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A simple model describes the translational diffusion origin of preferential solvation. Assuming independent
polar ligands in the first solvation shell of the excited probe molecule, it presents an extension of the
Smoluchowski aggregation model to the reversible case. The model captures the main aspects of both
concentration and time dependence of spectral shifts obtained from steady-state and transient fluorescence
measurements. It provides a useful method for extracting the rate and equilibria coefficients for ligand exchange
in the first solvation shell of excited polar molecules.

1. Introduction

Molecules are stabilized by their interaction with the solvent,
and this induces a shift in their absorption or emission spectra
as compared with that in the gas phase.1 When a dipolar or
charged solute is introduced into a neat polar solvent, the solvent
responds predominantly by librational motions to optimize the
solute-solvent interactions. If the dipole is created (or enhanced)
by photoexcitation of a fluorescent probe molecule, the solvent
response manifests itself in a fast time-dependent Stokes shift
for the average fluorescence frequency,ν(t).2

The situation is different in a mixture of polar and nonpolar
solvents, in which polar solvent molecules tend to aggregate
around the polar solute, a phenomenon known as “preferential
solvation”.3 Equilibrium electrostatic models have been utilized
to explain the mole-fraction dependence of the shift emanating
from such a “dielectric enrichment” process,4 and the theory
was applied to solvatochromic shifts in steady-state (SS)
spectroscopy.5 Recent dynamic measurements find relatively
slow, nanosecond spectral shifts attributed to thetranslational
diffusion of polar solvent molecules, which replace the nonpolar
ones in the first solvation shell of the solute.6-11

Molecular-dynamics simulations12-15 and theoretical work16-18

were performed to elucidate the molecular details of preferential
solvation in mixed solvents. Following an instantaneous increase
in the solute’s dipole moment, the simulations indicate three
phases in the solvation process:12 Ultrafast solvent reorientation
is followed by a fast “electrostriction” step, in which the total
number of ligand molecules increases in the first solvation shell
of the solute.12 On slower time scales (up to 50 ps), one observes
redistribution of the molecules in the first solvation shell, where
the less polar solvent is replaced by the more polar solvent
molecules. This points to the role of translational diffusion in
preferential solvation. However, given the small number of
molecules in the simulation box (typically 250, corresponding
to about three solvation shells), transport over long distances
cannot be followed. Realistic simulations of translational
diffusion would require at least 100 times more molecules
propagated to 100-fold longer times (up to 5 ns), so that direct
comparison of simulation and experiment has not yet been
obtained.

Simple chemical kinetics has been used to fit experiment19

and simulation.12 Such an approach does not contain explicitly
the translational diffusion process, which is postulated to play

a major role in the observed dynamics. Compensating for this
missing physical ingredient, there will necessarily be extra
adjustable parameters, or parameters assuming nonphysical
values [e.g.,n(∞) in ref 19 does not scale correctly with
concentration]. A practical alternative, therefore, would be to
use diffusion theory, which is intermediate in complexity
between chemical kinetics and full molecular simulations.

So far, diffusive kinetics was applied to this problem only
on a qualitative level.4,7,8In particular, the reversibility of solvent
entry/exit from the solute’s solvation shell has been neglected.
Without reversibility, the polar-molecule cluster around the
probe molecule would grow indefinitely. Its SS solvatochromic
shift would reach the limit for the neat polar solvent (νP below),
in contrast to the experimentally observed dependence ofν(∞)
on the polar cosolvent concentration.

Theory for treating reversible diffusion influenced reactions
has recently been developed20-23 and found to be in quantitative
agreement with reversible proton transfer to solvent occurring
in the excited state of organic photoacids.24-27 In such dissocia-
tion-recombination reactions,

(where ka and kd are the association and dissociation rate
coefficients), only a single B molecule may bind to A. In
contrast, solvation of a probe molecule, A, by polar solvent
molecules, B, is a (reversible) aggregation process,

where more than one B ligand may bind to A. It thus constitutes
a reversible extension of the Smoluchowski theory of coagula-
tion,28 which has been discussed under the simplifying assump-
tion of noninteracting B particles.22

The present work merges the reversible aggregation model22

with a simple electrostatic model7 for the spectral shift per polar
molecule, B, incorporated in the solute’s first solvation shell.
This results in a useful model that describes simultaneously both
steady-state and time-resolved experiments on preferential
solvation with a minimal number of adjustable parameters.

A + B {\}
ka

kd
AB (1)

A + B {\}
ka1

kd1
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AB + B {\}
ka2

kd2
AB2, ... (2)
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2. Theory

2.1. Basic Assumptions.As a model for the reaction in eq
2, let us consider a big sphere of volumeV, containing a single
A molecule andN B molecules. The theory is simplest if the B
particles are statistically independent. This occurs under several
conditions: (i) A is static, otherwise its motion couples that of
the B’s. We assume that it is a sphere of radiusr ) a, located
at the origin (the center of the big sphere), whereas the B
particles diffuse with a diffusion coefficientD. (ii) The B’s do
not interact with each other, which means that they are point
particles that may have a potential of interaction,U(r), with A
but not with one another [U(r) f 0 asr f ∞]. Furthermore,
U(r) should be independent of the number of bound B molecules
(this is not a very plausible assumption unless, as we argue
below,U(r) ≈ 0). Under these conditions, the problem becomes
spherically symmetric, depending only on the distance,r, from
the center of A. (iii) The B’s are not coupled by the aggregation
process, which requires that the rate constants of the different
binding steps in eq 2 are identical:ka1 ) ka2 ) ... ≡ ka andkd1

) kd2 ) ... ≡ kd. In particular, there is no limit to the number
of B particles that may bind to A.

In reality,kam might decrease dramatically after filling of the
first solvation shell. Nevertheless, this is expected to introduce
only a small error in our model if spectral shifts due to second-
shell ligands are negligible. Generally, the spectral shifts in the
ABm cluster saturate withm; hence, the shift per B molecule
decreases with increasingm. A similar effect has been found
in gas-phase cluster studies,29,30 in which only the few first-
shell solvent molecules induce a sizable spectral shift.

Clearly, the above assumptions restrict the theory to a small
B particle concentration,c ≡ N/V, thoughc is not required to
be infinitesimally small. In addition, we assume that the B’s
are equivalent, which means not only that they are identical
particles [with equal diffusion constants,D, and interaction
potentials,U(r)] but also that they all start from the same initial
distribution.

As a result of statistical independence, the many-body
problem factors into that of A-B pairs. Let us assume that the
probability density of having a pair separated to distancer by
time t is given byp(r,t), whereas the probability that they are
bound isp(/,t). These normalize such that 4π∫V p(r,t)r2 dr )
1 - p(/,t). B-particle equivalence implies that all of them have
the samep(r,t). Initially, we assume a random distribution

whereâ ) 1/(kBT) is the thermal energy andU0(r) the ground-
state potential, prevailing prior to the excitation of the probe
molecule. Similarly,p0 > 0 depicts a situation in which some
B’s solvate A already in the ground state.

2.2. Statistical Theory. We now reiterate the general
statistical theory for the probability of having a cluster ABm,
given a concentrationc of equivalent and statistically indepen-
dent B particles. Starting with a finite volumeV containingN
B particles, let us denote byqm(t) the probability of having
exactlym B’s bound to A by timet. Because 1- p(/,t) is the
probability that a given B particle is not bound, the probability
that none of theN particles is bound is simply

For the chemical reaction in eq 1, when at most one B may
bind, the theory ends here. When the reaction is reversible,
q0(t) provides a poor approximation for the survival probability
of an unbound A, because the restriction that only one B may
bind to it couples all of the B’s. They are not statistically
independent because the binding of one B replaceska by 0 for
all other B’s. This coupling is eliminated when eq 1 is
irreversible,kd ) 0, because the process ends with the binding
of the first B. Thus, for an irreversible reaction subject to the
restrictions i and ii above,q0(t) depicts the exact survival
probability, and this serves as the starting point for the
Smoluchowski theory of irreversible pseudo-unimolecular reac-
tions.28,31

For the aggregation process in eq 2, we proceed by consider-
ing the probability of having exactly one particle bound, with
the remainingN - 1 particles unbound. For independent and
equivalent particles, it is given by

The factorN arises because each of theN particles may be the
bound one. Continuing in this fashion, the general expression
for the cluster probabilities is given by the Bernoulli distribution

The average number of bound particles is, as expected,

but this is not proportional to the spectral shift (see below).
We are interested in the thermodynamic limit of an infinite

system,V f ∞ andN f ∞, keeping the concentrationc ≡ N/V
constant. Because in this limit 4π∫V exp[-âU(r)]r2 dr f V
(becauseU(r) f 0 at large distances), the normalized probability
density (with the initial value in eq 3) vanishes. Therefore, we
define an unnormalized probability density

so thatp(r,0|eq) f exp[-âU(r)] in the thermodynamic limit
(p0 f 0 in eq 3b). Substituting in eq 4c and taking the
appropriate limit gives, as usual,32 the Poisson distribution

This follows because, form , N, one hasN!/(N - m)! ≈
Nm and (by taking logarithms) [1- p(/,t|eq)/V]N ≈
exp[-cp(/,t|eq)].

Again, for an irreversible reaction,kd ≡ 0, define a “time-
dependent rate constant”,k(t), by k(t) ≡ dp(/,t|eq)/dt. Then,
the survival probability,q0(t), becomes

which is just the Smoluchowski result for irreversible pseudo-
unimolecular reactions.28,31 Equation 8 predicts an initial non-
exponential regime, which has recently been found experimen-
tally for an excited acid reacting with high base concentrations.33

Returning to thereVersible aggregation reaction, let us
consider the long-time equilibrium limit of eq 7. In an infinite
system, there is an infinite supply of B particles so that their
random distribution is reestablished. Hence,p(r,t|eq) f
exp[-âU(r)] as t f ∞. Assuming that the reaction occurs at

q1(t) ) Np(/,t)[1 - p(/,t)]N-1 (4b)

qm(t) ) (Nm) p(/,t)m [1 - p(/,t)]N-m (4c)

〈m(t)〉 ≡ ∑
m)1

N

mqm(t) ) Np(/,t) (5)

p(r,t|eq)) Vp(r,t), p(/,t|eq)) Vp(/,t) (6)

qm(t) ) [cp(/,t|eq)]m exp[-cp(/,t|eq)]/m! (7)

q0(t) ) exp[-c∫0

t
k(t′) dt′] (8)

p(/,0) ) p0 < 1 (3a)

p(r,0) ) (1 - p0) exp[-âU0(r)]/[4π∫V
exp[-âU0(r)]r

2 dr]
(3b)

q0(t) ) [1 - p(/,t)]N (4a)
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the contact distance,r ) a, we have

and therefore, at infinitely long times,

whereKeq is the equilibrium (association) constant. Substituting
in eq 7, we find the equilibrium limit for the cluster probabilities

which depends only oncKeq. Equations 7 and 10 are the main
results of this subsection.

2.3. Spectral Shifts.In the usual case of transient Stokes
shifts, one defines a correlation function,C̃(t) ≡ [ν(t) - ν(∞)]/
[ν(0) - ν(∞)], whereν(t) is the peak (or average) fluorescence
emission at timet. In mixed solvents, all frequencies depend
also on the concentration of the polar cosolvent. One may define
another correlation function, which depends on the number,m,
of polar molecules B in the first solvation shell of A,

HereνN andνP are the fluorescence frequencies of A in neat
nonpolar (m ) 0) and polar (m f ∞) solvents, respectively.

The time-dependent correlation function is now obtained as
the average of the composition-dependent one,

whereν(t) ) 〈νm〉. Knowledge of the spectral shifts,νm, induced
by the binding ofm polar molecules in the solvation shell of A
could allow one to calculateC(t). One might hope to obtainνm

from gas-phase cluster data,29,30 or from molecular simula-
tions.12-15 In the absence of such data, one may apply simple
electrostatic considerations.4,7 Petrov et al.7 have extended the
Onsager model finding, in the absence of specific solvation
effects such as hydrogen bonding, that

Although one could question the validity of continuum elec-
trostatics for a solvation shell composed of just a few polar
molecules, the result certainly captures correctly the qualitative
trend of reduced shift per molecule with increasingm.

It is also convenient because the average in eq 12 can now
be performed analytically, by inserting eq 7 and using the sum
∑m)0

∞ zm/(m + 1)! ) (ez - 1)/z. From this one obtains

Although cp(/,t|eq) appears in the denominator, it is easy to
see thatC(t) f 1 whencp(/,t|eq)f 0 as should be. Indeed, by
Taylor expanding up to second order,

which does not diverge ascp(/,t|eq) f 0. Moreover, because

〈m(t)〉 ) cp(/,t|eq) by eq 5, the latter approximation is similar
to obtainingC(t) by averagingm in the denominator of eq 13.
Equations 14a and 14b provide a simple model for the time
and concentration dependence of spectral shifts due to prefer-
ential solvation.

2.4. Diffusive Dynamics.So far, the theory is independent
of the equation of motion governingp(r,t) andp(/,t). Suppose
now that the relevant molecular motion is translational diffusion
with reversible binding; then, these probability densities obey
the differential equations20-24

For r g a, L is the spherically symmetric Smoluchowski
operator in three dimensions,

whereD is the relative diffusion constant,U(r) is the A-B
interaction potential, andâ ) 1/(kBT). Equations 16a and 16b
are coupled by the “back-reaction” boundary condition20,24

imposed onp(r,t) at the A-B “contact distance” (r ) a):

The functions denoted byp(r,t|eq) andp(/,t|eq) are character-
ized, additionally, by their initial (t ) 0) values:

derived from eqs 3 and 9b.Keq
0 and U0(r) are the binding

constant and interaction potential in the ground state, where the
system has equilibrated prior to excitation of A. Note that the
probability density is unnormalized and thatp(r,0|eq) f 1 as
r f ∞.

The above equations may be solved numerically, for example,
using the modular Windows application SSDP,34 which is
publicly available. In the simplest case, whenKeq

0 ) 0 andU(r)
) U0(r) ) 0, the problem admits an analytic solution. First, we
note that21

whereS(t|/) ) 4π∫a
∞p(r,t|/)r2 dr is the separation probability

for the geminate problem starting with an initially bound pair,
p(/,0|/) ) 1 andp(r,0|/) ) 0. WhenU(r) ) 0, eqs 16a and
16b admit an analytic solution23

The i, j, andk are different numbers from the set{1, 2, 3}, and
we have defined

where erfc(z) is the complementary error function (of a possibly

kd p(/,t) ) ka p(a,t) (9a)

p(/,∞|eq)) ka exp[-âU(a)]/kd ≡ Keq (9b)

qm(∞) ) (cKeq)
m exp(-cKeq)/m! (10)

Cm ≡ νm - νP

νN - νP
(11)

C(t) ) 〈Cm〉 ≡ ∑
m)0

∞

qm(t)Cm )
ν(t) - νP

νN - νP

(12)

Cm ≈ 1/(1 + m) (13)

C(t) )
1 - exp[-cp(/,t|eq)]

cp(/,t|eq)
(14a)

C(∞) ) [1 - exp(-cKeq)]/(cKeq) (14b)

C(t) ≈ 1 - cp(/,t|eq)/2≈ 1
1 + cp(/,t|eq)/2

(15)

∂

∂t
p(r,t) ) L p(r,t) (16a)

d
dt

p(/,t) ) ka p(a,t) - kd p(/,t) (16b)

L ≡ r-2D
∂

∂r
r2 e-âU(r) ∂

∂r
eâU(r) (17)

4πa2 e-âU(a) ∂

∂r
eâU(r)p(r,t)|r)a ) ka p(a,t) - kd p(/,t) (18)

p(/,0|eq)) Keq
0 (19a)

p(r,0|eq)) exp[-âU0(r)] (19b)

p(/,t|eq)) KeqS(t|/) (20)

S(t|/) ) 1 + ∑
i)1

3 γi(γj + γk)

(γj - γi)(γk - γi)
Φ(-γixDt) (21)

Φ(z) ≡ exp(z2) erfc(z) (22)
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complex argumentz). Theγi’s are roots of the quartic equation

andkD ) 4πDa is the diffusion-controlled rate constant.

3. Comparison with Experiment

We apply the model to the data of Petrov et al.6,7 They have
used the fluorescent probe 8-N,N-(dimethylamino)-11H-indento-
[2,1-a]pyrene (A in eq 2), which undergoes intramolecular
charge transfer in the excited state resulting in a large dipole
moment,µA ≈ 20 D. Both SS and picosecond fluorescence
measurements were conducted in mixtures of dimethyl sulfoxide
(DMSO, B in eq 2,µB ≈ 4 D) and toluene. No hydrogen-
bonding or other specific interactions are expected for this
system. Purely nonspecific solvation is closer to the idealized
limit of statistically independent solvent molecules assumed in
this treatment. Because no absorption measurements were
reported from which one could determine the ground-state
binding constant, it is assumed here thatKeq

0 ) 0.
Our analysis involves two straightforward steps: (i) fitting

eq 14b to SS fluorescence shifts to obtain the excited-state
binding constant,Keq; (ii) fitting eq 14a to the transient
fluorescence shifts to obtain the individual excited-state rate
constants (and the diffusion constant, when it is unavailable from
other sources). The ratio of the two rate constants is restricted
to obey eq 9b with theKeq found from the SS data.

SS fluorescence maxima as a function of DMSO mole
fraction,x, were given in Table 1 of ref 6. We have converted
mole fractions to concentrations using for the mixture volumes
V(x) ) 70.9x + 106.3(1- x) + VE(x) cm3/mol, with the excess
molar volume calculated from35 VE(x) ) x(1 - x)(1 - 2x)-
[-0.1355+ 0.3525(1- 2x) - 0.2726(1- 2x)2]. The data point
for c ) 0.2 M was taken from Table 1 of ref 7. Figure 1 shows
the dependence of the SS emission frequency on DMSO
concentration (circles) as compared with our model (line).
ParametersνP, νN, andKeq were adjusted to achieve this fit (νP

and νN can be obtained experimentally, but they were not
reported ref 7). The value found forKeq is 3.8 M-1 which,
assuming the simple relation〈m〉 ) cKeq, implies that between
0.8 and 12 DMSO molecules are bound to the dye in the
experimental concentration range, [DMSO]) 0.2-3 M, seen
in Figure 1.

With these values set, only two parameters (one rate constant
and the diffusion constant) should determine the time depen-
dence ofν(t) for all concentrations. The experimental time
dependence has been summarized by the equation7

with the three concentration-dependent parameters given in
Table 1 of ref 7 (t0 is an adjustable parameter used to set time
zero). These data are depicted by the thick gray lines in Figure
2.

The time-dependent model in eq 14a depends on the
interaction potential,U(r), appearing in the Smoluchowski eq
16a. The radial part of the dipole-dipole interaction is given
by µAµB/(4πε0εr3). Even for the huge dipole moment of the
probe and the small dielectric constant of the mixture,ε ≈ 5,
this interaction becomes comparable to the thermal energykBT
already atr ) 7.3 Å.6 This implies that the dipoles are freely
rotating beyond the second solvation shell, in which case the
angular part of the dipole-dipole interaction, 3 cos2 θ - 1,
averages to zero. If they are almost but not quite freely rotating,
one could use the Keesom interaction,U(r) ) -2(µAµB/
(4πε0εr3))2/(3kBT), obtained from a weighted average of the
angular part.36 The resultingr-6 interaction is of short range
(essentially zero beyond 10 Å), and its validity for very short
separations may be questioned. In addition, there should be some
screening of this interaction. Thus, for the semiquantitative
comparison presented below, it is neglected, and we assume
that U(r) ) 0. In this limit, eqs 20 and 21 may be used in eq
14a so that the model becomes fully analytical.

The thin lines in Figure 2 show a global fit of this model to
the experimental data using a reasonable value for the diffusion
coefficient of DMSO in toluene,D ) 1.4 × 10-5 cm2/s. In
principle, this parameter could be obtained from an independent
measurement. Thus, the only unavoided adjustable parameter
is one of the rate constants,ka or kd, the value of the other being
determined fromKeq. With this single parameter, aglobal fit is
achieved, meaning that the same value is used for it forall
concentrations.

Figure 1. Dependence of the peak fluorescence frequency of 8-N,N-
(dimethylamino)-11H-indento[2,1-a]pyrene in DMSO/toluene mixtures
on the DMSO concentration under continuous illumination conditions.
Circles are experimental data,6 and line is a fit to eqs 14b and 12 with
νP ) 16 850 cm-1, νN ) 23 850 cm-1, andKeq ) 3.8 M-1.

Figure 2. Time-resolved Stokes shifts for the system in Figure 1. Thick
gray lines are experimental data from eq 24 with the parameters of
Table 1 in ref 7. Top to bottom,c ) 0.2, 0.4, and 0.8 M (usingt0 )
20, 0, and 40 ps). Thin lines are a global fit to eqs 14a and 12 witha
) 5 Å, ka ) 5.7 × 1010 M-1 s-1, kd ) 1.5 × 1010 s-1 (note that the
ratio is 3.8 M-1), andD ) 1.4× 10-5 cm2/s, achieved using the SSDP
software34 for solving eq 16. Commensurate with the deviation of the
0.2 M data point in Figure 1,νP andνN for c ) 0.2 M were increased
by 650 cm-1.

νmax(t) ) ν∞(c) + ∆ν(c)/[1 + (t - t0)/τ(c)] (24)

Daγ3 + D(1 + ka/kD)γ2 + akdγ + kd ) 0 (23)
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4. Conclusion

The extension of the Smoluchowski model to reversible
aggregation appears to capture the main aspects of both the
concentration and time dependence of preferential solvation.
Assuming independence of the polar molecule ligands, the
simple model in eqs 14a and 14b has been derived. The
probability function appearing there is obtained from the solution
of a diffusion equation with reversible boundary conditions and
appropriate initial conditions. These could take into account the
equilibrium situation that existed in the ground state prior to
laser excitation, an aspect to be tested in future work using
additional absorption data.

The agreement achieved here between model and experiment
is encouraging, lending further support to the translational
diffusion origin of preferential solvation. It provides an elegant
method for estimating the rate and equilibria coefficients for
ligand exchange in the first solvation shell of excited molecules.
To the author’s knowledge, these fundamental parameters have
thus far not been determined by other methods. In future
experimental work, care could be taken to determineD, νN, and
νP from independent measurements, which would increase the
confidence in the determination of the rate parameters.

As seen in Figure 2, the model is not completely quantitative,
showing deviations particularly at the higher concentrations. The
deviations could arise from the breakdown of the independence
assumption, for example, because the rate constants in eq 2 are
not all identical. It might indeed be expected that the binding
rate constant,ka, like the spectral shift per ligand, also decreases
with m. This would couple the B-molecule dynamics, because
the binding of one changes the probability for binding another,
making the problem much harder. The coupled problem is
characteristic of systems showing cooperativity, such as ligand
binding to tetrameric hemoglobin. It is therefore of interest to
treat such kinetics theoretically in the future.

Another qualitative aspect of the model is the spectral shift
per ligand, which is estimated from a simplified electrostatic
model. This shift is dictated by the short-range A-B interaction.
In addition, it is not clear what expression should be used for
the longer-range interaction, depicted by the potentialU(r).
Possibly more quantitative results could be obtained by a hybrid
approach: the relevant interactions may be calculated by
molecular dynamics and then used as input for a diffusion
approach, by which long times and large distances are easier to
achieve.
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