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UniVersitéPaul Sabatier, 118 route de Narbonne, 31062 Toulouse, France

ReceiVed: February 15, 2002; In Final Form: June 14, 2002

The nature of magnetic orbitals is analyzed on a series of five Cu(d9)‚‚‚Cu(d9) complexes, comparing various
theoretical approaches. The magnetic orbitals are usually defined from ab initio mean-field calculations. It is
shown that they are practically identical for the lower and upper multiplets. Diagonalization of the density
matrices obtained from accurate configuration interaction wave functions provides natural magnetic orbitals,
which should be considered as the reference information. No appreciable differences between the natural
orbitals of both states are observed. The natural magnetic orbitals are significantly more delocalized on the
ligands than the mean-field ones. It is shown that the definition of magnetic orbitals from spin-unrestricted
density functional theory (DFT) calculations is not straightforward. When carefully determined, the DFT
magnetic orbitals appear to strongly overestimate the metal-ligand delocalization. The consequences on the
spin density are discussed.

1. Introduction

Understanding the magnetic properties of polyradicalar
systems in which several (at least two) sites bear unpaired
electrons is a crucial step for the chemists involved in the design
of magnetic materials.1-3 The interaction between the magnetic
centers can be described with an effective spin-only Hamiltonian
as the Heisenberg-Dirac-Van Vleck Hamiltonian:4

whereJij is the magnetic coupling between the electrons in sites
i and j. For two particles, the Heisenberg Hamiltonian is

and it is easy to show that for centers withMs ) (1/2
the magnetic coupling is just the difference between the
energies of the singlet and the triplet states,J ) 1E - 3E, J
being positive when the system is ferromagnetic (the triplet
state is the ground state) and negative when it is antiferromag-
netic (the ground state is the singlet one). The sign and
magnitude ofJ depend on the extension and the nature of the
interactions between the magnetic centers. In the qualitative
pictures, two opposite contributions are distinguished: the
ferromagnetic contribution (F), coming from the direct exchange
between the magnetic centers, 2K, which is always a positive
value, and an antiferromagnetic (thus negative) contribution,
due to the delocalization effects. This antiferromagnetic (AF)
contribution can be expressed as-4t2/U, wheret is the electron-
transfer integral between the magnetic orbitals andU is the
repulsive interaction of two electrons placed in the same

magnetic orbital(on-siterepulsion):5

Several simple models have been proposed to understand the
balance between the direct exchange, favoring ferromagnetism,
and intersite electronic delocalization, acting in favor of
antiferromagnetism. Such models may be formulated in terms
of nonorthogonal valence bond (VB) concepts,6,7 valence
configuration interaction,8 or orthogonal valence bond.5,8,9These
qualitative interpretations face two problems. The first one
concerns the definition of the magnetic orbitals themselves.10

This question is addressed in the present paper, which also
discusses the content of the density functional theory (DFT)
calculations in terms of effective interactions between magnetic
orbitals. The second problem arises from the quantitative failure
of the valence-only description to reproduce theJ coupling when
handling the exact Hamiltonian.11-16 An analysis of the respec-
tive role of the intravalence and the external correlation effects
(spin polarization, dynamic polarization of the ionic VB
structures, etc.) has been given recently.17

The term “magnetic orbitals”, commonly used in all of these
approaches, refers to localized orbitals centered on the magnetic
sites with appropriate tails on the surrounding and bridging
ligands. Their definition is somewhat ambiguous and deserves
to be discussed. The present paper analyzes three definitions
of orthogonal magnetic orbitals. The simplest one relies on the
mean-field Hartree-Fock (HF) description of, for instance, the
upper multiplet of the complex. Similar definitions may be
obtained from DFT calculations of the upper multiplet, now
using exchange-correlation parametric potentials instead of the
exact Hamiltonian, provided that a correct identification of the
singly occupied orbitals is performed. The most rigorous
definition of the magnetic orbitals is obtained by considering
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U
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the natural orbitals, that is, the eigenvectors of the exact density
matrix. Highly correlated wave functions from large configu-
ration interaction (CI) expansions provide accurate values of
the magnetic coupling constants and quite accurate density
matrices. The corresponding natural magnetic orbitals may be
considered as the most exact ones. In principle, they may be
different for the different multiplets, but they are practically
indistinguishable in the systems analyzed here. The mean-field
magnetic orbitals and the DFT ones are to be compared to these
benchmark natural magnetic orbitals. As will be shown, a crucial
difference concerns the extent of delocalization between the
metal and the ligands, especially the bridging ones.

Four different antiferromagnetic (AF) systems have been
considered in the present work, all of them involving two
electrons on two Cu(d9) sites. Three of them are binuclear
complexes and the last one is a fragment of a periodic lattice:
(i) the [Cu2Cl6]2- complex in a planar geometry, leading to a
weak AF coupling (J ) -40 cm-1, 0 cm-1);18 (ii) the [Cu2(µ-
N3)2(NH3)6]2+ complex with end-to-end bridging azido-ligands
(J < -800 cm-1);19 (iii) the Cu2(µ-CH3COO)4(H2O)2 molecule
with four acetato-bridges (J ) -286 cm-1, -294( 4 cm-1);20,21

(iv) the Cu2O7 cluster embedded in a set of pseudo-potentials
and point charges, representing the La2CuO4 periodic lattice (J
) -1032( 48, -1081( 40 cm-1).22,23 A ferromagnetic (F)
[Cu2Cl6]2- complex has also been considered. Its structure
differs from the AF complex one in a twist of the bridge that
changes the square-planar coordination of the copper center to
a distorted tetrahedral one (J ) +93 cm-1).24

The chemical nature and orientation of the bridging ligands
are very different, and this set can be considered as a reasonable
sample of binuclear biradical-type systems. The results show
very significant trends. They indicate that the dynamical
correlation significantly increases the delocalization between the
metal and the ligands, the HF magnetic orbitals being too
localized. Oppositely, the DFT orbitals are too delocalized.

2. Definition of Orthogonal Magnetic Orbitals

2.1. General Considerations.Let us consider a binuclear
complex A•s L s B•, where A and B are supposed to bear an
unpaired electron and L stands for closed-shell ligands. Such
terms are typical of a molecular orbital (MO) model with doubly
occupied MOs and two unpaired electrons in two singly
occupied orthogonal orbitals,a andb, essentially located on A
and B, respectively.

The single-configuration descriptions of the triplet (withMs

) +1, 0, -1) and singlet states are

The |abh〉 and |baj〉 determinants correspond to situations with
one electron on each magnetic center (neutral determinants),
while |aaj〉 and |bbh〉 correspond to ionic situations with both
active electrons on the same magnetic center.

If A and B are identical, the structure belongs at least to the
Ci point group and the twoa andb orbitals generate symmetry-
adaptedg andu orbitals:

and the three components of the Tu triplet and the purely neutral
SN singlet are

The use of nonorthogonal orbitalsa′ andb′,

in a broken-symmetry and spin-contaminated approach of the
singlet |l′lh′a′bh′〉 introduces some ionic component in the wave
function, but this mixture is meaningless for the triplet state,
and it is preferable to remain in an orthonormal set.

The correct magnetic orbitals cannot be pure atomic orbitals,
not only because of the orthogonality constraint but also because
of an important electronic delocalization between the metal and
the ligand. In particular, the ligand orbitals, of lower energy
than the metal unpaired ones, take bonding (in phase) tails on
the atomic-like 3d orbital of the metal, to give a stabilizedl
orbital, while thea orbital has antibonding (out of phase) tails
on the ligand3, as shown in the following scheme:

This is a basic feature in these architectures: the in-phase
delocalization takes place primarily in the doubly occupied
orbitals and, as a consequence of this phenomenon, tails appear
in the opposite (out of phase) direction in the singly occupied
MOs, the tails depending on the energy difference betweena
and l. The whole physics of the magnetic coupling is largely
dominated by the amplitudes ofa andb on the bridging ligand
(or of the ligandl orbitals ona andb), because the bridge is
the spatial region where the two unpaired electrons may interact.
As will be shown in section 4, the tails are nonnegligible and
their amplitude depends strongly on the level of description.

2.2. Mean-Field Determination of the Orbitals. The
simplest way to obtain the orbitals is to minimize the single-
determinant self-consistent field (SCF) energy of the upper
multiplet, here the Tu

+ triplet (or any other component Tu
-, Tu

0).
To avoid spin contamination and symmetry breaking, the
restricted open-shell Hartree-Fock (ROHF) procedure is to be
used. This procedure defines an optimal set of symmetry-adapted
molecular orbitals, among which theg andu singly occupied
ones may give thea andb localized magnetic orbitals by the
inverse rotation:

Most post-Hartree-Fock calculations of both states start
from this convenient set. An objection that may be raised is
that this choice introduces a bias in favor of the triplet. It
is actually possible to obtain a two-configuration SCF descrip-

Tab
+ ) |‚‚‚hhh‚‚‚l lhab〉 Tab

- ) |‚‚‚hhh‚‚‚l lhajbh〉

Tab
0 ) | 1

x2
‚‚‚hhh‚‚‚l lh(abh - baj)〉

Sab ) | 1

x2
‚‚‚hhh‚‚‚l lh(abh + baj)〉 (4)

g ) a + b

x2
and u ) a - b

x2
(5)

Tu
+ ) |‚‚‚hhh‚‚‚l lhgu〉 ) Tab

+ Tu
- ) |‚‚‚hhh‚‚‚l lhgjuj〉 ) Tab

-

Tu
0 ) | 1

x2
‚‚‚hhh‚‚‚l lh(guj - ugj)〉 ) Tab

0

SN ) | 1

x2
‚‚‚hhh‚‚‚l lh(ggj - uuj)〉 ) Sab (6)

a′ ) Ra + âb and b′ ) âa + Rb (7)

a ) g + u

x2
and b ) g - u

x2
(8)
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tion of the singlet state,

by optimizing both the MOs and theλ/µ ratio in a multicon-
figuration self-consistent field (MCSCF) procedure. This wave
function introduces an ionic VB component in the purely neutral
SN singlet wave function because it can be written as

For the biradicals described here, it happens that theg andu
orbitals obtained in the Tu

+ triplet and the Sg singlet SCF
calculations are almost identical, as can be concluded by
comparing their shapes. More quantitatively, we have calculated
the difference of amplitudes between the triplet and the singlet
magnetic orbitals. This difference nowhere exceeds 10-3 and
hereafter only the triplet ROHF MOs are used.

2.3. Natural Orbitals. Many previous works11-16 have shown
that the mean-field level does not give a reasonable estimate of
the magnetic coupling constant,J, despite the inclusion of ionic
VB structures in the Sg state, eq 10, that reflect the specific
electronic delocalization in the singlet state, argued by Ander-
son5 to be responsible for the antiferromagnetism. The difference
dedicated configuration interaction (DDCI) method25 has been
shown to provide very accurate values ofJ for a wide range of
systems.14,26-28 It starts from the minimal valence-only complete
active space (CAS), including two electrons in two orbitals (g
andu or a andb) for the Cu2+‚‚‚Cu2+ systems, and performs a
CI including all single and double substitutions on top of it,
excluding the double excitations, which involve two inactive
occupied and two inactive virtual orbitals. It has been demon-
strated25,29that these purely inactive double substitutions, at least
up to the second order of perturbation theory, lead to a common
energy shift on both the singlet and the triplet and consequently
do not contribute to the energy gap. Despite avoiding these
inactive double substitutions (which are the most numerous
ones), the DDCI expansions on organometallic complexes, using
nonminimal basis sets, easily exceed 106 determinants.

From the wave function of the singlet and of the triplet states,
it is possible to build the singlet and triplet one-electron density
matrices,SR andTR. The state-specific natural orbitals (NOs)
obtained for our models give, as before, differences of the
amplitude of the orbitals of both states that nowhere exceed
10-3. Furthermore, as shown previously,30-33 it is possible to
consider the average density matrixRh ) (SR + TR)/2. Its
diagonalization provides mean natural orbitals:

The density matricesSR andTR should be calculated from wave
functions including all possible double excitations, but the size
of CASSDCI (all singles and doubles on top of the CAS)
calculations in the studied systems exceeds usual technical
possibilities, and the highest level available eigenvectors are

those resulting from a DDCI calculation. In section 4, a
comparison between the NOs from a CASSDCI and those
resulting from a DDCI subspace calculation is shown in the
simplest AF [Cu2Cl6]2- system. The similarity between both
sets of NOs is such that hereafter the NOs obtained from the
DDCI wave functions are used as the reference ones.

The NO occupation numbers,nji, are well contrasted: they
are very close to 2 for the orbitals corresponding to the closed
shell levels, and close to 0 for the virtual levels, the magnetic
NOs being identified as the two eigenvectors with occupation
numbers close to 1. To illustrate this assertion, the occupation
numbers closest to 1 for the five systems are given in Table 1.
The contrast between essentially doubly occupied, magnetic and
essentially virtual NOs is manifest and allows easy identification
of the magnetic orbitals in a post-Hartree-Fock calculation.

To improve the quality of the description and to make the
results independent of the choice of the MOs used in the
calculation, the CI step may be repeated. Starting from the first
NOs, a new DDCI calculation giving new density matrices and
new NOs is performed, and the procedure, called iterative
difference dedicated CI (IDDCI),32 is iterated to convergence.

2.4. DFT Magnetic Orbitals. The study of magnetic systems
from DFT methods usually proceeds through Noodleman’s
approach.34 TheMs ) max (here 1) upper multiplet component
is calculated in the unrestricted formalism, which makes theR
and â spin orbitals slightly different and produces some spin
contamination. The corresponding wave function is

The identification of the singly occupied molecular orbitals
(SOMOs) in TUHF

+ is not straightforward, as reported in
previous studies,35,36 because this wave function is invariant
under rotation of the occupiedR (respectivelyâ) spin orbitals.
Several options are possible to obtain the SOMOs. Unrestricted
natural orbitals (UNO) may be calculated by using the proper
keyword in the Gaussian 98 package.37 Projection techniques
(PO) have also been described.38 Although both procedures are
not equivalent, it has been verified that in the systems presented
here the two sets of orbitals, UNO and PO, hereafter called
R-SOMOs, are practically indistinguishable.

The energy of the singlet state is approached through the
calculation of a broken symmetryMs ) 0 solution:

The Ŝ2 mean value of this function is usually very far from
that of a singlet, close to an equal mixture of a singlet and a
triplet. Noodleman’s expression for the singlet-triplet gap
is39-41

where Sab is the overlap betweenaBS and bBS. Because the
distance between the magnetic centers is usually large, Sab

2 is
small (when calculated in the complexes discussed here, Sab

2

TABLE 1: Natural Orbital Occupation Numbers for Five Different Systemsa

NO AF [Cu2Cl6]2- F [Cu2Cl6]2- [Cu2(µ-N3)2(NH3)6]2+ Cu2(µ-CH3COO)4(H2O)2 Cu2O7

occupied 1.978, 1.972 1.982, 1.983 1.982, 1.990 1.985, 1.990 1.985, 1.980
magnetic 1.088, 0.964 1.016, 1.010 1.142, 0.874 0.956, 1.066 1.142, 0.897
virtual 0.006, 0.006 0.007, 0.006 0.008, 0.006 0.007, 0.006 0.006, 0.004

a The numbers concern the less doubly occupied MOs, active MOs, and the most occupied virtual MOs.

Sg ) λ|‚‚hhh‚‚l lhggj〉 - µ|‚‚hhh‚‚l lhuuj〉 λ, µ > 0 (9)

Sg ) (λ + µ)|‚‚hhh‚‚l lh(abh + baj
x2 )〉 +

(λ - µ)|‚‚hhh‚‚l lh(aaj + bbh
x2 )〉 (10)

Rh æj i ) njiæj i (11)

TUHF
+ ) |‚‚‚hRhâ‚‚‚lRlâ‚‚‚ab〉 ) |‚‚‚hRhâ‚‚‚lRlâ‚‚‚gRuR〉 (12)

SBS ) |‚‚‚hR
BShhâ

BS‚‚‚lR
BSlhâ

BS‚‚‚aBSbhBS〉 (13)

∆EST )
2(ESBS - ETUHF

+ )

1 + Sab
2

(14)
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never exceeds 0.1, see ref 42) and in general the S-T gap may
be approximated by39,40

The denominator in expression 14 is much closer to 1, and
therefore, it is artificial to divide expression 15 by 2.

In the broken-symmetry solution,aBS and bBS are nonor-
thogonal; their tails on the neighbor site introduce an ionic
component in the wave function, cf. eq 7. To compare DFT
and ab initio orbitals, the triplet DFT state is to be used to keep
the orthogonality.

3. Computational Details

The five systems considered here (Figure 1) contain two Cu-
(d9) centers, bridged by different ligands and with different
relative positions. The first model is the [Cu2Cl6]2- complex,
of which the magnetostructural dependence has been extensively
studied in the recent past.43 Two different geometries have been
considered, namely, the planar structure (Figure 1a), giving AF
coupling, and the distorted (Figure 1b) structure, in which the
external ligands plane is twisted (τ ) 45°) with respect to the
bridge plane, giving F coupling. The three remaining AF systems
are the [Cu2(µ-N3)2(NH3)6]2+ complex (Figure 1c), the Cu2(µ-
CH3COO)4(H2O)2 molecule (Figure 1d), and a model of the
antiferromagnetic perovskite La2CuO4, the Cu2O7 cluster (Figure
1e), embedded in a set of point charges to mimic the Madelung
field of the La2CuO4 lattice. A more extended description of
the four antiferromagnetic compounds, as well as the compu-
tational details regarding the basis sets and the effective core
potentials (ECP) used in ab initio CI calculations, can be found
in ref 17. Regarding the DFT calculations, the B3LYP param-
etrization has been used. The basis sets and ECP used for the
AF systems can be found in ref 42. The basis sets used for the
ferromagnetic [Cu2Cl6]-2 complex are the same as for the AF
one.

The ROHF molecular orbitals have been obtained by using
the MOLCAS 4.1 package.44 The CASDI45 and the NATU-
RAL46 programs have been used in the CI calculations and in

the determination of the natural MOs. All DFT calculations have
been performed by means of the Gaussian 98 code.37 MOLDEN
code47 has been used to represent the MOs.

4. Results and Discussion

4.1. Extent of the Metal-Ligand Delocalization. Let us
discuss first in detail the results for the AF planar [Cu2Cl6]2-

complex. Figure 2 presents the shapes of the localized magnetic
orbitals obtained at different levels of calculation. As expected,
all sets present the same out-of-phase delocalization tails
between the copper d orbital and the neighboring ligands (the

Figure 1. Schematic representation of the five considered models: (a)
the AF [Cu2Cl6]2- complex, in a planar geometry; (b) the F [Cu2Cl6]2-

complex, in a distorted geometry; (c) the [Cu2(µ-N3)2(NH3)6]2+ complex,
with end-to-end bridging azido ligands; (d) the Cu2(µ-CH3COO)4(H2O)2
molecule; (e) the Cu2O7 cluster, a fragment of the La2CuO4 lattice.

∆EST ) 2(ESBS - ETUHF
+ ) (15)

Figure 2. Shapes of thea ) (g + u)/x2 localized orbital for the AF
[Cu2Cl6]2- complex obtained with different approaches: (a) CASSDCI
NOs; (b) DDCI NOs; (c) DDCI2 NOs; (d) ROHF MOs; (e) B3LYP
R-SOMOs.
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bonding combination belonging to the doubly occupied subset),
but the extent of the metal-ligand mixing is strongly dependent
on the method.

The NOs resulting from the CASSDCI calculations, including
the self-consistent size-consistent (SC2) correction48 for open-
shell systems49 can be considered as the most exact accessible
ones. These magnetic NOs (Figure 2a) present a significant
metal-ligand delocalization. The DDCI NOs (Figure 2b) are
practically identical to the precedent ones. This justifies that
for the remaining systems DDCI NOs are considered as the
reference ones. The difference dedicated configuration interac-
tion technique introduces all of the low-order contributions of
the dynamical electronic correlation to the energy differences,
in particular, to the exchange magnetic coupling as shown
recently.17 As shown in Table 3, the method provides accurate
values for the singlet-triplet splitting. TheJ values obtained
with the DDCI approach appear to be much closer to the
experimental values than those resulting from DFT calculations.

Figure 2c presents NOs obtained at the DDCI2 level. This
CI level omits the double excitations involving two inactive
occupied MOs and one inactive virtual MO (referred to as 2h-
1p) and those involving one inactive occupied MO and two
inactive virtual MOs (1h-2p).43d This CI level is introduced here
to discuss the role of the dynamical correlation, as discussed in
section 4.2. The corresponding NOs appear to be less delocalized
than CASSDCI and DDCI ones.

Figure 2d represents the ROHF localized orbitals, which are
much more concentrated on the metal than the magnetic natural
MOs obtained at the CASSDCI and DDCI levels. Figure 2e
plots the localized singly occupied magnetic orbitals,R-SOMOs,
of the unrestricted triplet-state B3LYP calculations. The am-
plitudes on the ligands are much larger than those in the ROHF
calculations and even than those in the best CI ones.

As a minor methodological point, the risks of using incorrect
definitions of the magnetic orbitals in unrestricted methods are
illustrated in Figure 3. Localized B3LYPR-MOs obtained from
the highestg and u symmetry-occupiedR subset of the
unrestricted triplet state are shown in Figure 3a. They exhibit
physically meaningless delocalization tails, spanning up to the
nonadjacent ligands. In contrast, theâ lowest unoccupied MOs
(Figure 3b) provide a description very close to theR-SOMOs.
This similarity is related with the weak spin contamination found
in the B3LYP triplet of the systems discussed here.

The DDCI, ROHF, and DFT localized magnetic orbitals of
the remaining systems are shown in Figures 4-7. The same
trend as that for the AF [Cu2Cl6]2- is observed when comparing
the three types of magnetic orbitals: (i) ROHF underestimates
the ligand-metal delocalization and (ii) DFT overestimates this
delocalization with respect to DDCI NOs.

To introduce a quantitative measure of the delocalization,
Mulliken population analysis has been performed. Table 2 shows
the 3d Cu population in the different magnetic orbitals, for the
five systems considered. In agreement with the amplitudes of

the orbitals, the Cu population decreases from ROHF to B3LYP
orbitals. In this last case, the metal-to-ligand delocalization is
overestimated, and the extremely low Cu population in the
highest occupiedR orbitals confirms the observation that these
orbitals cannot be considered as the magnetic ones. The Cu
population in R-SOMOs is practically identical to that in
â-LUMOs, accordingly to the previous comment, but always
smaller than that in the natural orbitals. These results show that
the metal-to-ligand delocalization (MLD) follows the hierarchy
MLDROHF < MLDNATURAL < MLDDFT.

4.2. Role of the Dynamical Correlation.The natural orbitals
represent the best one-electron information available from the
N-electron-correlated description. Moreover, as shown on the
test performed on the AF [Cu2Cl6]-2 complex, the natural
magnetic orbitals coming from the DDCI calculations are
practically identical to those obtained from calculations involv-
ing all double excitations on top of the same CAS. The natural
orbitals obtained from these long CI expansions of the wave
functions can be considered with a great reliability as being
very close to the exact ones.

The inclusion of dynamical correlation has an important
impact on the metal-ligand delocalization on the magnetic
orbitals. The natural orbitals have much larger tails on the first-
neighbor ligands than the mean-field singly occupied orbitals.
It is interesting to analyze which of the different types of double
excitations are responsible for the observed increase of metal-
ligand delocalization. Figure 2c presents NOs obtained for the
AF [Cu2Cl6]2- complex at the DDCI2 level, which omits the
2h-1p and the 1h-2p double excitations, as described in section
4.1. These orbitals are significantly less delocalized than those
obtained from CASSDCI (Figure 2a) or from the full DDCI
expansion (Figure 2b). An analytical demonstration given
previously17 has shown that this additional metal-ligand
delocalization is due in particular to the dynamical correlation
effects of the two hole-one particle (2h-1p) excitations. This
demonstration is numerically confirmed here. In an intuitive
picture, or in the so-called “two-band” model, one may say that
these double excitations bring the dynamical polarization of the
ligand-to-metal charge transfer states or that they decrease the
effective energy of these states involved in the spin exchanges
between two metallic centers.

4.3. Effect of the Exchange-Correlation Functional in
DFT Calculations. The second observation concerns the DFT
orbitals. The properly definedR-SOMOs appear to systemati-
cally exaggerate the delocalization tails between the metal and
the ligands.

The origin of this excess is attributable to the exchange
potential as shown by the results in Table 4. This table reports
the magnetic coupling constants obtained for the La2CuO4

system when a modified B3LYP hybrid functional is used. The
original B3LYP exchange-correlation functional50 can be
written as

with p ) 0.2 andq ) 0.8, whereEx
HF is the Fock exchange,

Ex
Slater the local Slater exchange,51 and ∆Ex

Becke the nonlocal
Becke exchange correction.52 Ec

VWN is the local Vosko, Wilk,
and Nusair correlation functional,53 and ∆Ec

LYP is the Lee,
Yang, and Parr nonlocal correlation correction.54 Table 4 shows
the values ofJ obtained when differentp and q weights are
used. Increasing the Fock exchange contribution decreases the
absolute value of the magnetic coupling constant, between the
two limits represented by B3LYP and UHF calculations, the

TABLE 2: Cu 3d Mulliken Population Corresponding to the
Magnetic Orbitals from Different Theoretical Approaches
and the Spin Density on Cu Atoms in the F [Cu2Cl6]-2

Complex (in parentheses)

B3LYPDDCI
NOs ROHF R-highest â-LUMO R-SOMO

AF [Cu2Cl6]2- 0.72 0.91 0.10 0.47 0.48
[Cu2(µ-N3)2(NH3)6]2+ 0.80 0.94 0.23 0.61 0.63
Cu2(µ-CH3COO)4(H2O)2 0.88 0.94 0.16 0.71 0.73
Cu2O7 0.75 0.90 0.31 0.68 0.69
F [Cu2Cl6]-2 0.73 0.92 0.51

(0.71) (0.94) (0.46)

pEx
HF + qEx

Slater+ 0.72∆Ex
Becke+ 1.0Ec

VWN + 0.81∆Ec
LYP

(16)
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overestimation being even larger when no hybrid functional is
used.55 This is a general behavior also found in the evaluation
of other observables (the hopping integral in mixed-valence
systems,56 the strength of the three-electron hemibonded struc-
tures of (H2O)2 + (ref 57), etc.).

Figure 8 shows the shapes of the localizedR-SOMO for the
La2CuO4 system for three-limit cases: on the top, the localized
magnetic orbital coming from the unrestricted Hartree-Fock
triplet state; in the middle, the same orbital but obtained by
mixing 1:1 Fock and Slater exchange functionals (p ) q ) 0.5
in eq 16); at the bottom, the B3LYP localized magnetic orbital.
Decreasing the Fock contribution increases the delocalization
toward the oxygen ligands, that is, the magnetic orbitals show
a smaller concentration on the metal. It is worth noticing that,
as reported before,55 the correlation potential has no effect on
the magnetic coupling (in Table 4, UHF value versusp ) 1.0),
indicating that the increase ofJ in DFT versus UHF is solely
an effect of the exchange potential. Finally, the comparison
between Figures 7b and 8a and the Mulliken populations in
Tables 2 and 4 indicates that the restricted and the unrestricted
triplet calculations give an equivalent metal-ligand delocal-
ization.

The relationship between theJ value and the magnetic orbitals
is clearly illustrated in Figure 9, corresponding to the La2CuO4

system. On the bottom, the Cu 3d Mulliken population in the
magnetic orbitals is reported versus the percentage of Fock
exchange. As mentioned above, the highestR orbitals obtained
from a B3LYP calculation (p ) 0.2 in Figure 9) are excessively
delocalized on the ligands (3d population lower than 0.3e for
all the p values considered). As a minor point, it may be

observed that up to 50% of exchange mixing, that is,p ) 0.5,
theâ-LUMOs can be considered as the magnetic ones and they
turn out to be identical to the projectedR-SOMOs, while the
use of the projection procedure is necessary for larger percent-
ages.

In a previous paper,42 we have established that for the La2-
CuO4 system ap = 0.33 mixing of the exchange potential
provides the following: (i) a correct value ofJ (-1129 cm-1);
(ii) a reasonable value of the hopping integral,tab, and the on-
site effective repulsion,U (tab

DFT ) -0.48 eV,UDFT ) 6.4 eV)
in good agreement with the best values obtained from the most
elaborated CI calculations through the effective Hamiltonian
theory42 (tab

eff ) -0.507 eV,Ueff ) 7.3 eV).
Figure 9 shows that the same percentage of Fock exchange

in DFT also gives the correct magnetic orbital Mulliken
population in the Cu 3d orbitals, that is, the correct metal-
ligand delocalization. This general agreement is consistent
because the extent of the magnetic orbitals on the bridging
ligands governs both the hopping integral amplitude and the
on-site repulsion: as the extension becomes larger, the hopping
integral in absolute value becomes larger and the on-site
Coulombic repulsion becomes smaller.

We have also performed the same type of calculations for
the remaining systems. The results for all of them give similar

TABLE 3: Magnetic Coupling Constant (in cm-1) Obtained for the Five Systems by Using Different Theoretical Approaches
and MO Sets

AF [Cu2Cl6]2- F [Cu2Cl6]2- [Cu2(µ-N3)2(NH3)6]2+ Cu2(µ-CH3COO)4(H2O)2 Cu2O7

CASCIa +78 +119 -253 -33 -451
DDCIa -15 +96 -1125 -238 -1129
B3LYP -99 +152 -2779 -557 -1686
expt -4018b, 018c +9324 <-80019 -28620 -1032( 4822

-294( 421 -1081( 4023

a In the CI calculations, iterated NOs have been used.

Figure 3. Shapes of thea localized orbital for the AF [Cu2Cl6]2-

complex at the B3LYP level obtained from (a) the highestR occupied
MOs and (b) the lowestâ unoccupied MOs.

Figure 4. Shapes of the localizeda orbital for the F [Cu2Cl6]-2 complex
obtained with different approaches: (a) DDCI NOs; (b) ROHF MOs;
(c) B3LYP R-SOMOs.
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conclusions for the percent of Fock exchange reproducing the
DDCI NO coupling constant (see Table 3) with the following
ratios: 42% for AF [Cu2Cl6]2-, 50% for F [Cu2Cl6]2-, 45% for
[Cu2(µ-N3)2(NH3)6]2+, and 39% for Cu2(µ-CH3COO)4(H2O)2.
It is necessary to slightly increase these ratios (by 2-5%) to
reproduce the ab initio Mulliken populations, with the exception
of Cu2(µ-CH3COO)4(H2O)2, which needs around 55% Fock
exchange to reproduce them. It may be concluded that the
balance giving the DDCI referenceJ are similar but not exactly
the same for all compounds and that Mulliken populations
follow the same trend although there is not a strict cor-
respondence.

4.4. Spin Density.The extent of the delocalization of the
magnetic orbitals on the ligands is not only crucial for theJ
values but is related to the spin density distributions, as evident
from the single-determinant description of the triplet state. It is
expected that a larger delocalization of the magnetic MOs on
the ligand is associated with a smaller spin density on the Cu
atoms. The spin densities on Cu at various levels of description
are reported in Table 2 for the F [Cu2Cl6]-2 complex. According
to the importance of the ligand-metal delocalization, the ROHF
spin density on Cu appears to be overestimated, while the
B3LYP one appears to be underestimated with respect to the
DDCI estimates. The excess of delocalization is also effective
in theMs ) 0 broken-symmetry B3LYP solution, which takes
an exaggerate ionic VB component (i.e., closed-shell character)
leading to the well-known overestimation ofJ39,40,55(provided
that the correct Noodleman’s expression (eqs 14 and 15) is
used). This argument is in agreement with the fact that in the
antiferromagnetic coupling between the high-spin center Mn-
(II) and the low-spin center Cu(II) in Mn(II)-Cu(II) binuclear
compounds, the B3LYP spin densities are found to be signifi-
cantly smaller than those obtained from polarized neutron
diffraction experiments.58 The same trend has been found in
the end-on azido doubly bridged Cu(II) binuclear complexes,
in which the atomic spin densities calculated with B3LYP59 and

Becke-Perdew functionals60 are underestimated with respect
to those determined from polarized neutron diffraction studies.60

In contrast, a correct spin density is obtained for this compound
when using DDCI methods.61

5. Conclusion

Qualitative models that try to interpret the sign and magnitude
of the magnetic coupling constant,J, between the unpaired

Figure 5. Shapes of the localizeda orbital for the [Cu2(µ-N3)2(NH3)6]2+

complex obtained with different approaches: (a) DDCI NOs; (b) ROHF
MOs; (c) B3LYPR-SOMOs.

Figure 6. Shapes of the localizeda orbital for Cu2(µ-CH3COO)4(H2O)2
obtained with different approaches: (a) DDCI NOs; (b) ROHF MOs;
(c) B3LYP R-SOMOs.
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electrons on two distant sites in binuclear complexes are
essentially developed in terms of a very restricted space,
involving only the unpaired electrons and the so-called “mag-
netic orbitals”. These models rest on intuitive pictures of the
magnetic orbitals.5,7-10 The present paper considers more
quantitative definitions of the magnetic orbitals from ab initio
and DFT calculations. Mean-field Hartree-Fock orbitals, natural
orbitals from high CI levels, and DFT orbitals are compared.

Five Cu(d9)‚‚‚Cu(d9) binuclear complexes involving quite
different ligands and orders of magnitude ofJ have been studied.
The first conclusion of the work is that the magnetic orbitals
for the singlet and triplet states are practically identical at the
CASSCF level. This similarity is also observed between the

natural orbitals for both states when obtained from extensive
CI calculations.

In all approaches, the delocalization between the metal and
the ligands is important for the physics of the system. The
magnitude ofJ is crucially dependent on its extension. However,
the extent of the metal-ligand delocalization, as manifested
from the tails of the magnetic orbitals on the ligands (and
especially the bridging ligands), are very different from one
approach to another. The natural orbitals obtained from DDCI
calculations (which accurately reproduce the experimental values
of J) are close to the most accurate ones, as confirmed by the
CASSDCI calculations on the AF [Cu2Cl6]-2 complex, and can
be used as the reference ones. It appears that the following
conclusions can be drawn: (i) The mean-field magnetic orbitals
are somewhat too localized on the metal atoms. (ii) The
dynamical correlation is responsible for the additional metal-
ligand delocalization through the specific (2h-1p) double
excitations identified in ref 17. (iii) The DFT orbitals, even when
properly defined, are excessively delocalized on the ligands.
This excess of delocalization, certainly responsible for an
overestimation ofJ in the broken-symmetry DFT approaches,
is entirely due to the exchange potential. With modification of
the ratio of the Fock and the Slater exchange operators, it turns
out that a good agreement of the calculated with the experi-
mental value of the coupling constant can be found. At the same
time, the corresponding magnetic orbitals are very similar to
the magnetic NOs, reflecting a correct amplitude of the
delocalization between the metal and the ligands, which is
required to obtain correct spin densities on the metal atoms.
An optimal ratio between 33% and 50% of Fock exchange is
found in the different systems. It indicates that although the
trend is preserved, there is no a universal recipe to reproduce

Figure 7. Shapes of the localizeda orbital for the La2CuO4 lattice
fragment, obtained with different approaches: (a) DDCI NOs; (b)
ROHF MOs; (c) B3LYPR-SOMOs.

TABLE 4: Magnetic Coupling Constant (in cm-1) and Cu
3d Mulliken Population in the Magnetic Orbitals Obtained
for the La2CuO4 System Versus the Fock (p) and Slater (q)
Exchange Potential Percentage in Hybrid Functionals with
the CASCI and DDCI Values Obtained from Natural
Orbitals for Comparison

method p q J Cu 3d

DFT 0.2a 0.8a -1686 0.69
0.3 0.7 -1202 0.74
0.4 0.6 -895 0.79
0.5 0.5 -677 0.82
0.6 0.4 -524 0.85
1.0 0.0 -282 0.91

UHF -266 0.92
CASCI -250 0.75b

DDCI -1129 0.75
expt -1032( 4822

-1081( 4023

a B3LYP. b With DDCI NOs.

Figure 8. Effect of the mixing of Fock and Slater exchange on the
shape of the localizeda R-SOMO orbital in the Cu2O7 cluster: (a)
UHF; (b) 50% mixing; (c) B3LYP.
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all observables in these systems. (iv) The spin density distribu-
tion is strongly related to the metal-ligand delocalization, and
therefore, the spin density on the metal is overestimated in the
ROHF description, while it is underestimated in the B3LYP
calculation.
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E. J. Am. Chem. Soc.1998, 120, 5238.

(61) Cabrero, J.; Bordas, E.; De Graaf, C.; Caballol R.; Malrieu, J. P.
Chem.sEur. J., submitted for publication.

Metal-Ligand Delocalization J. Phys. Chem. A, Vol. 106, No. 35, 20028155


