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The spin-spin coupling of protons measured by the constantJHH′ in NMR experiments is dominated by a
term proportional to the product of the electron spin densities at the two nuclei, the Fermi contact term. The
probability of â electrons being in excess overR electrons at the position of nucleusn′, given that there is
anR electron atn, is proportional to the negative of the exchange density, the total Fermi correlation between
n andn′. Thus the delocalization of the Fermi hole betweenn andn′ is the mechanism whereby the spin
perturbation caused by the magnetic interaction of an electron with nucleusn is transmitted ton′. The density
and exchange density within the basin of a hydrogen atom are described primarily in terms of s-type basis
functions, and one may approximate the exchange density between two protons atn andn′ by the exchange
between the two associated atomic basins determined by the delocalization indexδ(A,B) within the quantum
theory of atoms in molecules. It is shown that this model yields good linear regression equations relatingJHH′
to δ(H,H′) for hydrogen atoms bonded to different carbons in alkanes, alkenes, their cyclic congeners, and
polybenzenoid hydrocarbons.

Delocalization of Electrons

Electron delocalization has long been invoked to rationalize
problems of structural stability and chemical reactivity, par-
ticularly in conjugated and aromatic molecules. These discus-
sions were understandably couched initially in terms of the
orbital model,1,2 an early example of prime importance being
Coulson’s use of molecular orbital theory to define a bond
order.3-5 His definition of a mobile bond order, as determined
by the delocalization of electrons between a pair of bonded
atoms, referred to delocalizedπ electrons and involved a
summation of products of coefficients of atom-centered basis
functions over theπ molecular orbitals. Such a definition that
relates delocalization to a property determined by all of the
occupied orbitals is to be contrasted with the subsequent
introduction of localized orbitals and their use in discussions
of electron localization. In this model, the spatial localization/
delocalization of individual pairs of electrons is related to the
corresponding property of an individual molecular orbital. In
fact, all orbitals contribute to the pair density, the density that
determines electron localization. The pair density, like the one-
electron density, is invariant to any unitary transformation of
the orbitals, and no individual orbital can be identified as
determining any observable feature of a molecule, the use of
Koopman’s theorem to approximate an ionization potential in
terms of a canonical orbital energy being a notable exception.
With the advent of modern computational facilities, the need
for the use of models in the description of electron delocalization
is obviated, and instead, one may use quantum mechanics to

obtain a definition of electron delocalization and determine its
effect on measurable properties of a system.

Salem1 noted that Coulson’s definition of a mobile bond
order2 in the molecular orbital theory of conjugated systems
serves as a link between Fermi correlation and electron
delocalization. In 1975, Bader and Stephens,6 showed that the
spatial pairing of electrons and their localization is a conse-
quence of the Fermi correlation determined by the electron pair
density. They demonstrated that the extent to which electrons
are spatially localized or delocalized is determined by the
corresponding spatial extent of the density of the Fermi hole,
as measured by the exchange of same-spin electrons. It has since
been proposed7 that the spatial distribution of the Fermi
correlation be used to provide a common, quantitative basis for
the concept of electron delocalization, as it is used throughout
chemistry, a conclusion supported by a recent study wherein
the same correlation was used to account for the patterns of
delocalization that account for the spectroscopic and reactive
properties of the polybenzenoid hydrocarbons.8 Most impor-
tantly, it was demonstrated7 that Fermi correlation can be
considered to be the mechanism whereby distant atoms com-
municate with one another. This is exemplified further in the
present paper by showing how the delocalization of the spin
density between the basins of different hydrogen atoms provides
a model for the understanding of measured long-range proton
spin-spin coupling constants, constants that do not necessarily
exhibit a simple falloff with increasing internuclear separation.

Electron Delocalization and Fermi Correlation

The Fermi hole, the physical manifestation of Pauli’s exclu-
sion principle, has a simple physical interpretation:6 it provides
a description of how the density of an electron of given spin,
called the reference electron, is spread out from any given point
into the space of another same-spin electron, thereby excluding
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the presence of an identical amount of same-spin density.9 It is
a negative quantity, because it decreases the amount of same-
spin density throughout space by one electronic charge. If the
density of the Fermi hole is maximally localized in the vicinity
of the reference point, then all other same-spin electrons are
excluded from its vicinity and the reference electron is localized.
For a closed-shell molecule, the result is a localizedR,â pair.
Correspondingly, the electron can go wherever its Fermi hole
goes, and if the Fermi hole of an electron when referenced to
a given atom is delocalized into the basin of a second atom,
then the electron is shared between them.

While the ideas developed here apply to any level of theory,
the discussion is given in terms of the Hartree-Fock (H-F)
model. Not only is Fermi correlation the sole source of electron
correlation in the H-F model of electronic structure, but the
H-F description is acknowledged to provide an excellent
approximation to this quantity. The density ofR-â pairs is
uncorrelated in H-F and is given by the simple product of the
corresponding spin densities

The pair density for same-spin electrons is however, mediated
by the density of the Fermi hole,hR(r1,r2), and given by

where the density of the Fermi hole for electrons ofR spin is
given by

and the sums run over theR spin orbitals. This density exhibits
the required properties of reducing to-FR(r1) when r2 ) r1,
corresponding to the complete removal of same-spin density
from the position of the reference electron and yielding-1 when
integrated over the space of the second electron, demonstrating
that the Fermi hole associated with a given electron removes
the equivalent of one electronic charge. The quantity in curly
brackets in eq 2 is the conditional same-spin density, the
probability of anR electron being atr2 when another is atr1.
BecausehR(r1,r2) < 0, the role of the Fermi hole is to decrease
theR spin density atr2 by an amount determined by the extent
of the delocalization of the Fermi hole away fromr1.

One sees from eq 3 that the productFR(r1)hR(r1,r2) equals
the H-F exchange density. When this product is integrated over
the coordinates of both electrons, it yields-NR, the negative
of the total number ofR electrons, that is, the total Fermi
correlation for electrons ofR spin. Thus, the double integration
of this product over some region A, a quantity denoted by
FR(A,A) in eq 4, yields the total Fermi correlation for theR
electrons in the region A,6

Its limiting value is -NR(A), the negative of theR spin
population of region A, a value that would correspond to the
electrons in A being totally localized to this region because all
remainingR spin density would then be excluded from A. The
limiting value implies that the electrons in A do not exchange
with electrons outside of A, that is, they would be totally
localized within A. The magnitude of (|FR(A,A)| + |Fâ(A,A)|)
is termed thelocalization index, λ(A).

The limit of total localization, while approached quite closely
(g95%) in ionic systems, can never be attained, and one finds

that |FR(A,A)| < NR(A), indicating that the electrons in region
A exchange with electrons outside the boundaries of A, that is,
they are delocalized. The delocalization of the electrons from a
region A into another region B is determined by the quantity
FR(A,B), eq 5,6

One necessarily hasFR(A,B) ) FR(B,A) and the exchange of
electrons between the two regionssthe delocalization of the
electrons between the two regionssis given by the delocalization
index δ(A,B) ) 2|FR(A,B)| + 2|Fâ(A,B)|.10

The integralsFR(A,A) andFR(A,B) determining the localiza-
tion and delocalization of electrons, respectively, are obtained
by the corresponding double integrations of the Hartree-Fock
exchange density, as illustrated in eq 6 forFR(A,B),

The second-order density matrix obtained from a CI calculation
can also be expressed in terms of products of basis functions
multiplied by the appropriate coefficients enabling one to express
the integrated pair density in terms of overlap contributions.
Thus, terms similar to those in eq 6 multiplied by the appropriate
coefficients appear in the CI expression forFR(A,B), and
delocalization is still described in terms of the exchange of
electrons between molecular orbitals in a wave function that
includes Coulomb, as well as Fermi, correlation.10

The above ideas, when used in conjunction with the quantum
theory of atoms in molecules (QTAIM),11 enable one to
determine the extent to which electrons are localized within the
basin of a given atom or delocalized into the basin of a second
atom. QTAIM defines an atom as an open system bounded by
a surface of local zero flux in the gradient vector field of the
electron density. An electron population is, like all properties,
defined as the expectation value of a corresponding observable,
in this case the number operator for electrons of either spin.
Because the Fermi correlation counts all of the electrons, the
localization and delocalization indices sum toN and they provide
a quantitative measure of how theN electrons in a molecule
are localized within the individual atomic basins and delocalized
between them.

The delocalization index for a pair of bonded atomssatoms
the nuclei of which are linked by a bond path12sexhibits the
properties associated with a Lewis bond order.10,13 For a pair
of identical bonded atoms or one with small interatomic charge
transfer, its value equals the number of electron pairs shared
between the two atomic basins: 1.0 for H2; 3.0 for N2; 0.99
and 0.97 for CC and CH in saturated hydrocarbon; 1.9 and 0.98
for the same atomic pairs in ethylene. The values for a
polyatomic molecule are invariably somewhat less than the
limiting integer values because of the delocalization of density
into the basins of other atoms linked to the pair in question.
Theory provides a precise determination of bondingstwo atoms
being bonded if their nuclei are linked by a bond path.12 Hence,
theδ(A,B) will not be referred to as a bond order in the general
case, because electrons are delocalized between all pairs of
atoms in a molecule.

There is close connection between Coulson’s mobile bond
order and Fermi correlation, as described in Salem’s book on
molecular orbital theory of conjugated systems.1 Within this
theory, atomic charges and bond orders are determined by the
products of coefficients of the carbon atomicπ orbitals (AOs)

FRâ(r1,r2) ) FR(r1)F
â(r2) (1)

FRR(r1,r2) ) FR(r1){FR(r2) + hR(r1,r2)} (2)

hR(r1,r2) ) -∑i∑j{φi
/(r1)φj(r1)φj

/(r2)φi(r2)}/FR(r1) (3)

FR(A,A) ) ∫A dr1∫A dr2 FR(r1)h
R(r1,r2) (4)

FR(A,B) ) ∫A dr1∫B dr2 FR(r1)h
R(r1,r2) (5)

FR(A,B) ) -∑i∑j∫A dr1 ∫B dr2

{φi
/(r1)φj(r1)φj

/(r2)φi(r2)} ) -∑i∑jSij(A)Sji(B) (6)
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obtained when a given MO is squared to obtain an expression
for its density, the products of the AOs themselves being equated
to unity. A product of coefficients is identified with an atomic
charge when both AOs refer to the same atom and with a bond
order when they are on different carbons. When these products
are summed over all MOs, one obtainsqr, the atomic charge
for atom r, andprs, the mobile bond order for atoms r and s.
Using this formalism, we reduce the same-spin pair density, eq
2, to

which is to be compared with eq 2. To quote Salem “The square
of the bond order between atoms r and s represents the extent
of the total (Fermi)correlation between the two electrons with
parallel spin, one at r, the other at s.”, that is, it equals the
exchange of electrons between r and s. This expression of the
Fermi correlation has been used by McConnell to account for
the long-range spin-spin coupling between protons.1,14

Proton Spin-Spin Coupling and Electron Exchange

The older literature argued that the spin-spin coupling of
protons should be dominated by the product of the Fermi contact
terms for the two nuclei,15,16a view that is substantiated in the
modern literature. Wilkens et al.,17 in the calculation and analysis
of the angular and distance dependence of the vicinal proton
spin couplings in ethane and of the long range couplings in
pentane, treat only the Fermi contribution noting that “previous
work (as referenced in their paper) strongly suggests that the
Fermi contact mechanism dominates.” The spin magnetic
moment of a proton polarizes the spin density of the electrons
in its immediate vicinity, resulting in a small excess of
oppositely polarized electron spin density. This information is
transmitted to the vicinity of a second proton via the mechanism
of electron exchange. If one interprets the pair density as a pair
probability distribution and denotes the position coordinates of
two protons byn andn′, thenFRâ(n,n′), the probability of anR
electron being atn and aâ electron atn′, is given by the
(uncorrelated) productFR(n)Fâ(n′). However, FRR(n,n′), the
probability of anR electron being atn when anotherR electron
is at n′ is mediated by the density of the Fermi hole and is
given byFR(n)FR(n′) + FR(n)hR(n,n′), eq 2. For a closed-shell
system,FR(r ) ) Fâ(r ) and the differenceFRâ(n,n′) - FRR(n,n′)
reduces to minus the exchange density, the quantity-FR(n)-
hR(n,n′). Thus, the probability ofâ electrons being in excess
over R electrons at the position of nucleusn′, given that there
is an R electron atn, is proportional to the negative of the
exchange density. The density ofR spin electrons at nucleusn′
is lessened to the extent that the density of the Fermi hole
extends from the reference nucleusn to n′, and this is the
mechanism whereby the spin perturbation caused by the
magnetic interaction of an electron with nucleusn is transmitted
to n′.7

McConnell showed that the same conclusion regarding the
proportionality between the excess ofâ over R spins and
exchange can be obtained from the second-order perturbation
expression for the coupling of nuclear spins via the electron
spin.14 There are three contributions to the Hamiltonian describ-
ing the perturbations arising from a magnetic nucleus interacting
with the spin magnetic moment of an electron:18 one involving
the motion of the electrons in the magnetic field of the nuclei,
another representing the dipole-dipole interaction between the
nuclear and electronic and magnetic moments, and third, that
arising from the coupling of the nuclear spins via the spin of

the electrons. It is this latter term that dominates the spin-spin
coupling of protons. It is determined by the product of matrix
elements for the operatorSk‚In, the operators for the electronic
and nuclear spin, a contribution that reduces to the product of
the Fermi contact terms for the two nuclei in question. The
matrix elements mix the singlet ground state with triplet excited
states in the second-order expression for the energy of interac-
tion. If one makes the approximation of replacing all of the
triplet excitation energies by a mean value,∆E, then the
perturbation expression reduces to the averaging of terms
involving the operatorsSj‚Skδ(r jn)δ(r kn′), products of the
electronic spin operators mediated by the term giving the product
of electron densities at the positions of the two nuclein andn′,
averaged over the ground-state wave function. (The symbol
δ(r jn) used by McConnell is an abbreviation of the Dirac delta
operatorδ(r j - Xn), whereXn is the coordinate of nucleusn).

It is the averaging of this operator over the coordinates of all
j,k pairs of electrons for the ground-state wave function that
yields an expression for the spin-spin coupling constantJnn′
that is proportional to the negative of the exchange density.
Specifically, the expression for the coupling constant in standard
notation18 becomes

Equation 8 states thatJnn′ is proportional to the product of
densities at the two nuclei that arise from the exchange of same-
spin electrons. This general expression was first obtained by
McConnell14 who pointed out that if one considers each proton
to be described by a 1s orbital, then the exchange term appearing
in eq 8 reduces, as shown in eq 7, to a term proportional to
Coulson’s mobile bond order4,5 between nonbonded hydrogen
atoms multiplied by the product of spin densities at the two
protons.

The dominance of the Fermi contact contribution toJHH′ for
nonbonded hydrogens is primarily a consequence of 1s-like
functions dominating the basis set for the hydrogen atoms. It is
therefore, reasonable to assume that the density at a proton
should parallel the increase in the density within the basin of a
hydrogen atom, enabling one to make the identification

wherein one replaces the exchange density at the positions of
the protonsn and n′ with its integration over the respective
atomic basins H and H′. Hence, the double sum appearing in
the expression for the coupling constant in eq 8 reduces, with
a change in sign, to eq 6, the expression for|FR(H,H′)| +
|Fâ(H,H′)| ) δ(H,H′)/2, one-half the delocalization index that
measures the exchange of electrons between the two atomic
basins. Thus one is led to propose that the coupling constant
between the protons of nonbonded hydrogen atoms H and H′,
be proportional to the delocalization indexδ(H,H′). This
proportionality is not expected to apply to atoms other than
hydrogen because the presence of basis functions with nonzero
angular momentum in a primary rather than a polarizing role
for non-hydrogenic atoms increases the contributions of the other
two coupling contributions relative to the Fermi contact term
in the determination ofJnn′. The higher angular momentum basis
functions also destroy the assumed proportionality between the
atomic integration of the exchange density and its value at the
nucleus of the atom.

FRR(r1,r2) ) (1/4){qrqs - prs
2} (7)

Jnn′ ) - 2
3h(16πâp

3 )2
γNγN′

1
∆E∑i∑j〈φi(r1)δ(r1n)φj(r1)〉

〈φj(r2)δ(r2n′)φi(r2)〉 (8)

〈φi(r1)δ(r1n)φj(r1)〉〈φj(r2)δ(r2n′)φi(r2)〉 f

〈φi(r1)φj(r1)〉H〈φj(r2)φi(r2)〉H′ ) Sji(H)Sij(H′) (9)
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One of the most striking features of proton spin-spin
coupling is the relatively small values found for protons bonded
to the same carbon atom, a result not recovered by the
delocalization indices. The small values are attributed to the
nodal properties of a pair of C-H bonding orbitals on one
carbon exhibiting planes in the proximity of the protons bonded
to the same carbon,18 thus negating the proportionality between
the integrated atomic exchange density and its value at a proton.
This interorbital nodal effect is not found for hydrogens bonded
to adjacent or more widely separated carbons.

Correlation of δ(H,H ′) with JHH ′
It was previously demonstrated7 that the delocalization index

for the vicinal protons in ethane yield an excellent correlation
with their coupling constants as a function of the torsion angle
about the C-C axis predicted by the Karplus equation.19 In the
present work, we compare the correlation ofδ(H,H′) with
measured coupling constants for hydrogen atoms bonded to
different carbon atoms in alkanes, alkenes, their cyclic conge-
ners, and polybenzenoid hydrocarbons. An interesting feature
of the measured constantsJHH′ is that they can be largest for
protons that are separated by the greatest distance, a feature
faithfully recovered by the corresponding values ofδ(H,H′).

The dominance of the Fermi contact (FC) contribution in
these particular molecules is demonstrated by data supplied by
one of the referees of this paper, who calculated all three
contributions toJHH′ for the couplings in naphthalene using the
de Mon NMR code with the Perdew-Wang exchange and the
Perdew correlation using a QZ2P quality basis set. The results
show that the Fermi contribution closely parallels both the
experimental and calculatedJHH′ values, the two sets ofJHH′
values being in good agreement with one another. While the
two remaining contributions, the diamagnetic and paramagnetic
spin-orbit (SO) terms are separately not zero, they are of
opposite sign and of almost equal magnitude with the net result
that their net contribution is nearly zero andJHH′ is determined
in its essential entirety by the FC contribution. With the data
supplied by the referee, the FC contribution yields a linear
regression with the experimentalJHH′ values withr2 ) 0.995
and another with the calculated values withr2 ) 1.000. Neither
of the SO terms correlate in any way with the calculated or
experimentalJHH′. As examples of the SO contributions, we
quote the paramagnetic and diamagnetic values in hertz for the
largest and the smallest couplings, together with the calculated
JHH′ value: for H1H2, the values are 0.11 and-0.35 to give a
net SO contribution of-0.24 or 3% ofJHH′ ) 7.92; for H2H7,
the values are 0.94 and-0.95 to give net SO contribution of
-0.01 or 3% of JHH′ ) 0.19. Thus, because of the near
cancellation of the SO contributions, the FC term accounts for
97% of the coupling in each case.

The delocalization indices between the carbon atoms in the
polybenzenoid hydrocarbons listed in Table 1 were determined
to obtain a measure of the effect of ring fusion on the uniform
delocalization of theπ electrons found in benzene and thereby
obtain a measure of the aromaticity in these molecules.8 The
fusion of one or more benzenoid rings results in the delocal-
ization of electrons increasing between certain pairs of bonded
carbon atoms and decreasing between others, relative to that
found in benzene. For example, the value of 1.39 forδ(C,C′)
in benzene increases to 1.63 for the unique 9-10 bond in
phenanthrene (compared to a value of 1.89 for the CC bond in
ethylene), while the values for the neighboring CC bonds
decrease to 1.14. Thus, the hydrogens in these molecules are
bonded to a carbon framework that exhibits bond orders lying
between those for single and double bonds.

The wave functions for the polybenzenoids were obtained at
the restricted Hartree-Fock (RHF)/6-31G**//6-31G** level
using Gaussian 94,20 as were the wave functions for the other
molecules considered in this work. The atomic integrations were
obtained using AIMPAC21 and the delocalization indices from
AIMDELOC.22

It is found that the values ofδ(H,H′) yield a linear statistical
correlation with the measuredJHH′ coupling constants displayed
in Figure 1 given in the regression eq 10

with r2 ) 0.989 and a sample estimate of the standard deviation
(σ) ) 0.375. The values ofδ(H,H′) have been previously shown
to be relatively insensitive to the basis set providing polarization
functions are included.10 To test whether the correlation holds
for a much larger basis set in the case of polybenzenoid
hydrocarbons, the calculations were repeated for benzene and
naphthalene at the RHF/6-311++G(2d,2p)//6-311++G(2d,2p)
level and were found to yield an even better linear regression
with r2 ) 0.990 andσ ) 0.335. Moreover, the set of 12
δ(H,H′) values obtained with the large basis set was found to
differ by an average absolute deviation of 9× 10-5 from the
corresponding set calculated with the 6-31G** basis set, a
difference too little to have any physical significance. The values
of δ(H,H′) calculated using the larger basis set are included in
Table 1.

The experimental values are grouped into two sets: those
from 7 to 9 Hz for protons separated by three bonds and those
from 2 Hz extending down to and past zero for protons with
greater interbond separations. A negative coupling constant
implies that the two protons that are coupled have the same
spin. While three negative values ofJHH′ are obtained from the
correlation compared to the single experimental example, all
three are for couplings that are close to zero.

One notes that both the experimental and theoretical values
for the 1-5 coupling in naphthalene are greater than those for
1-4, even though the 1-5 internuclear separation exceeds that
for 1-4. Similarly, the 1-5 coupling is greater than the 1-6
coupling, although the former pair of protons are separated by
seven bonds, the latter pair by six. Theδ(H,H′) values become
quite small for the long-range couplings and approach the limits
of the integration errors of the orbital overlaps over the atomic
basins that are required for their evaluation. The total Fermi
correlation, because it accounts for the removal ofN electrons,

Figure 1. A scatter plot of the hydrogen-hydrogen delocalization
indices,δ(H,H′), versus the proton-proton NMR spin-spin coupling
expressed in cycles/sec (Hz) in polybenzenoid hydrocarbons showing
a strong linear relationships. Data corresponding to this plot are listed
in Table 1.

JHH′ ) -0.1369+ 1275δ(H,H′) (10)
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sums to-N. Thus, the sum of the localization indices over all
of the atoms and one-half of the delocalization indices over all
pairs of atoms should yieldN, thereby providing a measure of
the accuracy of the atomic overlap integrations. The footnote
to Table 1 includes the magnitude of the differences (∆) between
N and the sum of the indices divided byN for the studied
molecules. Thus for benzene, the 1-4 index, which equals
0.0003, equals the average error per electronic charge incurred
in the integrations.

While the correlation betweenδ(H,H′) andJHH′ is less faithful
for protons separated by more than three bonds, one notes that
both JHH′ and δ(H,H′) decrease in parallel for the small
couplings, decreases that are not simply related to increases in
the degree of separation of the protons. Thus, the essential
physics is recovered in theδ(H,H′) values, even though the
correlation is no longer as exact.

An even more striking example of the inverse correlation of
JHH′ with the separation between vicinal protons is found for
the cis and trans proton couplings in ethylene for which the
trans coupling is nearly twice that of the cis. Experimentally,
the values for variously substituted ethylenic molecules fall in
the ranges of 17-18 and 8-11 Hz for the trans and cis coupling,
respectively,18 while eq 10 yields corresponding values of 16.2

and 9.7 Hz, values that are bracketed by the experimental ones.
ExperimentalJHH′ constants for the vicinal protons linked by a
carbon-carbon double bond are known for both cyclohexene,
8.8 Hz, and 1,3-cyclohexadiene, 9.4 Hz, while those predicted
using eq 10 are 10.5 and 9.3 Hz, respectively.

The possibility of theπ system contributing to the coupling
of aromatic protons via the mechanism of configuration interac-
tion is considered to be relatively small.18 McConnell23 has
estimated theπ contribution to the coupling between the ortho
protons in benzene to be 0.80 Hz. The ability to linearly relate
the coupling constants to theδ(H,H′) values further speaks to
the relative nonimportance of theπ contribution to the coupling,
because there is no exchange between theσ and π electrons
and theπ orbitals make no direct contribution to the hydrogen
delocalization indices.

The proton spin-spin coupling constants for vicinal hydro-
gens in saturated hydrocarbons correlate equally well with the
delocalization index, although they require a separate regression
equation, eq 11

Equation 11, withr2 ) 0.975 andσ ) 0.793, was fitted toJHH′
values for the vicinal hydrogens listed in Table 2, excluding
the averaged value for ethane. The magnitude ofJHH′ in saturated
hydrocarbons can also exhibit the property of increasing with
increasing internuclear separation, as exemplified by the cou-
pling between the trans protons in staggered ethane predicted
to be 15.5 cycles/sec compared to 5.3 cycles/sec for the gauche
pair, a trend also predicted by the Karplus equation.19 Similarly,
the axial-axial coupling of neighboring protons in cyclohexane
that are trans related is greater than that for the axial-equatorial-
or equatorial-equatorial-related pairs the internuclear separa-
tions of which decrease in the same order. These variations are
faithfully recovered by the relative values of the corresponding
δ(H,H′) indices, Table 2. The semiquantitative success of the
correlations obtained with eqs 10 and 11 speaks not only to the
physical soundness of the underlying model that relates the
Fermi contact terms to electron delocalization but also to the
ability of the quantum definition of an atom to isolate the atomic
or group contributions to measurable molecular properties.

Discussion

The correlation of the delocalization indices for hydrogen
atoms with their proton spin-spin coupling constants is an

TABLE 1: JH,H ′ Coupling Constants in Some Aromatic
Molecules in Hza

H H′ δ(H,H′) × 105
JH,H′
calcd

JH,H′ av

exptl σ n ref

benzene 1 2 585 (561) 7.32 7.51 0.03 5 28
benzene 1 3 139 (138) 1.64 1.34 0.03 5 28
benzene 1 4 30 (41) 0.25 0.66 0.03 5 28
naphthalene 1 2 650 (630) 8.14 8.28 0.19 4 28
naphthalene 1 3 136 (134) 1.60 1.24 0.11 4 28
naphthalene 1 4 30 (39) 0.24 0.00 1 28
naphthalene 1 5 38 (37) 0.35 0.83 1 28
naphthalene 1 6 4 (4) -0.09 -0.16 1 28
naphthalene 1 7 8 (9) -0.03 0.21 1 28
naphthalene 2 3 526 (496) 6.57 6.71 0.19 4 28
naphthalene 2 4 136 (134) 1.60 1.24 0.11 4 28
naphthalene 2 6 5 (9) -0.07 0.28 1 28
anthracene 1 2 674 8.46 8.30 1 28
anthracene 1 3 135 1.59 1.20 1 28
anthracene 2 3 501 6.25 6.50 1 28
phenanthrene 1 2 623 7.81 8.42 0.17 3 28
phenanthrene 1 3 141 1.66 1.21 0.28 3 28
phenanthrene 1 4 28 0.22 0.58 0.06 3 28
phenanthrene 2 3 539 6.74 7.13 0.21 3 28
phenanthrene 2 4 127 1.48 1.50 0.09 3 28
phenanthrene 3 4 670 8.40 8.14 0.23 3 28
phenanthrene 4 10 36 0.32 0.40 1 29
chrysene 1 2 686 8.61 8.00 1 30
chrysene 1 3 125 1.45 1.20 1 30
chrysene 1 4 29 0.23 0.50 1 30
chrysene 2 3 531 6.64 7.30 1 30
chrysene 2 4 142 1.67 1.00 1 30
chrysene 3 4 627 7.86 7.50 1 30
chrysene 5 6 726 9.12 9.00 1 30

a The columns labeled H and H′ list the standard numbering of the
carbon atom to which the hydrogen atom in question is bonded. The
column labeledδ(H,H′) lists the value of the delocalization indices for
the 6-31G** calculations. The values in parentheses are for the
6-311++G(2d,2p) calculations. The column labeledJH,H′ lists the
calculated spin-spin coupling constants obtained from the regression
equation (eq 10). The column labeledJH,H′ av provides the experimental
value of the coupling between the two hydrogen atoms. Entries under
JH,H′ av are average values reported byn authors and collected in ref
28. The standard deviation of each set ofn reported values is given in
the column labeledσ. The limits of accuracy of the data as measured
by (|∆)|/N) × 105 and that is defined in the text is 33.6 for benzene,
20.3 for naphthalene, 16.9 for anthracene, 5.0 for phenanthrene, and
1.8 for chrysene.

TABLE 2: JH,H ′ Coupling Constants in Some Saturated
Molecules

atom label δ(H,H′) × 105
JH,H′
calcd

JH,H′
exptl ref

ethane (staggered) ava 657 9.7 8b 31
cyclohexane a-a 1173 13.4 13.2 31
cyclohexane a-e 446 4.6 3.6 31
cyclohexane e-e 360 3.6 3.1 31
cyclohexene avc 304 2.9 3.1 32
1,3-cyclohexadiene d 419 4.3 5.1 33

a Average value taken over the two gauche vicinal hydrogen atoms
((60°) and the trans vicinal hydrogen (180°). b Datum not used to
obtain the regression equation.c Average values forJH,H′ and forδ(H,H′)
taken between the hydrogen atom bonded to carbon C2 (IUPAC
numbering) and the two nonequivalent vicinal hydrogen atoms bonded
to the saturated carbon C3. Symmetry equivalents are C1 and C4,
respectively.d Values for vicinal hydrogen atoms separated by the single
bond within the conjugated part of the molecule (i.e., C2 and C3,
IUPAC numbering).

JHH′ ) -0.8143+ 1191δ(H,H′) (11)
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example of how the Fermi exchange density provides the vehicle
for the transmission of information between the basins of
nonbonded atoms. The transmitted effects have important
consequences for reactivity as well, effects that provide further
examples of exchange overriding internuclear separations. For
example, there is a significantly greater delocalization of theπ
density of a carbon atom in benzene onto the para rather than
the meta carbon. The same pattern of delocalization is found
for the corresponding atoms relative to the carbon bearing an
electron-releasing substituent such as NH2 and for the same
atoms relative to the nitrogen atom in pyridine. Thus the
delocalization pattern of the Fermi correlation parallels the
reactivity patterns of substituted benzene and related aromatic
molecules.7,8

The same pattern of alternating behavior is displayed by the
Laplacian of the electron density in substituted benzenes for
which the greatest charge concentrations defined by its topology
are located para to the carbon bearing an electron-releasing
substituent and meta to that bearing an electron-withdrawing
one.24 This association is not unexpected because the topology
of the Laplacian of the electron density provides a mapping of
the essential pairing information from six- to three-dimensional
space, as determined by the properties of the Fermi density.
This statement follows from the form of the conditional same-
spin pair density, [FR(r2) + hR(r1,r2)]: when the density of the
Fermi hole is localized in the vicinity ofr1, then the conditional
pair density reduces to the spin density at pointsr2 removed
from r1. Under these conditions, the Laplacian of the conditional
pair density for a closed-shell system, the concentrations of
which indicate where the density of the remaining electron pairs
is to be found for a fixed position of a reference pair, will reduce
to the Laplacian of the total density. Indeed, the two fields have
been demonstrated to be structurally homeomorphic.25 Thus the
local maxima in the fieldL(r ) ) -∇2F(r ), the local charge
concentrations (CCs) of the Laplacian, denote regions of partial
pair condensation, regions with greater than average probability
of occupation by a single pair of electrons. The number, relative
size, and orientation of the CCs ofL(r ) provide a remarkably
faithful mapping of the localized bonded and nonbonded Lewis
pairs assumed in the VSEPR model of molecular geometry.26

The CCs of the Laplacian denote regions of localization of
the Fermi correlation, concentrations that correlate with the
localization index,λ(A). Just as the total Fermi correlation sums
to -N, it sums separately to-N(A), the population of each
atom. Thus, one hasNR(A) ) λR(A) + ∑B*AδR(A,B)/2, an
expression detailing how the population of atom A that is not
localized on A is spread out into the basins of each of the
remaining atoms in the molecule. Thus, both the localization
of electrons determined by the CCs ofL(r ) and their delocal-
ization determined by the indexδ(A,B) are manifestations of
the density of the Fermi hole and are grounded in the physics
of the pair density.

Wilkens et al.16 have used the natural bond orbital (NBO)
approach to calculate and analyze the Fermi contact contribu-
tions toJHH′, while Esteban et al.27 use the same approach to
investigate the bond-antibond interactions in an analysis of
vicinal proton-proton coupling constants. The results obtained
in these studies are dependent upon the use of the specific choice
of NBOs and natural localized molecular orbitals, chosen to be
in close correspondence with the Lewis structure representation.
Esteban et al. note that this choice of orbital representation yields
an interpretation different from the one obtained in an approach
labeled IPPP-CLOPA that employs a different set of localized
molecular orbitals.27

The present paper differs from these in that its purpose is
not to interpret a calculated coupling constant but rather to
demonstrate that the Fermi contact term can be successfully
modeledin terms of the exchange density and thus by the
delocalization of the electrons between the basins of the
associated hydrogen atoms. Whatever the application, QTAIM
and a NBO analysis do represent different philosophies. Unlike
the NBO approach, the exchange density and the electron
delocalization that it determines are invariant to the choice of
orbitals used in their representation. What set of orbitals is used
to determine the delocalization of electrons between two atomic
basins is unimportant compared to the ability to uniquely define
the extent of delocalization and determine its physical conse-
quences. In addition, the Lewis model is not built into the
physics of an open system. Instead, its many facets are recovered
in the properties of the pair density: in the bond orders
determined by the delocalization index and in the spatial
structuring of the bonded and nonbonded Lewis pairs revealed
in the topology displayed by the CCs of the Laplacian of the
electron density, as determined by the conditional pair density.
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