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The analysis of experimental relaxometric profiles of paramagnetic complexes is usually performed using the
Solomon-Bloembergen-Morgan (SBM) theory. The SBM theory is not valid for slowly rotating systems
when the electronic levels are split at zero field, in which case a modified theory developed in Florence
should be used. However, for many interesting systems, including Gd-based contrast agents for MRI, the
electron spin relaxation is rather close to the Redfield limit, where none of these approaches is valid. In the
present paper, the SBM theory and modified versions of the Florence model are compared against a general
theory valid beyond the Redfield limit (the so-called slow-motion theory). Significant differences are found
already for the cases where the electron spin relaxation is in a regime near the Redfield limit, but still within
it. Indeed, the values of the parameters describing the electron spin relaxation are underestimated for the
SBM theory relative to those used in calculating the slow-motion profiles. The present results are relevant for
the interpretation of relaxometric profiles of paramagnetic complexes and proteins, and for the interpretation
of the behavior of contrast agents used in MRI, and should be taken into account when planning the
improvement of the relaxometric properties for the next generation of contrast agents based on theoretical
predictions.

Introduction

Paramagnetic relaxation enhancement (PRE) can be a rich
source for structural and dynamical information of transition-
metal complexes.1-3 The field dependence of the PRE is usually
presented as nuclear magnetic relaxation dispersion (NMRD)
profiles (sometimes called relaxometric profiles) where the
spin-lattice (and/or the spin-spin relaxation) of solvent protons
are measured at magnetic fields ranging typically from 0.01 to
800 MHz proton Larmor frequency. Relaxometric profiles of
paramagnetic complexes are usually fitted with the Solomon-
Bloembergen-Morgan (SBM) equations4-6 to obtain informa-
tion, possibly in conjunction with other techniques, on the
rotational correlation time of the complex, on the distance
between metal and coordinated solvent molecule(s) (e.g., water),
on the residence time of the coordinated solvent molecule(s),
and on the electron spin relaxation time. Electron spin relaxation
for S g 1 complexes in solution is usually described by a
mechanism where the transient zero-field splitting (ZFS)
interaction is modulated, because of instantaneous distortions
of the coordination polyhedron induced by collision with solvent
water molecules. The ZFS interaction is caused by second-order
effects of the spin-orbit coupling in systems ofS g 1.
Theoretical approaches that take into account the presence of
static ZFS, which is present in complexes of lower symmetry
thanOh, are also available.7-10

The most important application of relaxometry is probably
in the development of contrast agents11-20 for magnetic
resonance imaging (MRI). In fact, a full understanding of the
relaxation properties of paramagnetic complexes is necessary
for the development of criteria to guide synthetic chemists to
make new compounds with improved relaxivity (PRE per unit
concentration). Higher relaxivity implies lower doses in clinical
applications and, therefore, lower toxicity. The relaxometric
technique is also applied to many biologically relevant systems.
Metalloproteins, for instance, have been extensively studied.3,21-24

Direct information about the electron spin system through EPR
measurements may, in fact, not be possible if the electron spin
relaxation is very rapid, because the line shape is too broad
(often the case for Ni(II)). However, Merbach and co-workers
succeeded in combining NMRD profiles of Gd(III) complexes
with EPR and17O relaxation measurements15,17,25,26and analyzed
the data within the framework of a simple SBM approach.

The range of validity of the SBM equations and of the above-
mentioned programs is limited by the common requirement: (i)
the electron-lattice interaction energy, whose modulation is
responsible for the spin relaxation, is smaller than the inverse
of the correlation time,τV, for the modulation of the coupling
itself, timesp (Redfield limit). The approaches allowing for the
static ZFS require, in addition, that (ii) the rotation of the whole
complex (or tumbling motion) is slow relative the electron spin
relaxation. Moreover, the SBM theory and the original version
of the Florence model7 assume that the presence of static ZFS
does not affect largely the electron spin relaxation time due to
modulation of transient ZFS. This point has already been
analyzed and solved forS ) 1 by Bertini et al.9 and forS g 1
by the group in Stockholm.10 In the following, we will refer to
both these approaches as the modified Florence model because
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both of the corresponding computer programs are based on the
original Florence NMRD program. In this work, we investigate
the SBM theory and the modified Florence model and how their
profiles and fitting parameters are affected by approaching the
Redfield limit. In fact, the validity of the Redfield limit is
questioned for many cases of interest,27,28 in particular for Gd
complexes commonly used and investigated for clinical use as
contrast agents for MRI.

When the electron spin dynamics is outside the Redfield limit,
a simple exponential process may not be sufficient to describe
the electron spin relaxation and, in fact, explicit electron spin
relaxation times (longitudinal or transverse) may therefore not
be possible to define. This problem was theoretically solved
by treating the electron spin and the lattice to which it is so
strongly coupled as a composite lattice, using the Liouville
superoperator formalism.29-31 The nuclear spin is coupled to
this generalized lattice containing both the electron spin and
the classical degrees of freedom. No electron spin relaxation
time or nucleus-lattice correlation time is defined. Two motions
of the generalized lattice are considered: the complex rotation
and the distortion of the coordination sphere. The latter motion
is denoted as “pseudorotation”. Both motions are described by
the rotational diffusion equation, with different diffusion coef-
ficients or correlation times. This approach is valid for arbitrary
magnetic field, for arbitrary electron spin relaxation (i.e., both
within the Redfield limit and in the slow motion regime), for
arbitrary regime of the rotational motion, and, in general, for
arbitrary values of the parameters included in the model. In this
paper, we compare the simplified models against this general
approach (the slow-motion theory). The name “slow-motion”
originates from the situation when the motion modulating the
relevant interaction that leads to relaxation is on the same time
scale as the relaxation itself. This is equivalent to stating that
the mean interaction strength of the interaction Liouvillian may
be larger than, or at least comparable to, the inverse of the
correlation timeτV, which corresponds to the motion modulating
the interaction.

Methods and Theory

In the SBM approach, a field dependent electron spin
relaxation is described by the Bloembergen-Morgan equa-
tion6,32

where∆t
2 is the mean squared fluctuation of the ZFS andτV is

the correlation time for the instantaneous distortions of the metal
coordination polyhedron. It must be pointed out that such an
equation has been derived in the absence of a static ZFS term
in the electron-spin Hamiltonian, which means that it has been
derived assuming high-field conditions (i.e., the magnitude of
the Zeeman interaction is much larger than static ZFS).
Moreover, it represents an “average” electron spin relaxation
time for the various nondegenerate transitions. An equation

different from the SBM equations forR2e is sometimes used to
take into account this effect.15 However, this effect is usually
very small at low magnetic fields,15 and thus, the fitting
parameters remain virtually the same.

The Redfield limit (or motional narrowing condition) can be
expressed by the relationship3

Therefore, in the Redfield limit,∆t
2τV , τV

-1, and thus, at low
magnetic fields

BecauseR1e decreases with increasing field (asωs increases),
R1e is thus much smaller thanτV

-1 at all fields; that is, the
relaxation timeT1e ()R1e

-1) arising from the interaction can
never be as short as the correlation time with which the
interaction is modulated.

NMRD profiles for Gd-based contrast agents for MRI are
usually fitted with the SBM equations,11-15,17-20 which provide
the best-fit parameter values, reported for some examples in
Table 1. It can be seen, for instance for Gd-DTPA, that the
electron spin relaxation time at low fields,τs0, is of the same
order asτV. This means that the electron spin relaxation is really
close to the Redfield limit.

Relaxometric profiles for various illustrative parameter sets
(within and beyond the Redfield limit) have been calculated by
using the general slow-motion theory for theS ) 7/2 andS )
1 systems. The former system is pertinent to gadolinium(III)
complexes and the latter to nickel(II) complexes. The validity
of using Redfield approaches was investigated by fitting the
simplified models (i.e., SBM theory and the modified Florence
model) to the slow-motion profiles. Used programs are described
in refs 7, 9, 10, and 29-31.

Results

Gd-Based Contrast Agent Profiles.The relaxation rates as
a function of the magnetic field were calculated with the slow-
motion theory by setting values for the parameters close to those
of a typical Gd-contrast agent. Thus, the profiles were calculated
for S) 7/2, τV ) 20 ps, and∆t ) 0.05 cm-1 ≡ 9.42× 109 s-1.
In this way, the product∆tτV is equal to 0.19, slightly larger to
that obtained for Gd-DTPA. Two protons in fast exchange (i.e.,
with τM , T1M, whereτM is the exchange lifetime andT1M is
the nuclear spin relaxation time at the paramagnetic site) were
assumed to be at 3 Å from the paramagnetic center. The
rotational correlation timeτr was taken to be 20, 60, 200, 600,
and 2000 ps, to simulate different possible sizes of the molecule
bearing the Gd ion. Calculations were performed both by
assuming the absence of static ZFS and the presence of an
axially symmetric static ZFS term, withD ) 0.12247 cm-1.

TABLE 1: Best-Fit of Relaxometric Data of Some Gd-Contrast Agents to Solomon-Bloembergen-Morgan Equations

complexes τM 10-6 s τr 10-12 s τv 10-12 s τS0 10-12 s ∆t cm-1 r Å ref

DTPA-Gd 0.30 58-73 18-25 82-95 0.034-0.037 3.1 11, 12, 15
BOPTA-Gd 0.20 88 26 76 0.034 3.0 12
DTPA-BMEA-Gd 0.39 93 20 87 0.037 3.1 15
DTPA-EOB-Gd 0.20 84 25 78 0.035 2.9 13
DPTA-SA-Gd 0.50 64 17 78 0.042 3.1 19
DTPA-B(etH)A-Gd 2.4 150 18 107 0.035 3.0 18
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In Figure 1, we show the slow-motion data (symbols) for
the case ofD ) 0 and the fitted profiles using the SBM
equations (solid lines) for which∆t, τV, and τr were free to
change. It is always possible to obtain a good fit, and the
resulting best-fit parameters are reported in Table 2. The values
indicate thatτr is always well-determined, whereas the fitted
∆t andτV are often significantly smaller than the values used in
calculating the slow-motion profiles. This means that a non-
negligible difference is caused by the closeness of the Redfield
limit. In particular, τV is much smaller than the correct value
for large molecules or complex adducts (25% smaller), and∆t

is much smaller for small complexes (40% smaller). It can be
noted that the best-fit values of∆t andτV, for τr equal to 60 ps,
are those experimentally found by fitting the NMRD profiles
of Gd-DTPA like complexes with the SBM equations.

In Figure 1, the low-field plateau of the slow-motion profiles
is reduced asτr decreases (the complex becomes smaller) and
one dispersion (theωS dispersion), present in the region around
10 MHz, moves toward higher frequencies with decreasing value
of τr, as the nuclear correlation time decreases. In fact, the latter
is given by the smallest ofT1e andτr. As soon asT1e contributes

to the nuclear correlation time, a peak appears in the high-field
region, due to the combined effect of the field dependence of
the electron spin relaxation (as shown by eq 1) and of theωI

dispersion.
A special feature of the slow-motion theory, absent in the

other approaches, is that the rotation is allowed to contribute to
the electron spin relaxation. This can be expected to be most
important for fast rotating systems33 but does not seem to be
a significant problem here, as indicated by the well-determined
τr values.

Because of the large number of parameters affecting proton
relaxation, and thus to be determined, it has been proposed that
experimental NMRD profiles can be profitably analyzed in
conjunction with data obtained with other experimental tech-
niques, like ESR line shape analysis.26,34,35In this way, it should
be possible to shrink the range of parameter (∆t andτV) values,
as they have to be consistent with all techniques. However, all
of the parameters extracted from ESR studies till now have been
used in analyses performed within the validity of the Redfield
limit (and thus the relevant equations are not correct near the
Redfield limit), with the exception of one work by Merbach’s
group, recently published,36 on the gadolinium(III) aqua ion.
In the latter work, the simultaneous analysis of17O, 1H, and
EPR data has been extended beyond the electronic Redfield limit
using Monte Carlo simulations.

Gadolinium(III) complexes often exhibit static ZFS interac-
tion, and it is thus even more interesting to investigate whether
the closeness of the Redfield limit can show similar features in
this case as in the discussion of Figure 1. The profiles calculated
with the slow-motion theory were fitted with the SBM equations,
and the obtained best-fit values of the parameters∆t andτV are
still significantly smaller than the correct ones (see Table 2).
Moreover, the quality of the fit is not good. In fact, the SBM
profiles (not shown) do not have the correct shape and the first
dispersion comes at too low frequency. We return to this point
in the Discussion section.

Because the modified Florence model is strictly valid only
for slowly rotating systems, it cannot correctly be applied to
rationalize these data. In the case of slow rotation, good
agreement between the slow-motion theory and the modified
Florence model is obtained if the electron spin relaxation clearly
is within the Redfield limit, on account of the results in the
earlier paper.10

Gd-Containing Macromolecule Profiles.To further eluci-
date the observations in Figure 1, we decided to make a set of
slow-motion calculations ranging from within the Redfield limit
and beyond it, for the case of slowly rotating systems ofS )
7/2 (e.g., Gd-containing macromolecules) with and without static
ZFS present. The calculated slow-motion profiles forD ) 0
were obtained with the following parameter values:S) 7/2, τr

) 10-6 s (so large that its effects become negligible),∆t )
0.05 cm-1, andτV from 1 to 100 ps.τV values of 100 ps are
higher than any literature value, the latter being usually in the
range of 2-50 ps17 (τV can be overestimated due to the
deficiencies of the pseudorotational model). However, high
values ofτV will bring the electron spin relaxation beyond the
Redfield limit, which is what we want to simulate. Two protons
in the fast exchange were assumed to be at 3.0 Å from the
paramagnetic center.

Figure 2 shows the fit of the slow-motion profiles (symbols)
with the SBM equations (solid lines) for the case ofD ) 0,
and the best-fit parameters (∆t andτV) are reported in Table 3.
The results show that the best-fit∆t andτV values are correct
for ∆tτV ) 0.01 and 0.05. This means that the system is well

Figure 1. NMRD profiles calculated with the slow-motion theory (τr

) 20 × 10-12 s, 0; 60 × 10-12 s, 9; 200 × 10-12 s, O; 600 × 10-12

s,b; 2000× 10-12 s,4) for S) 7/2 systems, two protons at 3.0 Å and
∆t ) 0.05 cm-1, τV ) 20‚10-12 s and best fits (solid lines) performed
using the SBM equations of the profiles calculated with the slow-motion
theory. The profiles are labeled with the value ofτr in picoseconds.

TABLE 2: Best-Fit Parameters Obtained Fitting the SBM
Equations to the Slow-Motion Profiles Calculated without or
with Static ZFSa

value used in
the slow-motion

calculation

best fit
parameters
for D ) 0

best fit
parameters for

D ) 0.12247 cm-1

τr ) 20 ps ∆t ) 0.029 cm-1 ∆t ) 0.029 cm-1

τr ) 20.1 ps τr ) 20.0 ps
τV ) 22.7 ps τv ) 20.0 ps

τr ) 60 ps ∆t ) 0.036 cm-1 ∆t ) 0.022 cm-1

τr ) 60.1 ps τr ) 60.0 ps
τV ) 20.1 ps τv ) 36.0 ps

τr ) 200 ps ∆t ) 0.044 cm-1 ∆t ) 0.042 cm-1

τr ) 200 ps τr ) 200 ps
τV ) 14.9 ps τv ) 8.88 ps

τr ) 600 ps ∆t ) 0.045 cm-1 ∆t ) 0.039 cm-1

τr ) 598 ps τr ) 599 ps
τV ) 15.0 ps τv ) 9.6 ps

τr ) 2000 ps ∆t ) 0.045 cm-1 ∆t ) 0.039 cm-1

τr ) 2000 ps τr ) 2000 ps
τV ) 15.4 ps τv ) 9.2 ps

a Parameters in the slow-motion theory:S ) 7/2, 2 protons atr )
300 pm,τV ) 20 ps,∆t ) 0.05 cm-1, andD ) 0 or 0.12247 cm-1.
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within the Redfield limit, and no correction is needed. For∆tτV
g 0.1, the best-fit∆t and τV values are significantly smaller.
These results further support the observation in Figure 1 that
the differences are due to the near-Redfield limit conditions.

The calculated slow-motion profiles with static ZFS present
were performed using the same parameter values as for Figure
2, except forD that has the value 0.1 cm-1. Figure 3 shows the
fit of the slow-motion profiles (symbols) with the modified
Florence NMRD program (solid lines), with the best-fit
parameters (D, ∆t, andτV) reported in Table 3.

The results of the modified Florence NMRD program show
very good agreement for all parameters in the cases of∆tτV e
0.1. For larger values of∆tτV, the obtained parameter values of
∆t and τV are, surprisingly, still in very good agreement with
the values used in the slow-motion calculations. The obtained
values ofD in these latter cases are, however, slightly under-
estimated. These results indicate that the transition-frequency
dependence in the electron spin relaxation changes as we move
toward the Redfield limit and, in addition, that the presence of
the static ZFS dominates the transition-frequency dependence
in the electron spin relaxation even for near-Redfield limit
conditions. For∆tτV ) 0.5 and 1, a new feature can be noted in
Figures 2-3: the relaxivity of the low-field plateau calculated
using the slow-motion theory and the modified Florence NMRD
program increases by increasing the value ofτV, whereas it
decreases in the profiles calculated with the SBM. This feature
is also related to the transition-frequency dependence in the
electron spin relaxation (vide infra).

Moreover, we tried also here to fit with the SBM equations.
The produced profiles are very poor (not shown), and the
obtained parameter values are clearly underestimated.

Ni-Containing Macromolecule Profiles.The same features
as observed forS ) 7/2 in Figures 1-3 are expected to occur
for S ) 1 systems as well. In such systems,∆tτV can be much
larger than unity.37 We want to investigate how the best-fit
parameters are affected. The relaxometric profiles, calculated
with the slow-motion theory, are displayed in Figure 4 (symbols)
for a ∆t value of 1 cm-1 and for different values of the
correlation timeτV that is responsible for electron spin relaxation
(10-13, 3 × 10-13, 10-12, 3 × 10-12, 10-11, 3 × 10-11, 10-10,
and 3× 10-10 s). These values ofτV are chosen in order for the
electron spin relaxation to be within the Redfield limit for some

values and in the slow-motion regime for some others. Two
fast exchanging protons were assumed to be at 3.0 Å from the
paramagnetic center, and the rotational correlation time was set
to 10-6 s (i.e., long enough so that the correlation time for
nuclear spin relaxation is the electron spin relaxation time under
any condition). The presence of an axially symmetric static ZFS,
with D ) 1.2247 cm-1, is also assumed.

The profiles calculated with the slow-motion theory were
fitted with the SBM theory and with the modified Florence
NMRD program,9 by leavingD, ∆t, andτV free to change. The
fitted profiles obtained using the SBM theory (not shown) are
always in poor agreement with the slow-motion profiles. In the
Redfield limit, the fitting of the SBM theory is indeed not
possible, because of the presence of static ZFS. On the contrary,
the fitted profiles of the modified Florence model, shown as
solid lines in Figure 4, reproduce very well the slow-motion
profiles within the Redfield limit (also shown earlier9). All best-
fit parameters are reported in Table 4.

By approaching and passing the Redfield limit, the profiles
calculated with the modified Florence NMRD program are not
really sensitive to the value of the static ZFSD parameter, and
good fits are obtained, even though with much smaller values
of ∆t and τV (up to 1 order of magnitude). This is somewhat
different from what we found forS) 7/2, where instead∆t did
not change appreciably andD was obtained smaller. However,
the sensitivity ofτV is indeed similar to what we found forS)
7/2 in the same motional regime.

In general, the static ZFS does not influence the electron spin
relaxation (within the Redfield limit and for slowly rotating
systems) forS) 1 to the same extent as forS) 7/2, which has
been discussed in an earlier paper by Nilsson and Kowalewski.38

This would explain the insensitivity of theD parameter as we
move toward the Redfield limit. The same behavior for theτV
dependence as forS ) 7/2 in the previous section is, however,
observed also in Figure 4 (i.e. the relaxivity increases asτV
increases for the slow-motion profiles in the cases of∆tτV g
1.9).

Discussion

The physical picture of the features observed in Figures 1-4
is explained in this section with the aid of calculated profiles
(i.e., no fitting) for the slow-motion theory, the SBM theory,
and the modified Florence model. The calculations were
performed for three cases ofS) 7/2 systems in the presence of
static ZFS: (i) clearly within the Redfield limit (∆tτV ) 0.01),
(ii) near the Redfield limit (∆tτV ) 0.1), and (iii) beyond the
Redfield limit (∆tτV ) 1). All parameter values are the same as
in the corresponding cases of Figure 3.

The calculated profiles are shown in Figure 5 using the slow-
motion theory (symbols), the modified Florence model (solid
lines), and the SBM theory (dotted lines). Within the Redfield
limit, the profile of the modified Florence model is in good
agreement with that of the slow-motion theory, whereas some
deviation in the low-field region is observed for the other two
cases near and out of the Redfield limit. The SBM theory, on
the other hand, shows good agreement only in the high-field
part (above 30 MHz), whereas in the low-field region, there
are significant differences for all three cases. Because the SBM
theory is a high-field theory, this is not unexpected. In particular,
the shape of the SBM profiles is very different than for the
other approaches. In addition, the relaxivity in the low-field
plateau calculated with the slow-motion theory or the modified
Florence model is several times larger than the value calculated
with the SBM equations.

Figure 2. Proton relaxation rates calculated with the slow-motion
theory (τV ) 10-12 s, 9; 5 × 10-12 s, b; 10-11 s, 2; 5 × 10-11 s, 1;
10-10 s, 3) for S ) 7/2 systems, two protons at 3.0 Å and∆t ) 0.05
cm-1, τr ) 10-6 s and best fits (solid lines) performed using the SBM
equations of the profiles calculated with the slow-motion theory. The
profiles are labeled with the value of∆tτV.
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We will now explain why the modified Florence model does
not seem to be affected by the near-Redfield limit conditions
and the reason for the increased difference in the low-field
region between the slow-motion profiles and those of the SBM
theory. The Redfield relaxation theory is based on perturbation
theory. The perturbation theory assumes that the total Hamil-
tonian can be divided into the main, unperturbed part, which
determines the gross energy-level features of the system, and
into the perturbation part. The latter modifies the picture to a
certain extent and, in the case of time-dependent perturbation,
causes transitions between the energy levels. For stochastic
perturbation, the transition probabilities are proportional to the
spectral densities at frequencies corresponding to the energy
differences between the (unperturbed) levels. If the product of
the relevant interaction leading to the transitions/relaxation (here
∆t) and the corresponding correlation time (hereτV) is much
smaller than unity,∆tτV ,1, the perturbation regime is always
valid. When the Redfield conditions are approached, the
inequality becomes less strong, the physical picture becomes
dependent on the relative strengths of different interactions. If
the magnetic field is low (the Zeeman interaction is weak) and
the static ZFS is absent, the transient ZFS will tend to become

the main Hamiltonian. The electron spin will then tend to be
instantaneously quantized in the ZFS principal frame rather than
in the laboratory frame. If∆tτV .1, the electron spin will be
completely locked in the transient ZFS frame and move with
it. If τV is long, the motion of the electron spin will be slow,
the correlation time sensed by the nuclear spin will be long,
and the nuclear relaxivity will increase. Note that this picture
is not valid at high field, where the Zeeman interaction acts as
the unperturbed Hamiltonian, even if the Redfield condition is
not fulfilled. The errors due to approaching the Redfield limit
under these conditions are much less severe.

This explains the large differences in the low-field region
between the slow-motion profiles and those of the SBM theory.
In addition, it explains why the profiles of the slow-motion
theory and the modified Florence model have differentτV
dependence than the SBM curves. The Bloembergen-Morgan
equation (see eq 1) has a transition-frequency dependence that
includesωS (i.e., the Zeeman frequency). At low magnetic fields,
for all values ofτV used in Figures 2-5, the productωSτV in
the denominator will always be less than unity, and thus, the
electron spin relaxation rate will monotonically increase asτV
increases (because∆t

2τV increases), and in turn, the PRE

TABLE 3: Best-Fit Parameters Obtained by Fitting the SBM Equations and the Modified Florence NMRD Program to the
Slow-Motion Profiles Calculated with or without Static ZFSa

values used in the
slow-motion calculation

D ) 0, 0.1 cm-1
best fit parameters

for D ) 0

best fit parameters from
the SBM equations
for D ) 0.1 cm-1

best fit parameters from
the modified Florence NMRD

program forD ) 0.1 cm-1

∆tτv ) 0.01 D ) 0.107 cm-1

∆t ) 0.05 cm-1 ∆t ) 0.05 cm-1 ∆t ) 0.053 cm-1 ∆t ) 0.048 cm-1

τV ) 10-12 s τv ) 0.99‚10-12 s τv ) 1.2‚10-12 s τv ) 1.05‚10-12 s
∆tτv ) 0.05 D ) 0.109 cm-1

∆t ) 0.05 cm-1 ∆t ) 0.049 cm-1 ∆t ) 0.051 cm-1 ∆t ) 0.049 cm-1

τV ) 5‚10-12 s τv ) 5‚10-12 s τV ) 5.4‚10-12 s τV ) 5.5‚10-12 s
∆tτv ) 0.1 D ) 0.101 cm-1

∆t ) 0.05 cm-1 ∆t ) 0.048 cm-1 ∆t ) 0.046 cm-1 ∆t ) 0.050 cm-1

τV ) 10-11 s τv ) 0.93‚10-11 s τV ) 0.91‚10-11 s τV ) 1.1‚10-11 s
∆tτv ) 0.5 D ) 0.086 cm-1

∆t ) 0.05 cm-1 ∆t ) 0.035 cm-1 ∆t ) 0.027 cm-1 ∆t ) 0.049 cm-1

τV ) 5‚10-11 s τv ) 2.5‚10-11 s τV ) 1.5‚10-11 s τV ) 5.3‚10-11 s
∆tτv ) 1.0 D ) 0.082 cm-1

∆t ) 0.05 cm-1 ∆t ) 0.028 cm-1 ∆t ) 0.020 cm-1 ∆t ) 0.049 cm-1

τV ) 10-10 s τv ) 3.1‚10-11 s τV ) 1.6‚10-11 s τV ) 1.0‚10-10 s

a Parameters in the slow-motion theory:S ) 7/2, ∆t ) 0.05 cm-1, D ) 0 or 0.1 cm-1, and increasing values ofτV.

Figure 3. Proton relaxation rates calculated with the slow-motion
theory (τV ) 10-12 s, 9; 5 × 10-12 s, b; 10-11 s, 2; 5 × 10-11 s, 1;
10-10 s, 3) for S ) 7/2 systems, two protons at 3.0 Å and∆t ) 0.05
cm-1, τr ) 10-6 s, D ) 0.1 cm-1 and best fits (solid lines) performed
using the modified Florence NMRD program of the profiles calculated
with the slow-motion theory. The profiles are labeled with the value
of ∆tτV.

Figure 4. Proton relaxation rates calculated with the slow-motion
theory (τV ) 10-13 s, 9; 3 × 10-13 s, b; 10-12 s, 2; 3 × 10-12 s, 1;
10-11 s, 3; 3 × 10-11 s, 4; 10-10 s, O; 3 × 10-10 s, 0) for S ) 1
systems, two protons at 3.0 Å and∆t ) 1 cm-1, τr ) 10-6 s, D )
1.2247 cm-1 and best fits (solid lines) performed using the modified
Florence NMRD program of the profiles calculated with the slow-
motion theory. The profiles are labeled with the value of∆tτV.
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decreases. On the other hand, if an axially symmetric static ZFS
is present and the electron spin relaxation is within the Redfield
limit, the static ZFS will be the main Hamiltonian at low field,
and the electron spin will be quantized in the molecule-fixed
static ZFS principal frame rather than in the laboratory frame.
This means that the relevant frequencies, occurring in the
spectral densities determining the electron spin relaxation in the
low-field region, are related to the static ZFS rather than the
Zeeman interaction. This feature is taken into account in the
modified Florence model.10 Indeed, instead ofωS in the
denominator of eq 1, we haveωD. BecauseωD . ωS at low
magnetic fields, the productωDτV will be close to unity forτV
) 50 ps andD ) 0.1 cm-1. This means that forτV < 50 ps,
ωDτV < 1 and the electron spin relaxation depends onτV through
∆t

2τV analogously to eq 1. However, forτV > 50 ps,ωDτV > 1
and the electron spin relaxation rate becomes proportional to

1/τV (i.e., ∆t
2τV/ωD

2τV
2 ≈ 1/τV), which leads to a reduction of

the electron spin relaxation rate, and the increase of PRE, asτV
increases.

The physical picture of the electron spin relaxation in the
slow-motion regime is dependent on the relative magnitudes
of the transient and static ZFS. If the magnitude of the transient
ZFS is comparable to that of the static part of the ZFS, the
same feature as without static ZFS will be present. Thus, the
electron spin will instantaneously be quantized, at least partly,
in the transient rather than in the static ZFS principal frame,
and the energy-level structure will then be influenced also by
the transient ZFS.

If, on the other hand, the static ZFS is larger than the transient,
then the general shape of the spectral density functions
determining the electron spin relaxation in the low-field region
is related to the static ZFS, which reduces the sensitivity to
fulfilling the condition ∆tτV ,1. Thus, the good agreement in
the low-field region between the slow-motion calculations and
the modified Florence NMRD profiles is caused by the fact that
the magnitude of the static ZFS is about twice that of the
transient ZFS.

Conclusions

The aim of the present paper is the understanding of the
physics of electron spin relaxation near the Redfield limit. To
do that, we compare different models comprising different levels
of sophistication.

The SBM equations can provide reasonably good fits of
experimental relaxometric profiles if static ZFS is absent. The
obtained best-fit parameters may, however, be subject to large
errors if the electron spin relaxation is close to or out of the
Redfield limit, which seems to be the case of the commonly
employed and investigated Gd-based contrast agents. The SBM
theory does not take into account the static ZFS; this fact can
produce even larger errors in the obtained parameter values. A
notable result of the calculations in the present paper is that,
by approaching the Redfield limit, the∆tτV product is always

TABLE 4: Best-Fit Parameters Obtained Fitting the SBM Equations and the Modified Florence NMRD Program to the
Slow-Motion Profiles Calculated without or with Static ZFSa

values used in the slow
motion calculation

best-fit parameters
from the SBM theory

best-fit parameters from the
modified Florence NMRD program

∆tτV ) 0.019 D ) 1.2247 cm-1 D ) 1.2 cm-1

∆t ) 1 cm-1 NO GOOD FITS ∆t ) 1.0 cm-1

τV ) 10-13 s τV ) 10-13 s
∆tτV ) 0.057 D ) 1.2247 cm-1 D ) 1.25 cm-1

∆t ) 1 cm-1 NO GOOD FITS ∆t ) 1.0 cm-1

τV ) 3‚10-13 s τV ) 3.0‚10-13 s
∆tτv ) 0.19 D ) 1.2247 cm-1 D ) 1.28 cm-1

∆t ) 1 cm-1 NO GOOD FITS ∆t ) 0.98 cm-1

τV ) 10-12 s τV ) 1.02‚10-12 s
∆tτv ) 0.57 D ) 1.2247 cm-1 D ) 1.29 cm-1

∆t ) 1 cm-1 NO GOOD FITS ∆t ) 0.94 cm-1

τV ) 3‚10-12 s τV ) 2.8‚10-12

∆tτv ) 1.9 D ) 1.2247 cm-1 D ∼ 1.2 cm-1

∆t ) 1 cm-1 ∆t ) 0.78 cm-1 ∆t ) 0.77 cm-1

τV ) 10-11 s τV ) 0.62‚10-11 s τV ) 0.64‚10-11 s
∆tτv ) 5.7 D ) 1.2247 cm-1 D ∼ 1.2 cm-1

∆t ) 1 cm-1 ∆t ) 0.62 cm-1 ∆t ) 0.58 cm-1

τV ) 3‚10-11 s τV ) 1.17‚10-11 s τV ) 1.12‚10-11 s
∆tτv ) 19 D ) 1.2247 cm-1 D ∼ 1.2 cm-1

∆t ) 1 cm-1 ∆t ) 0.43 cm-1 ∆t ) 0.39 cm-1

τV ) 10-10 s τV ) 0.19‚10-10 s τV ) 0.16‚10-10 s
∆tτv ) 57 D ) 1.2247 cm-1 D ∼ 1.2 cm-1

∆t ) 1 cm-1 ∆t ) 0.24 cm-1 ∆t ) 0.23 cm-1

τV ) 3‚10-10 s τV ) 0.24‚10-10 s τV ) 0.20‚10-10 s

a Parameters in the slow-motion theory:S ) 1, ∆t ) 1 cm-1, D ) 0 or 1.2247 cm-1, and increasing values ofτV.

Figure 5. Proton relaxation rates calculated with the slow-motion
theory (τV ) 10-12 s, 9; 10-11, 2; p 10-10 s, 3), with the modified
Florence NMRD program (solid lines), and with the SBM equations
(dotted lines) forS) 7/2 systems, two protons at 3.0 Å and∆t ) 0.05
cm-1, τr ) 10-6 s, D ) 0.12247 cm-1. The profiles are labeled with
the value of∆tτV.
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smaller when experimental profiles are fitted with the SBM
theory, than with the slow-motion theory. The reason is that
the former theory predicts a smaller low-field plateau than the
latter, which is a consequence of the poor description of the
electron spin relaxation near the Redfield limit in the SBM
theory. Thus, the comparisons in the present paper indicate that
when experimental profiles of Gd-based contrast agents are fitted
with the SBM equations, the obtained best-fit values of∆t and
τV are clearly underestimated (several tens of percent smaller
than the correct values). The difference becomes even larger if
a static ZFS is present.

The modified Florence model produces very good fits with
obtained best-fit parameter values that are in good agreement
with those used in the slow-motion calculations, even under
near-Redfield limit conditions. This is likely to hold as long as
the magnitude of the static ZFS is larger than that of the transient
ZFS. This shows that systems with static ZFS near the Redfield
limit can still be described with the Redfield approach if the
correct energy level effects are included in the electron spin
relaxation. This is important because it validates analysis of the
experimental data using the proper approximations.

Such considerations can be important for future development
of contrast agents for MRI. In fact, last-generation contrast
agents are developed in order to have a value for the exchange
time of water protons coordinated to the metal ion of the same
order of the electron spin relaxation time at the fields of work
of MRI.17 Therefore, calculations done with the SBM equation
to optimize the value ofτM can be significantly affected by the
closeness of the Redfield limit for electron spin relaxation.
Furthermore, the present findings are crucial for the development
of contrast agents to be used at low fields, where the values of
relaxivity calculated with the SBM equations can be profoundly
incorrect. Consequently, the modified Florence model or an
equivalent approach should preferably be used rather than the
SBM theory under near-Redfield limit conditions for cases when
the static part is larger than the transient part of the ZFS, which
is likely to occur in, e.g., Gd-based contrast agents.
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