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The problem of photoinduced donor-acceptor electron transfer in liquid solution is analyzed to obtain an
understanding of the relationship between approximate treatments of the role of diffusion in electron transfer,
that is, the Collins-Kimball approach, and a detailed analysis of the problem. It is shown why previous
analyses of experimental data have yielded distance dependences of electron transfer that are much too long
range. From an appropriate fitting of the nonstationary kinetics of donor fluorescence quenching by diffusion-
assisted electron transfer, the effective radii and the steady-state constants associated with electron transfer
are found for a donor-acceptor system studied experimentally in seven solvents with different viscosities.
The dependence of diffusion agrees with the one predicted theoretically for electron transfer having a distance-
dependent transfer rate initially taken to be exponential with distance. In the fast-diffusion limit, the dependence
on the rate of diffusion is well approximated by the Collins-Kimball relationship, which permits the kinetic
rate constant and the effective radius associated with diffusion-induced quenching to be extracted from the
experimental data. The effective radius is then related to the electron transfer rate with arbitrary distance
dependence. From this relationship, the tunnelling length for both exponential and Marcus-type rates is obtained
from the data analysis, and it is demonstrated that the latter is almost twice as long as the former. For the
Marcus transfer rate, it is found that the Marcus parameterâ ) 1.2 Å-1 (â ) 2/tunnelling length), which is
in accord with previous measurements on a variety of systems. The theoretical analysis presented here resolves
the apparent discrepancies between early measurements of very long tunnelling lengths in liquid systems and
physically reasonable values ofâ ≈ 1 Å-1.

I. Introduction

One of the simplest bimolecular reactions in liquid solutions
is the impurity quenching of an excited donor D* by charge
transfer to electron acceptors A. The competition of the
excitation decay with the diffusion-assisted electron transfer is
represented by the following reaction scheme

whereτ is the donor excited-state lifetime in the absence of
acceptors. The energy dissipation is often described by con-
ventional (Markovian) chemical kinetics, represented by a single
equation for the excitation densityN ) [D*]

wherec ) [A] remains constant if acceptors are present in great
excess. Under this condition, the quenching proceeds exponen-
tially with the time-independent ratecki and the rate constant

whereD ) DD + DA is the coefficient of encounter diffusion
andRQ is the effective radius of the reaction.

In the classical theory of bimolecular reactions,1,2 the transfer
proceeds with a kinetic rate constantk0 in a thin layer adjacent
to the contact sphere of radiusσ. In this case, the effective radius
is related to the external radius of the reaction layer,R, according
to the Collins-Kimball (CK) relationship:

RQ increases with viscosity but cannot exceedR. In the original
CK theory, the reaction layer was assumed to be infinitely thin;
therefore,R ≡ σ. This is actually a contact model of transfer
reactions. Later,R came to be regarded as a fitting parameter,
partially accounting for the remote nature of transfer, but only
for R - σ , σ.

Evidently, both the contact and generalized CK models of
electron tunnelling are simplifications that are too rough to
describe real transfer that is governed by the distance-dependent
tunnelling rate,WI(r). Much better, though not perfect, is an
exponential model of this dependence:

It is often assumed that the rate decreases exponentially with a
characteristic tunnelling length,l. It is possible to obtainl in
some circumstances from experimental studies of intramolecular
electron transfer.3,4 In the case of intermolecular transfer assisted
by diffusion,l can be obtained only indirectly from experiments
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RQ ) R
k0

k0 + 4πRD
(1.4)

WI(r) ) Wce
-2(r - σ)/l (1.5)

D* + A f D+ + A- (1.1)

Vτ

Ṅ ) -kicN (1.2)

ki ) 4πRQD (1.3)
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through the rate constants related toWI(r) by the theory of
distance-dependent electron transfer in liquid solution.

Early theoretical treatments, presented almost simultaneously,
were developed intuitively5 but were justified in terms of a
binary approximation in ref 6. Not only the rate processes but
also the dynamic transfer governed by the Hamiltonian were
studied using the approach called encounter theory (ET).7 At
present, the method is better known as differential encounter
theory (DET), which can be deduced, in some limits, from the
more general integral encounter theory.8 DET permitted calcula-
tion of the RQ(D) dependence for the exponential rate5 and
proved that the CK model, withR ≈ σ, is valid in the fast-
diffusion limit.7 However, for slower diffusion (higher vis-
cosity), the steady-state constantki ) 4πRsD, whereRs > R.
The dependence on diffusion forRQ was given in a number of
papers:7,9,10

whereγ ) exp(C) andC is the Euler constant.
The effective quenching radius,RQ, is a liquid analogue of

the reaction cross section in gas-phase kinetics. The specification
of the dependence on the diffusion ofRQ(D) is the main
achievement of DET. This dependence plays an important role
in chemical kinetics of liquid-state reactions, which is the same
role as the energy (velocity) dependence of the gas-phase
reaction cross section. The gas-phase reaction cross section is
the subject of numerous theoretical studies and related cross-
beam experiments. However, the variation of molecular veloci-
ties in the beams is more readily accomplished than is changing
the mobility (diffusion) of particles in liquid solutions. Changing
the diffusion can be done in a very limited range by varying
the solvents or their compositions or by using external pressure,
which changes the viscosity of the solution. However, any of
these methods can affect not only diffusion but also other
properties of the media (solvation, polarity, refractive index,
etc.).11 Whenever the experimental difficulties were overcome,
new and very important results were obtained.12-14

As far as we know, the first experimental inspection of the
RQ(D) dependence6 launched by a joint team of experimentalists
and theoreticians was presented in ref 13. The fluorescence
quenching of pheophytin a by toluquinone was studied in a
number of different pure solvents having viscosities that were
either known or measured. The diffusion coefficients obtained
from the Stokes-Einstein relationship vary in the series of
solvents studied by 2 orders of magnitude. The effective
quenching radius,RQ ) ki/4πD, was found by assuming that
only steady-state quenching could be detected experimentally.
However, the best fit of the theoretical dependence ofRQ(D) to
the data gave the following unsatisfying results:13 Wc ) 1.8 ×
1010 s-1,σ ) 4 Å, and l ) 5.4 Å. The last number is much
larger than any reasonable value for the tunnelling length, which
should be 1 to 2 Å. Two other attempts were undertaken to
correct this result by changing the form of the transfer rate’s
spatial dependence.15,16 Only in the last attempt16 was a
reasonable reduction ofl obtained by assuming thatWI(r) has
a bell shape with its maximum shifted far from contact. This
reduction is possible, but only in the inverted Marcus region.
In the normal region, where the exponential approximation5

works well, the problem of unreasonably large physical tun-
nelling lengths remained unsolved.

Unfortunately, until now no other attempts to resolve this
problem theoretically or experimentally were made. Only

recently, electron transfer in the normal Marcus region was
studied again in another system and in seven different solvents.17

However, the quenching kinetics that were measured much more
accurately were found to be nonstationary, that is, the evolution
of N(t) is not exponential; the rate depends on the time when it
is measured. The preliminary analysis of these results showed
that l is overestimated if the experiments are analyzed in the
same way as in ref 13. This overestimation stimulated the critical
analysis of the way in whichRQ should be extracted from the
experimentally studied kinetics. Here, we prove that a systematic
mistake is made when the quenching kinetics are considered to
be exponential, even at the very end of the available time
interval.

In our present study, we fit the non-Markovian quenching
theory to nonstationary experimental kinetics to find a single
quenching radiusRQ for each of the solvents. For fast diffusion,
the viscosity dependence ofRQ obeys the Collins-Kimball
equation (3.3), permitting the determination of the CK param-
eters: the kinetic rate constantk0 and the phenomenological
reaction radiusR. However, the CK model does not describe
theRQ(D) dependence over the full range of viscosities studied.
The more general dependence obtained by means of DET7 for
exponentialWI(r) covers a much larger range of viscosity
variation. From the fitting of this dependence to the experimental
one, more reasonable parameters of the exponential rate (1.5)
and the tunnelling lengthl ) 0.85 Å are obtained. The latter
can be easily related to the true tunnelling lengthL of the Marcus
formula for WI(r), which is not exactly exponential. The true
tunnelling length is found to be only twice as large asl and
gives the Marcus parameterâ ) 1.2 Å-1. This result is reliable
and compatible with others obtained earlier for intramolecular
electron transfer.3 Thus, the theoretical results presented below
resolve the problem of unphysical long-range tunnelling that
came from the analysis of an earlier experimental study of
electron transfer in liquids.

II. Nonstationary Energy Quenching

It is remarkable that in the theory of contact reactions first
developed by Smoluchowski,1 the limitations of the Markovian
approach were removed from the very beginning. The “time-
dependent” rate constant,kI(t), was substituted forki in the
kinetic equation (1.2). In the Collins-Kimball theory,kI(t) is
defined as follows:2

wherekD ) 4πRD is the diffusional rate constant andx ) (1 +
k0/kD)2Dt/R2. As a result, the survival probability of excitation
vanishes nonexponentially:

This effect is especially pronounced whenk0 . kD so that
the reaction is under diffusion control. The quenching always
starts with the maximal reaction rate constantk0 and then slows
down gradually, approaching a much smaller diffusional value,
kD:

From Figure 1, which demonstrates the evolution of the

RQ ) Rs≈ σ + l
2

ln(γ2Wcl
2

4D ) atRs . R (1.6)

kI(t) ) ki(1 +
k0

kD
exerfcxx) (2.1)

N(t) ) exp(-c∫0

t
kI(t′) dt′ - t/τ) (2.2)

kI(t) ) {k0 at t ) 0

kD(1 + R

xπDt) at t f ∞ (2.3)
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Collins-Kimball rate constant (2.1) in the full time domain, it
is easy to see that the CK rate constant is larger than the steady
state constant,ki, at any finite time, and the difference is more
pronounced the earlier they are compared.

From work done in the last decade, there is growing evidence
that fluorescence quenching by electron transfer is actually
nonexponential.18 In this and other studies19, the non-Markovian
Collins-Kimball theory2 was used to fit the experimental
kinetics from very short times to long times. However, this
manner of extracting quenching parameters from nonstationary
kinetics was deservedly criticized in ref 20 because there are
too many parameters to obtain reliable results. It should be added
that the electron transfer in the inverted region studied in ref
19 does not occur at contact at all, which makes the Collins-
Kimball theory inapplicable, at least at short times. Instead of
fitting all of the kinetics, the authors of ref 20 analyzed only
the long-time asymptotic behavior of the survival probability,
which is given by the well-known two term expression23

This expression accounts for the nonstationary diffusional
transfer for any free energy of reaction. Varying the solvent
viscosity by changing the external pressure, the authors provided
an example of how to obtain the kinetic constantk0 from the
Collins-Kimball model of theRQ(D) dependence. This constant
was found to be an order of magnitude smaller than that reported
in ref 19.

The kinetics at the shortest times can be somewhat smoothed
by excitation with a light pulse of finite duration.24,25However,
the subsequent nonstationary quenching is not actually perturbed
by excitation and is worthy of quantitative investigation. The
first term in eq 2.4 represents the steady-state quenching with
a diffusional rate constant of 4πRD, whereas the second term
accounts for the initial nonstationary quenching, which is faster.
Because of the second term, the long-time asymptote of this
process never becomes exponential in a strict sense. There is
the pseudo-Markovian asymptotic expression

but the pre-exponent permanently decreases with time:A )
exp(-8R2cxπDt). For this reason, one cannot obtain an
accurate estimate ofki by setting it equal to d lnP/dt at the
latest available time. If this derivativeckI(t) is identified with

the steady-state rate of quenching,cki, the rate constantki )
4πRQD and the effective quenching radiusRQ are overestimated.
This naive method of specifyingRQ was a source of systematic
error that led to abnormally large values of the tunnelling
parameter that was obtained in ref 13.

At even higher viscosities, when the electron transfer is
already under diffusional control, a noticeable difference appears
between encounter theory and the primitive contact model of
Collins-Kimball. This difference is usually attributed to the
remote nature of electron transfer described by either the
rectangular model ofW(r) proposed by Szabo26 or the expo-
nential approximation ofW(r) (eq 1.5).27,28 However, the best
alternative to any model is the true Marcus-type rate of trans-
fer, which is a product of both the tunnelling and Arrhenius
factors:29

Here,V0 is the tunnelling matrix element,L is the true tunnelling
distance, and∆Gi is the free-energy change associated with
electron transfer. The advantage of employing the true transfer
rate compared to using the CK model has been recognized in
ref 24, but an attempt to fit the nonstationary quenching kinetics
using eq 2.5 was launched by this group later.25 Unfortunately,
their choice of ethylene glycol as a more viscous solvent was
inappropriate for the reasons that were presented in ref 30 and
are confirmed here (see below). Other authors also appealed to
the MarcusWI(r),28,31,32though in the vast majority of earlier
works, the exponential approximation of this dependence was
used.7,29,33,34

In the next section, we show how the effective radiusRQ can
be properly found from the nonstationary kinetics of electron
transfer causing fluorescence quenching. Then the diffusional
dependence of this radius,RQ(D), will be used to specify the
main parameters of the CK model: the external radius of the
reaction zone,R, and the kinetic rate constant,k0. The method
for the extraction ofRQ is similar to the one proposed in ref 20,
but its utilization here is different, and it is used to investigate
not only the CK model but also the results obtained for the
exponential transfer rate.

III. Extraction and Fitting of RQ(D)

The long-time diffusional asymptote of quenching (eq 2.4)
is actually a universal kinetic law, provided that the effective
radiusRQ is substituted forR:

When the concentration of quenchers in solution and the
viscosity are known (as well asD, which is given by the
Stokes-Einstein relationshipD ) kBT/6πση), RQ is the only
fitting parameter in eq 3.1. It is expected that for fast diffusion
RQ coincides with the Collins-Kimball radius (eq 1.4) but that
for slow diffusionRQ becomes identical toRs from eq 1.6.

In Figure 2, we demonstrate howRQ can be obtained from
the best fit of the two-term expression (eq 3.1) to the
experimentally measured lnP(t). P(t) ) N(t) exp(t/τ) ) N/N|c)0

is obtained from the measured kinetics of energy dissipation,
N(t), which is related to the same kinetics in the absence of
acceptors,N(t)|c)0. The initial discrepancy between these kinetic
parameters is natural and should be ignored.24,25The convolution
of the excitation pulse with system response makes the top of
a signal smoother whereas the long-time asymptote (eq 3.1)

Figure 1. Time dependence of the instantaneous rate constantkI(t)
compared to its asymptotic (steady-state) valueki in the contact theory
of diffusion-assisted electron transfer. Two parameters of the theory,
k0 andσ, are taken to be the same as in Figure 3. The vertical dotted
line in the inset indicates the upper bound of the time interval, which
was available experimentally, where the instantaneous rate constant is
still almost 70% larger than the steady state value.

ln P ) ln[N exp(t/τ)] ) -c[4πRDt + 8R2xπDt] (2.4)

P(t) f Ae-ckit

WI(r) ) V0
2 exp(-

2(r - σ)
L ) xπ

xλT
exp(-

(∆Gi + λ)2

4λT ) (2.5)

ln P ) -c[4πRQDt + 8RQ
2xπDt] at t . RQ

2/D (3.1)
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extrapolated into this region is sharper than the trueP(t). The
time interval of fitting is also restricted from above by noise,
whose relative value increases with time. However, even in a
limited time interval, the fitting, which accounts for the
nonstationary quenching, is much better than the estimate of
the steady-state rate from the tangent to the kinetic curve. Even
at the end of the available interval, the data are steeper than the
line ln P ) -c4πRQDt, the slope of which is the true stationary
ratecki.

In ref 20, reliable values of bothRQ and D were obtained
using an iterative nonlinear least-squares method with sophis-
ticated optimization of the fitted function. The time-zero shift
parameter was also adjusted in the analysis. KnowingD from
the separate measurements, we can do the same thing in a much
simpler manner by varying onlyRQ and using the vertical shift
of the whole curve as an adjustable parameter. An example of
such a fit is shown by the thick line in Figure 2. This procedure
was used to find reaction radii as well as the corresponding

steady-state rate constants

Some authors21,22 prefer to deal withki instead ofRQ. For a
fixed value ofD, it does not matter which of these is taken as
the primary fitting parameter. However,RQ is a more funda-
mental property of the transfer. The relationship of the value
of RQ to the contact distanceσ and the tunneling lengthl
contains a good deal of information about the transfer mecha-
nism. In addition, there are analytical estimates ofRQ for high
viscosities, for example, the one given in eq 1.6. For all of the
systems studied here experimentally, the results for bothRQ and
ki are summarized in Table 1.

It is common and convenient to represent the CK equation
(eq 1.4) as a linear relationship between inverseki and viscosity:

This relationship is expected to hold, at least in the low-viscosity
region where the contact approximation (R ≈ σ) is the most
reasonable. There is no contradiction in the fact that at smallD
some of our tabulated data deviate from the straight line (eq
3.3). The data need only approach the line asD f ∞. There,
1/ki f 1/k0, so the kinetic rate constant can be unambiguously
found from the intersection of the extrapolated straight line with
the ordinate (Figure 3). For the system under study,k0 was found
in this way:

With this value fork0 andR ) σ ) 6.87 Å taken from ref 17,
we plotted the corresponding CK straight line, but its slope is
somewhat too large to fit the experimental data well.

To improve agreement, the CK radius is often taken to be an
adjustable parameter:19,20,24

By changingµ, one changes the slope of the line representing
the Collins-Kimball relationship. Selecting the proper value
of µ permits the experimental data at low viscosities (in the
fast-diffusion limit) to be fit very well because the electron

Figure 2. Fit of nonstationary electron-transfer kinetics (thick curve)
to the experimental data obtained in propylene glycol, the most viscous
solution studied in ref 17. The thin line represents the tangent to the
kinetic curve at the longest time within the available interval. The
dashed, straight line is the purely exponential decay, with the steady-
state rate constantki ) 4πRQD obtained from the bestRQ value.

TABLE 1

solvent c (M) τ (ns) D (Å2/ns) RQ (Å) ki (Å3/ns)

0.033 4.000 21 991
1 acetonitrile 0.067 1.45 438 4.110 22 622

0.100 4.110 22 622

0.025 4.545 13 823
2 ethanol 0.050 2.07 242 4.545 13 823

0.075 4.545 13 823

0.050 7.000 3985
3 eth gly/ethanol 0.100 2.21 45.3 7.000 3985

0.150 7.000 3985

0.050 7.470 3078
4 glycerol/butanol 0.100 2.60 32.8 6.402 2638

0.150 6.646 2739

0.050 6.597 2388
5 pr gly/butanol 0.100 2.66 28.8 6.597 2388

0.150 6.597 2388

0.050 7.624 2702
6 glycerol/ethanol 0.100 2.34 28.2 7.624 2702

0.150 7.624 2702

0.050 8.125 819
7 propylene glycol 0.100 2.80 8.0 7.500 754

0.150 7.375 741

0.050 10.067 1885
ethylene glycol 0.100 2.38 14.9 10.067 1885

0.150 10.067 1885

Figure 3. Dependence of the steady-state rate constant on diffusion.
The points taken from Table 1 are interpolated by a thick line
representing the theoretical dependence for the exponential transfer rate
with l ) 0.85 Å. The thin, straight line plots a contact approximation
with k0 ) 5.13× 104 Å3/ns andσ ) 6.87 Å, whereas the dashed line
represents the Collins-Kimball result withµ ) 0.91. The higher and
lower values of the rate constants related to the same system but with
different concentrations are depicted here and in successive Figures
by empty circles.

ki ) 4πRQD (3.2)

1
ki

) 1
k0

+ 1
4πRD

(3.3)

k0 ) 5.13× 104 Å3/ns (3.4)

R ) σ/µ (3.5)
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transfer in this limit is really a quasi-contact, provided the thin
reaction layer is included in the reaction sphere of radiusR J
σ.28 The CK approximation works better the smaller the width
of the actual reaction layer,R - σ.

In the case of the exponential transfer rate (eq 1.5), this width
is approximatelyl/2. More accurately, it can be determined if
the predictions of the CK model are compared with the exact
solution obtained by means of encounter theory. In fact, the
exponential transfer rate has the privilege of being one of the
few models ofWI(r) that enables a rigorous solution of the DET
equations to be obtained. The solution results in the following
dependence on diffusion of the effective radius:7,29

Here

whereC is the Euler constant andK(x) and I(x) are modified
Bessel functions. By substituting eq 3.6 into eq 1.3, one can
easily deduce that

where

and

Becausek0 andσ are fixed, there is only a single free parameter,
l, that can be used for fitting.

In the data presented in Figure 3 (as well as in Figures 6 and
7), there are a few points in which somewhat different rate
constants were obtained for the three concentrations studied.
In such cases, we have plotted all of them with the higher and
lower values depicted by empty circles. Almost all points fall
on the theoretical curve (thick line) representing the exact
solution (eq 3.7) withWc fixed by the known kinetic constant
and the tunnelling length found from the best fit,

Only a single point for ethylene glycol marked by the crossed
circle is too low, but this system was recognized as exceptional
by experimentalists themselves. The reasons that it is so different
were discussed in a separate article.30 For the same reasons,
we excluded it from our fitting as well.

The exact result for exponentialWI(r) was reduced in ref 7
to the standard CK relationship withR ) σ (µ ) 1), which
appears in the zero-order approximation with respect toF. If
the higher-order corrections were included, thenµ < 1 would
be obtained. With the true value ofµ, the CK straight line fits
the data in the fast-diffusion region almost as well as the exact
curve (see Figure 3) does. To specify the slope of this line
theoretically, we have to find the generalµ(F) dependence by
means of DET. Therefore, in the next section, the CK relation-

ship will be rederived for an arbitrary functional form of the
transfer rate. Thenµ(F) will be found not only for the
exponential rate but also for the Marcus rate of electron transfer.
From the analysis with the Marcus rate, the true tunnelling
distance in liquids emerges.

IV. CK Approximation for Remote Electron Transfer

Although we obtained rather good agreement between the
experiment and theory on the basis of the exponential transfer
rate model (eq 1.5), this is not firm evidence that the distance
dependence is actually exponential. In the Marcus theory of
outer-sphere (solvent-assisted) electron transfer, the rate (eq 2.5)
contains the Arrhenius factor that depends on the distance. In
highly polar solvents, the free energy of transfer∆Gi ≈ a
constant, but the reorganization energyλ(r) slowly increases
with distance, approaching twice the contact value, 2λc:29

In the normal Marcus region (∆Gi < λc), this effect significantly
reduces the Arrhenius factor near the contact, though at large
distances this factor approaches a constant. As a result,WI(r)
can be approximated by exponential functions, but near contact
and far from it, they have different decrements. The former
(2/l) is larger then the latter (2/L), which is expressed through
the true tunnelling lengthL:

Here, we have

In Figure 4, the functions given in (eq 4.2) are compared with
the true nonexponential Marcus rate in the normal region (∆Gi

) -0.59 eV,λc ) 1.3 eV). As was expected, the Marcus rate
near the contact decreases much faster than does its exponential
asymptote at large distance. The long-distance asymptote
contains the true tunnelling parameterL, which is almost twice
as large as thel value used above to obtain the best fit to the

RQ ) σ + l
2[ln(γ2âm) + 2θ(âm,

2σ
l )] (3.6)

θ(x, y) )
K0(2xx) - yxxK1(2xx)

I0(2xx) + yxxI1(2xx)
âm )

Wcl
2

4D

γ ) eC ≈ 1.781

ki ) 4πσD + 2πlD[ln(γ2âm) + 2θ(âm,
2σ
l )] (3.7)

âm )
k0F

8πσD(1 + F + F2/2)
F ) l /σ

k0 ) ∫σ

∞
WI(r)4πr2 dr ) 2πWcσ

2l(1 + l /σ + l2/2σ2) (3.8)

l ) 0.85Å (3.9)

Figure 4. Distance dependence of the Marcus transfer rate (eq 2.5) in
the normal region (∆Gi ) -0.59 eV) withL ) 1.65 Å andλc ) 1.3
eV (thick line) in comparison to its exponential approximations for
short (dotted line) and long (dashed-dotted line) distances.

λ(r) ) λc(2 - σ/r) (4.1)

W ) {Wce
-2(r - σ)/l at r ≈ σ

W∞e-2(r - σ)/L at r . σ
(4.2)

Wc )
V0

2xπ

xλcT
exp(-

(∆Gi + λc)
2

4λcT )
W∞ )

V0
2xπ

x2λcT
exp(-

(∆Gi + 2λc)
2

8λcT )
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experimental results. A more accurate relationship betweenl
andL will be established below.

Moreover, the effective width of the reaction layer can be
attributed to a nonexponential transfer rate provided that the
CK reaction constant’s dependence on diffusion (eq 3.3) can
be approximately identified with that derived by DET for
arbitraryWI(r). The derivation starts with the general definition
of the steady-state constant in DET:

This expression relateski to the arbitrary rate of transfer and
the steady-state pair distribution of reactants

whereñ(r, s) ) ∫e-stn(r, t) dt. The nonstationary distribution
n(r, t) is the solution of the diffusion equation:

Here,L̂ is the diffusion operator for nonreacting particles, and
g(r) ) e-U(r) is the initial equilibrium distribution for a pair of
reactants. The distribution is not homogeneous if there are
electrostatic or other interactions, which are represented by the
interparticle potentialU(r), but for U ) 0, we haveL̂ )
D

r2

∂

∂r
r2 ∂

∂r
andg ) 1.

The general solution of eq 4.5 can be expressed through its
Green function

that has a Laplace transform that obeys the known integral
equation35

Here, G0(r, r0, t) is the Green function for diffusive motion
without reaction, which obeys the much simpler differential
equation

It has the following general property following from the
stationary nature ofg(r) ) ∫G(r, r0, t) g(r0) d3r0 :

Using this property after the integration of eq 4.7 overr0 with
the weightg(r0), we obtain

After inserting this result into eq 4.4, we get the final integral
equation for the desired stationary distribution:

Equation 4.11 can be further simplified using the well-known
Green function for free diffusion of charged reactants:35

rc ) q2/εkBT is the Onsager radius.
For neutral reactants (q ) 0) or highly polar solvents (ε .

1), one can takerc ) 0 andg(r) ) 1. Inserting the simplified
Green function into the general equation (4.11) reduces eq 4.11
to

The first integral in this expression describes the large distance
asymptote, whereas the second integral determines the contact
reduction of the particle density:

R ) ∫0
∞WI(r0) ns(r0) r0 dr0. The asymptote at larger is very

general and is well-established7, whereas the contact reduction
depends on the model of the transfer rateWI(r) and is more
pronounced the slower the diffusion.

However, we need to use the whole distributionn(r) in the
calculation of the steady-state rate constant (eq 4.3). Near the
kinetic limit, n(r) can be readily obtained from eq 4.13. For
fast diffusion, both corrections to 1 (the first term) in eq 4.13
are small and can be estimated by iteration. The first one gives
us the following:

x ) r/σ andWI(x) ) WI(r)σ3. Substituting this approximate result
into the general definition of the rate constant, eq 4.3, we obtain

This is, in fact, the CK eq 3.3 expanded in terms ofk0/4πRD
, 1, whereR ) σ/µ according to the definition in eq 3.5.
However,µ is no longer a phenomenological parameter. Rather,
it acquires the proper definition in terms of the arbitrary transfer
rate:

After substitutingWI(x) )
k0

4π
δ(x - 1) into this equation, we

obtainµ ) 1, which reduces eq 4.15 to the original Collins-
Kimball expression for the contact reaction. However, for the
exponential rate (eq 1.5), which accounts for the finite size of
the reaction zonel, it follows that after integration (4.16)

ki ) ∫WI(r)ns(r) d3r ) 4πRQD (4.3)

ns(r) ) lim
tf∞

n(r, t) ) lim
sf0

sñ(r, s) (4.4)

n̆ ) -WI(r)n + L̂n
∂n
∂r |r)σ

) 0 n(r, 0) ) g(r) (4.5)

n(r, t) ) ∫G(r, r0, t) g(r0) d3r0 (4.6)

G̃(r, r0, s) ) G̃0(r, r0, s) -

∫G̃0(r, r′ s) WI(r′) G̃(r′, r0, s) d3r′ (4.7)

Ġ0 ) L̂G0

∂G0

∂r |
r)σ

) 0 G0(r, 0) )
δ(r - r0)

4πr2
(4.8)

∫G̃0(r, r0, s) g(r0) d3r0 )
g(r)

s
(4.9)

ñ(r, s) )
g(r)

s
- ∫G̃0(r, r′, s) WI(r′) ñ(r′, s) d3r′ (4.10)

ns(r) ) g(r) - ∫WI(r′) G̃0(r, r′, 0) ns(r′) d3r′ (4.11)

G̃0(r, r′, 0) ) {exp(rc/r)[1 - exp(-rc/r′)]
4πrcD

at r < r′

exp(rc/r) - 1

4πrcD
at r > r′

(4.12)

ns(r) ) 1 - 1
rD∫σ

r
WI(r0) ns(r0) r0

2 dr0 -

1
D ∫r

∞
WI(r0) ns(r0) r0 dr0 (4.13)

ns(r) ) {1 -
ki

4πDr
) 1 -

RQ

r
at r f ∞

1 - R/D at r ) σ

ns(x) ) 1 - 1
σD[1x∫1

x
WI(y) y2 dy + ∫x

∞
WI(y) y dy]
for k0 , 4πσD (4.14)

ki ) k0[1 -
k0

4πσD
µ(F)] (4.15)

µ )
∫1

∞WI(x)

x
d3x∫1

x
WI(y) d3y + ∫1

∞
WI(x) d3x∫x

∞WI(y)

y
d3y

(∫1

∞
WI(x) d3x)2

(4.16)
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This expression is identical to one that can be obtained from
eq 54 of ref 21. That work used a different method (EDA),
which implies the complete solution of the kinetic equation for
electron transfer. In contrast, our general result, eq 4.16, does
not depend on reactant dynamics and is applicable to an arbitrary
WI(r). In particular, we will use it below to findµ(F) for a
Marcus rateWI(r), eq 2.5.

As seen from Figure 3, the difference between the dashed
line representing the CK result and the solid curve that is
considered to be exact is rather small within the available range
of viscosity variation. However, the difference increases at
higher viscosity, indicating that the electron transfer when
diffusion is slow is neither contact (R ) σ) nor quasi-contact
(R ≈ σ) as in the Collins-Kimball approximation.

To illustrate the nature of this approximation, let us insert eq
4.11 into the definition (eq 4.3) and use only the zero iteration
under the integral (ns ) 1). The result can be presented as

where

By substituting thiskD for 4πRD in a more general Collins-
Kimball expression (eq 3.3), one obtains the result derived with
a “closure approximation”36 that is given in ref 37. Evidently,
µ ) 4πσD/kD, which is obtained from eq 4.19, accounts for the
difference between remote and contact transfer.

The slope of the CK line obtained using the exponential
transfer rate is given by the factorµ from eq 4.17, which
decreases withF ) l/σ as shown in Figure 5. But the same
parameter can be calculated numerically from eq 4.16 for the
Marcus-type rate as well. From the numerical calculations, we
found how the correspondingµ depends onF ) L/σ, that is, on
the true tunnelling parameterL. By comparing these curves in
Figure 5, we see thatL is larger thanl if µ is the same for both
curves. In particular, the exponent withl ) 0.85 Å is equivalent
in the CK approximation to the Marcus rate withL ) 1.65 Å.
The latter value is very close to theL value found in ref 17.
There,â ) 2/L ) 1 Å-1 was obtained from fitting the DET
theory with the Marcus rate to the experimental kinetic curves
reflecting the fluorescence quenching by electron transfer. The
small difference between the value obtained here and that
reported previously17 may be attributable to the fact that we
included neither the solvent radial distribution functiong(r) nor
the distance dependence of the diffusion constantD(r).

V. High-Viscosity Asymptote of the Quenching Radius

The analysis of the dependence of the rate constant on
diffusion, which is shown in the curves in Figure 3, was proven
to be very useful. A similar analysis of the quenching radii
variation with the diffusion constant, which is displayed in
Figure 6, is even more instructive. The curve that represents
the transition from kinetic to diffusion control in the simplest
contact approximation levels off at the value of the true contact
radiusσ, whereas the generalized Collins-Kimball approxima-
tion, which includes the reaction layer in the reaction sphere,

magnifies this value to the size ofR. However, the effective
quenching radiiRQ in more viscous solvents exceed even this
value and tend to increase asRs(D) does with further increases
of the viscosity.

The model dependencies of the radii on diffusion can be seen
better in Figure 7, where they are represented over a much larger
range of viscosity variation than the range that was available
experimentally. In the region of deep diffusion control of
electron transfer, both the contact and the generalized Collins-

µ(F) ) 1 + 5F/4 + 5F2/8 + 5F3/32

1 + 2F + 2F2 + F3 + F4/4
e 1 (4.17)

ki ) k0 -
k0

2

kD
(4.18)

1/kD )
∫∫WI(r) G̃0(r, r′, 0) WI(r′) d3r d3r′

[∫WI(r) d3r]2
(4.19)

Figure 5. Slope parameterµ of the Collins-Kimball relationship for
the Marcus transfer rate in the normal region (thick line) and for its
exponential transfer rate equivalent (thin line). The difference between
L and l related to the sameµ is indicated by the vertical dashed lines.

Figure 6. Dependence of the effective electron-transfer radiusRQ on
diffusion. Experimental data, indicated by circles, are approximated
by thin and dashed lines representing the contact and the Collins-
Kimball relationships, respectively. The thick line depicts the same
dependence, but for the exponential transfer rate withl ) 0.85 Å and
Wc ) 180 ns-1 that is depicted by a dotted line in Figure 4.

Figure 7. Same data as in Figure 6, but for a much larger range of
viscosity variation. The dashed-dotted line represents the linear
asymptote for the true Marcus rate, which is steeper than the asymptote
for the exponential approximation of the transfer rate (the end of the
thick line).
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Kimball approximations are represented by horizontal lines. The
heights of these plateaus indicate the sizes of the external radii
of the reaction spheres. In contrast, the radius for remote
quenching with the exponential transfer rate lies far above the
plateaus and increases as the logarithm of inverse viscosity
following eq 1.6. In fact, this relationship forRs(D) is the straight
line with slope l/2 in the coordinates of Figure 7. This linear
asymptote is common for reflecting7 and absorbing9,10boundary
conditions because under diffusional control it does not matter
whether there is quenching at contact. The excitations never
reach contact because, for slow diffusion, they are quenched
by electron transfer farther apart, atRs . σ.

However, it is important to remember that the largestRQ

results from the most remote electron transfer represented by
the larger exponent of the Marcus transfer rate (eq 4.2) (see
Figure 4). There, the asymptotic equation (eq 1.6) gives way to
a similar equation but one with the true tunnelling lengthL:

Because in our caseL is almost twice as large asl, the dashed-
dotted line representing the final asymptotic behavior ofRQ(ln
D) in Figure 7 is twice as steep as the heavy line calculated
with the pure exponential rate. However, experiments at such a
high viscosity seem unattainable. Even the initial change in the
slope of the data is not definitive, which means that not only
the kinetic but also the diffusional electron transfer remains near-
contact in the available range of viscosities.

The opposite situation was expected in early work.13 Owing
to a strong overestimation of the effective radii, which were
incorrectly extracted from the nonstationary quenching, the
maximal values (about 15 Å) exceeded the contact radius (4
Å) by a factor of almost 4. The transfer reaction at such a large
distance was attributed to diffusion control whereRQ(D) has to
obey the asymptotic relationship (eq 1.6), which is represented
by the linear increase ofRQ(ln D) in Figure 8. Because the slope
of this line can be greatly overestimated by the incorrect
extraction ofRQ from the kinetic data, there is nothing surprising
about the fact that the value ofl found in ref 13 is also too
large: l ) 5.4 Å. WhenRQ was found in the same way from
the present data and was fit by the same linear asymptotic
relation (eq 1.6), the result obtained was also incorrect:l ≈ 4

Å. The real values ofRQ that we have obtained from the proper
analysis of the same data are much smaller then their rough
estimates that ignore nonstationary quenching. Therefore, fitting
the data with the remote quenching equation (eq 1.6) is
inappropriate, whereas the Collins-Kimball approximation of
quasi-contact quenching holds in almost all situations.

VI. Conclusions

By fitting the differential encounter theory to the most
accurate experimental data on electron-transfer kinetics observed
by fluorescence quenching, we obtained excellent agreement
between data and theory over the entire viscosity range used in
the seven experimental systems. Reasonable values of the
important parameters of electron transfer were obtained from
the best fit of the predicted diffusion dependence of the transfer
rate constant to the experimental value. A few important
conclusions can be deduced from this work:

(1) The effective quenching radii should be extracted from
the real quenching kinetics, taking into account its nonstationary
nature.

(2) The linear relationship between the inverse rate constant
and the inverse diffusion constant should be used to specify
the kinetic rate constant,k0, and the effective Collins-Kimball
radius of the quenching sphere,R.

(3) For electron transfer in the Marcus normal region, the
exponential approximation of the Marcus model is reasonable.
Allowing an analytical solution of the problem, the exponential
approximation gives a better fit to the experimental data than
do contact or generalized Collins-Kimball models. The effec-
tive tunnelling lengthl is obtained from the appropriate fitting
procedure.

(4) This length can be related to an actual length by equalizing
the slopes of the Collins-Kimball lines corresponding to the
Marcus transfer rate and its exponential approximation. The data
can also be fit using the Marcus transfer rate with numerical
methods.

The work presented here solves an important, long-standing
problemsthe overestimation of the tunnelling lengthL in liquid
solutions.13 Now it is clear that proper analysis will yield values
similar to those obtained here, such asL ) 1.65 Å, which
corresponds to the Marcus value ofâ ) 2/L ) 1.2 Å-1 and
does not exceed earlier reports.3 In rigid structures, tunnelling
over long distances was sometimes attributed to the super
exchange through molecular intermediates (as occurs in mo-
lecular wires).4 However, in liquid solutions, intermolecular
electron transfer is expected to be shorter than intramolecular
electron transfer. When the intermediates are mobile solvent
molecules, the coherence of transfer is broken, and super
exchange becomes ineffective.38
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