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Rates of vibrational energy transfer in the five largedtelices and two largest coil segments of myoglobin

are calculated and compared with energy transfer in one-dimensional glasses. In all three cases, vibrational
energy transfer occurs by anharmonic coupling of spatially overlapping localized normal modes in resonance.
The frequencies of pairs of localized vibrational modes close in space are usually separated by a few hundred
cm L As a result, there is little direct energy transfer to low-frequency modes by low-order anharmonic
coupling, and rates of vibrational energy transfer from most higher-frequency modes are nearly temperature-
independent, consistent with experimental observations. Variation of the anharmonic decay rate with mode
frequency in helices and coils is similar, the trends of which are captured by an appropriately parametrized
one-dimensional glass.

1. Introduction of vibrational energy from the ligand to the protein is nearly
Describing chemical events in molecules and clusters ulti- independent of temperature, again from about 10 to 300 K.
mately requires a picture of the flow of energy on the picosecond Another feature that may influence energy flow in large
time scale. Recent theoretical and experimental work has Molecules is structure. While anharmonicity plays a pivotal role
unraveled how energy flows quantum mechanically in small in @ protein’s vibrational dynamics and energy transté?,it
moleculesi? and progress continues on connecting quantum has also been sugge;ted that certain s.truct.ural features of
energy flow in molecules to the kinetics of conformational Proteins serve as efficient pathways for vibrational energy to
change¥* Rates of conformational isomerization of rather small flow. In particular, theo. helix has been speculated to provide
molecules are often influenced by rates of intramolecular energy @ conduit for vibrational energy transport to and from reaction
flow, as illustrated by the well-studied examples of cyclohexane Centers and across cell membrahés.
ring inversior® andtrans-stilbene photoisomerizaticif Energy In this article, we explore the nature and rate of vibrational
flow rates influence chemical reaction rates when energy transferenergy flow ina helical peptides, a major structural element of
in to and out of transition states is slower than the vibrational Proteins, and compare this with energy transfer in coil segments
frequency of Crossing the barrier when the molecule goes of pI’OtemS. We calculate the rate of vibrational energy transfer
through an activated complex. In many small molecules at in the five largesix helices of myoglobin, which range from
barrier energies the former rate is of order I%ar less while 16 to 24 residues. We find that the large majority of normal
the latter is of order 10 pd.34 What is the rate of vibrational mode vibrations in the helices are localized, so that intramo-
energy transfer in a large molecule, such as a protein? Unlike lecular energy flow from one end of the helix to the other is
small molecules such as cyclohexane, a protein has a largdargely due to anharmonic coupling of the normal modes. The
density of low-frequency modes into which energy can flow. Same scenario also holds for one-dimensional (1D) gldSses,
Any vibrational mode is directly coupled anharmonically to a in Which only the very lowest frequency normal modes span
very large number of these bath modes, which could in principle the glass, while the vast majority of normal modes are localized.
dramatically increase the energy transfer rate above 1 ps Ina 1D glass, energy transfer from a localized mode to a low-
Recent spectroscopic studié§of the amide | band of a variety ~ frequency bath mode is slow and does not influence the energy
of globular peptides and proteins, however, suggest that energyflow rate from the higher-frequency, localized mdf&Ve shall
transfer rates in proteins may not be very d|fferent from those see that this is the case for energy transfer rates from most helix
in small molecules. Amide | band spectroscopy, which provides Modes, too. Finally, we examine the role of structure in energy
information about vibrational energy transfer from modes in transfer, comparing energy transfer rates from vibrational modes
the range 16081700 cnt, reveals typical values of the energy of a helix to energy transfer rates in coils. Variation of the energy
transfer rate that are of order 1 psnot unlike intramolecular ~ transfer rate with frequency and temperature in coils is similar
energy flow rates in smaller moleculéMoreover, the energy 0 that in helices, where on average the anharmonic decay rate
transfer rate from the amide | band of myoglobin appears to is faster than in coils by about a factor of 3. Energy transfer in
vary little with temperature from about 10 to 3007Klhese the a helices is not especially efficient and is comparable to
observations suggest that there is little direct energy transfertransfer along other portions of the protein backbone. Whether
from the amide | vibration to the bath of low-frequency protein ©Of not the polypeptide chain forms a helical structure, vibrational
modes Spectroscop|c Stud|es Of emyogk)b'n by Fayer’ energy transfer W|th|n |t parallels anhal’monic decay Of Vibl’a-

Dlott, and co-worker$! similarly reveal that the decay rate ~tional states in 1D glasses. _
Connections between energy landscapes of proteins, clusters,

T Part of the special issue “R. Stephen Berry Festschrift”. and glasses have been exploited for some tif#&in this paper,

10.1021/jp0206119 CCC: $22.00 © 2002 American Chemical Society
Published on Web 09/13/2002



Anharmonic Decay of Vibrational States J. Phys. Chem. A, Vol. 106, No. 45, 20020871

T

p(w)

0.001

Figure 1. Ribbon diagram of sperm whale myoglobin. Normal modes
and vibrational energy transfer rates in the five largest helices, labeled
A, B, E, G, and H, are calculated. These results are compared with the
energy transfer rates in the two largest coil segments, CD and EF.

we compare mechanisms for energy transfee.ihelices and
coil segments of proteins with that in 1D glasses. Our focus is [
on the fastest relaxation time scale, when the protein or glass % 500 1000 1500 2000
relaxes within a local minimum of the potential, and we address o (em')
anharmonic decay of the normal modes. Recent theoretical andrigyre 2. Normalized distribution of normal-mode frequencies, binned
computational worké1%20has helped elucidate the nature of into 50 cnt! intervals, of the helices (solid line) and the model 1D
anharmonic decay of normal modes in a glass. The simplestglass described in the text (long dashes).
case is a 1D glass, for which all but of ordé¥2 of theN normal
modes of vibration are localized spatially to regions smaller
than the glass, increasingly so as the mode frequency incréases.
Excitations of localized normal modes in a glass, called loébns,
cannot transport energy from one end of the glass to the other.
Locon transport in a glass arises from anharmonic coupling of
overlapping localized normal modes in resonatfé@wWe shall
see that most normal modes of the five largedtelices and
two largest coil segments of myoglobin are also localized. It
was recently pointed out that energy from a localized mode in
myoglobin is transferred to a small number of resonant modes
that overlap in spac&,which is the principle for locon transport
in a glass82°0One consequence of localization in a 1D glass is
the nearly temperature-independent energy transfer rate from
modes with frequencyw > kgT/h. We show below that the
same holds for higher frequency modes involving backbone
vibrations of helices and coils, including the well-studied amide Nres
| band. S=— % plnp 1)

In the following section we present computational results of =
vibrational energy transfer rates in the five largestelices of
myoglobin. In section 3, we introduce a model of a 1D glass WhereNresis the total number of residues in the helix gmds
whose force constant distribution is parametrized to match that the projection of all coordinates of a residue onto a normal mode
of the he|icesl and comparisons are made between normal mod@f the helix. If vibrations of each residue contribute equally to
distributions and energy transfer rates in the model 1D glass @ normal mode the® = In Nres whereasS = 0 if a normal
and in theo helices of myoglobin. In section 4, we compare Mode vibration is localized to a single residue. Thénise
results for energy transfer in helices with energy transfer in the roughly the number of residues that a normal mode spans. The

two largest coil segments of myoglobin. Concluding remarks average value ofsdor the 5 helices vs mode frequency is plotted
are given in section 5. in Figure 3. At frequencies below200 cnT?, the modes span

roughly 12 residues, about two-thirds the number of residues
(16—24) that make up the helices, where there are on average
19 residues/helix. At higher frequency, there is a gradual decline
We consider first the normal modes of the five largast  to participation of 1 to 6 residues, with the larger number
helices of myoglobin, the A, B, E, G, and & helices, which involving modes where atoms vibrate along the backbone. For
are indicated in Figure 1. The number of residues in each helix instance, modes that lie in the amide | band, in the range-1600
is 16, 16, 20, 19, and 24 for the A, B, E, G, and H helices, 1700 cnt?, involve larger numbers of residues than modes at
respectively. The work reported in this section parallels that somewhat lower or higher frequencies. It is noteworthy that the
summarized in a recent lett&where energy transfer rates in  overall form of[@5with w is similar to that of the participation
the same helices are reporf8dComputation of the normal  number.&, in 1D glasses. The participation number of mode
modes was carried out using the program package MOIL, which is defined by&, = (Zi(e:)*) "1, where g* are the coefficients
was written by Elber and co-worke#$.Coordinates for the of normalized vibrational eigenstates aNds the number of
atoms in the helices were taken initially from the minimum- atoms in the 1D glass. We found a variationéof =2 for a
energy structure of myoglobin, and the new minimum energy model of a 1D glass fits the numerically calculated participation
structures for each helix were subsequently computed, followed number very welk® consistent with theoretical expectations for
by the normal modes. The normal mode frequencies for the the localization length® To improve on this, the finite size as
five helices range from about 3 to 1850 chhas well as arange  well as the larges limiting value of 1 can be accounted for by
of higher frequency modes above 3100¢morresponding to the function&(w) ~ a/((3a/2N) + w?) + 1, whereN is the
CH, NH, and OH stretches that we shall not consider here. The number of atoms in the 1D glass ands a measure of disorder.

density of normal modes of the helices as a function of mode
frequency is plotted in Figure 2. The mode density is highest
at low frequency, and it declines with substantial fluctuations
as the frequency increases to the band edge around 1850 cm
In describing energy flow, it is important to determine the extent
to which a normal mode spans the helical peptide. In doing so,
we might usefully characterize a polypeptide as a disordered
chain of atoms. In a harmonic periodic chain, the normal modes
carry energy without resistance from one end of the 1D crystal
to the other; however, the vast majority of normal modes of an
aperiodic chain are spatially localized and cannot carry heat.
We might therefore expect many normal modes of polypeptides
to be likewise localized in space.

As a measure of the number of residues contributing to a
mode, we calculate the information entropy,

2. a-Helices
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Figure 3. Histograms for &plotted as a function of». The upper
histogram (solid line) is® a measure of the number of residues of the
helix that participate in a normal mode vibration, averaged over all
modes of the helices in 50 crhintervals. The middle, dashed histogram
corresponds toSgor two helices of myoglobin (G and H) truncated to

10 residues. The lowest histogram (short dashes) is the average value

of e° for the CD and EF coil segments, each containing 10 residues.
The curve near the upper histogram is the functional fofr+ ed/(
+ w?) + 1 discussed in the text, with = 1 x 10° andf = 9 x 10%

Then whenw — 0, we havef ~ 2N/3, which is the value of
the participation number of a periodic ch&nAssuming that
[@SCvaries withw in a similar way, we compare our numerical
results for the helices with an equation of the fout3 + w?)
+ 1. Since there arles= 19 amino acids on average, we take
o/ff = 2Ned3 — 1 = 12 to fit the smalle» limit. The result for
B =9 x 10*is plotted in Figure 3, where we see reasonable
agreement withiéSfor the helices, apart from values at several
frequencies where normal modes involve backbone vibrations,
such as the amide | and Il vibrations accounting for the peak
from 1550 to 1700 cmt and the amide Il band near 1300 tn
Most normal modes of the helices, like those of an aperiodic
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Figure 4. Vibrational energy transfer rategy, in ps* for the five
largesta helices of myoglobin plotted as a function of mode frequency,
. The temperature is 45 K. Rates in the A, B, E, G, and Helices
are plotted as dashes, datashes, dots, long dashes, and a solid line,
respectively.
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Figure 5. Average vibrational energy transfer ra#, in ps* for the
five largesta helices of myoglobin plotted as a function of mode
frequencyw, at 15 K (long dashes) and 45 K (solid line). Also plotted

chain,.cannot carry energy from one end to the other. Anhar- js the average vibrational energy transfer rate in the 1D glass model
monicity generates energy transfer among the localized normaldescribed in the text, whefle= 15 K (dashes) and 45 K (detlashes).

modes. In our calculations of energy transfer we consider only
the contribution of cubic anharmonic terms and neglect all terms
of higher order, which is reasonable if we restrict ourselves to

low temperatures. At low temperatures, the energy transfer rate

is dominated by processes that involve the decay of a vibrational
excitation into two others, such that, = wg + w,. The energy
transfer rateW,, from modea is then given b¥f

D17
2

W0,
where n, is the occupation number of mode, which at
temperaturel we take to be

nu — (ehwu/kBT _ 1)*1

hm

W, =
8w,

[o8

(1+n;+n)o(w, — wg—w,) (2)

®)

The matrix element®,s, appear as the coefficients of the cubic
terms in the expansion of the interatomic potential in normal
coordinates, computed numerically as

Dy, = (6°V10Qu0Qpl g 100, — °V/0QuQplq, 50 )/20Q,
4)

whereQ, is a mass-weighted normal coordinate &pgis the
equilibrium position of the helix in normal coordinates.

Energy transfer rates in the model are higher than in the helices at low
frequency but are similar above ~ 700 cnT®. Temperature depen-
dence of the rate in both the helices and 1D glass is typically small at
higher frequency, above about 400 ¢m

helices of myoglobin. The results for each individual heliX at
= 45 K are shown in Figure 4, where we have averagéd
over all modes in 50 crt intervals. We see in Figure 4 that
the variation of decay rate with mode frequency for each helix
is similar with the exception of a few strikingly high rates, in
particular a high rate of about 18 Pgust above 1500 crt in
the B helix. The anomalously high rate in the B helix near 1500
cm~1 involves energy flow from a vibration of largely the
carboxyl group of aspartate at 1544 thmto two skeletal
aspartate vibrational modes at 738 and 806 tm

The average vibrational energy transfer rate in all the helices
as a function of frequency is plotted in Figure 5, where the
temperatures were chosen tobe= 15 and 45 K. Vibrational
energy transfer rates are averaged over the vibrational modes
of all helices in 50 cm? intervals. We observe in Figure 5 that
the vibrational energy transfer rates are not very sensitive to
temperature above about 500 Thwith the slight exception
of modes with frequencies in the range 17750 cntl.
Temperature dependence of the energy transfer rate implies that
energy is flowing directly into low-frequency modes of the
helices. Since the temperature dependence largely decreases with

We have computed the vibrational energy transfer rate as aincreasing mode frequency, we can conclude that as the mode

function of mode frequency with eq 2 for the five largest

frequency increases there is less direct energy transfer to low-



Anharmonic Decay of Vibrational States J. Phys. Chem. A, Vol. 106, No. 45, 20020873

frequency modes. Such a trend, as we shall see below, is
characteristic of energy transfer in a 1D glass. This trend arises
because the frequencies of modes that are localized in space
tend to “repel” one anothéf:1modes with similar frequencies

do not overlap in space, as will be discussed below. As a
consequence, energy transfer to modes with similar frequencies
and the remainder to low-frequency modes occurs very slowly.
There is as mentioned an exception to this trend at $+2060

cm~1, which lies just above the amide | band. We have found
that the modes for which the decay rate is temperature dependent
correspond to CO stretches in certain side chains, particularly
belonging to the glutamine residue of the A, B, and H helices.
Significant character of the same CO stretch is found for modes
in this frequency range that lie about-180 cnmt apart, and a Figure 6. Normalized distribution of diagonal matrix elements of the
mode of the latter frequency that overlaps the side chain is Hessian matrix, in (cm)?, for the five largest: helices of myoglobin
available for energy transfer. Decay rates of the CO stretches(S0lid line) and for the model 1D glass described in the text.

of the amide | band, from about 1600 to 1700 ¢mare not . . .
very temperature sensitive, as has also been observed experit-he calculations discussed below we take an ensemble of five

mentally’ We note that the measured decay rate of the amide gzzg‘;tﬁ?; E\S/\?g ?;%ZSH;E':SQ';?]Z l:ﬁea?]L;nrr?ggrcgfal\zts)rg]tit)hneal
| band is about 0.5 pg,78 somewhat faster than the 0.37ps ’

that we have calculated, though significant differences in the hme?i(j(e(sv/v Chhe?? VC?ZTZ;SE d?r\]’erﬁgﬁxO&ggssvﬁzﬁt}?gahgzgiy
decay rate are found depending on the location within the band;above 3000 cmf). The otentigll eneray of the alass ?s iven
for instance, lifetimes as long as 15 ps are observed at the blueb V =\, 4 V. : h F\’/ is th : g{. | 9 ¢ g d
side of the amide | ban¥iThe difference between measured 27T Vs, WhereVz Is the potential energy fo secon
and calculated decay rates could arise from the fact that neitherorder’
residues of loops nor water molecules are included in these N
calculations, which are carried out only to third order in the V ZE f(u—u 1)2 (5)
anharmonicity; each of these factors would tend to reduce the 2 nitno Tt
rate.

We mention that the lifetime of the CO stretch in MbCO is  jth u, the displacement of atomfrom equilibrium and, the
also nearly independent of temperature from 10 to 306K.  force constant. (Since we express frequencies incinwill

A weak temperature dependence of the lifetime might not be pe convenient to expressin units of (cnT2)2.) Anharmonicity
quite as unexpected as for amide | band vibrations, since thegrises from

CO stretch frequency of roughly 1950 crhlies some 100 crrt

above the band of protein vibrations. Low-order anharmonic 1 N

coupling cannot couple the CO to the lowest-frequency, Vo=-) g,(u,— Un+1)3 (6)
delocalized modes. Weak coupling to low-frequency modes =

would also be enhanced by the likelihood that the frequencies

of localized normal modes overlapping in space are widely ~The normal mode frequencies are obtained from the eigen-
spaced. The photon echo experiments of Fayer, Dlott, and co-values of the Hessian matrix, whose diagonal elementsiare
workers provide the pure dephasing rate over the same range= fn-1 1+ fn. By contrast, the diagonal elemerdspf the Hessian

of temperatures. The rate of pure dephasing, of course, doegnatrix for the o helices are the sums of numerous terms
not depend on resonant coupling between vibrational modes,accounting for a larger number of local interactions. In fact,
so that coupling to low-frequency modes, which provides the the distribution of the latter, shown in Figure 6, resembles the
strongest temperature dependence of the rate, is not restrictedpositive half of a Gaussian centered at 0, whose standard
by resonance requirements. Indeed, for temperatures below theéleviation we have found to be 9:6 10° (cm %)% We take the
glass transition temperature of the protein, the pure dephasingforce constantsy, to be randomly distributed in an exponential
rate appears to follow a power-law dependence on temperaturedistribution such that the standard deviation of the distribution
with a power of about 1.%%11 Recent calculations of the pure  of d, = o1 + fy, the diagonal elements of the Hessian of the
dephasing rate of a ligand vibration coupled by dipaléole model, matches that for the helices. The distributiondef
interactions to aru-helix also reveal an apparent power-law appears to be similar to that of the diagonal matrix elements of
dependence of the pure dephasing rate with a power between the Hessian for the helices, as seen in Figure 6. We have also

n=

and 227 introduced a largéy cutoff of 1.7 x 10° (cm %)? to prevent
mode frequencies much higher than the band edge for the
3. 1D Glass helices. Therf, is taken randomly from an exponential distribu-

We turn now to a comparison of anharmonic decay rates of tion with standard deviation 4.8 10° (cm™1)? and cutoff 1.7
vibrational states in helices with decay in an anharmonic 1D x 10° (cm™1)2. For the diagonal elements of the Hessian matrix
glass. Such a comparison can provide insight into the variation of this model we find a standard deviation of XQLC° (cm~1)2,
of the energy transfer rate with mode frequency and with close to that for the helices. In Figure 2 we compare the normal
temperature, as we discuss in this section. Here we modify amode density of the harmonic 1D glass consisting of 5 chains
model presented previoushin a way that improves agreement of N = 500 with the normal mode density of the helices. The
between the normal mode density of the model and that of the secular variation of the mode density of the helices with mode
helical peptide. frequency reveals specific features reflecting their constituents

Our model for an anharmonic 1D glass is a chaiNe@qually and interactions. Nevertheless, these features appear as fluctua-
spaced atoms of unit mass connected by random forces. Fortions around the mode density of the model.
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' frequencyw, = w, — wg, averaged over modes of the ensemble
of five chains in intervals of*150 cnr2. Values ofws must be
0 < wg < wy, and we plofA|? as a function ofvg/w,, which
falls in the range 1. Sincew, = ws + w,, large values of
|A|2 near 0 or 1 would indicate strong coupling to low-frequency
modes. We plotA|? as a function ofvglw, for the 1D glass at
wq A~ 1500 cntl. To compare with the helices, we have also
calculated the averagd\|? for the helices atv, ~ 1500 cnt?,
as well as atv, ~ 1200 cnTl. We see that in each case strongest
coupling is between a mode with frequeney, and pairs of
|| modes in resonance with modewhose frequencies lie largely
: : in the rangew./3 to 2w,/3. For the 1D glass and the helices at
| wq ~ 1500 cml, largest coupling is to modes wheug; ~
0 _—._—_J.__.Jj-'r_i_j_ 1o — . L] wal3 andwg ~ 2w,/3. Large coupling at./2 seen for the
0 0.2 0.4 0.6 0.8 1 helices atw ~ 1200 cn1! arises predominantly from contribu-
“’B/ @, tions of 2:1 Fermi resonances.

Figure 7. Average value ofA[2, defined by eq 8, for coupling a glass The observed distribution of coupling matrix elements is due
or helix mode with frequency, to two others with frequenciesy to the fact that frequencies of normal modes that are localized

andw, (Fwa — wgp), as a function otvs/wq. Units of |A? are arbitrary. to the same regions of space tend to be spread apart. The
The Solldlllne corresponds to thé= 500 1D glass model ab, ~ frequencies of nearby localized oscillators thus appear to repel
1500 cm™. The long-dashed histogram corresponds to avefdfe  one another. Consider, for instance, just two oscillators vibrating

for the five helices atv, ~ 1500 cntl. The dot-dashed histogram with frequenciesw: and If the oscillators are near one
corresponds to helices at, ~ 1200 cn1®. We observe that the largest q 1 2.

values of|AJ2 couple modes with frequencies; andw, (Sw. — wp) another in space, they are CO_Up|ed to each other by perhaps
between aboub/3 and 2./3 to modes with frequencies of,. Peaks several hundred cm, whereas if they are far from each other

aroundws/w = 0.5 include contributions from 2:1 Fermi resonances. the coupling between them is small. For the vibrational energy
to remain localized in one oscillator, the difference in their
frequencies|w: — w»|, must be several hundred ciif the
oscillators are close in space, whereas there is no such restriction
if they lie far apart. Such “mode repulsion” of nearby localized
oscillators has consequences on the cubic anharmonic terms that
SSouple them. Cubic anharmonic coupling of at least one high-
frequency, localized mode to other modes is large only when
the modes overlap in space. In this case, the normal modes that
are coupled are widely spread in frequency; cubic terms coupling
localized modes of similar frequency are therefore often

2
|A]

0.8+

0.4+

Vibrational energy transfer in the model glass arises from
the anharmonicityVs, given by eq 6. The cubic anharmonic
constants should vary as= cf/a, wherea is a lattice spacing
andcis a constant of order 1. The constafd is our one fitting
parameter, chosen so that the average decay rates in the gla:
match those in the helices;is a few A so that/a should lie
in the range 0.£1 A~L If f is the average value of the force
constant, then we set ajl, = (c/a)f,. The energy transfer rate,
W, is given by eq 2, where for this model it is straightforward

to calculate relatively small. The latter are the terms that also couple a given
N mode with excess energy to the low-frequency bath modes, since
Vv ; 12
o, = on B "Q.Q,Q ) the remainder of the energy not transferred to a mode of similar
oby S G G Narp'y f d up there. Thus di fer f
& 9U,0U,dU, . requency must end up there. Thus direct energy transfer from

a localized mode of the 1D glass to another localized mode of
where the sum is over all sites n’, andn”. In Figure 5 we similar frequency and to a low-frequency bath mode is relatively
compare the vibrational energy transfer rate in the glass to theslow, owing to the small size of the cubic coupling term that
energy transfer rate in the helicesTat= 15 and 45 K. For the enables this process.
cubic anharmonic coefficients of the glass we have chofen The influence of spatial location of two normal modes on
= 1 A~%, which yields energy transfer rates that agree reasonablythe frequency difference of these vibrational modes is shown
well with the transfer rates of the helices. We find that the in Figure 8. We locate the largest component of each vibrational
transfer rate becomes less dependent on temperature Withmode,a, and calculate the probabilit(Aw), that, for another
increasing mode frequency, the same trend as for the helicesmode 3, whose largest component lies a certain distance away
As mentioned earlier, the small temperature dependence of thefrom the largest component of mode, the difference in
energy transfer rate from higher-frequency modes implies that frequency between the two modesA® = |wq — wpl. We
little energy decays to the low-frequency modes of the glass. consider only localized modes, whose frequencyw,, falls

Since energy flow to the large density of low-frequency phetween 1000 and 2000 cta Probabilities are calculated for
modes is slow, there must be relatively weak coupling between A, in intervals of 20 crmt up to Aw = 600 cnt. Results for
high-frequency localized modes and low-frequency modes. We the one-dimensional glass are shown in Figure 8a, and results
illustrate this in Figure 7, where we plot the matrix elements in tor the G and H helices of myoglobin are shown in Figure 8b.
eq 2 that couple moda to a pair of modegl andy orto @  The dashed histograms in both parts a and b of Figure 8 are
second modg with frequencyws ~ w./2. Calling these matrix  ayerages over all pairs of vibrational eigenstates, regardless of
elements the distance between the largest componentsx adnd f.
Consider first the 1D glass shown in Figure 8a. For any pair of
modeso andg, there is just as much chance that the difference
of their vibrational frequency is small, e.g., less than 100%m
as it is fairly large, 508-600 cnt!. The solid-line histogram
we plotted the relative values ¢#|?, coupling modeo. with gives the probability of findingAw when the maximum
frequencyw, to modeg with frequencyws and modey with component of the eigenstatesandj are on nearest-neighbor

_ 1P|

A=
A 8 w,wpm,

(1+n;+n) (8)
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Figure 9. Average vibrational energy transfer rat&§, in ps for

the five largestr helices of myoglobin (solid line) and the two largest
coil segments (long dashes) plotted as a function of mode frequency,
w, at 45 K.

0.06
4 and 5 A, as well as larger distances, we fif@\w) to be
essentially the same as the dashed histogram, for which the
distance between the modes is ignored. Because of the apparent
repulsion of frequencies of strongly localized modes, matrix
elements coupling two high-frequency modes close in frequency
and a low-frequency mode are generally small, as we saw in
Figure 7. Although shown here for only helices of myoglobin,
we observe a similar separation of mode frequencies for spatially
nearby localized modes of the complete prof€iGiven the

P(Aw)

0.02

S

0 200 400 600 close connection between the vibrations of proteins and 1D

Ao glasses, we expect the temperature dependence of the anhar-

Figure 8. Probability, P(Aw), of finding a pair of vibrational modes monic decay rate of higher-frequency localized modes to be
with frequency differencéw in (a) the 1D glass model and (b) the G often small in proteins.

and H a-helices of myoglobin, when at least one of the modes is
localized with frequency in the range 1000 cmt < w < 2000 cnT?,
Dashed lines are probabilities for any pair of modes with frequency 4. Coils

differenceAw, regardless of their distance from one another in space. . . .

The solid lines are results only for vibrational modes that lie near one W€ now compare vibrational energy transfer rates frelices
another in space. In (a), they correspond to vibrational eigenstates whosgresented in section 2 with energy transfer rates in coils. We
maximum component lies over nearest-neighbor atoms in the 1D glass.have calculated vibrational energy transfer rates in the two
In (b), the p_airs_of_ mod_es are restricted to those whose largest largest coil segments of myoglobin, the CD and EF segments,
components lie witiri 2 A in the helix. indicated in Figure 1. Each of these segments contains 10
atoms of the glass. In this case, we find no pairs of modes with residues. As for the-helices, we computed the information
Aw ~ 80 cnt! and about half as many as found on average entropy,S where €is a measure of the number of amino acids
for any distance whenw is between about 100 and 200 thh that participate in a normal mode vibration. The result is plotted
Instead, larger values afw, closer to 500 or 600 cmd, are alongside the helix results in Figure 3, where we plot the average
expected to be found when the vibrational eigenstatasdj value of € as a function of frequency in 50 crhintervals.

are localized to neighboring atoms. We thus see for the 1D glassJust as for the helices, the normal modes of the coils are fairly
that vibrational modes localized close to one another in spacedelocalized over the polypeptide at low frequency but become
tend to have frequencies that are quite different. Turning to increasingly localized above about 200 ¢nBecause the length
Figure 8b, we observe the same pattern for the G and H of the peptide influences the value cfa low frequency, we
a-helices of myoglobin. The dashed line again gives the compare &for the coil segments withSefor two helices that
probability of finding modes whose frequency differencais also contain 10 residues, where we use the first 10 residues of
for all pairs of modes, regardless of the distance between theirthe G and Ha-helices of myoglobin. We observe in Figure 3
largest components, with one member of the pair a localized that the normal modes of the helices are generally somewhat
mode such that 1000 crh < w < 2000 cnTl In this case, more delocalized than those of the coil segments, extending over
when we ignore the distance of the modes from one another,about one more residue of the polypeptide, likely due to the
there is generally a somewhat larger chance of finding pairs of hydrogen-bonded network that is absent in the coils.

modes whose frequency difference is small, below about 100 Vibrational energy transfer rates in the coil segments are
cm~1. However, if we only consider pairs of modes whose plotted in Figure 9 together with results for the helices, where
largest components overlap atoms that lie less thé from we have choseil = 45 K. We found little difference in the
each other, we obtain the solid-line histogram in Figure 8b. As energy transfer rates between the 10-residue helices and the
for the 1D glass, we see that if pairs of localized modes lie complete ones, so we simply compare energy transfer rates in
nearby in space, there is a propensity for their frequency the coils with the average energy transfer rates in the complete
differences to be large, in this case around 500 mather helices. The average energy transfer rate inotheelices over
than small, e.g., below 200 crh Such a propensity diminishes  the complete band of vibrational mode frequencies, 0.54, ps

as we consider localized normal modes whose largest compo-is about a factor of 3 greater than the average energy transfer
nents lie farther away from each other. For distances betweenrate in the coils, which is 0.16 p§ where again the difference
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is due to the hydrogen-bonded network of the helices. Variation vibrational energy transfer rate to be of order 1'p®r a wide

of the energy transfer rate with mode frequency is similar in range of mode frequencies and temperatures, similar to energy
both helices and coils, resembling the variation seen for 1D transfer rates in small molecules, despite the high density of
glasses in the previous section. The temperature dependence dbw-frequency bath modes.

the energy transfer rate is noticeable only at low frequency (not

shown in figure), paralleling closely the variation in thdelices Acknowledgment. It is a pleasure to dedicate this paper to
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