component Dirae Kohn—Sham method can be written using
(DSW-Xa)) method?® Its applications to G#\sy, clusters showed  the effective one-particle potentiales which describes the

qualitative agreement with experiméat® Unfortunately, the interaction in a many-electron systefn:
crude muffin-tin approximation of the electronic potential used .
in a SW scheme represents a serious obstacle to precise HP = ca-p + A% + v (1)

calculations ofg-values, as required, e.g., for organic radicals.

If one abandons this shape approximation of the potential Herep is the mechanical momenturn,is the speed of light,
and turns from the four-component Dirac method with both andd, j are the Dirac 44 matrixes.HP describes electronic
electronic and positronic solutions to a two-component kehn  (E > 0) as well as positronidq < 0) solutions. The positronic
Sham method (which describes only electronic states), one arivessolutions are irrelevant in chemistry; rather, they cause signifi-
at probably the most attractive formulation of tlgetensor cant complications. One way to get rid of the positronic solutions
problem to date. In such a method the eigenfunctions includeis to carry out a unitary DK transformatiod of the Dirac
spin—orbit and scalar relativistic effects self-consistently. Thus, HamiltonianHP:
only the applied magnetic field needs to be considered as a

perturbation. This feature makes schemes, such as those, - ¢+ vy CO*P R
applicable to both light and heavy (e.g., transition metal) Hy =UH"U =U BB P4 U =
molecular systems, in a rather economic fashion. Also, a o°p Vet

of the (spin-)density distribution of the singly occupied molec-
ular orbital (SOMO) becomes possible. A DF scheme to
calculateg-tensors, like that just outlined, has been implemented
within the zeroth-order regular approximation (ZOR®xnd
recently validated for radicals containing a metal atband

for transition metal complexes of biological relevafée?®

In the following, we communicate on the development,
implementation, and benchmark applications of a novel scheme
for DF calculations ofg-tensors which is also based on two-
component solutions of KokiSham (KS) equations but uses DK U
an alternative formalism by Douglas and Kroll (DE.32 The r=ur=yv 3)
implementation is undertaken in the parallel program . .

PARAGAUSS® and theg-tensor module is a part of the latest When g:alculatmg expectation va_lues of oper?tors one has to
release of this cod®. Our approach tay-tensor calculations, take this, sp-calleq;ncture changentozaccoun?.

based on a variationally stable relativistic DF metRdds For the first-order energy changee” of a system

applicable to doublet states of systems without restricitions in ~ b

type, since heavy elements with a large spinbit interaction Ho Wo = EW, (4)

transparent rationalization of the calculaigdalues in terms (HDK )

here, the Pauli matrixe& = (ox0y,07) are introduced.U
decouples (with the accuracy to all orders) the four-component
equation into two two-component equations: an electronic one,
|2|(D2*)<1p(2) = EW(y, and a positronic ond?l(z?K‘I‘(z) =EW,,
Note that solutions ofl;y andHP, WPK and W, respectively,

are related to each other via the transformatibn
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caused by a Zeeman perturbatidf?, transformationU; has to be appli€d32
(Hy” + HPHW = (B, + AE) W ®) U= /1+W2+W, (17)
a naive approach based on the DK wave funcﬂé}g’] (mixed _ Vefpp  Veffipp
pictures) would lead to erroneous result: Wipp = A RpE +E E,+ Ep,"p' Ay (18)
AE* = BLIJ(L)J|HD’Z|‘POUD'—~ 0 (6) As first approximation, which permits computation of the major
contributions to the expectation vallﬁw0 |UHDZU*|‘IJOIIJ one
This reflects the fact that the Zeeman operator, employs the transformatiod, only, so that
APZ = (%‘A’ g‘A) % AE? ~ iU AP2U, WD (19)

which perturbs the Dirac Hamiltonid#?, is off-diagonal (odd), This is the approximation chosen in the present work. Note that

and nonzero matrix elements can only appear between thelh® last expression can be rewritten as

electronic and the positronic solutior?Z has been derived Ut (4D.Zy 1 tegU f iU AD.Z1 1 FregU
from eq 1 via the common minimal substitution to a (gauge- [Wo UgH™ Uy W= Wy Wo H™ Uy Woll - (20)

invariant) momentum . . . .
to reflect the equivalence of applying the transformation either

pP—A=p+ Alc (8) to the operator or to the wave function.
_ _ L Let us consider the transformatiol®? — HEY* =
In this way, one introduces the magnetic fi@dvia JAUAPZUGt /4T, (here, /2 simply projects out the electronic

o9 part of the 44 matrix) in more detail using eq 12:

A=Z(BxT) 9

DKZ _ » DZy Tt

2 H(z) =/ U, H Uy /4

Within the DK formalism the correct expression for the first- N K,o-P\[o 5A
order energy changAEZ in the external magnetic fiel@ as = A —K6p 1 GA 0

described byAPZ is 5
)Apfer (21)

X

1
AE? = WY UAPZU T wYD (10) (Kpa‘ﬁ 1

Obviously, the transformation of the Dirac Zeeman operator Therefore,
HDZ to DK oneHZ = UHPZUT is obllgatory

In the present implementatidi3? H(4) is diagonal up to  {4Z = (4PKZ = A K (G-D)(G-A) + (G-A)G-D)K 22
second-order inu/E) @ = ALGEPITA + ([TAE@PIGIA - (22)

Kp and @-p) commute becausk,; is a function ofp? which

[joK.1 9 E)2 ) LN _
AP — U UAPu UL = [ @ Ol(vesB)] (1) commutes with the componentsjafWith the help of the Pauli
“ =0t Fo (v E) H(DZ')“ relation, we write
Thus, the transformatiot) = U;Uo of the Dirac Zeeman (@p) (@A) =p-A+ic(pxA (23)
operatorHPZ is required to get?. The free-electron Foldy EmployingP = — iV and
Wouthyusen transformation
. B=VxA (24)
Uy = A1+ BR) = A1+ KBa-p) =
1 Kp5'5 12) we obtain for any wave functiol’:
oo )
Keo'P 1 [(6+P) G-A] W = [pA+ 5B — 5-(A x V)W =
can be expressed in a simple analytical form. Here, the [6-B+ AP — i5+(A x B)]W (25)
relativistic generalization of the kinetic energy Here the relatiorp- Ay = © A)IIJ 4 A PP was used, where
parentheses indicate thatacts only onA. The term p- A)‘P
E,=cvp +c (13) vanishes since we invoke the Coulomb gauge = 0. The
relationB =V x A, eq 24, was used to obtain the tetrnBW.
includes the rest mass term and The operatoA-p yields
= \J(E,+ A)/2E (14) AD =B x F)D=B(F x p) =B-L
K,= c/(E, + ¢ (15) - _ _
with L =T x P. For the third tem we have with eq 24
R,= Ky(@-p) (16) L )
o-(p x 50 B x T) x —_O'-T' Bp) —
are relativistic kinematic factors. If matrix elements are to be P )= [ ) xPI= ( ) EBP)
calculated via a completely consistent picture for bidthand }(3%) (F-P) (27)

the wave functions, the considerably more complicated unitary
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Similarly, for the second term of eq 22 we obtain With these settings the Dirac Hamiltonian transformed to a DK

- ~ L form by Uq(B)
(G-A) (6+P)W = [AP + i5+(A x P)|¥ (28)

and we can apply analogous chain of transformations such as |:|(E31})<(§) = Uy(B)R°(B)U,'(B) (34)
for simplification of eq 25.
The Zeeman Hamiltonian, eq 22, reads in a two-component form, after elimination of the positronic
. c - ~ _ solutions, reads:
H? = 5=6B + AK (AP) + (APKIA,  (29)
2Ep p DK /5 o = - —
He) (B)=E,+ Ap A, + AK omv07TK A, (35)

— IAK,G*(A x P) — 5+(A x PKJA,
. I i For the valence electrons that define thensors, the kinetic
We substitute eqs 26 and 27 to obtain finally: energy is small compared to the rest energy. Therefore, the

c_- 1 - = - = expression for the relativistic ener@y, eq 33, can be expanded
=55 0°B T SAJIK(L-B) + (L-B)K(IA, + in a power series of {7)/c]:
P

IALKIGBY(T-V) = (0 T)(B-9)] — [(G-B)(T-V) -
(@ T)(BVIKFA, (30)

The first terma-B is the electrorspin Zeemaiinteraction, the ~ InsertingE; in the HamiltonianH{ (B), one obtains:

next termL-B describes therbital Zeemarinteraction due to

the orbital motion of the electron in the magnetic fi@ld The ~DK Ry 2 L2 L g

last term is reminiscent of the spiorbit Zeeman gaugecor- He(B) =c+ 2(0 ) 802(0 )+ Aef

rection terms we neglected it in the following. In fact, assuming A K G7v6- 7K A, (37)

that K, commutes with the brackets, this term equals to zero. o )

We note here in passing, that the issue of gauge invariance of

the DK Zeeman Hamiltonian is complicated: the wave functions

in practical calculations do not correspomdactly to any

particular picture because not all terms of the total DK

Hamiltonian are treated on the same footings. For instance, an|2|(§) = l[(a-.p*)(a.f&) + (3-})(5.5)]

accurate relativistic description of the kinetic energy and nuclear 2

attraction interactions by applying both, andU; transforma- 1. o oo = =

tions is straightforward! However, relativistic effects on the - 8_C3[(‘7'p) ((6-p)(G-A) + (3-A)(G°P)) + hc]

exchange-correlation potential become quite complicated al-

ready when introduced by the free-electron transformadtign

and thus are usually neglected in practical calculatféns.
Alternatively to the above procedure, one can derive a

Zeeman operatoH? linear in the external magnetic field o . )

within the DK formalism if one applies field-dependenbK The first item of H(B) corresponds to the Pauli form of the

transformationU(B) to the Dirac-Kohn—Sham Hamiltonian ~ Z€eman HamiltoniafiZ (eq 22), and the second and third terms
are corrections of the ordg?/c? and ves/c?, respectively, and

|:|D(§) = CO-7F + ﬁCZ + Vg (31) are usually ignored.If we follow this strategy, we obtain the

N Zeeman Hamiltonian in the form
where the fieldB is introduced via the gauge-invariant me-
chanical momenturs, eq 8. This way to define the DK Zeeman
operator has the advantage of removing the (partial) inconsis-
tency of the approach just outlined connected to the application
of a DK transformation independent of the magnetic field to |t differs from that defined by eq 22 by the absence of the
obtain a Zeeman operatalependent on magnetic fieldll kinematic factors only. Note that the relativistic corrections due
necessary algebra has already been given above; the onlytg the kinematic factors aremalland essentiallysotropic for
difference is that we now use the canonical momenfm  the systems considered in the present study, thus they do not

everywhere instead gi. affect the calculated splitting @f-tensor components.
As before, we limit ourselves to the free-electron transforma- -
To finalize eq 30, we correct for small quantum electrody-

tion U: namics effects (thus far neglected) by introducing a fagi®#

U-(B) = A (1 + K_Bd-7 U T(B) = (1 + 578K in the electron spin Zeeman tergy, = 2.002319 is the-factor
olB) = Al A7) o (B)=Q+a7p ”)A(\%Z) of free electrons.Finally, the DK Zeeman operatdi? with

only spin and orbital Zeeman contributions retained, becomes
where the relativistic energl; and kinematic factoré\,, K,

are defined as in egs #35:

E.=c/@a)?+c’, A, =,(E,+)E,

K,=dl(E, + ) (33) + %Ap[Kp(f-ﬁ) +(L-BKJA, (41)

HZ

E, = @+ 207 - —(G@) + (@7 (36)
7 2 8C2

Neglecting the dependence of the kinematic facfgrsk, on
the magnetic field and collecting only the terms lineaBiyields

+ ZAKIGBefTA) + (GRS BIKA,
(38)

A2 = (G P)EA) + G-REB] = oG+ 1)1B  (39)

N g.C_ —
H =-"3-B (40)
4E,
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In the four-component Dirac picture, the Zeeman operator is the Zeeman splittind\E in the magnetic fieldBC. The price to
represented by one term orlyin the DK approach, it splits  be paid for this advantage is the requirement to work with at
into groups of terms, like in those in eqs 40 and 41. This is least two-component eigenfunctions that becammplex2®
convenient to analyze the effects responsible for the energy For a Kramers doublet ground state one can assume that the
splitting in a magnetic field. The purely relativistic nature of two spinors of the unpaired electron degenerate in the absence
the Zeeman interaction follows immediately from eqgs 40 and of a magnetic field completely determine the magnetic Hamil-
41 and the definitions oEp, A, andKp, egs 13-15: lime— tonian, since the Zeeman interaction is usually much smaller
(H?%) = 0. This result once again emphasizes the necessity of athan the energy difference between the ground and excited

relativistic treatment of magnetic interactions.

Finally, we give the expression for the derivatives of the DK
Zeeman Hamiltonian with respect to the componeBi’tsk =
X, Yy, z of a uniform magnetic field3°:

dH? 9L

1
@ = E()‘k + EAP(KPLK + Lka)Ap (42)
Kk P

This eq 42 will be used in the following subsection as well as
in the calculations of-tensors presented in section V.

B. Relation of Zeeman Hamiltonian to Spin Hamiltonian.
EPR spectroscopy deals with the transition between levels split
at most by a few cml. Hence only levels that are (nearly)
degenerate without a magnetic field are of immediate interest.
A common representation of such a group of levels after
application of a magnetic field rests on the concept of an
“effective spin”S = (n/2)6. The latter is a fictitious angular
momentum such that the degeneracy of the group of levels
involved is set equal to &+ 1), the same as that in an ordinary
spin multiplet! For example, a Kramers doublet with just two
levels o = 1) is assigned an effective spg= /.. The EPR
g-tensor (which actually is not a tensor but merely a majrix
parametrizes the interaction between the external magnetic field
B® and the effective spinS. For doublet states the spin
HamiltonianH reads

H = uzB%g-S (43)

Here,ug is the Bohr magnetonyg = €h/2mc, or in atomic
units, ug = %/, (with oo = %/, being the fine structure constant);

e andm are the charge and mass of an electron, respectively,
andh is Planck’s constant. In terms of the spin Hamiltonian,
the ground-state energy chandg in the field B ist

AE = ug[(Bg, + By, + B,)° + (BYg,, + BJg,, +
BYg,)” + (B{g,, + BJg,, + BXg,)"”

= ugl Z BgBIOzgkagla] V2 = ugl Z BEBIOGKI] vz
o
' ' (44)

Here,G = ggd', atrue tensor widely used in the experimental
determination ofj-values!? has been introduced. After diago-
nalization,G furnishes the main axes and the main components
of the g-“tensor” via gw = /G,,. Note that according to the
spin Hamiltonians employed for interpreting experimental
datal3only the energy contribution linear in the magnetic field
is needed. Therefore, thgetensor components are related to
the experimental energy splittir§E as follows:

1 (AE)

2up, 9By0BY

(45)

IEO:Q

Gy = zgkagla =

The energy defined adEZ, eq 10, can be calculated, thus
connecting theory and EPR experiment AffZ = AE. Note
thatG is defined here completely generally as the response of

levels! Commonly, this is a good assumption in a spin-restricted
DF treatment. Without a magnetic field, a DF calculation yields
two degenerate solutions, formally connected to each other by
time-reversal symmetry. In the spin-restricted case, the spinors
of the paired electrons are also connected to each other by time-
reversal symmetry. Since all of them are occupied, they do not
contribute to the matrix elements of the corresponding KS
determinants of the magnetic Hamilton#&herefore, the only
nonzero contributions emerge from the two degenerate spinors
of the unpaired electron, i.e., from the Kramers pair, ®»
obtained aB® = 0. Due to its relation with thg-matrix, it is

more _convenient to discuss the square of the energy change
AE?(BY) in the field B® described byH?, eq 10, in terms of the
standard first-order perturbation treatment. For a case of doubly
degenerate states one has

(AE?)? = [[@,| H*|®, [ [@,| HY|D,0° +
4D, | HA|D,0D,| H?|dD,[1(46)

or after taking the second derivative:

o 17 (AEZ)2|
K~ - 2 - 0~ B9=0
2u? 9B,°9B°
1
= E(q)lilq)lll - q’ilq’lzz - q)lllq)EZ + (I’gzq)lzz +
B
20,5, + 201,95 (47)

Gy is a first-order property as it can be expressed in terms of
the first derivatives of the energy, eq 47. To obtain eq 47, the
Hellmann-Feynman relationdf = 9/BY [@;|HZ|®;GE—o =
[@;|9H9Bls0—ol P Iwas used. It is valid for;, @; indepen-
dent of B® as solutions of the Hamiltonian without a magnetic
field. The linear approximation of the2 Zeeman Hamiltonian

HZ defined by its matrix elements

zZ _ (VEN ¢
H“ = Zqu)”

|jE

(48)

can be compared to the spin Hamiltonian derived from eq 43:

L1,
H:ZC;BkgkIOI

Therefore, the (real) valueg can be expressed in terms of the
matrix elementsb} asgi = 4c Redf,= 4c Red%,, gy = —4c
Im®¥,= 4c Im®%,, andgy, = 4c Red¥, = —4c Red¥,.

To calculate thg-values, the code PARAGAUS%has been
extended by new types of integralg®*|aHZ/aBy|y;" *£Clover
primitive Gaussian functiong®“ of angular momemturhand
exponenta located at centea. These integrals are symmetry
adapted according to the irreducible representation of the
appropriate double group, multiplied by contraction coeffiecients
and combined into molecular integral#}. The integration to

(49)



Calculation of Electronig-Tensors

account for relativistic kinematic factors, eq 42, was carried out,
before the contraction step, by means of a transformation into
(approximate) momentum space as usually done in the DK
approach138 The complete procedure of calculatiriyj} was
coded and parallelized in line with that available in PARAGAUSS
for calculating dipole integrals

Ill. Computational Details

All-electron calculations have been carried out using the
program PARAGAUSS?34a newly developed parallel imple-
mentation of the linear combination of Gaussian-type orbitals
fitting-functions DF (LCGTG-FF-DF) method® The two-
component relativistic wave functiofs®of a Kramers doublet
representing an unpaired electron were employed to calculate
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librium geometries were used for molecules of the set i, except
those for Tik'6 and GHs,1° which for consistency were taken
from the cited calculations. Theaxis was always oriented along
the main symmetry axis; the molecules belonging to point group
Caz (NOy, NF,) were located in thgzplane. For set i of organic
radicalsfirst-principles calculated data are scare®ut these
radicals with very smalg-tensor anisotrogy—>° are indispen-
sable to establish the performance of the metgnsor tool for
prototypes of biologically important EPR-actigeganicspecies.
Geometric parameters of these radicals were optimized at the
GGA BP level. The planar organic radicals were oriented in
the xy-plane with the substituting-CgHs or O groups or the
missing H atom pointing along theaxis. A common gauge
origin at the center of mass has been employed.

g-tensors as explained in the previous section. Restricted open-y, Results and Discussion

shell Kohn—-Sham (ROKS) approximation has been adopted.
Gradient-corrected (GGA) excharf§end correlatiofit func-
tionals (BP) were used in thgetensor calculations and for the
geometry optimization. For comparisogstensors were also
computed in the local density approximation (LDA), with the
Vosko—Wilk —Nusair (VWN) exchange-correlation (XC) func-
tional#2

Two different Gaussian-type basis sets are used in the
LCGTO—FF-DF method: one to describe the KS orbitals and
another to represent the charge density when calculating the
classical Coulomb (Hartree) interaction between electrons. In
g-tensor calculations, the following specially constructed orbital
basis sets were used that ensure the accuragrvalues to
better than 10* (13s,8p,7d) for C, N, O, F; (8s,5p,1d) for H.
For the former atoms, a (13s,8p) basis'setas extended by 7

In Table 1 the calculated-tensor values for a series of
benchmark doublet-state radicals are presented and compared
with results of other high-level calculations and experimental
data. The computeg-components reproduce the experimental
numbers for the main-group molecules in this touchstone set i
the relative shiftsAg of the maing-components, their signs,
and the general trends traced from the EPR spectra. Transition
metal radicals exhibit a somewhat less favorable situation which
we address below in some detail. Let us begin with the main-
group species.

The calculated spin Zeeman shifo, eq 40, is essentially
negligible for molecules of light atoms. Thus, the overall shift
valuesAg are defined alone by the orbital Zeeman contribution
AL, eq 41. The present calculations systematically overestimate

d-exponents, identical to the p-exponents (except for the smallesthe g-tensor anisotropy for main-group molecules. This mani-

one). For H, the analogous procedure was applied to derive 5
p-exponents from the s-exponefigexcept for the three most
diffuse ones); the polarization d exponent of H was set to 1.0.
The initial orbital basis sets for 3#-and 4d-atom® were
extended in a similar fashion to obtain the following sets of
primitive basis functions: Ti (15s,11p,6d,5f); Rh, Pd (18s,13p,-
9d,8f,8g). This considerable extension of basis sets mainly
reflects anindirect sensitivity of g-values to basis complete-
ness: the additional functions with-1 or evenl+2 (wherel

is the maximum angular momentum of the occupied atomic
orbitals) are required only for the special transformations when
calculating the relativistic contribution to the electreglectron
Hartree interaction® In the code, these transformations precede

fests an overestimation of the spiarbit interaction as the
driving force ofg-shifts. This spir-orbit overestimation in the
spin—orbit coupled DK method is knowhfor the commonly
used restriction of the DK transformation to the nuclear potential
only (i.e., neglecting the two-electron spinrbit coupling
terms)30:3L57Recently, an improved relativistic treatment of the
Hartree part of the electrerelectron interaction has been
suggested and implemented in the code PARAGAESShe
underlying transformation is partly carried out in a numeric
fashion which requires a specially augmented orbital basis set
described in section Ill.) For molecules without very heavy
atoms, this alternative treatment does not cause significant
changes of common observabfddowever,g-tensor values

the basis contraction step. Thus, one can considerably reduceare much more sensitive to the relativistic electrefectron

the computational effort using very compact contractions for
the most expensive exponents wlithl andl+2. In the present
work we use the following contractions: [5s,4p,1d] for H; [8s,-
7p,3d] for C, N, O, F; [10s,11p,6d,1f] for Ti; [10s,12p,9d,3f,-
1qg] for Pd, Rh: they were shown to cause deviation of the
calculatedg-values by less thanx1105. The auxiliary fitting

terms. The leading orbital Zeeman contributidh to g-shifts

has been reduced in absolute value by as much as 30% (or more)
for all radicals under study when the Hartree potential was
affected by the relativistic transformation. Thus, the accuracy
of the calculated)-tensor components for molecules composed
of very light atoms has been improverbnsiderably and

basis sets were constructed in a standard fashion by doublingsystematicallyat the present level of approximation that uses

the s- and p-exponents of the orbital basis functiSrbgy were
augmented by standard sets of 5 p- and 5 d-type polarization
functions®®

To test the present method fgitensor calculations and the
implementation in PARAGAUSS, two sets of inorganic and
organic radicals were calculated: (i) €GN, NO,, NF, HCO,
CsHs, TiFs, RhC, PdH; (i) phenyl (Ph) gHs, biphenyl radical
anion (BPh) Ce¢Hs—CeHs™, 1,4-benzoquinone radical anion
(BQ) CeH4O,~, and tetramethyl-1,4-benzoquinone radical
anion (duroquinone, DQ Cg(CH 3)40,™. Set (i) allows a critical
comparison with both experimentgitensoré®-52 and results
of other high-level calculations?910.13.16.1Experimental equi-

wave functions obtained with Hartree part of the two-electron
spin—orbit couplings taken into accoufft.Nevertheless, as
follows from atomic calculations, even accounting for electron
electron spir-orbit terms still causes a slight overestimation
of the spinr-orbit splitting for p-orbital$® This is the rational-
ization for overestimation of thg-tensor anisotropy in the main-
group molecules.

Another part of the electrerelectron interaction is the XC
potential. Although it is smaller in magnitude than the Hartree
contribution, it should also be subjected to the relativistic
transformation to obtain further improved two-component wave
functions when determining-values. Work in this direction is
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TABLE 1: Calculated and Experimental Ag x 10° Values of Small Test Molecules

species component exp. MRCIP ROHP GHFH DF® DF DF9 present
cot ad —240 —238 —125 —280 —313 —246 —350
Il —18 —18 —4 —14 -9 —22
CN ad —200 —198 —251 —270
Il —6 —14 —20

NO; XX 390 357 259 337 416 340 500 472
yy —1130 —1030 —708 —1101 —1372 —1123 —1600 —1513
7z —30 —54 —57 —62 —76 —69 —60 —72
NF; XX —10 —45 —74 —62 —37

vy 620 565 762 629 1027

zz 280 289 468 393 603

HCO XX 150 207 275 228 330 303
vy 0 —18 —27 —22 —20 —20
7z —750 —686 —947 —748 —1230 —1076
CsHs XX 0 —12 -7 —13
yy 80 77 60 96
zz 40 66 50 76
TiF;3 O —11130 —2658 —7970 —4526
Il —1110 —112 —100 —28
RhC ad 5178 5028 4680
Il 158 —202 —173
PdH g 29088 29478 24735
Il —3732 —2772 —1818

aCO™,% CN,*” NO.,*® NF , (cited from ref 10), HCO? C3Hs,%° TiF3,5! RhC2 PdH52 P MRCI.5 °ROHF¢ ¢GHF? ©One-component UKE.
fOne-component UK 9 Two-component ROKS (ZORAF:7

in progress. One can also profit from using special relativistic TABLE 2: Calculated and Experimental Ag x 10° Values of
exchange-correlation functionals modified due to relativistic =~ Organic Radicals

kinematics of the electrons and, probably more important in

. My species component expll calcd

the present context, due to the Breit contribution to the eleetron oH = 150 16
electron interaction. Such functionals are now available at both (F?h)s vy _924 50 —129
LDA and GGA levels®® Notwithstanding very minor effect of 77 108+ 50 72
these relativistic corrections on many molecular observales, CeHs—CgHs~ XX 10742 142
a notable alteration of so sensitive indicator giensor is (BPH) vy 32+2 46
anticipated. ) 2z —5+2 —13
One more potential measure for improving the precision of (CDG(QCJ?3)402 XX gg?ig gé%
calculatedg-values in the present implementation is to go g —14+5 —28
beyond the ROKS approach, taking spin polarization effects  c4H,0, XX 473+ 5 907
into account. Spin polarization effects were estimated withina  (BQ") yy 306+ 5 362
—-6+5 —30

one-component DF method teystematically decreasthe zz
absoluteAg values by as much as 20% (HCO, BOmaking
results for already light molecules notably more accutéta. for hydrogen-bond effect with isopropyl alcohol solvent, assuming that
all g-tensor calculations with self-consistent treatment of spin ~ they are the same as for DQuhen the latter is compared to an
orbit interaction reported so far, spin polarization effects have absolutely water-free solution in 2-methyltetrahydrofutan.
been neglected. This is a principal limitation because-spin  minor importance when very good basis sets are employed as
orbit interactions eliminate spin as a “good” quantum number. done in the present calculations. Further test studies have shown
Fortunately, there exists a way to partly overcome this limita- that gauge effects may also be neglected for organic radicals of
tion: a very recent implementation of the so-called noncollinear moderate size (Table 2). However, measures to ensure gauge
spin density functional (NCSDF) approach in the spimbit invariance may become relevant for large asymmetric molecules.
part of PARAGAUSS showed promising results for energfes. For molecules of main-group elements (Table 1), the calcu-
Also, our first attempts of using a SOMO from a NCSDF lated deviations from experimentgdvalues are of similar size
calculation together with its fictitious Kramers partner in an as in other computatiort$9.10.13.16Fgr the most thoroughly
otherwise standard calculation of theensor within the present  studied gas-phase N@nd matrix-isolated HCO molecules, the
ROKS scheme gave encouraging restults. For instance, thepresentAgvalues are very close to those of the methodologically
largestAg,y shift of NO, has been reduced in absolute value similar ZORA DF approack (The still remained difference is
(improved) by more than 10% in such a NCSDF evaluation. mainly a consequence of neglecting two-electron XC spin
Spin polarization effects om-tensors calculated in a two-  orbit couplings in the present work.) The latter two sets of
component NCSDF method employing properly constructed g-shifts are slightly larger in absolute values than in a pertur-
determinantal wave functions have yet to be quantified. bative DF procedur& probably due to the inclusion of spin

As already mentioned, the gauge origin in this work has been polarization in the latter scheme. All three sets of @Bhifts
chosen in the center of the nuclear charges (masses). A testonsistently overestimate the experimental values. The two-
displacement of the gauge origin for the €@adical by 2 au component GHF meth8gerforms better foAg, but it slightly
along thez axis, a typical uncertainty, resulted in a variation of underestimates the experimental shifts. Inspection of Table 1
go by less than 1. The effect for other radicals in Table 1  shows that the data for the other main-group molecules confirm
was of the same order. This change is even below the commonlythese trends as/stematic DF methods (except that by Malkina
achieved experimental accuracy. Therefore, the unphysicalet all3) overestimate\g-values, and the GHF method tends to
feature of the gauge dependence of calculajelues is of slightly underestimate them. This is an encouraging message

aph BPh > and DQ.5° P Experimental data for BQcorrected
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because the systematic deviations can be reduced step by steand presented its implementation as well as first applications.
when improvements of thg-tensor calculations are possible The formalism is based on the two-component eigenfunctions
in a rigorous fashion, like in the present method. of the Kohn—-Sham equations which include spiarbit effects
As discussed elsewhetel316.17 transition metal radicals  self-consistently. Therefore, tlgetensor can be considered as
represent more critical cases for calculationg-@énsors than first-order property with respect to the perturbation by the
main-group systems. Our results for ZiRhC, and PdH (Table  external magnetic filed alone. The Zeeman energy splitting, an
1) are in line with previously calculated data for d-metal inherently relativistic effect, is naturally and transparently
molecules: the agreement with experiment is qualitative and determined by the two-component ground-state wave function
general features of EPR line splittings are reproduced. A key without invoking virtual states. Since the widely accepted
difference is the lack of the systematic overestimation of the perturbative treatment of spiorbit interaction is avoided, the
g-tensor anisotropy. One can try to get an explanation basedmethod is also applicable to molecular systems with-spitbit
again on the analysis of spiorbit effects in atoms as described interaction of considerable strength.
at the DK level with two-electron spiforbit couplings. Indeed, Test calculations of-tensors for small inorganic main-group
for d (and f) atomic states the sphorbit effects are shown to  and transition metal molecules as well as organic radicals
be slightly but systematicallynderestimatedompared to those ~ demonstrated that the present method exhibits an accuracy
computed at the most accurate four-component Dirac Rével. sufficient for successful assigning and interpreting EPR spectra.
When a transition metal atom is present in a radical, both p This statement holds even without the further conceivable
and d states of the constituting atoms contribute togtisaift. improvements proposed for the newly implemented scheme. The
Depending on the relative weights of both contributions, the most important and straightforward future developments of
overall effect may be either an overestimation or and underes-PARAGAUSS for EPR calculations comprise an extension of
timation, with the latter being probably more common for the relativistic treatment of the exchargmrrelation interaction
SOMO with a notable d character (see Table 1). and the inclusion of spin polarization effects. Implementation
One can invoke further effects which may well cause Of both improvements is under way.
difference in d-metal molecules. It is, for instance, the influence
of the XC potential on the precision of the computgdalues. Acknowledgment. The authors thank M. Mayer, S. Kgar
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