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Rates of vibrational energy transfer in the five largestR helices and two largest coil segments of myoglobin
are calculated and compared with energy transfer in one-dimensional glasses. In all three cases, vibrational
energy transfer occurs by anharmonic coupling of spatially overlapping localized normal modes in resonance.
The frequencies of pairs of localized vibrational modes close in space are usually separated by a few hundred
cm-1. As a result, there is little direct energy transfer to low-frequency modes by low-order anharmonic
coupling, and rates of vibrational energy transfer from most higher-frequency modes are nearly temperature-
independent, consistent with experimental observations. Variation of the anharmonic decay rate with mode
frequency in helices and coils is similar, the trends of which are captured by an appropriately parametrized
one-dimensional glass.

1. Introduction

Describing chemical events in molecules and clusters ulti-
mately requires a picture of the flow of energy on the picosecond
time scale. Recent theoretical and experimental work has
unraveled how energy flows quantum mechanically in small
molecules,1,2 and progress continues on connecting quantum
energy flow in molecules to the kinetics of conformational
change.3,4 Rates of conformational isomerization of rather small
molecules are often influenced by rates of intramolecular energy
flow, as illustrated by the well-studied examples of cyclohexane
ring inversion4,5 andtrans-stilbene photoisomerization.3,6 Energy
flow rates influence chemical reaction rates when energy transfer
in to and out of transition states is slower than the vibrational
frequency of crossing the barrier when the molecule goes
through an activated complex. In many small molecules at
barrier energies the former rate is of order 1 ps-1 or less while
the latter is of order 10 ps-1.3,4 What is the rate of vibrational
energy transfer in a large molecule, such as a protein? Unlike
small molecules such as cyclohexane, a protein has a large
density of low-frequency modes into which energy can flow.
Any vibrational mode is directly coupled anharmonically to a
very large number of these bath modes, which could in principle
dramatically increase the energy transfer rate above 1 ps-1.
Recent spectroscopic studies7,8,9of the amide I band of a variety
of globular peptides and proteins, however, suggest that energy
transfer rates in proteins may not be very different from those
in small molecules. Amide I band spectroscopy, which provides
information about vibrational energy transfer from modes in
the range 1600-1700 cm-1, reveals typical values of the energy
transfer rate that are of order 1 ps-1, not unlike intramolecular
energy flow rates in smaller molecules.7,8 Moreover, the energy
transfer rate from the amide I band of myoglobin appears to
vary little with temperature from about 10 to 300 K.7 These
observations suggest that there is little direct energy transfer
from the amide I vibration to the bath of low-frequency protein
modes. Spectroscopic studies of CO-myoglobin by Fayer,
Dlott, and co-workers10,11 similarly reveal that the decay rate

of vibrational energy from the ligand to the protein is nearly
independent of temperature, again from about 10 to 300 K.
Another feature that may influence energy flow in large
molecules is structure. While anharmonicity plays a pivotal role
in a protein’s vibrational dynamics and energy transfer,12,13 it
has also been suggested that certain structural features of
proteins serve as efficient pathways for vibrational energy to
flow. In particular, theR helix has been speculated to provide
a conduit for vibrational energy transport to and from reaction
centers and across cell membranes.9,14

In this article, we explore the nature and rate of vibrational
energy flow inR helical peptides, a major structural element of
proteins, and compare this with energy transfer in coil segments
of proteins. We calculate the rate of vibrational energy transfer
in the five largestR helices of myoglobin, which range from
16 to 24 residues. We find that the large majority of normal
mode vibrations in the helices are localized, so that intramo-
lecular energy flow from one end of the helix to the other is
largely due to anharmonic coupling of the normal modes. The
same scenario also holds for one-dimensional (1D) glasses,15

in which only the very lowest frequency normal modes span
the glass, while the vast majority of normal modes are localized.
In a 1D glass, energy transfer from a localized mode to a low-
frequency bath mode is slow and does not influence the energy
flow rate from the higher-frequency, localized mode.16 We shall
see that this is the case for energy transfer rates from most helix
modes, too. Finally, we examine the role of structure in energy
transfer, comparing energy transfer rates from vibrational modes
of a helix to energy transfer rates in coils. Variation of the energy
transfer rate with frequency and temperature in coils is similar
to that in helices, where on average the anharmonic decay rate
is faster than in coils by about a factor of 3. Energy transfer in
the R helices is not especially efficient and is comparable to
transfer along other portions of the protein backbone. Whether
or not the polypeptide chain forms a helical structure, vibrational
energy transfer within it parallels anharmonic decay of vibra-
tional states in 1D glasses.

Connections between energy landscapes of proteins, clusters,
and glasses have been exploited for some time.17,18In this paper,† Part of the special issue “R. Stephen Berry Festschrift”.
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we compare mechanisms for energy transfer inR helices and
coil segments of proteins with that in 1D glasses. Our focus is
on the fastest relaxation time scale, when the protein or glass
relaxes within a local minimum of the potential, and we address
anharmonic decay of the normal modes. Recent theoretical and
computational work16,19,20 has helped elucidate the nature of
anharmonic decay of normal modes in a glass. The simplest
case is a 1D glass, for which all but of orderN1/2 of theN normal
modes of vibration are localized spatially to regions smaller
than the glass, increasingly so as the mode frequency increases.15

Excitations of localized normal modes in a glass, called locons,20

cannot transport energy from one end of the glass to the other.
Locon transport in a glass arises from anharmonic coupling of
overlapping localized normal modes in resonance.16,20We shall
see that most normal modes of the five largestR helices and
two largest coil segments of myoglobin are also localized. It
was recently pointed out that energy from a localized mode in
myoglobin is transferred to a small number of resonant modes
that overlap in space,21 which is the principle for locon transport
in a glass.16,20One consequence of localization in a 1D glass is
the nearly temperature-independent energy transfer rate from
modes with frequencyω . kBT/p. We show below that the
same holds for higher frequency modes involving backbone
vibrations of helices and coils, including the well-studied amide
I band.

In the following section we present computational results of
vibrational energy transfer rates in the five largestR helices of
myoglobin. In section 3, we introduce a model of a 1D glass
whose force constant distribution is parametrized to match that
of the helices, and comparisons are made between normal mode
distributions and energy transfer rates in the model 1D glass
and in theR helices of myoglobin. In section 4, we compare
results for energy transfer in helices with energy transfer in the
two largest coil segments of myoglobin. Concluding remarks
are given in section 5.

2. r-Helices

We consider first the normal modes of the five largestR
helices of myoglobin, the A, B, E, G, and HR helices, which
are indicated in Figure 1. The number of residues in each helix
is 16, 16, 20, 19, and 24 for the A, B, E, G, and H helices,
respectively. The work reported in this section parallels that
summarized in a recent letter,22 where energy transfer rates in
the same helices are reported.23 Computation of the normal
modes was carried out using the program package MOIL, which
was written by Elber and co-workers.24 Coordinates for the
atoms in the helices were taken initially from the minimum-
energy structure of myoglobin, and the new minimum energy
structures for each helix were subsequently computed, followed
by the normal modes. The normal mode frequencies for the
five helices range from about 3 to 1850 cm-1, as well as a range
of higher frequency modes above 3100 cm-1 corresponding to
CH, NH, and OH stretches that we shall not consider here. The

density of normal modes of the helices as a function of mode
frequency is plotted in Figure 2. The mode density is highest
at low frequency, and it declines with substantial fluctuations
as the frequency increases to the band edge around 1850 cm-1.
In describing energy flow, it is important to determine the extent
to which a normal mode spans the helical peptide. In doing so,
we might usefully characterize a polypeptide as a disordered
chain of atoms. In a harmonic periodic chain, the normal modes
carry energy without resistance from one end of the 1D crystal
to the other; however, the vast majority of normal modes of an
aperiodic chain are spatially localized and cannot carry heat.
We might therefore expect many normal modes of polypeptides
to be likewise localized in space.

As a measure of the number of residues contributing to a
mode, we calculate the information entropy,

whereNres is the total number of residues in the helix andpi is
the projection of all coordinates of a residue onto a normal mode
of the helix. If vibrations of each residue contribute equally to
a normal mode thenS ) ln Nres, whereasS ) 0 if a normal
mode vibration is localized to a single residue. Then eS is
roughly the number of residues that a normal mode spans. The
average value of eS for the 5 helices vs mode frequency is plotted
in Figure 3. At frequencies below≈200 cm-1, the modes span
roughly 12 residues, about two-thirds the number of residues
(16-24) that make up the helices, where there are on average
19 residues/helix. At higher frequency, there is a gradual decline
to participation of 1 to 6 residues, with the larger number
involving modes where atoms vibrate along the backbone. For
instance, modes that lie in the amide I band, in the range 1600-
1700 cm-1, involve larger numbers of residues than modes at
somewhat lower or higher frequencies. It is noteworthy that the
overall form of〈eS〉 with ω is similar to that of the participation
number,ê, in 1D glasses. The participation number of modeR
is defined byêR ) (Σi(en

R)4)-1, where enR are the coefficients
of normalized vibrational eigenstates andN is the number of
atoms in the 1D glass. We found a variation ofê ∼ ω-2 for a
model of a 1D glass fits the numerically calculated participation
number very well,16 consistent with theoretical expectations for
the localization length.15 To improve on this, the finite size as
well as the large-ω limiting value of 1 can be accounted for by
the functionê(ω) ≈ R/((3R/2N) + ω2) + 1, whereN is the
number of atoms in the 1D glass andR is a measure of disorder.

Figure 1. Ribbon diagram of sperm whale myoglobin. Normal modes
and vibrational energy transfer rates in the five largest helices, labeled
A, B, E, G, and H, are calculated. These results are compared with the
energy transfer rates in the two largest coil segments, CD and EF.

Figure 2. Normalized distribution of normal-mode frequencies, binned
into 50 cm-1 intervals, of the helices (solid line) and the model 1D
glass described in the text (long dashes).

S) - ∑
i)1

Nres

pi ln pi (1)
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Then whenω f 0, we haveê ≈ 2N/3, which is the value of
the participation number of a periodic chain.25 Assuming that
〈eS〉 varies withω in a similar way, we compare our numerical
results for the helices with an equation of the formR/(â + ω2)
+ 1. Since there areNres) 19 amino acids on average, we take
R/â ) 2Nres/3 - 1 ) 12 to fit the small-ω limit. The result for
â ) 9 × 104 is plotted in Figure 3, where we see reasonable
agreement with〈eS〉 for the helices, apart from values at several
frequencies where normal modes involve backbone vibrations,
such as the amide I and II vibrations accounting for the peak
from 1550 to 1700 cm-1 and the amide III band near 1300 cm-1.

Most normal modes of the helices, like those of an aperiodic
chain, cannot carry energy from one end to the other. Anhar-
monicity generates energy transfer among the localized normal
modes. In our calculations of energy transfer we consider only
the contribution of cubic anharmonic terms and neglect all terms
of higher order, which is reasonable if we restrict ourselves to
low temperatures. At low temperatures, the energy transfer rate
is dominated by processes that involve the decay of a vibrational
excitation into two others, such thatωR ) ωâ + ωγ. The energy
transfer rate,WR, from modeR is then given by26

where nR is the occupation number of modeR, which at
temperatureT we take to be

The matrix elementsΦRâγ appear as the coefficients of the cubic
terms in the expansion of the interatomic potential in normal
coordinates, computed numerically as

whereQR is a mass-weighted normal coordinate andQ0 is the
equilibrium position of the helix in normal coordinates.

We have computed the vibrational energy transfer rate as a
function of mode frequency with eq 2 for the five largestR

helices of myoglobin. The results for each individual helix atT
) 45 K are shown in Figure 4, where we have averagedWR
over all modes in 50 cm-1 intervals. We see in Figure 4 that
the variation of decay rate with mode frequency for each helix
is similar with the exception of a few strikingly high rates, in
particular a high rate of about 18 ps-1 just above 1500 cm-1 in
the B helix. The anomalously high rate in the B helix near 1500
cm-1 involves energy flow from a vibration of largely the
carboxyl group of aspartate at 1544 cm-1 to two skeletal
aspartate vibrational modes at 738 and 806 cm-1.

The average vibrational energy transfer rate in all the helices
as a function of frequency is plotted in Figure 5, where the
temperatures were chosen to beT ) 15 and 45 K. Vibrational
energy transfer rates are averaged over the vibrational modes
of all helices in 50 cm-1 intervals. We observe in Figure 5 that
the vibrational energy transfer rates are not very sensitive to
temperature above about 500 cm-1, with the slight exception
of modes with frequencies in the range 1700-1750 cm-1.
Temperature dependence of the energy transfer rate implies that
energy is flowing directly into low-frequency modes of the
helices. Since the temperature dependence largely decreases with
increasing mode frequency, we can conclude that as the mode
frequency increases there is less direct energy transfer to low-

Figure 3. Histograms for eS plotted as a function ofω. The upper
histogram (solid line) is eS, a measure of the number of residues of the
helix that participate in a normal mode vibration, averaged over all
modes of the helices in 50 cm-1 intervals. The middle, dashed histogram
corresponds to eS for two helices of myoglobin (G and H) truncated to
10 residues. The lowest histogram (short dashes) is the average value
of eS for the CD and EF coil segments, each containing 10 residues.
The curve near the upper histogram is the functional form eS ) R/(â
+ ω2) + 1 discussed in the text, withR ) 1 × 106 andâ ) 9 × 104.

WR )
pπ

8ωR
∑
â,γ

|ΦRâγ|2

ωâωγ

(1 + nâ + nγ)δ(ωR - ωâ - ωγ) (2)

nR ) (epωR/kBT - 1)-1 (3)

ΦRâγ ) (∂2V/∂QR∂Qâ|Q0+δQγ
- ∂

2V/∂QR∂Qâ|Q0-δQγ
)/2δQγ

(4)

Figure 4. Vibrational energy transfer rates,W, in ps-1 for the five
largestR helices of myoglobin plotted as a function of mode frequency,
ω. The temperature is 45 K. Rates in the A, B, E, G, and HR helices
are plotted as dashes, dot-dashes, dots, long dashes, and a solid line,
respectively.

Figure 5. Average vibrational energy transfer rate,W, in ps-1 for the
five largestR helices of myoglobin plotted as a function of mode
frequency,ω, at 15 K (long dashes) and 45 K (solid line). Also plotted
is the average vibrational energy transfer rate in the 1D glass model
described in the text, whereT ) 15 K (dashes) and 45 K (dot-dashes).
Energy transfer rates in the model are higher than in the helices at low
frequency but are similar aboveω ≈ 700 cm-1. Temperature depen-
dence of the rate in both the helices and 1D glass is typically small at
higher frequency, above about 400 cm-1.
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frequency modes. Such a trend, as we shall see below, is
characteristic of energy transfer in a 1D glass. This trend arises
because the frequencies of modes that are localized in space
tend to “repel” one another;20,16modes with similar frequencies
do not overlap in space, as will be discussed below. As a
consequence, energy transfer to modes with similar frequencies
and the remainder to low-frequency modes occurs very slowly.
There is as mentioned an exception to this trend at 1700-1750
cm-1, which lies just above the amide I band. We have found
that the modes for which the decay rate is temperature dependent
correspond to CO stretches in certain side chains, particularly
belonging to the glutamine residue of the A, B, and H helices.
Significant character of the same CO stretch is found for modes
in this frequency range that lie about 15-20 cm-1 apart, and a
mode of the latter frequency that overlaps the side chain is
available for energy transfer. Decay rates of the CO stretches
of the amide I band, from about 1600 to 1700 cm-1, are not
very temperature sensitive, as has also been observed experi-
mentally.7 We note that the measured decay rate of the amide
I band is about 0.5 ps-1,7,8 somewhat faster than the 0.3 ps-1

that we have calculated, though significant differences in the
decay rate are found depending on the location within the band;
for instance, lifetimes as long as 15 ps are observed at the blue
side of the amide I band.9 The difference between measured
and calculated decay rates could arise from the fact that neither
residues of loops nor water molecules are included in these
calculations, which are carried out only to third order in the
anharmonicity; each of these factors would tend to reduce the
rate.

We mention that the lifetime of the CO stretch in MbCO is
also nearly independent of temperature from 10 to 300 K.10,11

A weak temperature dependence of the lifetime might not be
quite as unexpected as for amide I band vibrations, since the
CO stretch frequency of roughly 1950 cm-1 lies some 100 cm-1

above the band of protein vibrations. Low-order anharmonic
coupling cannot couple the CO to the lowest-frequency,
delocalized modes. Weak coupling to low-frequency modes
would also be enhanced by the likelihood that the frequencies
of localized normal modes overlapping in space are widely
spaced. The photon echo experiments of Fayer, Dlott, and co-
workers provide the pure dephasing rate over the same range
of temperatures. The rate of pure dephasing, of course, does
not depend on resonant coupling between vibrational modes,
so that coupling to low-frequency modes, which provides the
strongest temperature dependence of the rate, is not restricted
by resonance requirements. Indeed, for temperatures below the
glass transition temperature of the protein, the pure dephasing
rate appears to follow a power-law dependence on temperature,
with a power of about 1.3.10,11 Recent calculations of the pure
dephasing rate of a ligand vibration coupled by dipole-dipole
interactions to anR-helix also reveal an apparent power-law
dependence of the pure dephasing rate with a power between 1
and 2.27

3. 1D Glass

We turn now to a comparison of anharmonic decay rates of
vibrational states in helices with decay in an anharmonic 1D
glass. Such a comparison can provide insight into the variation
of the energy transfer rate with mode frequency and with
temperature, as we discuss in this section. Here we modify a
model presented previously22 in a way that improves agreement
between the normal mode density of the model and that of the
helical peptide.

Our model for an anharmonic 1D glass is a chain ofN equally
spaced atoms of unit mass connected by random forces. For

the calculations discussed below we take an ensemble of five
chains ofN ) 500 atoms. This gives us as many chains in the
ensemble as we have helices, and the number of vibrational
modes/chain matches the average of 499 vibrational modes/
helix (where we are excluding helix modes with frequencies
above 3000 cm-1). The potential energy of the glass is given
by V ) V2 + V3, whereV2 is the potential energy to second
order,

with un the displacement of atomn from equilibrium andfn the
force constant. (Since we express frequencies in cm-1, it will
be convenient to expressfn in units of (cm-1)2.) Anharmonicity
arises from

The normal mode frequencies are obtained from the eigen-
values of the Hessian matrix, whose diagonal elements aredn

) fn-1 + fn. By contrast, the diagonal elements,d, of the Hessian
matrix for the R helices are the sums of numerous terms
accounting for a larger number of local interactions. In fact,
the distribution of the latter, shown in Figure 6, resembles the
positive half of a Gaussian centered at 0, whose standard
deviation we have found to be 9.5× 105 (cm-1)2. We take the
force constants,fn, to be randomly distributed in an exponential
distribution such that the standard deviation of the distribution
of dn ) fn-1 + fn, the diagonal elements of the Hessian of the
model, matches that for the helices. The distribution ofdn

appears to be similar to that of the diagonal matrix elements of
the Hessian for the helices, as seen in Figure 6. We have also
introduced a large-fn cutoff of 1.7 × 106 (cm-1)2 to prevent
mode frequencies much higher than the band edge for the
helices. Thenfn is taken randomly from an exponential distribu-
tion with standard deviation 4.0× 105 (cm-1)2 and cutoff 1.7
× 106 (cm-1)2. For the diagonal elements of the Hessian matrix
of this model we find a standard deviation of 9.0× 105 (cm-1)2,
close to that for the helices. In Figure 2 we compare the normal
mode density of the harmonic 1D glass consisting of 5 chains
of N ) 500 with the normal mode density of the helices. The
secular variation of the mode density of the helices with mode
frequency reveals specific features reflecting their constituents
and interactions. Nevertheless, these features appear as fluctua-
tions around the mode density of the model.

Figure 6. Normalized distribution of diagonal matrix elements of the
Hessian matrix, in (cm-1)2, for the five largestR helices of myoglobin
(solid line) and for the model 1D glass described in the text.

V2 )
1

2
∑
n)1

N

fn (un - un+1)
2 (5)

V3 )
1

6
∑
n)1

N

gn (un - un+1)
3 (6)
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Vibrational energy transfer in the model glass arises from
the anharmonicity,V3, given by eq 6. The cubic anharmonic
constants should vary asg ) cf/a, wherea is a lattice spacing
andc is a constant of order 1. The constantc/a is our one fitting
parameter, chosen so that the average decay rates in the glass
match those in the helices;a is a few Å so thatc/a should lie
in the range 0.1-1 Å-1. If f is the average value of the force
constant, then we set allgn ) (c/a)fn. The energy transfer rate,
WR, is given by eq 2, where for this model it is straightforward
to calculate

where the sum is over all sitesn, n′, andn′′. In Figure 5 we
compare the vibrational energy transfer rate in the glass to the
energy transfer rate in the helices atT ) 15 and 45 K. For the
cubic anharmonic coefficients of the glass we have chosenc/a
) 1 Å-1, which yields energy transfer rates that agree reasonably
well with the transfer rates of the helices. We find that the
transfer rate becomes less dependent on temperature with
increasing mode frequency, the same trend as for the helices.
As mentioned earlier, the small temperature dependence of the
energy transfer rate from higher-frequency modes implies that
little energy decays to the low-frequency modes of the glass.

Since energy flow to the large density of low-frequency
modes is slow, there must be relatively weak coupling between
high-frequency localized modes and low-frequency modes. We
illustrate this in Figure 7, where we plot the matrix elements in
eq 2 that couple modeR to a pair of modesâ and γ or to a
second modeâ with frequencyωâ ≈ ωR/2. Calling these matrix
elements

we plotted the relative values of|A|2, coupling modeR with
frequencyωR to modeâ with frequencyωâ and modeγ with

frequencyωγ ) ωR - ωâ, averaged over modes of the ensemble
of five chains in intervals of≈150 cm-1. Values ofωâ must be
0 < ωâ < ωR, and we plot|A|2 as a function ofωâ/ωR, which
falls in the range 0-1. SinceωR ) ωâ + ωγ, large values of
|A|2 near 0 or 1 would indicate strong coupling to low-frequency
modes. We plot|A|2 as a function ofωâ/ωR for the 1D glass at
ωR ≈ 1500 cm-1. To compare with the helices, we have also
calculated the average|A|2 for the helices atωR ≈ 1500 cm-1,
as well as atωR ≈ 1200 cm-1. We see that in each case strongest
coupling is between a mode with frequencyωR and pairs of
modes in resonance with modeR whose frequencies lie largely
in the rangeωR/3 to 2ωR/3. For the 1D glass and the helices at
ωR ≈ 1500 cm-1, largest coupling is to modes whereωâ ≈
ωR/3 and ωâ ≈ 2ωR/3. Large coupling atωR/2 seen for the
helices atω ≈ 1200 cm-1 arises predominantly from contribu-
tions of 2:1 Fermi resonances.

The observed distribution of coupling matrix elements is due
to the fact that frequencies of normal modes that are localized
to the same regions of space tend to be spread apart. The
frequencies of nearby localized oscillators thus appear to repel
one another. Consider, for instance, just two oscillators vibrating
with frequenciesω1 and ω2. If the oscillators are near one
another in space, they are coupled to each other by perhaps
several hundred cm-1, whereas if they are far from each other
the coupling between them is small. For the vibrational energy
to remain localized in one oscillator, the difference in their
frequencies,|ω1 - ω2|, must be several hundred cm-1 if the
oscillators are close in space, whereas there is no such restriction
if they lie far apart. Such “mode repulsion” of nearby localized
oscillators has consequences on the cubic anharmonic terms that
couple them. Cubic anharmonic coupling of at least one high-
frequency, localized mode to other modes is large only when
the modes overlap in space. In this case, the normal modes that
are coupled are widely spread in frequency; cubic terms coupling
localized modes of similar frequency are therefore often
relatively small. The latter are the terms that also couple a given
mode with excess energy to the low-frequency bath modes, since
the remainder of the energy not transferred to a mode of similar
frequency must end up there. Thus direct energy transfer from
a localized mode of the 1D glass to another localized mode of
similar frequency and to a low-frequency bath mode is relatively
slow, owing to the small size of the cubic coupling term that
enables this process.

The influence of spatial location of two normal modes on
the frequency difference of these vibrational modes is shown
in Figure 8. We locate the largest component of each vibrational
mode,R, and calculate the probability,P(∆ω), that, for another
mode,â, whose largest component lies a certain distance away
from the largest component of modeR, the difference in
frequency between the two modes is∆ω ) |ωR - ωâ|. We
consider only localized modes,R, whose frequency,ωR, falls
between 1000 and 2000 cm-1. Probabilities are calculated for
∆ω in intervals of 20 cm-1 up to∆ω ) 600 cm-1. Results for
the one-dimensional glass are shown in Figure 8a, and results
for the G and H helices of myoglobin are shown in Figure 8b.
The dashed histograms in both parts a and b of Figure 8 are
averages over all pairs of vibrational eigenstates, regardless of
the distance between the largest components ofR and â.
Consider first the 1D glass shown in Figure 8a. For any pair of
modesR andâ, there is just as much chance that the difference
of their vibrational frequency is small, e.g., less than 100 cm-1,
as it is fairly large, 500-600 cm-1. The solid-line histogram
gives the probability of finding∆ω when the maximum
component of the eigenstatesR andâ are on nearest-neighbor

Figure 7. Average value of|A|2, defined by eq 8, for coupling a glass
or helix mode with frequencyωR to two others with frequenciesωâ

andωγ ()ωR - ωâ), as a function ofωâ/ωR. Units of |A|2 are arbitrary.
The solid line corresponds to theN ) 500 1D glass model atωR ≈
1500 cm-1. The long-dashed histogram corresponds to average|A|2
for the five helices atωR ≈ 1500 cm-1. The dot-dashed histogram
corresponds to helices atωR ≈ 1200 cm-1. We observe that the largest
values of|A|2 couple modes with frequenciesωâ andωγ ()ωR - ωâ)
between aboutωR/3 and 2ωR/3 to modes with frequencies ofωR. Peaks
aroundωâ/ωR ) 0.5 include contributions from 2:1 Fermi resonances.

ΦRâγ ) ∑
n,n′,n′′

N ∂
3V

∂un∂un′∂un′′

en
Ren′

âen′′
γQRQâQγ (7)

|A|2≡ pπ
8

|ΦRâγ|2
ωRωâωγ

(1 + nâ + nγ) (8)
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atoms of the glass. In this case, we find no pairs of modes with
∆ω ≈ 80 cm-1 and about half as many as found on average
for any distance when∆ω is between about 100 and 200 cm-1.
Instead, larger values of∆ω, closer to 500 or 600 cm-1, are
expected to be found when the vibrational eigenstatesR andâ
are localized to neighboring atoms. We thus see for the 1D glass
that vibrational modes localized close to one another in space
tend to have frequencies that are quite different. Turning to
Figure 8b, we observe the same pattern for the G and H
R-helices of myoglobin. The dashed line again gives the
probability of finding modes whose frequency difference is∆ω
for all pairs of modes, regardless of the distance between their
largest components, with one member of the pair a localized
mode such that 1000 cm-1 < ω < 2000 cm-1. In this case,
when we ignore the distance of the modes from one another,
there is generally a somewhat larger chance of finding pairs of
modes whose frequency difference is small, below about 100
cm-1. However, if we only consider pairs of modes whose
largest components overlap atoms that lie less than 2 Å from
each other, we obtain the solid-line histogram in Figure 8b. As
for the 1D glass, we see that if pairs of localized modes lie
nearby in space, there is a propensity for their frequency
differences to be large, in this case around 500 cm-1, rather
than small, e.g., below 200 cm-1. Such a propensity diminishes
as we consider localized normal modes whose largest compo-
nents lie farther away from each other. For distances between

4 and 5 Å, as well as larger distances, we findP(∆ω) to be
essentially the same as the dashed histogram, for which the
distance between the modes is ignored. Because of the apparent
repulsion of frequencies of strongly localized modes, matrix
elements coupling two high-frequency modes close in frequency
and a low-frequency mode are generally small, as we saw in
Figure 7. Although shown here for only helices of myoglobin,
we observe a similar separation of mode frequencies for spatially
nearby localized modes of the complete protein.28 Given the
close connection between the vibrations of proteins and 1D
glasses, we expect the temperature dependence of the anhar-
monic decay rate of higher-frequency localized modes to be
often small in proteins.

4. Coils

We now compare vibrational energy transfer rates inR helices
presented in section 2 with energy transfer rates in coils. We
have calculated vibrational energy transfer rates in the two
largest coil segments of myoglobin, the CD and EF segments,
indicated in Figure 1. Each of these segments contains 10
residues. As for theR-helices, we computed the information
entropy,S, where eS is a measure of the number of amino acids
that participate in a normal mode vibration. The result is plotted
alongside the helix results in Figure 3, where we plot the average
value of eS as a function of frequency in 50 cm-1 intervals.
Just as for the helices, the normal modes of the coils are fairly
delocalized over the polypeptide at low frequency but become
increasingly localized above about 200 cm-1. Because the length
of the peptide influences the value of eS at low frequency, we
compare eS for the coil segments with eS for two helices that
also contain 10 residues, where we use the first 10 residues of
the G and HR-helices of myoglobin. We observe in Figure 3
that the normal modes of the helices are generally somewhat
more delocalized than those of the coil segments, extending over
about one more residue of the polypeptide, likely due to the
hydrogen-bonded network that is absent in the coils.

Vibrational energy transfer rates in the coil segments are
plotted in Figure 9 together with results for the helices, where
we have chosenT ) 45 K. We found little difference in the
energy transfer rates between the 10-residue helices and the
complete ones, so we simply compare energy transfer rates in
the coils with the average energy transfer rates in the complete
helices. The average energy transfer rate in theR helices over
the complete band of vibrational mode frequencies, 0.54 ps-1,
is about a factor of 3 greater than the average energy transfer
rate in the coils, which is 0.16 ps-1, where again the difference

Figure 8. Probability,P(∆ω), of finding a pair of vibrational modes
with frequency difference∆ω in (a) the 1D glass model and (b) the G
and H R-helices of myoglobin, when at least one of the modes is
localized with frequencyω in the range 1000 cm-1 < ω < 2000 cm-1.
Dashed lines are probabilities for any pair of modes with frequency
difference∆ω, regardless of their distance from one another in space.
The solid lines are results only for vibrational modes that lie near one
another in space. In (a), they correspond to vibrational eigenstates whose
maximum component lies over nearest-neighbor atoms in the 1D glass.
In (b), the pairs of modes are restricted to those whose largest
components lie within 2 Å in thehelix.

Figure 9. Average vibrational energy transfer rates,W, in ps-1 for
the five largestR helices of myoglobin (solid line) and the two largest
coil segments (long dashes) plotted as a function of mode frequency,
ω, at 45 K.
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is due to the hydrogen-bonded network of the helices. Variation
of the energy transfer rate with mode frequency is similar in
both helices and coils, resembling the variation seen for 1D
glasses in the previous section. The temperature dependence of
the energy transfer rate is noticeable only at low frequency (not
shown in figure), paralleling closely the variation in theR-helices
and again consistent with the small temperature variation of
the energy transfer rate measured for the amide I band of
myoglobin from about 10 to 300 K.7

5. Concluding Remarks

We have calculated rates of vibrational energy transfer in the
five largestR helices and two largest coil segments of myoglobin
and compared them to each other and to rates of vibrational
energy transfer in 1D glasses. The majority of normal modes
of the helices and coils, essentially all those with frequencies
larger than about 200 cm-1, involve vibrations of only a subset
of all the residues of the peptide. Variation of the number of
residues participating in a normal mode vibration with mode
frequency follows a functional form similar to that for the
participation of the number of atoms in a normal mode vibration
with mode frequency in a 1D glass. Because most normal modes
of a polypeptide, like those of a 1D glass, are localized, they
cannot transfer heat from one end of the polypeptide to the other.
Energy transfer among normal modes and throughout the
molecule is enabled by anharmonic coupling. Though in
principle any mode of the helix or coil is directly coupled
anharmonically to a large number of low-frequency bath modes
of the polypeptide, the coupling is usually small, and direct
energy transfer to low-frequency modes is often slow. For this
reason, there is little temperature dependence of energy transfer
from higher-frequency modes of either coils or helices. These
results imply that energy transport inR helices of proteins is
not particularly efficient, in contrast to speculation that they
may serve as efficient conduits for vibrational energy transfer.14,9

We see in Figure 9 that the energy transfer rate in a helix is
about a factor of 3 faster than in a coil. Both resemble energy
transfer in 1D glasses, which are not especially good conductors.
Earlier MD simulations29 on cytochromec also revealed no
particular preference for energy propagation through well-
defined secondary structures. In a recent letter,22 we estimated
that the coefficient for energy diffusion inR helices would be
very roughly 10 Å2 ps-1, and we expect this to be similar in
coil segments as well. Recent interesting molecular dynamics
simulations30 reveal that fast energy transfer from heme to water
in CO-myoglobin is due to funneling of energy through
isopropionate groups of the heme directly to water and so does
not involve energy flow through the globin. In this way, energy
is transferred out of the heme to water in a few picoseconds
rather than the greater than 20 ps required if energy flowed from
the heme to the globin and then to water.31

Energy transfer from most vibrational modes in polypeptides,
as in 1D glasses, occurs predominantly by hopping of localized
vibrations along the chain resulting from anharmonic coupling
of spatially overlapping localized modes in resonance. As
discussed and illustrated for both glasses and helical peptides,
the frequencies of normal modes localized to nearby regions of
these systems generally lie far apart. This means that anharmonic
coupling between two high-frequency modes and a low-
frequency mode is often weak, yielding a typically small
temperature dependence of the decay rate at higher frequency,
consistent with the observed7 weak temperature dependence of
the amide I band, as well as the weak temperature dependence
of the CO stretch lifetime in CO-myoglobin.10 We find the

vibrational energy transfer rate to be of order 1 ps-1 for a wide
range of mode frequencies and temperatures, similar to energy
transfer rates in small molecules, despite the high density of
low-frequency bath modes.

Acknowledgment. It is a pleasure to dedicate this paper to
Steve Berry. This work was supported by the National Science
Foundation (NSF Grant CHE-0112631), by a New Faculty
Award from the Camille and Henry Dreyfus Foundation, and
by a Research Innovation Award from the Research Corporation.

References and Notes

(1) Gruebele, M.AdV. Chem. Phys.2000, 114, 193.

(2) Keske, J. C.; Pate, B. H.Annu. ReV. Phys. Chem.2000, 51, 323.

(3) Leitner, D. M.; Wolynes, P. G.Chem. Phys. Lett.1997, 280, 411.

(4) Leitner, D. M.Int. J. Quantum Chem.1999, 75, 523.

(5) Chandler, D.; Kuharski, R. A.Faraday Discuss. Chem. Soc.1988,
85, 329 and references therein.

(6) Nordholm, S.Chem. Phys.1989, 137, 109.

(7) Peterson, K. A.; Rella, C. W.; Engholm, J. R.; Schwettman, H. A.
J. Phys. Chem B1999, 103, 557.

(8) Hamm, P.; Lim, M.; Hochstrasser, R. M.J. Phys. Chem. B1998,
102, 6123.

(9) Xie, A.; van der Meer, L.; Hoff, W.; Austin, R. H.Phys. ReV. Lett.
2000, 84, 5435.

(10) Rella, C. W.; Rector, K. D.; Kwok, A.; Hill, J. R.; Schwettman, H.
A.; Dlott D. D.; Fayer, M. D.J. Phys. Chem.1996, 100, 15620. Rella, C.
W.; Kwok, A.; Rector, K.; Hill, J. R.; Schwettman, H. A.; Dlott, D. D.;
Fayer, M. D.Phys. ReV. Lett. 1996, 77, 1648.

(11) Fayer, M. D.Annu. ReV. Phys. Chem.2001, 52, 315.

(12) Seno, Y.; Goj, N. J. Mol. Biol. 1990, 216, 111. McCammon, J. A.;
Harvey, S. C.Dynamics of proteins and nucleic acids; Cambridge University
Press, New York, 1987. Brooks, C. L.; Karplus, M.; Pettitt, B. M.AdV.
Chem. Phys.1988, 71, 1.

(13) Roitberg, A.; Gerber, R. B.; Elber, R.; Ratner, M. A.Science1995,
268, 1319. Roitberg, A.; Gerber, R. B.; Ratner, M. A.J. Phys. Chem. B
1997, 101, 1700.

(14) Davydov, A. S.Solitons in Molecular Systems; Kluwer Academic:
Dordrecht, The Netherlands, 1991.

(15) Matsuda, H.; Ishii, K.Suppl. Prog. Theor. Phys.1970, 45, 56.

(16) Leitner, D. M.Phys. ReV. B 2001, 64, 094201.

(17) Frauenfelder, H.; Sligar, S. G.; Wolynes, P. G.Science1991, 254,
1598. Wolynes, P. G.; Onuchic, J. N.; Thirumalai, D.Science1995, 267,
1619.

(18) Ball, K. D.; Berry, R. S.; Kunz, R. E.; Li, F. Y.; Proykova, A.;
Wales, D. J.Science1996, 271, 963.

(19) Taraskin, S. N.; Elliott, S. R.Phys. ReV. B 2000, 61, 12017, 12031.

(20) Fabian, J.; Allen, P. B.Phys. ReV. Lett.1997, 79, 1885. Fabian, J.
Phys. ReV. B 1997, 55, R3328.

(21) Moritsugu, K.; Miyashita, O.; Kidera, A.Phys. ReV. Lett. 2000,
85, 3970.

(22) Leitner, D. M.Phys. ReV. Lett. 2001, 87, 188102.

(23) The number of residues in each helix used in ref 22 is slightly
different than the number used here. The B, G, and H helices each had two
fewer residues than used in this study. In Figure 3 of ref 22, rates plotted
below 100 cm-1 are erroneously large; this has been corrected in Figure 5
of this paper.

(24) Elber, R.; et al.Comput. Phys. Commun.1995, 91, 159. The version
used for this study was obtained from http://www.tc.cornell.edu/reports/
NIH/resource/CompBiologyTools/moil/.

(25) Allen, P. B.; Kelner, J.Am. J. Phys.1998, 66, 497.

(26) Maradudin, A. A.; Fein, A. E.Phys. ReV. 1962, 128, 2589.

(27) Leitner, D. M.Chem. Phys. Lett., 2002, 359, 434.

(28) Yu, X.; Leitner, D. M. To be published.

(29) Wang, Q.; Wong, C. F.; Rabitz, H.Biophys. J.1998, 75, 60.

(30) Sagnella, D. E.; Straub, J. E.; Thirumalai, D.J. Chem. Phys.2000,
113, 7702. Sagnella, D. E.; Straub, J. E.J. Phys. Chem. B2001, 105, 7057.

(31) Lian, T. Q.; Locke, B.; Kholodenko, Y.; Hochstrasser, R. M.J.
Phys. Chem.1994, 98, 11648.

10876 J. Phys. Chem. A, Vol. 106, No. 45, 2002 Leitner


