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The weakly bound long range potential curves between a highly excited Cs* (ns, 8 e n e 20) atom and a
ground state Cs atom are calculated using simple but reasonably accurate models for dispersion and exchange
interactions. Such curves will help in the design of experiments to observe corresponding spectra.

I. Introduction

Recently, weakly bound long range levels have been ob-
served near highly excited asymptotes of the39K2 molecule
using optical-optical double resonance photoassociative spec-
troscopy of ultracold atoms.1,2 Similar experiments are underway
in our group on the Cs2 molecule. For this reason, we have
carried out theoretical calculations to estimate the long range
potential energy curves which give rise to these weakly bound
long-range levels for the case of Cs2 to help in experiment
selection. Later, we hope to extend these results to other alkali
pairs.

Our theoretical calculations include two terms, an estimate
of long-range dispersion using the approach of Proctor and
Stwalley3,4 and an estimate of long-range exchange using the
approach of Smirnov and Chibisov.5 For ground state atoms,
these two terms are found to agree well with experimentally
determined potentials for Li2,6 Na2,7 K2

8,9 and NaK10 (see also
refs 11 and 12).

Our model calculation uses the equation

to estimate the potential of the weakly bound van der Waals
wells at the Cs* (ns) + Cs (6s) asymptotes. Note that bothVEX

and VDISP are negative, so the first term is repulsive and the
second attractive, corresponding to the antisymmetrical (triplet)
state (see section III). Details of the calculations of the dispersion
and exchange terms are given in sections II and III, respectively.
The results are presented in section IV with a discussion of the
scaling with principal quantum numbern and the prospects for
observation in future experiments.

Note that a similar calculation13 was previously carried out
for the K* (6s) + K (4s) asymptote of K2, which agreed well
with observations,1 e.g., well depth∼10% shallower than
observed. However, that work and the details of the calculation

have not been published and the work is apparently not
continuing. Recently,VDISP(R) was calculated for Rb* (np) +
Rb* (np), and the existence of long-range potential wells was
predicted.14

II. Long-Range Dispersion

The long-range interaction between two different neutral
S-state atoms is well-known to be expressible by the asymptotic
expansion:

Proctor and Stwalley3,4 developed simple expressions for these
Cn coefficients when the excitation frequencies of one atom are
significantly less than the excitation frequencies of the second
atom, i.e., when the first atom has a much greater polarizability
than the second atom. For example, the alkali atoms have much
lower frequencies and higher polarizabilities than the inert gas
atoms. In particular, these expressions include analytical results
for multipole oscillator strength sums for a more polarizable
hydrogen-like atom, here the excited Cs* (ns) atom withn g
8. We have not consideredn ) 7 because more accurate results
are available forn ) 7 and 8.15 The specific approximations
involved for eachCn term are summarized in ref 4, i.e., those
terms proportional to the ground-state Cs polarizability.16 We
believe these calculations should be accurate to less than 10%
for n ) 8 and significantly better for highern. In agreement
with this estimate, theC6, C8, andC10 values in atomic units
calculated based on ref 4 are 2.42× 105 ≡ 2.42 (5), 2.76 (8),
and 3.45 (11) compared to the values of 2.34 (5), 3.04 (8), and
3.76 (11) in ref 15. Our values ofCn for 8 e n e 20 are given
in Table 1. Note thatC6, C8, andC10 scale approximately as
(n*),4 (n*)8, and (n*),12 respectively, wheren* ) [2(E∞ -
En)]-1/2, as shown in eqs 12a-c of ref 4.

However, the dispersion interactions between an excited
cesium atom and a ground state cesium atom must be slightly
modified to take into account the possibility of exchange of
excitation between the otherwise identical cesium atoms. In
terms of the notation of Marinescu and Dalgarno,15 we must
use degeneracy-adapted basis functionsΨâ

(0) ) 1/(2)1/2

[ængne + âæneng] for atoms in states{nlm} ) {ng00} and{ne00}
where the coefficientâ ) (1 is determined by the state
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V(R) ) -VEX (R) + VDISP (R) (1)

VDISP ) -C6R
-6 - C8R

-8 - C10R
-10 - ... (2)
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symmetries as shown in Table 2. In our case, the ground state
is ng ) 6 and the excited state isne g 8.

Using such basis functions, one finds the dispersion coef-
ficients

where

and

Here, (nl|r|n′l′) represents a radial matrix element.15

Similarly

and

as detailed in ref 15.
However, the ratiosC6′/C6, C8′/C8, and C10′/C10 are most

significant when discussing the pair of atoms Cs(6s) and Cs*-
(ns) wheren - 6 ) 1; for example, when the quantum number
n ) 7, the three ratios equal 0.34, 0.18, and 0.11, respectively.15

Whenn ) 8 (i.e., n - 6 ) 2), the three ratios equal-0.019,
0.030, and-0.001, respectively,15 and whenn g 9, the ratios
are negligible. Therefore, in what follows, allCn′ terms are
neglected in eqs 3, 6, and 7 because we believe they are smaller
than the uncertainties in theCn values.

III. Long-Range Exchange

The long-range interaction between two different neutral
S-state atoms A and B has been estimated by Smirnov and

Chibisov:5

whereR ) (nA*)-1, â ) (nB*)-1, and

where the asymptotic radial atomic wave function for atom A
is

(and likewise for atom B),

and

WhenR ) â, the functionJ(R,â,R) becomes independent ofR.
The values ofA and B are obtained using the approach of
Bardsley et al.17. The calculation ofVEX was checked by
comparison with the results of Coˆté et al.18

With regard to the states in Table 2, eq 1 applies to the
antisymmetric (triplet) states, whereas an attractive term+VEX

corresponds to the symmetric (singlet) states, which we do not
consider here because the potential wells are not restricted to
large internuclear distances. The weakly bound long range states
are thus3Σg

+ and 3Σu
+, which correspond to 0g- and 1g and

0u
- and 1u states, respectively, in the limit of very largeR.

IV. Results and Discussion

The estimates ofVEX and VDISP discussed above allow for
ready calculation of the long-range potential wells for a wide
range of n. Our results are shown forn ) 8, 12, 16, and 20 in
Figure 1. Note the narrowing of the potential well asn increases.

We also note here thatV(R) given by eq 1 goes to-∞ asR
f 0 because the dispersion term has not been damped. However,
there is a large maximum (for eachn) at positive potential
energy between the long-range well and the collapse toV(0) )
-∞ at short distance. The results reported here rely only on the
potential well outside this maximum.

The values of well depthε (in cm-1), potential minimum
separationRm (in Bohr radiia0 (atomic units)), and the quantity
εRm

2 (units of cm-1 ao
2) are given in Table 3. It is clear thatε

is rapidly decreasing with increasingn, whereasRm is increasing
modestly. We have calculated the number of bound vibrational
levels in these shallow long-range wells forn ) 8 and 9, finding
21 and 14 vibrational levels, respectively.

Based on the Bohr-Sommerfeld quantization condition,19 the
product εRm

2 nearly completely determines the vibrational
quantum number at dissociation,VD, and hence the number of
rotationless or s-wave bound states of our long-range potentials.
For example, with a given value (εRm

2)0, the zero-point level is
barely bound, andVD + 1/2 >̃ 1/2. Similarly, for εRm

2 ) 3
(εRm

2)0, VD + 1/2 >̃ 3/2 andV ) 1 is barely bound, and so on;
with εRm

2 ) N(εRm
2)0, VD + 1/2 >̃ N/2 andV ) (N - 1)/2 is the

TABLE 1: Long Range Dispersion CoefficientsC6, C8, and
C10 (in Atomic Units) for Excited Cs* ( ns) Atoms Interacting
with Ground State Cs (6s) Atoms for 8e n e 20

n C6 C8 C10 n C6 C8 C10

8 2.42 (5)a 2.76 (8) 3.45 (11) 15 1.45 (7) 9.93 (11) 6.66 (16)
9 5.98 (5) 1.73 (9) 5.19 (12) 16 2.05 (7) 1.99 (12) 1.89 (17)

10 1.25 (6) 7.59 (9) 4.66 (13) 17 2.83 (7) 3.79 (12) 4.94 (17)
11 2.34 (6) 2.62 (10) 2.95 (14) 18 3.81 (7) 6.86 (12) 1.20 (18)
12 4.00 (6) 7.65 (10) 1.45 (15) 19 5.03 (7) 1.19 (13) 2.75 (18)
13 6.45 (6) 1.98 (11) 6.01 (15) 20 6.51 (7) 2.00 (13) 5.96 (18)
14 9.86 (6) 4.62 (11) 2.13 (16)

a 2.42 (5)) 2.42× 105.

TABLE 2: Hund’s Case a (c) States Arising at Cs (ns) + Cs
(6s) Asymptotes (n ) 7)

symmetry

a c parity p
parameter

spinσa â15

1Σg
+ (0g

+) +1 +1 +1
1Σu

+ (0u
+) -1 +1 -1

3Σg
+ (0g

-, 1g) +1 -1 -1
3Σu

+ (0u
-, 1u) -1 -1 +1

a σ ) +1 for singlet andσ ) -1 for triplet spin states.

C6
â ) C6 + âC6′ (3)

C6 ) ∑
nm

(nl|r|ng0)2(ml|r|ne0)2

Enl + Eml - Ene0
- Eng0

(4)

C6′ ) ∑
nm

(ng0|r|nl)(nl|r|ne0)(ng0|r|ml)(ml|r|ne0)

Enl + Eml - Ene0
- Eng0

(5)

C8
â ) C8 + âC8′ (6)

C10
â ) C10 + âC10′ (7)

VEX(R) ) - 1
2
J(R,â,R)R[(2/R)+(2/â)-(1/(R+â))-1]e-(R+â)R (8)

J(R,â,R) ) A2B22[-2-(2/(R+â))]Γ( 1
R + â)( 2

R + â)[2+(1/(R+â))] ×
{γ(R,â)f(R,â,R) + γ(â,R)f(â,R,R)} (9)

æA(r) ) Ar(1/R)-1e-Rr (10)

γ(R,â) ) (R + â
2â )[(2/R)-(2/(R+â))]

(11)

f(R,â,R) ) ∫0

1
dy e[{(y - 1)/â} + R(â - R)y](1 - y)[(2/â) - (1/(R+â))]

(1 + y)[(2/R) - (2/â) + (1/(R+â))] [1 + (â - R
â + R)y][- 2 - (1/(R + â))]

(12)
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highest level (i.e., barely bound). From the results of the
potentials withn ) 8 and 9, we obtain (εRm

2)0 ≈ 279 and 190,
respectively. From Table 3, we estimate that then ) 16
asymptotic states withεRm

2 ≈ 209 are probably the highestn

states to support a zero-point level. For this reason, we have
terminated our calculations atn ) 20, with the highern
asymptotic states probably not supporting any bound levels.

We have also applied these potentials to calculate Franck-
Condon factors from the well-known 0g

- state20 at the Cs*
(6p3/2) + Cs (6s) asymptote. We predict strong Franck-Condon
factors (>0.1) going from high levels of the 0g

- state at the
6p3/2 + 6s asymptote to the 0u

- and 1u states at the 8s+ 6s and
the 9s+ 6s asymptotes. For example, to reachV′ ) 0 levels in
the 0u

- and 1u states at 8s+ 6s, one should exciteV′′ ) 48, 49,
50, or 51, whereas for the 0u

- and 1u states at 9s+ 6s, one
should exciteV′′ ) 78, 79, 80 or 81. Such predictions are
invaluable in finding the previously unobserved weakly bound
long range states.
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Figure 1. Potential energy curves (in units of the well depthε and
potential minimumRm) for the near degenerate3Σg

+ (Og
-, 1g) and3Σu

+

(Ou
-, 1u) states near the Cs* (ns)+ Cs (6s) asymptotes forn ) 8, 12,

16, and 20.

TABLE 3: Weakly Bound Long Range Potential Wells
Corresponding to 3Σg

+ (Og
-, 1g) and 3Σu

+ (Ou
-, 1u) States

which Are Very Nearly Degenerate near the Cs* (ns) + Cs
(6s) Asymptotes and Correspond to the Following Potential
Well Depths, E (in cm-1), and Potential Minima, Rm (in a0),
and ERm

2 (in cm-1 a0
2)

n ε (cm-1) Rm (ao) εRm
2 (cm-1a0

2)

8 5.21 46.9 11460.0
9 0.926 74.5 5139.5

10 0.227 108 2647.7
11 6.96 (-2) 147 1504.0
12 2.51 (-2) 192 925.3
13 1.02 (-2) 242 597.4
14 4.56 (-3) 299 407.7
15 2.14 (-3) 362 280.4
16 1.14 (-3) 428 208.8
17 6.31 (-4) 500 157.7
18 3.54 (-4) 579 118.7
19 2.09 (-4) 663 91.9
20 1.28 (-4) 752 72.4
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