Theoretical Study on the Mechanism of the $^{1}CHCl + N_{2}O$ Reaction

Jian-jun Liu, Ji-kang Feng,* Hong Chen, Yi-hong Ding, and Chia-chung Sun

State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun, Jilin 130023, Peoples' Republic of China

Received: March 5, 2002

The complex singlet potential energy surface of the CHClN₂O system is investigated at the QCISD(T)/6-311G(d,p)/B3LYP/6-31G(d,p) level to explore the possible reaction mechanism of ¹CHCl radical with N₂O. Thirty minimum isomers and 56 transition states are located. In various possible initial association ways, the end-N attack leading to HClCNNO a_1 is the most feasible pathway with the barrier of 8.9 kcal/mol. Starting from a_1 , the most feasible pathway is the direct cleavage of N–N bond leading to P_1 HClCN + NO or to undergo a concerted Cl-shift and N-N bond cleavage to form P_2 HCN + ClNO, both of which have a comparable contribution. In addition, \mathbf{a}_1 can isomerizate to HClCNNO \mathbf{a}_2 (\mathbf{a}_3) followed by the rupture of N-N bond to form P_1 . Furthermore, the primary products P_1 and P_2 further dissociate to the same product P_{16} HCN + NO + Cl. Much less competitively, a_3 can alternatively undergo a ring-closure process leading to HCl-c(CNNO) **b** followed by the dissociation to product $P_3 N_2 + HClCO$. The secondary dissociation of P_3 may form the final product P_{10} N₂ + HCl + CO. The least favorable pathway should be that isomer a_2 undergoes a concerted H-migration and N-N bond rupture to form product P_4 ClCN + HNO. The similarities and discrepancies among the ¹CHX + N₂O (X = H, F, and Cl) reactions are discussed in terms of the substitution effect and the electronegativity of halogen atom. The present paper may assist in future experimental identification of the product distributions for the title reaction and may be helpful for understanding the halocarbene chemistry.

1. Introduction

Halocarbenes in the gas phase have attracted extensive attention of both experimental and theoretical chemists mainly due to their role in destroying ozone layer in stratosphere¹ and etching of semiconductor material.² As the simplest chlorocarbene, CHCl can be produced by the photoysis of the long-lived and abundant chloroform (CHCl₃) in stratosphere.³⁻⁵ On the other hand, CHCl is also an important intermediate in the incineration of chlorine-containing wastes.⁶ Under this condition, N₂O is inevitable to be produced. Particularly, it is known to be an intermediate in the conversion in flames of fuel-N and atmospheric N₂ to harmful pollutant NO.⁷ For the investigation of $CHCl + N_2O$ reaction, it is helpful to evaluate its role in combustion processes, since the title reaction may lead to two kinds of opposite products. One is NO and halogen-contained pollutants which are expected to be reduced, the other is atmospheric N₂.

In the last two decades, the studies of the reactivities for halocarbenes with some partners have been the important topic due to the role of inhibition. Experimentally, the reaction rates or reactivities of halocarbenes with some species N, O, H₂, O₂, NO, N₂O, NO₂, CH₄, and unsaturated hydrocarbons, have been studied.^{8–21} Fernandez et al. measured the total reaction rate of CHF + N₂O reaction to be $(2.55 \pm 0.15) \times 10^{-12}$ cm³molecule⁻¹s⁻¹.¹⁹ In addition, the reactions of CHCl with NO and NO₂ have been the subject of experimental investigations.^{20,21} Theoretically, the potential energy surfaces of CHX + NO (X = H, F, Cl) reactions have been built up. $^{22-27}$ The total rate constants may increase along X = F, Cl, and H with the decreased electronegativity. On the other hand, the feasibility order of the C-X bond cleavage in HXCNO or X-shift in an important processes HXCNO \rightarrow c $-C(HX)NO \rightarrow$ HNC(X)O or XNC(H)O (X = H, F, Cl) is consistent with the decreased C-X

bond enthalpies along X = F, H, and Cl. As a result, the CHCl + NO reaction represents a better model of CHBr + NO and CHI + NO reaction than the CHF + NO reaction, both of which may play an important role in reducing pollutants and for which the accurate experimental data are difficult to obtain.²⁰ Similarly, whether the similar situation would exist in ¹CHX + N₂O reaction system or not till waits to be tested.

Very recently, we have initiated a series of potential energy surfaces (PES) on ¹CHX + N₂O (X = H, F, Cl) reactions. The potential energy surfaces of ¹CH₂ + N₂O ²⁸ and ¹CHF + N₂O²⁹ reactions were calculated at the QCISD(T)/6-311G(d,p)//B3LYP/ 6-31 G(d,p) level. The features of the potential energy surfaces of two reactions are almost in parallel. However, some quantitative discrepancy leads to the different product distribution for the two reactions. Then, the question arises: in terms of the product distribution, is ¹CHCl + N₂O similar to ¹CH₂ + N₂O or to ¹CHF + N₂O?

To the best of our knowledge, no experimental and theoretical studies have been reported for the title reaction. Therefore, it is highly desirable to carry out the detailed theoretical study on the PES of the title reaction. The main objectives of the present paper are to (1) provide the detailed isomerization and dissociation channels on the CHClN₂O PES; (2) determine the product distribution of ¹CHCl + N₂O reaction to assist in future experimental identification; (3) make comparisons between the CHX (X = F, Cl, H) reactions with N₂O in order to deeply understand the halocarbene chemistry.

2. Computational Methods

All calculations are carried out using the Gaussian 98 program.³⁰ The geometries of all the reactants, products, various intermediates, and transition states for the ¹CHCl + N_2O reaction

Figure 1. B3LYP/6-31G(d,p)-optimized geometries of reactants and products. Bond distances are in angstroms and angles are in degrees.

are optimized using hybrid density functional B3LYP method with the 6-31G(d,p) basis set. Vibrational frequencies are calculated at the B3LYP/6-31G(d,p) level to check whether the obtained stationary points correspond to isomers or to first-order transition states. To confirm that the transition state connect designated intermediates, we also perform intrinsic reaction coordinate (IRC) calculations at the B3LYP/6-31G(d,p) level. In addition, single point energies are calculated for the B3LYP/ 6-31G(d,p) optimized geometries with the quadratic configuration interaction method with single and double excitation and perturbative corrections for triple excitations (QCISD(T)) with the 6-311G(d,p) basis set. Unless otherwise specified, the QCISD(T) single-point energies are used in the following discussions.

3. Results and Discussions

Starting from the reactants \mathbf{R} ¹CHCl + N₂O, fifteen energetically accessible primary products ($\mathbf{P_1}-\mathbf{P_{15}}$) of the title reaction are considered in this paper. In addition, four secondary dissociation products $\mathbf{P_{16}}-\mathbf{P_{19}}$ from the relevant primary products $\mathbf{P_1}$, $\mathbf{P_2}$, $\mathbf{P_3}$, and $\mathbf{P_4}$ also are included. Figure 1 shows the optimized geometries of the reactants and products. The energetic data of the reactants and all products are listed in Table 1. For the present ¹CHCl + N₂O reaction, thirty intermediate isomers (denoted by the letters from \mathbf{a} to \mathbf{p}) including twentysix open-chain and four cyclic species are located at the B3LYP/ 6-31G(d,p) level. To ascertain the interrelation between various isomers and dissociation products, fifty-six transition states are

TABLE 1: Zero-Point, Total (a.u.), and Relative Energies in Parentheses (kcal/mol) as Well as Those Including Zero-Point Vibration Energies (kcal/mol) of Reactants and Products for the ${}^{1}CHCl + N_{2}O$ Reaction

species	ZPE	B3LYP	QCISD(T)	QCISD(T) + ZPE
$R^{1}CHCl + N_{2}O$	14.1	-683.422486 (0.0)	-682.425132 (0.0)	0.0
P_1 HClCN + NO	14.1	-683.468446 (-28.8)	-682.470366 (-28.4)	-28.3
P_2 HCN + CINO	14.4	-683.509791 (-54.8)	-682.513806 (-55.6)	-55.2
$P_3 N_2 + HClCO$	15.6	-683.642538 (-138.1)	-682.654913 (-144.2)	-142.7
P_4 CICN + HNO	14.2	-683.478974 (-35.4)	-682.489160 (-40.2)	-40.0
$P_5 N_2 + ClCOH(c)$	14.8	-683.564968 (-89.4)	-682.577793 (-95.8)	-95.0
$P_6 N_2 + ClCOH(t)$	15.2	-683.564451 (-89.1)	-682.579745 (-97.0)	-95.9
$P_7 CO + HCINN$	14.7	-683.530090 (-67.5)	-682.539994 (-42.1)	-71.5
$P_8 CO + HNNCl(c)$	14.7	-683.539294 (-73.3)	-682.547175 (-76.6)	-75.9
$P_9 CO + HNNCl(t)$	14.8	-683.533146 (-69.4)	-682.542322 (-73.5)	-72.8
$P_{10} N_2 + HCl + CO$	10.9	-683.634360 (-133.0)	-682.668374 (-152.6)	-155.8
P_{11} ClCO + N_2 H	12.4	-683.496687 (-46.6)	-682.494922 (-43.8)	-45.4
$P_{12} NO + CICNH(c)$	14.0	-683.456303 (-21.2)	-682.456409 (-19.6)	-19.7
P_{13} NO + ClCNH(t)	14.4	-683.461353 (-24.4)	-682.462493 (-23.4)	-23.1
P_{14} HON + CICN	13.8	-683.413822 (5.4)	-682.419741 (3.4)	3.1
P_{15} CION + HCN	14.3	-683.466707 (-27.7)	-682.476198 (-32.0)	-31.8
$P_{16} NO + HCN + Cl$	13.2	-683.448993 (-16.6)	-682.465750 (-25.5)	-39.5
$P_{17} NO + CICN + H$	8.4	-683.396725 (16.2)	-682.413150 (7.5)	1.8
$P_{18} N_2 + HCO + Cl$	11.7	-683.512215 (-56.3)	-682.531085 (-66.5)	-68.8
$\mathbf{P}_{19}\mathbf{N}_2 + \mathbf{ClCO} + \mathbf{H}$	7.6	-683.488363 (-41.3)	-682.506828 (-51.3)	-57.7

located, which are denoted as the symbols "**TSxy**". For example, **TSa₃b** denotes the transition state connecting the isomers a_3 and **b**. The optimized structures of the intermediates and transition states are shown in Figures 2 and 3, respectively. Tables 2 and 3 list the energies of the intermediates and transition states, respectively. The reaction pathways related to the singlet [CHCIN₂O] potential energy surface (PES) are schematically plotted in Figure 4, parts a, b, and c.

3.1 Initial Association. The attack of the singlet CHCl at N₂O molecule may have five possible ways, i.e., end-N attack, end-O attack, middle-N attack, side N–N π bonding attack, and side N–O π bonding attack. The end-N attack can form chainlike isomer HClCNNO a (a_1, a_2, a_3) . We locate the addition transition state $TSRa_1$ linking the reactants **R** to a_1 using the HF, MP2, B3LYP methods with 6-31G(d,p) basis set. It is worth comparing the calculated results at the various theory levels. In terms of structure and energy, B3LYP-calculated results are in good agreement with MP2-calculated one, whereas HFcalculated results differ from the other two. Thus, it is very necessary to perform the calculation including the correction of the correlation energy for the title reaction. Both end-O and side N–O π bonding attacks directly lead to the same product $P_3 N_2 + HClCO$ via the transition states TSRP₃-O and TSRP₃-NO, which lie 16.6 and 19.3 kcal/mol higher than the reactants **R**, respectively. The other considerable barrier-consumed process is side N–N π bonding attack leading to threemembered ring isomer HCl-c(CNN)O j. The transition state **TSRj** is 19.1 kcal/mol higher than the reactants **R**. As shown in Figure 4 (a), \mathbf{j} is readily to isomerizate to end-N adduct \mathbf{a}_2 through the ring-open transition state TSa₂j. Such a process only requires overcoming 19.3 kcal/mol barrier relative to j. On the other hand, it is impossible to take place for the further isomerization and dissociation leading to ClCN(O)NH k and $P_3 N_2 + HClCO$ from j, since the transition states TSjk and TSjP₃ are 31.4 and 18.8 kcal/mol higher than the reactants **R**. Therefore, the formation of **j** is unlikely important for the total reaction. We try to optimize the adduct of middle-N attack to form HClCN(O)N, yet with no success. Such a search usually leads to a or j. In conclusion, end-N attack leading to a₁ is energetically the most feasible way. In the following discussions, we mainly discuss the formation pathways of various products proceeded via a_1 .

Starting from HClCNNO a_1 , various products can be formed via successive isomerization and dissociation pathways. In the following parts, we will first discuss the formation pathways of the four kinetically feasible primary products P_1 HClCN + NO, P_2 HCN + ClNO, P_3 N₂ + HClCO, and P_4 ClCN + HNO. Further, we will also discuss the secondary dissociation pathways of these four primary products. Finally, the unfeasible product channels are also considered.

3.2 Reaction Pathways. 3.2.1 $P_1HClCN + NO$, $P_2 HCN + ClNO$, $P_3 N_2 + HClCO$, and $P_4 ClCN + HNO$. The initially formed end-N attack isomer HClCNNO **a** can directly dissociate to the product P_1 HFCN + NO via the N-N single bond rupture. Such a simple process can be depicted as

Path1 P₁: \mathbf{R}^{1} CHCl +

$$N_2O \rightarrow trans$$
-HClCNNO $a_1 \rightarrow P_1$ HClCN + NO

Path2 P₁: R ¹CHCl + N₂O \rightarrow trans-HClCNNO a₁ \rightarrow trans-HClCNNO a₂ \rightarrow P₁ HClCN + NO

Despite numerous attempts, optimization of any transition structures from **a** to **P**₁ often leads to product **P**₁ or **a** at the B3LYP/6-31G(d,p) level. At the MP2/6-31G(d,p) level, the transition states **TSa₁P**₁ and **TSa₂P**₁ are obtained. In **TSa₁P**₁ and **TSa₂P**₁, the dissociating C–N bond distances have reached 2.938 and 2.841 Å, respectively, indicative of the character of "late" saddle point. However, single-point energy calculations show that **TSa₁P**₁ and **TSa₂P**₁ lie 1.1 and 2.3 kcal/mol lower than **P**₁, respectively. It shows that after surmounting the barriers of these two transition states, the very stable complexes might be formed followed by the dissociation to **P**₁. Note of the numerous optimizations of the transition state **TSa₂P**₁ usually lead to product **P**₁ or **TSa₁P**₁ or **TSa₃P**₁ at the MP2/6-31G-(d,p) level.

The isomer *trans*-HClCNNO \mathbf{a}_1 can also undergo a concerted Cl-shift and N–N bond rupture leading to product \mathbf{P}_2 HCN + ClNO. Similarly, *trans*-HClCNNO \mathbf{a}_2 can alternatively undergo a concerted H-shift and N–N bond cleavage to form product \mathbf{P}_4 ClCN + HNO via $\mathbf{TSa}_2\mathbf{P}_4$. The isomer *cis*-CHClN₂O \mathbf{a}_3 can take a ring-closure to form the four-membered ring intermediate HCl-c(CNNO) **b** followed by dissociation to product \mathbf{P}_3 N₂ +

Figure 2. B3LYP/6-31G(d,p)-optimized geometries of all isomers. Bond distances are in angstroms and angles are in degrees.

CI 1.74

CI

1.64

TSg2P9 (C.)

 $TSf_2P_3(C_1)$

Figure 3. B3LYP/6-31G(d,p)-optimized geometries of all transition states. Bond distances are in angstroms and angles are in degrees. The MP2/ 6-31G(d,p) and HF/6-31G(d,p)-optimized geometries are also given in parentheses and square brackets, respectively.

HCICO. These product pathways can be written as

Path P_2 : R¹CHCl +

$$N_2O \rightarrow trans$$
-HClCNNO $a_1 \rightarrow P_2$ HCN + ClNO

Path P₃: R¹CHCl + N₂O \rightarrow trans-HClCNNO a₁ \rightarrow cis-HClCNNO a₃ \rightarrow HCl-c (CNNO) b \rightarrow P₃N₂ + HClCO

Path
$$P_4$$
: \mathbb{R}^{-1} CHCl + $N_2O \rightarrow trans$ -HClCNNO $a_1 \rightarrow trans$ -
HClCNNO $a_2 \rightarrow P_4$ ClCN + HNO

As shown in Figure 4a, in **Path P₁**, **Path P₂**, **Path P₃**, and **Path P₄**, all of the transition states and isomers lie below the reactants **R** except for the common transition state **TSRa₁**. As a result, **P₁-P₄** are favorable for the total reaction.

Subsequently, let us discuss the secondary dissociation reactions of the primary products P_1 HClCN + NO, P_2 HCN + ClNO, P_3 N₂ + HClCO, and P_4 ClCN + HNO. P_1 can further dissociate to give P_{16} NO + HCN + Cl and P_{17} NO + ClCN + H via the direct C-Cl and C-H single bond rupture, respectively. In addition, P_2 and P_4 can further lead to P_{16} and P_{17} via the N-Cl and N-H single bond dissociation, respectively. For the N-H and N-Cl bond rupture processes, the welldefined transition states cannot be obtained at the B3LYP/ 6-31G(d,p) level. However, it is impossible to form P_{17} via P_1 and P_4 due to the thermodynamical and kinetic hinderences, whereas the formation pathway of P_{16} (via P_1 and P_2) is feasible. As we can see in Figure 4a, there are three possible dissociation pathways for P_3 . The most favorable pathway should be the formation of P_{10} N₂ + HCl + CO through the HCl-side elimination transition state TSP_3P_{10} . The barrier of 37.4 kcal/ mol is needed to overcome. On the contrary, the formation of P_{18} N₂ + HCO + Cl and P_{19} N₂ + ClCO + H requires the endothermicity of 73.9 and 85.0 kcal/mol, respectively. Thus, we expect that the final product of P_3 should be P_{10} , not P_{18} and P_{19} .

3.2.2 Other Products. Now, we turn to the other isomerization and dissociation channels of the isomers HClCNNO **a** and HClc(CNNO) **b**. First, we should consider the H-shift processes of these isomers. The isomers HClCNNO **a**₁, **a**₂, and **a**₃ can undergo 1,3-H-shift, 1,2-H-shift, and 1,4-H-shift leading to chainlike isomers ClCNN(H)O **c**₁, ClCN₂OH **i**₁, and ClCN(H)-NO **l**₁, respectively. However, these conversion transition states **TSa₁c₁, TSa₂i₁**, and **TSa₃l₁** lie 7.4, 2.3, and 20.3 kcal/mol higher than the reactants **R**. The four-membered ring isomer HClc(CNNO) **b** can undergo 1,2-H-shift from C-atom to N-atom to give the other four-membered ring intermediate Cl-c(CN-(H)NO) **e** via the transition state **TSbe** with the relative energy of 14.9 kcal/mol. Clearly, all these H-migration reaction pathways are not feasible for the ¹CHCl + N₂O reaction.

TABLE 2: Zero-Point, Total (a.u.), and Relative Energies in Parentheses (kcal/mol) as Well as Those Including Zero-Point Vibration Energies (kcal/mol) of Intermediates for the ${}^{1}CHCl + N_{2}O$ Reaction

species	ZPE	B3LYP	QCISD(T)	QCISD(T) + ZPE
a ₁	17.3	-683.510579 (-55.3)	-682.505056 (-50.2)	-46.9
\mathbf{a}_2	17.2	-683.509899 (-54.9)	-682.506507 (-51.1)	-47.9
a 3	17.2	-683.507671 (-53.5)	-682.503359 (-49.1)	-46.0
b	18.6	-683.503846 (-51.1)	-682.501209 (-47.7)	-43.2
c ₁	17.8	-683.437981 (-9.7)	-682.429159 (-2.5)	1.2
c ₂	17.7	-683.439229 (-10.5)	-682.426164 (-0.6)	3.0
d	19.0	-683.494131 (-45.0)	-682.487710 (-39.3)	-34.3
е	18.3	-683.461738 (-24.6)	-682.451527 (-16.6)	-12.3
\mathbf{f}_1	18.1	-683.560993 (-86.9)	-682.559710 (-84.4)	-80.4
\mathbf{f}_2	17.9	-683.560945 (-86.9)	-682.557348 (-83.0)	-79.1
\mathbf{f}_3	18.2	-683.565020 (-89.4)	-682.563239 (-86.7)	-82.5
g ₁	17.6	-683.533619 (-69.7)	-682.526182 (-63.4)	-59.9
g ₂	17.4	-683.532187 (-68.3)	-682.524659 (-62.5)	-59.1
ĥ	17.9	-683.530610 (-67.8)	-682.522518 (-61.1)	-57.3
\mathbf{i}_1	17.1	-683.457780 (-22.1)	-682.446801 (-13.6)	-10.6
\mathbf{i}_2	17.3	-683.463178 (-25.5)	-682.452716 (-17.3)	-14.0
j	18.5	-683.475443 (-33.2)	-682.467841 (-26.8)	-22.3
\mathbf{k}_1	17.2	-683.408510 (8.8)	-682.400158 (15.7)	18.9
\mathbf{k}_2	17.4	-683.413101 (5.9)	-682.405152 (12.5)	15.8
l_1	16.4	-683.453888 (-19.7)	-682.449818 (-15.5)	-13.1
l_2	16.9	-683.460053 (-23.6)	-682.456285 (-19.5)	-16.7
l3	16.8	-683.458899 (-22.8)	-682.456423 (-19.6)	-16.6
14	17.0	-683.463880 (-26.0)	-682.460690 (-22.3)	-19.0
m	17.4	-683.418668 (2.4)	-682.406130 (11.9)	15.2
n ₁	17.8	-683.518568 (-60.3)	-682.515699 (-56.8)	-53.1
\mathbf{n}_2	17.8	-683.517113 (-59.4)	-682.515150 (-56.5)	-52.8
n ₃	17.3	-683.512086 (-56.2)	-682.510847 (-53.8)	-50.5
n_4	17.6	-683.514287 (-57.6)	-682.513849 (-55.7)	-52.1
0	15.1	-683.413359 (5.7)	-682.406569 (11.6)	12.7
р	15.3	-683.405644 (10.6)	-682.383070 (26.4)	27.7

Therefore, though c, e, i, and l can further convert to the other isomers or the products $P_3 N_2$ + HCICO, P_4 CICN + HNO, $P_5 N_2$ + CICOH(cis), P_{12} NO + CICNH(cis), P_{13} NO + CICNH-(trans), these processes are kinetically unfavorable.

On the other hand, we should also consider Cl-shift processes from **a** and **b**. The isomers HClCNNO **a**₁, **a**₂, and **a**₃ can undergo a Cl-shift to form HCN(Cl)NO **o**, HCNN(Cl)O, and HCNNOCl **p**. Note that we cannot locate isomer HCNN(Cl)O at the B3LYP/6-31G(d,p) level. As shown in Table 2, **o** and **p** lie 12.7 and 27.7 kcal/mol above the reactants **R**, respectively. In addition, the four-membered ring isomer HCl-c(CNNO) **b** can undergo a 1,2-Cl-shift from C-atom to N-atom to form H-c(CN(Cl)NO) **m**. However, **TSbm** and **m** are 28.7 and 15.2 kcal/mol higher than **R**. All in all, Starting from **a** and **b**, all Cl-shift processes are both thermodynamically and kinetically unfeasible. Therefore, the further isomerization and dissociation of these processes are unimportant and then will not be considered.

It should be pointed out that the OCNN-framed isomers OC-(Cl)NNH **f** and OC(Cl)N(H)N **g** are very low-lying, as shown in Figure 4 (c). However, all of the reaction pathways leading to them involve the high-lying transition states that lie above the reactants **R**. The isomers **f** and **g** can lead to the complex products **P**₃ N₂ + HClCO, **P**₆ N₂ + ClCOH (trans), **P**₉ CO + HNNCl(trans), **P**₁₀ N₂ + HCl + CO, and **P**₁₁ ClCO + N₂H. Though the dissociation transition states from **f** or **g** lie below the reactants **R**, the formation pathways of these products are kinetically unfeasible for the title reaction.

3.3 Reaction Mechanism. In Section 3.2, we have obtained several important reaction channels that are both thermodynamically and kinetically accessible for the ¹CHCl + N_2O reaction. Note that the feasible secondary dissociation pathways are also

included. Here, for ease of discussion, they are listed again

Path1 P₁: \mathbf{R}^{1} CHCl + N₂O→*trans*-HClCNNO \mathbf{a}_{1} →P₁ HClCN + NO

Path2 P₁: \mathbf{R}^{1} CHCl + N₂O \rightarrow trans-HClCNNO \mathbf{a}_{1} \rightarrow trans-HClCNNO \mathbf{a}_{2} \rightarrow P₁ HClCN + NO

Path P_2 : R¹CHCl + N₂O \rightarrow trans-HClCNNO $a_1 \rightarrow P_2$ HCN + ClNO

Path P₃: \mathbb{R}^{1} CHCl + N₂O→*trans*-HClCNNO \mathbf{a}_{1} →*cis*-HClCNNO \mathbf{a}_{3} →HCl-c (CNNO) \mathbf{b} →P₃ N₂ + HClCO

Path P_4 : **R** ¹CHCl + N₂O \rightarrow *trans*-HClCNNO a_1 \rightarrow *trans*-HClCNNO a_2 \rightarrow P_4 ClCN + HNO

All of them are schematically shown in Figure 4a. We can find easily that all reaction pathways involve the chainlike isomer HCICNNO a_1 . Starting form a_1 , the least competitive pathway should be Path P_4 because TSa_1P_4 (-11.4) lies more higher than TSa_1P_1 (-26.0) in Path2 P_1 , TSa_2P_1 (-27,2) in Path1 P_1 , TSa_1P_2 (-28.6) in Path P_2 , and TSa_3b (-17.1) in Path P_3 . Further, the relative energy of TSa_3b in Path P_3 is higher than those of TSa_1P_1 in Path1 P_1 , TSa_2P_1 in Path2 P_1 and TSa_1P_2 in Path P_2 . Thus, we expect that Path P_3 cannot compete with Path1 P_1 , Path2 P_1 and Path P_2 . In addition, the formation of P_1 via Path2 P_1 requires surmounting two barriers, whereas for Path1 P_1 and Path P_2 , each involves only one moderately high barrier. As a result, Path2 P_1 has a lower

TABLE 3: Zero-Point, Total (a.u.), and Relative Energies in Parentheses (kcal/mol) as Well as Those Including Zero-Point Vibration Energies (kcal/mol) of Transition States for the $^{1}CHCl + N_{2}O$ Reaction

species	ZPE	B3LYP	QCISD(T)	QCISD(T) + ZPE
TSa ₁ a ₂	16.9	-683.494211 (-45.0)	-682.478222 (-33.3)	-30.5
TSa ₁ l ₁	12.3	-683.392404 (18.9)	-682.390028 (22.0)	20.3
b TSa ₁ P ₁	15.0	-682.284752 (-25.3)	-682.468100 (-27.0)	-26.0
TSa ₁ P ₂	15.8	-683.481562 (-37.1)	-682.473586 (-30.4)	-28.6
TSa ₂ a ₃	16.9	-683.507501 (-53.3)	-682.503344 (-49.1)	-46.2
TSa_2c_1	14.9	-683.424538 (-1.3)	-682.414681 (6.6)	7.4
TSa ₂ j	17.0	-683.443354 (-13.1)	-682.434557 (-5.9)	-3.0
${}^{b}\mathbf{TSa}_{2}\mathbf{P}_{1}$	15.5	-682.287068 (-26.7)	-682.470768 (-28.6)	-27.2
TSa ₂ P ₄	13.3	-683.441817 (-12.1)	-682.442085 (-10.6)	-11.4
TSa ₃ b	17.4	-683.464969 (-26.7)	-682.457711 (-20.4)	-17.1
TSa ₃ i ₁	14.9	-683.432960 (-6.6)	-682.422803 (1.5)	2.3
TSbe	15.4	-683.411158 (7.1)	-682.403617 (13.5)	14.9
TSbm	16.5	-683.399448 (14.5)	-682.383214 (26.3)	28.7
TSbP ₃	16.7	-683.475341 (-33.2)	-682.471564 (-29.1)	-26.5
TSc ₁ c ₂	17.2	-683.431161 (-5.4)	-682.419519 (3.5)	6.6
TSc ₁ P ₄	15.6	-683.418507 (2.5)	-682.412838 (7.7)	9.3
TSc ₂ d	17.4	-683.421090 (0.9)	-682.409878 (9.6)	13.0
TSc ₂ i ₂	13.7	-683.362253 (37.8)	-682.346101 (50.0)	49.2
TSc_2P_4	16.4	-683.423414 (-0.6)	-682.414767 (6.5)	8.8
TSc ₂ P ₄ '	16.2	-683.419109 (2.1)	-682.411414 (8.6)	10.7
TSde	15.6	-683.414258 (5.2)	-682.406784 (11.5)	13.0
TSdf ₁	17.5	-683.466906 (-27.9)	-682.460669(-22.3)	-18.8
TSeg ₁	16.7	-683.432443 (-6.2)	-682.421702 (2.2)	4.8
TseP ₃	16.3	-683.386931 (22.3)	-682.381924 (27.1)	29.5
TSf_1f_2	17.8	-683.557353 (-84.6)	-682.554603 (-81.2)	-77.5
TSf ₁ f ₃	15.9	-683.490421 (-42.6)	-682.482283 (-35.9)	-34.0
TSf ₁ P ₆	14.6	-683.525127 (-64.4)	-682.520335 (-59.7)	-59.2
TSf ₂ f ₃	15.9	-683.494876 (-45.4)	-682.485673 (-38.0)	-36.2
TSf_2P_3	14.2	-683.456196 (-21.2)	-682.454736 (-18.6)	-18.4
TSf_2P_{10}	15.3	-683.542636 (-75.4)	-682.539280 (-71.6)	-70.4
TSt ₃ g ₁	13.9	-683.448857(-16.5)	-682.446180(-13.2)	-13.4
	14.1	-683.453316 (-19.3)	-682.449338 (-15.2)	-15.2
18I3P7	15.5	-683.5050/5(-51.8)	-682.502040(-48.3)	-46.8
1 S13P9	14.9	-083.488390(-41.3)	-082.483420(-30.0)	-35.8
$15g_1g_2$	1/.1	-083.320300(-01.3)	-082.514034(-55.8)	-52.8
15g1F3 TSc D	14.0	-683.400934(-24.1)	-682.433129(-18.8)	-18.8
1 Sg11 10 TSg D	13.7	-683.522059(-02.5)	-682,400780 ($-46,8$)	-45.0
$15g_{2}1_{6}$ TSg.P.	14.0	-682400171(-481)	-682,405018 (-40.8)	-43.3
15g219 TSi.i.	15.2	-683.451408(-18.1)	-682 442370 (-10.8)	
TSi ₂ P-	15.9	-683 417952 (2.8)	-682 409286 (9.9)	11 7
	14.8	-683381029(260)	-682.376265(30.7)	31.4
TSiP ₂	16.5	-683.398680(14.9)	-682.399154(16.3)	18.8
	15.8	-683,449122,(-16,7)	-682.445781(-13.0)	-11.2
TSI	15.6	-683.411327(7.0)	-682.404427(13.0)	14.5
TSI	15.4	-683.409853(7.9)	-682.401656(14.7)	16.1
TSI34	15.8	-683.445105 (-14.2)	-682.444288 (-12.0)	-10.3
TSI ₃ P ₁₂	16.1	-683.448702(-16.5)	-682.447851(-14.3)	-12.2
TSl₄n	15.8	-683.445992(-14.8)	-682.438208(-8.2)	-6.5
TSRa ₁	17.8^{a}	$-681.442899^{a}(22.9)$	-682.406306 (8.1)	10.6
	16.1^{b}	$-682.239344^{b}(3.2)^{2}$	-682.410943 (7.7)	9.8
	15.8	-683.419915 (1.6)	-682.413866 (7.1)	8.9
TSRj	15.7	-683.406271 (10.2)	-682.397246 (17.5)	19.1
TSRP ₃ -O	15.4	-683.408347 (8.9)	-682.400794 (15.3)	16.6
TSRP ₃ -NO	15.8	-683.404838 (11.1)	-682.397171 (17.5)	19.3
$TSP_1P_{16} + NO$	13.1	-683.450801 (-17.8)	-682.455404 (-19.0)	-19.9
$TSP_1P_{17} + NO$	8.2	-683.390087 (20.3)	-682.401210 (15.0)	7.4
$TSP_3P_{10} + N_2$	12.6	-683.581103 (99.5)	-682.590651 (-103.9)	-105.3

^a The calculated results at the HF/6-31G(d,p) level. ^b The calculated results at the MP2/6-31G(d,p) level.

competition than Path1 P₁ and Path P₂. Finally, let us compare the feasibility of Path1 P₁ and Path P₂. In terms of the relative energies of TSa_1P_1 (-26.0) and TSa_1P_2 (-28.6), these two pathways may have comparable contribution to the ¹CHCl + N₂O reaction. On the other hand, since P₁ is 26.9 kcal/mol higher than P₂, the formation of P₂ is thermodynamically more favorable than P₁. Thus, the actual yields of these two products may depend on the reaction conditional in the experiment.

As a result, reflected in final product distributions, we predict that (1) a total of three kinds of products P_{16} NO + HCN + Cl,

 $P_{10} N_2 + HCl + CO$, and $P_4 ClCN + HNO$ should be observed; (2) P_{16} is the most favorable product with a considerably large yield; (3) P_{10} should be the second feasible product; (4) P_4 is the least competitive product.

3.4 Experimental Implications. The initial step in four feasible reaction pathways above-mentioned is a barrierconsumed end-N association process with a moderate barrier of 8.9 kcal/mol at the QCISD(T)/6-311G(d,p)//B3LYP/6-31G-(d,p) + ZPE level. By means of our calculated potential energy surface, we roughly estimate the theoretical rate constant of the

Figure 4. (a) Potential energy surface of the relevant reaction pathways for the 1 CHCl + N₂O reaction at the QCISD(T)/6-311G(d,p)//B3LYP/6-31G(d,p) + ZPE level. (b) The potential energy surface of the unfeasible reaction channels for the 1 CHCl + N₂O reaction at the QCISD(T)/6-311G(d,p)//B3LYP/6-31G(d,p) + ZPE level. (c) The potential energy surface of the unfeasible reaction channels for the 1 CHCl + N₂O reaction at the QCISD(T)/6-311G(d,p)//B3LYP/6-31G(d,p) + ZPE level. (c) The potential energy surface of the unfeasible reaction channels for the 1 CHCl + N₂O reaction at the QCISD(T)/6-311G(d,p)//B3LYP/6-31G(d,p) + ZPE level.

initial step, i.e., ¹CHCl + N₂O **R**→HFCNNO **a**₁ based on the simple transition state theory. The rate constant formula $k = KT/h \ e^{\Delta S/R}e^{-\Delta E/RT}$ is used, where $k, \Delta S, \Delta E$ denotes the rate

constant, entropy difference, and barrier height, respectively. On the basis of the calculated values $\Delta S = -0.031937$ kcal·mol⁻¹.K⁻¹, $\Delta E = 8.9$ kcal·mol⁻¹, we can obtain the rate

constant 2.77×10^{-19} cm³molecule⁻¹s⁻¹ at T = 295 K for the title reaction. It should be pointed out that once such a highenergy transition state **TSRa**₁ is surmounted, the title reaction will enter the potential well with about 46.9 kcal/mol energy and subsequently some important reaction pathways lies below the reactants **R**. As a consequence, we expect that **TSRa**₁ is the rate-determining transition state for the total reaction and the calculated rate constant 2.77×10^{-19} cm³molecule⁻¹s⁻¹ can represent roughly the low reactivity of the title reaction. However, the experimental and theoretical rate constants are not obtained as yet. Since the title reaction may be important in high-temperature processes, it is very desirable to perform experimental measurements on the high-temperature rate constants for the title reaction in future.

On the other hand, it should be pointed out that the most favorable product P_{16} NO + HCN + Cl involves two pollutants NO and Cl which are expected to be reduced at all times. So, the title reaction should escape to take place in the atmosphere. To understand the title reaction, it is desired to perform laboratory investigations on the product distribution ratio and reaction rate constant for the title reaction.

3.5 Comparison with the 1 CH₂ + N₂O and 1 CHF + N₂O Reactions. It is of interest to compare the potential energy surface feature of the title 1 CHCl + N₂O reaction with those of the analogous ones 1 CH₂ + N₂O and 1 CHF + N₂O. Recently, we studied in detail the singlet PES of the 1 CH₂ + N₂O²⁸ and 1 CHF + N₂O²⁹ reactions. By comparison, it is readily found that the features of potential energy surfaces on the CHX + N₂O (X = H, F, and Cl) reactions are almost in parallel. The reaction pathways leading to the feasible products (including the secondary dissociation pathways) can be summarized as

Path1:
$$^{1}CHX + N_{2}O \rightarrow HXCNNO \rightarrow HXCN + NO \rightarrow HCN + NO + X \text{ or } XCN + NO + H$$

Path2: 1 CHX + N₂O \rightarrow HXCNNO \rightarrow HCN + XNO \rightarrow HCN + NO + X

Path3:
1
CHX + N₂O \rightarrow HXCNNO \rightarrow XCN +
HNO \rightarrow XCN + NO + H

Path4:
1
CHX + N₂O \rightarrow HXCNNO \rightarrow HX-c(CNNO) \rightarrow N₂ +
HXCO \rightarrow N₂ + CO + HX or N₂ + HCO + X or N2 +
XCO + H

Note that for ${}^{1}CH_{2} + N_{2}O$ reaction, **Path2** and **Path3** depict the same reaction process (H-shift). However, some quantitative discrepancy leads to the different product distribution for the three reactions. For the ${}^{1}CH_{2} + N_{2}O$ reaction, HCN + NO + H (via Path1 and Path2) and $N_2 + H_2CO$ (via Path4) are the most favorable products with a comparable yield. For the ¹- $CHF + N_2O$ reaction, only four primary products can be obtained because the secondary dissociation products are thermodynamically and kinetically prohibited. The most feasible product is HFCN + NO (via Path1), the second feasible products are N_2 + HFCO (via **Path4**) and HCN + FNO (via Path2), and the least feasible product is FCN + HNO (via Path3). For the title reaction, three products can be formed, i.e., HCN + NO + Cl (via Path1 and Path2), N_2 + HCl + CO (via Path4), and ClCN + HNO (via Path3). The order of their feasibility should be HCN + NO + $Cl \gg N_2$ + HCl + CO > CICN + HNO.

As we can see, all these four pathways involve the same end-N association process ${}^{1}CHX + N_{2}O \rightarrow HXCNNO$ (X = H, F, Cl). However, it is worthwhile to note that for such a process, the barrier heights of three reactions lie in the distinct difference, i.e., zero-barrier for ${}^{1}CH_{2} + N_{2}O$, 13.5-barrier for ${}^{1}CHF + N_{2}O$, and 8.9-barrier for ${}^{1}CHCl + N_{2}O$. First, we can discuss the reactivity of the three reactions in terms of these barrier heights. The decreasing barrier height increases the carbene reactivity from ${}^{1}CHF + N_{2}O$, ${}^{1}CHCl + N_{2}O$ to ${}^{1}CH_{2} + N_{2}O$. As a result, the total rate constants of ¹CHX with N₂O reactions are 6.0 \times 10^{-23} , 2.77 × 10^{-19} , and (6.3 ± 0.7) × 10^{-11} cm³molecule⁻¹s⁻¹ for X = F, Cl, and H, respectively.^{29,31} Further, simply based on the Allned-Rochow electronegativity of F (3.91), Cl (3.00), and H (2.20),³² the change of the barrier heights can be interpreted. Since the electronegativity of Cl lies between these of F and H, the barrier height of the initial end-N association of the ${}^{1}CHCl + N_{2}O$ reaction lies between these of ${}^{1}CHF +$ N_2O and ${}^1CH_2 + N_2O$ reactions. The previous experimental and theoretical studies⁸⁻²⁷ showed that the reactivity of CHX (X = H, F, Cl) toward the same species increases with decreasing electronegativity. Our calculated results confirm such a law. Interestingly, although CHX + NO (X = H, F, Cl)reaction system follows the same law, no barrier is found in the similar N-end association processes to form HXCNO intermediate.

By comparing that the theoretical results of three reactions $CHX + N_2O$ (X = H, F, and Cl), we can find that the other distinct difference is the secondary dissociation of the primary products. For the ${}^{1}CH_{2} + N_{2}O$ reaction, the fragments $H_{2}CN$ (in Path1) and HNO (in Path2) can further dissociate to form HCN + H and NO + H, respectively, whereas the fragment H₂CO is kinetically stable and cannot further dissociate to the small fragments. For the ${}^{1}CHF + N_{2}O$ reaction, all primary products cannot further dissociate because their secondary dissociation products are thermodynamically prohibited. For the 1 CHCl + N₂O reaction, the fragments HClCN, ClNO, and HClCO can further dissociate to form Cl + HCN, Cl + NO, and HCl + CO, respectively. Clearly, the feasibility of the secondary dissociation for the fragments HXCN and HXCO is consistent with the decreased C-X bond enthalpies along X =F, H and Cl.³³ Such a result may be similar with that of ¹CHX + NO (As shown in the Introduction).

On the other hand, it is worthy noticing that for the ${}^{1}CH_{2} + N_{2}O$ reaction, a direct abstraction reaction process leading to $N_{2} + H_{2}CO$ may play an important role at high temperatures, whereas for the ${}^{1}CHF + N_{2}O$ and ${}^{1}CHCl + N_{2}O$ reactions, the direct abstraction reaction pathways are not feasible. Clearly, when H-atom is substituted by halogen atom, the attraction interaction between C-atom and O-atom is decreased.

A discussion of the properties of the ${}^{1}CHF + N_{2}O$ and 1 - $CHCl + N_2O$ reactions on the basis of substitution effect may be useful. We notice that the process HXCNNO \rightarrow HCN + XNO or XCN + HNO (in **Path2** or **Path3**), which can be depicted as a concerted X-shift (X = H, F, Cl) and N-N bond cleavage process, plays an important role. For the ${}^{1}CHF + N_{2}O$ reaction, Path2 is more feasible than Path3 but less than Path1, whereas for the $^{1}CHCl + N_{2}O$ reaction, **Path2** is more feasible than Path3 and may compete with Path1. By comparison, we can find a concerted X-shift (X = F, Cl) and N–N bond cleavage process prevails to H-shift and N-N bond cleavage process. Further, the Cl-shift and N-N bond cleavage process prevails to the F-shift and N-N bond cleavage process. Therefore, in terms of the concerted X-shift (X = F, Cl, Br, I) and N-N bond cleavage, the order of feasibility may be consistent with the decreased electronegativity of halogen atoms.

As an extrapolation, we would like to discuss the other two potentially important reactions of ${}^{1}CHBr + N_{2}O$ and ${}^{1}CHI +$ N₂O that have not been previously studied both experimentally and theoretically. According to the difference of electronegativity of halogen $\operatorname{atom}(F > Cl > Br > I)$, we predict that the mechanisms of the ¹CHBr and ¹CHI reactions with N₂O should be more related to the title reaction ${}^{1}CHCl + N_{2}O$ than to 1 -CHF + NO. Path1-Path4 may play significant roles. Moreover, the Allned-Rochow electronegativities of I (2.56) and Br (2.76) are smaller than those of Cl (3.00) and F (3.91), yet are larger than that of H (2.20).³² Then, in terms of NO, the carbene reactivities of ¹CHBr and ¹CHI should be higher than those of ¹CHCl and ¹CHF, and still lower than that of ³CH₂. Accordingly, the total rate constants of ${}^{1}CHBr$ + N₂O and ${}^{1}CHI$ + N₂O reactions are expected to be between that of ${}^{3}CH_{2}$ + NO and those of ${}^{1}CHCl + NO$ and ${}^{1}CHF + NO$.

4. Conclusions

A detailed theoretical survey on the singlet potential energy surface of the 1 CHCl + N₂O reaction system is performed at the B3LYP and QCISD(T) levels. The main results can be summarized as follows:

(1) In various possible initial association ways, the end-N attack of ¹CHCl at N₂O is expected to be the most feasible pathway leading to HClCNNO **a**. Starting from **a**, three kinds of products P_{16} NO + HCN + Cl, P_{10} N₂ + HCl + CO, and P_4 ClCN + HNO should be observed. Among these products, P_{16} is the most favorable product with a considerably large yield, whereas P_{10} should be the second feasible product followed by P_4 is the least competitive product.

(2) Further comparisons are made on the potential energy surface of the ¹CHCl + N₂O reaction with those of the analogous ¹CH₂ + N₂O and ¹CHF + N₂O. For the ¹CHX + N₂O reactions, the total rate constants may increase along X = F, Cl, and H with the decreased electronegativity. On the other hand, although the features of their potential energy surfaces are quite in parallel, the corresponding product distributions are different due to the quantitative discrepancy. The order of the dissociation feasibility for two important fragments HXCN and HXCO is consistent with the decreased C–X bond enthalpies along X = F, H, Cl, Br, and I. In addition, in terms of the concerted X-shift (X = F, Cl, Br, and I) and N–N bond cleavage which may play an important role in the ¹CHX + N₂O reaction, the order of feasibility may be consistent with the decreased electronegativity of halogen atom.

Acknowledgment. This work is supported by the National Natural Science Foundation of China (Grant Nos. 29892168, 20073014, 20103003).

References and Notes

(1) Wayne, R. P. Chemistry of the Atomspheres; Oxford University Press: Oxford, 1985.

(2) Moss, S. J.; Ledwith, A. The Chemistry of the Semiconductor Industry, 1986.

(3) Kaye, J. A.; Penkett, S. A.; Ormond. F. M., Eds. *Report on Concentrations, Lifetimes and Trends of CFCs, Halons and Related Species*: NASA Reference Publication #1339, 1994.

(4) *Scientific Assessment of Ozone Depletion*: World Meteorological Organization: Geneva, 1995.

(5) Montzka, S. A.; Butler, J. H.; Myers, R. C.; Thompson, T. M.; Swanson, T. H.; Clarke, A. D.; Lock, L. T.; Elkins, J. W. *Science* **1996**, *272*, 1318.

(6) *Halon Replacements*; Miziolek, A. W., Tsang, W., Eds.; ACS Symp. Ser. 611; American Chemical Society: Washington, DC., 1995.

(7) Haynes, B. S. Combust. Flame 28. 1977, 113, 81.

- (8) Harding, L. B.; Schlegel, H. B.; Krishnan, R.; Pople, J. A., J. Phys. Chem. 1980, 84, 3394.
- (9) Rondan, N. G.; Houk, K. N.; Moss, R. A.; J. Am. Chem. Soc. 1980, 102, 1770, and references therein.
- (10) Cain, S. R.; Hoffman, R.; Grant, E. R. J. Phys. Chem. 1981, 85, 4046.

(11) Houk, K. N.; Rondan, N. G.; Mareda, J. J. Am. Chem. Soc. 1984, 106, 4291.

(12) Houk, K. N.; Rondan, N. G.; Mareda, J. J. Am. Chem. Soc. 1984, 106, 4293.

(13) Sosa, C.; Schlegel, H. B., J. Am. Chem. Soc. 1984, 106, 5847.

(14) Moreno, M.; Lluch, J. M.; Oliva, A.; Bertran, J., J. Phys. Chem. 1988, 92, 4180.

(15) Carstensen, H.-H, Rehbein, C.; Wagner, H. Gg., Ber, Bunsen-Ges. Phys. Chem. 1997, 101, 1429.

(16) Battin-Leclerc, F.; Smith, A. P.; Hayman, G. D.; Murrells, T. P., J. Chem. Soc., Faraday Trans. 1996, 92, 3305.

(17) Hack, W.; Wagner, M., J. Phys. Chem. 1995, 99, 10 847.

(18) Cookson, J. L.; Hancock, G.,; Mckendrick, K. G., Ber. Bunsen-Ges. Phys. Chem. **1985**, 89, 335.

(19) Edelbüttel-Einhaus, J.; Hoyermann, K.; Rohde, G.; Wagner, H. Gg. Ber. Bunsen-Ges. Phys. Chem. **1989**, 93, 1413.

(20) Wagener, R.; Wagner, H. Gg., Z. Phys. Chem. 1992, 75, 9.

(21) Baren, R. E.; Erickson, M. A.; Hershberger, J. F., Int. J. Chem. Kinet. 2002, 34, 12.

(22) Roggenbuck, J.; Temps, F. Chem. Phys. Letter. 1998, 285, 422.

(23) Shapley, W. A.; Bacskay, G. B. Ther. Chem. Acc. 1998, 100, 212.

(24) Shapley, W. A.; Bacskay, G. B. J. Phys. Chem. A 1999, 103, 4505.

(25) Shapley, W. A.; Bacskay, G. B. J. Phys. Chem. A 1999, 103, 4514.

(26) Liu, J. J.; Ding, Y. H., Feng, J. K.; Sun, C. C., J. Phys. Chem. A 2001, 105, 9901.

(27) Liu, J. J.; Ding, Y. H., Tao, Y. G.; Feng, J. K.; Sun, C. C. J. Comput. Chem. 2002, 23, 625.

(28) Liu, J. J.; Feng, J. K.; Ding, Y. H.; Ren, A. M.; Wang, S. F.; Sun, C. C.; Kong, F. A., J. Phys. Chem. A 2001, 105, 5885.

(29) Liu, J. J.; Ding, Y. H., Feng, J. K.; Sun, C. C., J. Phys. Chem. A, **2002**, *106*, 2695.

(30) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, Jr., R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, M.; Wong, W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S. and Pople, J. A., *Gaussian98W*, revision A.7 Gaussian, Inc., Pittsburgh, PA, 1998.

(31) Koch, M.; Temps, F.; Wagener, R.; Wagner, H. Gg. Ber. Bunsen-Ges., Phys. Chem. 1990, 94, 645.

(32) Cotton, J. A.; Wikinson, G. Advanced Inorganic Chemistry, 1972.(33) Steudel, R. Chemistry of the Non-Metals, 1977.