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Influence of Diffusion on the Kinetics of Donor—Acceptor Electron Transfer Monitored by
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The problem of photoinduced doneacceptor electron transfer in liquid solution is analyzed to obtain an
understanding of the relationship between approximate treatments of the role of diffusion in electron transfer,
that is, the Collins-Kimball approach, and a detailed analysis of the problem. It is shown why previous
analyses of experimental data have yielded distance dependences of electron transfer that are much too long
range. From an appropriate fitting of the nonstationary kinetics of donor fluorescence quenching by diffusion-
assisted electron transfer, the effective radii and the steady-state constants associated with electron transfer
are found for a doneracceptor system studied experimentally in seven solvents with different viscosities.
The dependence of diffusion agrees with the one predicted theoretically for electron transfer having a distance-
dependent transfer rate initially taken to be exponential with distance. In the fast-diffusion limit, the dependence
on the rate of diffusion is well approximated by the Coltriémball relationship, which permits the kinetic

rate constant and the effective radius associated with diffusion-induced quenching to be extracted from the
experimental data. The effective radius is then related to the electron transfer rate with arbitrary distance
dependence. From this relationship, the tunnelling length for both exponential and Marcus-type rates is obtained
from the data analysis, and it is demonstrated that the latter is almost twice as long as the former. For the
Marcus transfer rate, it is found that the Marcus paramgter1.2 A1 (8 = 2/tunnelling length), which is

in accord with previous measurements on a variety of systems. The theoretical analysis presented here resolves
the apparent discrepancies between early measurements of very long tunnelling lengths in liquid systems and
physically reasonable values ff~ 1 A1,

I. Introduction In the classical theory of bimolecular reactidrithe transfer
proceeds with a kinetic rate constdgtin a thin layer adjacent
to the contact sphere of radiusin this case, the effective radius
is related to the external radius of the reaction lalgegccording
to the Collins-Kimball (CK) relationship:

ko
* =R—
D'+A—D"+A" (1.1) R ko+ 47RD

It

One of the simplest bimolecular reactions in liquid solutions
is the impurity quenching of an excited donof By charge
transfer to electron acceptors A. The competition of the
excitation decay with the diffusion-assisted electron transfer is
represented by the following reaction scheme

(1.4)

Rq increases with viscosity but cannot excéedn the original
wherez is the donor excited-state lifetime in the absence of CK theory, the reaction layer was assumed to be infinitely thin;
acceptors. The energy dissipation is often described by con-thereforeR = o. This is actually a contact model of transfer
ventional (Markovian) chemical kinetics, represented by a single "€actions. Laterk came to be regarded as a fitting parameter,

equation for the excitation density = [D*] partially accounting for the remote nature of transfer, but only
forR— o< o.
N= —kcN 1.2) Evidently, both the contact and generalized CK models of

electron tunnelling are simplifications that are too rough to
wherec = [A] remains constant if acceptors are present in great describe real transfer that is governed by the distance-dependent
excess. Under this condition, the quenching proceeds exponentunnelling rate Wi(r). Much better, though not perfect, is an
tially with the time-independent raiek and the rate constant ~ exponential model of this dependence:

ki = 47R,D (1.3) Wi(r) = W, 2~ (1.5)

whereD = Dp + D4 is the coefficient of encounter diffusion

. A . i It is often assumed that the rate decreases exponentially with a
andRg is the effective radius of the reaction. b y

characteristic tunnelling length, It is possible to obtair in

- o some circumstances from experimental studies of intramolecular
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through the rate constants relatedW(r) by the theory of recently, electron transfer in the normal Marcus region was
distance-dependent electron transfer in liquid solution. studied again in another system and in seven different sol¥ents.
Early theoretical treatments, presented almost simultaneously,However, the quenching kinetics that were measured much more
were developed intuitivebybut were justified in terms of a  accurately were found to be nonstationary, that is, the evolution
binary approximation in ref 6. Not only the rate processes but of N(t) is not exponential; the rate depends on the time when it
also the dynamic transfer governed by the Hamiltonian were is measured. The preliminary analysis of these results showed
studied using the approach called encounter theory (). that| is overestimated if the experiments are analyzed in the
present, the method is better known as differential encounter same way as in ref 13. This overestimation stimulated the critical
theory (DET), which can be deduced, in some limits, from the analysis of the way in whiclRg should be extracted from the
more general integral encounter the®)ET permitted calcula- experimentally studied kinetics. Here, we prove that a systematic

tion of the Ro(D) dependence for the exponential fatend mistake is made when the quenching kinetics are considered to
proved that the CK model, witR ~ o, is valid in the fast- be exponential, even at the very end of the available time
diffusion limit.” However, for slower diffusion (higher vis- interval.

cosity), the steady-state constént= 47RD, whereRs > R. In our present study, we fit the non-Markovian quenching
The dependence on diffusion f& was given in a number of  theory to nonstationary experimental kinetics to find a single
papers’9:10 quenching radiuq for each of the solvents. For fast diffusion,

the viscosity dependence &g obeys the CollinsKimball
| yZW 12 equation (3.3), permitting the determination of the CK param-
RQ =R~o +§ In 4DC atR;> R (1.6) eters_: the k_inetic rate constakg and the phenomenologic_al
reaction radiuR. However, the CK model does not describe
) theRo(D) dependence over the full range of viscosities studied.
wherey = e>_<p(C) and C_ls the Euler constant. The more general dependence obtained by means of RET
The effective quenching radiuRg, is a liquid analogue of  exponentialWi(r) covers a much larger range of viscosity
the reaction cross section in gas-phase kinetics. The specification,ariation. From the fitting of this dependence to the experimental
of the dependence on the diffusion 8(D) is the main  one, more reasonable parameters of the exponential rate (1.5)
achievement of DET. This dependence plays an important role gnd the tunnelling length= 0.85 A are obtained. The latter
in chemical kinetics of liquid-state reactions, which is the same ¢an pe easily related to the true tunnelling lerigthf the Marcus
role as the energy (velocity) dependence of the gas-phaseformula for Wi(r), which is not exactly exponential. The true
reaction Cross Section. The gas-phase reaCtion Cross SeCtiOH |ﬁJnne"|ng |ength |S found to be 0n|y '[WICG as |arge|md
the subject of numerous theoretical studies and related Crossyives the Marcus parametgr= 1.2 A-1. This result is reliable
beam experiments. However, the variation of molecular veloci- and compatible with others obtained earlier for intramolecular
ties in the beams is more readily accomplished than is changingelectron transfet Thus, the theoretical results presented below
the mobility (diffusion) of particles in liquid solutions. Changing  resolve the problem of unphysical long-range tunnelling that

the diffusion can be done in a very limited range by varying came from the analysis of an earlier experimental study of
the solvents or their compositions or by using external pressure,g|ectron transfer in liquids.

which changes the viscosity of the solution. However, any of

these methods can affect not only diffusion but also other ||. Nonstationary Energy Quenching
properties of the media (solvation, polarity, refractive index,
etc.) Whenever the experimental difficulties were overcome,
new and very important results were obtairiéd?

As far as we know, the first experimental inspection of the
Ro(D) dependenddaunched by a joint team of experimentalists
and theoreticians was presented in ref 13. The fluorescence
quenching of pheophytin a by toluquinone was studied in a
number of different pure solvents having viscosities that were Ko
either known or measured. The diffusion coefficients obtained k() = ki(l +— exerfo/;() (2.1)
from the StokesEinstein relationship vary in the series of ko

solvents studied by 2 orders of magnitude. The effective . . .
y 9 wherekp = 47RDis the diffusional rate constant amd= (1 +

quenching radiusRq = ki/4nD, was found by assuming that > > X o o
only steady-state quenching could be detected experimentally.ko/k‘?) DUR®. As a resul@, the survival probability of excitation
vanishes nonexponentially:

However, the best fit of the theoretical dependencBD) to
the data gave the following unsatisfying resdft$d, = 1.8 x ¢
10 s1g = 4 A, andl = 5.4 A. The last number is much N(t) = exp(=c [ k(t) dt' — t/r) (2.2)
larger than any reasonable value for the tunnelling length, which

should be 1 to 2 A. Two other attempts were undertaken to  This effect is especially pronounced whikg> kp so that
correct this result by changing the form of the transfer rate’s the reaction is under diffusion control. The quenching always
spatial dependencdé&l® Only in the last attempt was a starts with the maximal reaction rate constigyeind then slows
reasonable reduction dfobtained by assuming thiti(r) has down gradually, approaching a much smaller diffusional value,
a bell shape with its maximum shifted far from contact. This Ko:

reduction is possible, but only in the inverted Marcus region.

It is remarkable that in the theory of contact reactions first
developed by Smoluchowskihe limitations of the Markovian
approach were removed from the very beginning. The “time-
dependent” rate constark(t), was substituted fok; in the
kinetic equation (1.2). In the CollirsKimball theory, ki(t) is
defined as follows:

In the normal region, where the exponential approximation Ko att=0
works well, the problem of unreasonably large physical tun- k() = k| 1+ att — oo (2.3)
nelling lengths remained unsolved. 7Dt

Unfortunately, until now no other attempts to resolve this
problem theoretically or experimentally were made. Only From Figure 1, which demonstrates the evolution of the
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Figure 1. Time dependence of the instantaneous rate conktéht
compared to its asymptotic (steady-state) vaddue the contact theory
of diffusion-assisted electron transfer. Two parameters of the theory,
ko and o, are taken to be the same as in Figure 3. The vertical dotted
line in the inset indicates the upper bound of the time interval, which

was available experimentally, where the instantaneous rate constant is

still almost 70% larger than the steady state value.

Collins—Kimball rate constant (2.1) in the full time domain, it

Gladkikh et al.

the steady-state rate of quenchimty, the rate constark, =
47RoD and the effective quenching radibg are overestimated.
This naive method of specifyinBg was a source of systematic
error that led to abnormally large values of the tunnelling
parameter that was obtained in ref 13.

At even higher viscosities, when the electron transfer is
already under diffusional control, a noticeable difference appears
between encounter theory and the primitive contact model of
Collins—Kimball. This difference is usually attributed to the
remote nature of electron transfer described by either the
rectangular model of\M(r) proposed by SzaB®or the expo-
nential approximation of\V(r) (eq 1.5)2728 However, the best
alternative to any model is the true Marcus-type rate of trans-
fer, which is a product of both the tunnelling and Arrhenius
factors?®

2(r — AG, + A)?
V\/l(r)=Vozex;{— (rL 0>)j%_ex ( T )) (2.5)

Here,Vj is the tunnelling matrix elemerit, is the true tunnelling
distance, and\G; is the free-energy change associated with

is easy to see that the CK rate constant is larger than the steadylectron transfer. The advantage of employing the true transfer

state constank;, at any finite time, and the difference is more
pronounced the earlier they are compared.

rate compared to using the CK model has been recognized in
ref 24, but an attempt to fit the nonstationary quenching kinetics

From work done in the Ia_st decade, there is growing evidence using eq 2.5 was launched by this group |&dnfortunately,
that fluorescence quenching by electron transfer is actually their choice of ethylene glycol as a more viscous solvent was

nonexponential® In this and other studié$ the non-Markovian
Collins—Kimball theory was used to fit the experimental
kinetics from very short times to long times. However, this

inappropriate for the reasons that were presented in ref 30 and
are confirmed here (see below). Other authors also appealed to
the Marcusw(r),28:31.32though in the vast majority of earlier

manner of extracting quenching parameters from nonstationaryworks, the exponential approximation of this dependence was
kinetics was deservedly criticized in ref 20 because there are ysed?:29.33.34

too many parameters to obtain reliable results. It should be added

that the electron transfer in the inverted region studied in ref
19 does not occur at contact at all, which makes the Cellins
Kimball theory inapplicable, at least at short times. Instead of
fitting all of the kinetics, the authors of ref 20 analyzed only
the long-time asymptotic behavior of the survival probability,
which is given by the well-known two term expressidn

In P = In[N expt/7)] = —c[47RDt+ 8R*V#Dt]  (2.4)

This expression accounts for the nonstationary diffusional

In the next section, we show how the effective radgan
be properly found from the nonstationary kinetics of electron
transfer causing fluorescence quenching. Then the diffusional
dependence of this radiuBg(D), will be used to specify the
main parameters of the CK model: the external radius of the
reaction zoneR, and the kinetic rate constark. The method
for the extraction oRg is similar to the one proposed in ref 20,
but its utilization here is different, and it is used to investigate
not only the CK model but also the results obtained for the
exponential transfer rate.

transfer for any free energy of reaction. Varying the solvent ||| Extraction and Fitting of Rg(D)
viscosity by changing the external pressure, the authors provided

an example of how to obtain the kinetic constégnfrom the
Collins—Kimball model of theRy(D) dependence. This constant

The long-time diffusional asymptote of quenching (eq 2.4)
is actually a universal kinetic law, provided that the effective

was found to be an order of magnitude smaller than that reportedradiusRg is substituted foR:

in ref 19.

The kinetics at the shortest times can be somewhat smoothed In P = —c[47R,Dt + 8R,*VxDt]

by excitation with a light pulse of finite duratio®:2>However,

att>Ry/D  (3.1)

the subsequent nonstationary quenching is not actually perturbedVhen the concentration of quenchers in solution and the

by excitation and is worthy of quantitative investigation. The

viscosity are known (as well aB, which is given by the

first term in eq 2.4 represents the steady-state quenching withStokes-Einstein relationshid = kgT/67ron), Rq is the only

a diffusional rate constant of#ZRD, whereas the second term
accounts for the initial nonstationary quenching, which is faster.

fitting parameter in eq 3.1. It is expected that for fast diffusion
Rq coincides with the CollinsKimball radius (eq 1.4) but that

Because of the second term, the long-time asymptote of this for slow diffusionR, becomes identical t& from eq 1.6.
process never becomes exponential in a strict sense. There is In Figure 2, we demonstrate hoRg can be obtained from

the pseudo-Markovian asymptotic expression
P(t) — Ae™*!

but the pre-exponent permanently decreases with tithes
exp(—8R%cvaDt). For this reason, one cannot obtain an
accurate estimate d§ by setting it equal to d IrP/dt at the
latest available time. If this derivativel(t) is identified with

the best fit of the two-term expression (eq 3.1) to the
experimentally measured P(t). P(t) = N(t) exp{/r) = N/N|c=o0

is obtained from the measured kinetics of energy dissipation,
N(t), which is related to the same kinetics in the absence of
acceptorsiN(t)|c—o. The initial discrepancy between these kinetic
parameters is natural and should be ignéfeéd8The convolution

of the excitation pulse with system response makes the top of
a signal smoother whereas the long-time asymptote (eq 3.1)
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Figure 2. Fit of nonstationary electron-transfer kinetics (thick curve)
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Figure 3. Dependence of the steady-state rate constant on diffusion.

to the experimental data obtained in propylene glycol, the most viscous The points taken from Table 1 are interpolated by a thick line
solution studied in ref 17. The thin line represents the tangent to the representing the theoretical dependence for the exponential transfer rate
kinetic curve at the longest time within the available interval. The With | =0.85 A. The thin, straight line plots a contact approximation
dashed, straight line is the purely exponential decay, with the steady- With ko = 5.13 x 10* A¥ns ando = 6.87 A, whereas the dashed line
state rate constat = 47RgD obtained from the bed®q value.

represents the CollirKimball result withy = 0.91. The higher and
lower values of the rate constants related to the same system but with

TABLE 1 different concentrations are depicted here and in successive Figures
solvent  c(M) t(ns) D(A%n9 Ro(A) k(A¥ns by empty circles.
0.033 4.000 21991 steady-state rate constants
1 acetonitrile 0.067 1.45 438 4110 22622
0.100 4110 22622 k = 47R,D (3.2)
2 ethanol 0(')(_)02550 207 242 4'?{%?5 19’1328323 Some authofd:22 prefer to deal withk; instead ofRo. For a
0.075 4545 13823 fixed value ofD, it does not matter which of these is taken as
the primary fitting parameter. HoweveRg is a more funda-
3 eth glylethanol O&Eigo 201 453 7'%9800 393?585 mental property of the Fransfer. The relationshi_p of the value
0.150 7000 3985 of Rg to the contact distance and the tunneling length
0.050 7 470 3078 cgntains a gp_od deal of informatiqn abogt the transfer_mecha—
4 glycerolbutanol 0.100 2.60 328 6.402 og3g  Mism. In addition, there are analytlpal e§t|mateRQﬁor high
0.150 6.646 2739 viscosities, for example, the one given in eq 1.6. For all of the
systems studied here experimentally, the results for Bgttnd
0.050 6.597 2388 k are summarized in Table 1.
5 prgly/butanol 00'1%_.)%0 266 28.8 6 2'95797 232;:8 It is common and convenient to represent the CK equation
’ ' (eq 1.4) as a linear relationship between invérsend viscosity:
0.050 7.624 2702
6 glycerol/ethanol 0.100 2.34 28.2 7.624 2702 1 _ 1 i 1 3.3)
0.150 7.624 2702 k k| 47RD 3.
0.050 8.125 819
7 propylene glycol 0.100 2.80 8.0 7.500 754  This relationship is expected to hold, at least in the low-viscosity
150 7.375 741 region where the contact approximatidR £ o) is the most
0.050 10.067 1885 reasonable. There is no contradiction in the fact that at dmall
ethylene glycol  0.100 2.38 149  10.067 1885  some of our tabulated data deviate from the straight line (eq
0.150 10.067 1885 3.3). The data need only approach the lineDas> «. There,

extrapolated into this region is sharper than the (¢ The

time interval of fitting is also restricted from above by noise,

1/ — 1/ko, so the kinetic rate constant can be unambiguously
found from the intersection of the extrapolated straight line with

whose relative value increases with time. However, even in a the ordinate (Figure 3). For the system under stiglyas found
limited time interval, the fitting, which accounts for the in this way:
nonstationary quenching, is much better than the estimate of
the steady-state rate from the tangent to the kinetic curve. Even
at the end of the available interval, the data are steeper than the .

P G{N|th this value forky andR = o = 6.87 A taken from ref 17,

line In P = —c4nRgDt, the slope of which is the true stationar . . . . .
R P y we plotted the corresponding CK straight line, but its slope is

rate ck. , )
y somewhat too large to fit the experimental data well.

In ref 20, reliable values of botRg and D were obtained Toi t the CK radius is often taken to b
using an iterative nonlinear least-squares method with sophis- . 0 Improve agreemzeonzé,l € racius is often taken to be an
adjustable parameté?:2%

ticated optimization of the fitted function. The time-zero shift
parameter was also adjusted in the analysis. Knowrfgom
the separate measurements, we can do the same thing in a much

simpler manner by varying onligg and using the vertical shift By changingu, one changes the slope of the line representing
of the whole curve as an adjustable parameter. An example ofthe Collins—Kimball relationship. Selecting the proper value
such a fit is shown by the thick line in Figure 2. This procedure of x4 permits the experimental data at low viscosities (in the
was used to find reaction radii as well as the corresponding fast-diffusion limit) to be fit very well because the electron

k,=5.13x 10*A%ns (3.4)

R=olu (3.5)
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transfer in this limit is really a quasi-contact, provided the thin 17 — : : : —
reaction layer is included in the reaction sphere of raéius

0.28 The CK approximation works better the smaller the width
of the actual reaction layeR — o.

In the case of the exponential transfer rate (eq 1.5), this width
is approximately/,. More accurately, it can be determined if
the predictions of the CK model are compared with the exact
solution obtained by means of encounter theory. In fact, the
exponential transfer rate has the privilege of being one of the
few models ofW(r) that enables a rigorous solution of the DET
equations to be obtained. The solution results in the following
dependence on diffusion of the effective radiig:

S A I s I R I I I R R I B I B

Ro= 0+ oG + 2650 2 (39)

Figure 4. Distance dependence of the Marcus transfer rate (eq 2.5) in
the normal region4G; = —0.59 eV) withL = 1.65 A andl. = 1.3
Here eV (thick line) in comparison to its exponential approximations for
short (dotted line) and long (dashedotted line) distances.

Ko(2vX) — yv/XKy(2vx) W® o | _ _
o(x,y) = m~ D ship will be rederived for an arbitrary functional form of the
16(2v/%) + yv/xI,(2VX) transfer rate. Thenu(p) will be found not only for the
y = €~ 1.781 exponential rate but also for the Marcus rate of electron transfer.

From the analysis with the Marcus rate, the true tunnelling
whereC is the Euler constant and(x) andI(x) are modified distance in liquids emerges.

Bessel functions. By substituting eq 3.6 into eq 1.3, one can o
easily deduce that IV. CK Approximation for Remote Electron Transfer

20 Although we obtained rather good agreement between the
k = 4moD + 2ﬂID[In(y2ﬁm) + 20(ﬂm, I—)] 3.7) experiment and theory on the basis of the exponential transfer
rate model (eq 1.5), this is not firm evidence that the distance

where dependence is actually exponential. In the Marcus theory of
outer-sphere (solvent-assisted) electron transfer, the rate (eq 2.5)
Koo contains the Arrhenius factor that depends on the distance. In
Bm= 870D+ p+ 7712) p=llo highly polar solvents, the free energy of transfe®; ~ a

constant, but the reorganization enery) slowly increases

and with distance, approaching twice the contact valukg;?2

) Ar) =242 — olr 4.1
ko= [ Wi(n)dmr®dr = 22W,oAI(L + | o+ 1%120%)  (3.8) (1) = A2 — olr) 4.1)
i i i In the normal Marcus regiom\G; < Ac), this effect significantly
Because, ando are flxeq, t.here is only a single free parameter, reduces the Arrhenius factor near the contact, though at large
|, that can be used for fitting. o stances thie factor approachte a conetant. AS 5 1ot
In the data presented in Figure 3 (as well as in Figures 6 and can be approximated by exponential functions, but near contact

7), there are a few points in which somewhat different rate and far from it, they have different decrements. The former
constants were obtained for the three concentrations studied 2/ is larger then the latter (R), which is expressed through

In such cases, we have plotted all of them with the higher and the true tunnelling length:
lower values depicted by empty circles. Almost all points fall

on the theoretical curve (thick line) representing the exact We -9 strag
solution (eq 3.7) with\; fixed by the known kinetic constant W=4{ °¢ 2 - o)L (4.2)
and the tunnelling length found from the best fit, W.e atr>o
| =0.85A (3.9) Here, we have

Only a single point for ethylene glycol marked by the crossed VOZ\/; (AG;, + /1(-)2
circle is too low, but this system was recognized as exceptional W, = exg — :
by experimentalists themselves. The reasons that it is so different \/fl' 4T
were discussgd in a separate artfél€or the same reasons, V()z\/; r{ (AG + 2/192
we excluded it from our fitting as well. = exd — '

The exact result for exponentiw¥|(r) was reduced in ref 7 ” N2AT 81T
to the standard CK relationship witR = o (« = 1), which
appears in the zero-order approximation with respeqi. tf In Figure 4, the functions given in (eq 4.2) are compared with
the higher-order corrections were included, ther 1 would the true nonexponential Marcus rate in the normal regiog; (
be obtained. With the true value pf the CK straight line fits = —0.59 eV,A. = 1.3 eV). As was expected, the Marcus rate

the data in the fast-diffusion region almost as well as the exact near the contact decreases much faster than does its exponential
curve (see Figure 3) does. To specify the slope of this line asymptote at large distance. The long-distance asymptote
theoretically, we have to find the genegdl) dependence by  contains the true tunnelling parametemwhich is almost twice
means of DET. Therefore, in the next section, the CK relation- as large as thévalue used above to obtain the best fit to the
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experimental results. A more accurate relationship between expJr)[1 — exprJdr)] ,

andL will be established below. - atr =<
Moreover, the effective width of the reaction layer can be Gy(r, 1, 0)= ¢ (4.12)

attributed to a nonexponential transfer rate provided that the expfJr) — 1 .

CK reaction constant’s dependence on diffusion (eq 3.3) can 4r D atr > r

be approximately identified with that derived by DET for
arbitraryW(r). The derivation starts with the general definition

. re = g¥ekgT is the Onsager radius.
of the steady-state constant in DET: o = fcke 9

For neutral reactantgj(= 0) or highly polar solventse(>
3 1), one can take; = 0 andg(r) = 1. Inserting the simplified
k= fV\/l(r)nS(r) dr = 47R,D (4.3) Green function into the general equation (4.11) reduces eq 4.11

This expression relatds to the arbitrary rate of transfer and to

the steady-state pair distribution of reactants 1 o )
() =1 - 5./, Wi(ro) ndro) rodro -

n(r) = lim n(r, t) = lim sA(r, 9) (4.4)
t—o0 s—0 1 00

. o Bﬁ W(rg) ny(ro) rodry (4.13)

wherefi(r, s) = fe Sn(r, t) dt. The nonstationary distribution

n(r, 1) is the solution of the diffusion equation: The first integral in this expression describes the large distance

N an asymptote, whereas the second integral determines the contact
n=—-W(rn+Ln pr n(r,0)=g(r) (4.5) reduction of the particle density:
Here, L is the diffusion operator for nonreacting particles, and ki Ro
g(r) = e Y0 is the initial equilibrium distribution for a pair of n) ={> " ZaDr 1-— atr—e

reactants. The distribution is not homogeneous if there are

electrostatic or other interactions, which are represented by the 1-o/D atr=o

Bt%rp%rtlcle potentiall(r), but for U = 0, we havelL = o = fEWi(ro) n(ro) ro dro. The asymptote at largeis very
—zgrzg andg = 1. general and is well-establishedvhereas the contact reduction
r

depends on the model of the transfer ruigr) and is more
pronounced the slower the diffusion.
However, we need to use the whole distributian) in the
_ 3 calculation of the steady-state rate constant (eq 4.3). Near the
n(r, 9 = fG(r, o, 1) 9ro) Ao (4.6) kinetic limit, n(r) can be readily obtained from eq 4.13. For
that has a Laplace transform that obeys the known integral fast diffusion, both corre_ctions to 1_ (the_first term_) in eq 4._13
equatioRs are small anc_i can be estimated by iteration. The first one gives
us the following:

The general solution of eq 4.5 can be expressed through its
Green function

G(r, 1y, 9) = Gy(r, 1y, 9 —

~ B _ 171 o
[Gor W) & 1o 9 B (47)  N=1- ﬁlgﬁy\’\’n(y) ydy+ W)y dy]
Here, Go(r, ro, t) is the Green function for diffusive motion fork < 4moD (4.14)

without reaction, which obeys the much simpler differential . . .
4 P x =", andW(x) = Wi(r)c®. Substituting this approximate result

equation
q into the general definition of the rate constant, eq 4.3, we obtain
G=ic, = _o  Gyr0) o~ 1o (4.8)
= _ = r, = .
0 0 or lr=o 0 Aor? k = ko[l - 4nk((j)D’u(p)] (4.15)

It has the following general property following from the o .
stationary nature ofi(r) = SG(r, o, t) g(ro) dro : This is, in fact, the CK eq 3.3 expanded in termskgénRD
< 1, whereR = 9/, according to the definition in eq 3.5.

~ 39 Howeveru is no longer a phenomenological parameter. Rather,
f Go(r, To, 9) 9(rg) o = s (4.9) it acquires the proper definition in terms of the arbitrary transfer
rate:
Using this property after the integration of eq 4.7 okgwith
the weightg(ro), we obtain W (X ° W
17 e ) dy+ [rwie dix [ gy
~ g(r) fé( ' )W( y) "‘(I )d31 (4 10) u= X - Y
nr,s)=——— rr,s r')ya(r', s) dr . o
(r) == 0 | (f; W) a0
(4.16)

After inserting this result into eq 4.4, we get the final integral
equation for the desired stationary distribution: o Ky ) ) .
After substitutingW(x) = 4—é(x — 1) into this equation, we
ngr) =g(r) — fW|(r') éo(r, r', 0)ngr) der (4.12) obtainu = 1, which reduces eq 4.15 to the original Collins
Kimball expression for the contact reaction. However, for the
Equation 4.11 can be further simplified using the well-known exponential rate (eq 1.5), which accounts for the finite size of
Green function for free diffusion of charged reactafits: the reaction zong it follows that after integration (4.16)
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_ 1+ 5p/4+ 5078+ 5p%32 _

<1
1+ 20+ 20°+ p°+ pl4

u(p) (4.17)

This expression is identical to one that can be obtained from
eq 54 of ref 21. That work used a different method (EDA),
which implies the complete solution of the kinetic equation for

electron transfer. In contrast, our general result, eq 4.16, does
not depend on reactant dynamics and is applicable to an arbitrary

Wi(r). In particular, we will use it below to find«(p) for a
Marcus ratew(r), eq 2.5.

As seen from Figure 3, the difference between the dashed
line representing the CK result and the solid curve that is
considered to be exact is rather small within the available range
of viscosity variation. However, the difference increases at
higher viscosity, indicating that the electron transfer when
diffusion is slow is neither contacR(= ¢) nor quasi-contact
(R~ 0) as in the Collins-Kimball approximation.

To illustrate the nature of this approximation, let us insert eq
4.11 into the definition (eq 4.3) and use only the zero iteration
under the integralrg = 1). The result can be presented as

I

K=k~ (4.18)

where
[ W) Go(r, ', ) Wy(r) r
[fWi(r) d*r]?

By substituting thiskp for 47RD in a more general Collins
Kimball expression (eq 3.3), one obtains the result derived with
a “closure approximatior® that is given in ref 37. Evidently,

u = 4xoDIkp, which is obtained from eq 4.19, accounts for the
difference between remote and contact transfer.

The slope of the CK line obtained using the exponential
transfer rate is given by the facter from eq 4.17, which
decreases witlp = I/oc as shown in Figure 5. But the same
parameter can be calculated numerically from eq 4.16 for the
Marcus-type rate as well. From the numerical calculations, we
found how the correspondingdepends op = L/g, that is, on
the true tunnelling parametér By comparing these curves in
Figure 5, we see thatis larger thar if « is the same for both
curves. In particular, the exponent witk- 0.85 A is equivalent
in the CK approximation to the Marcus rate with= 1.65 A.

The latter value is very close to thevalue found in ref 17.
There,f = 2/L = 1 A~! was obtained from fitting the DET
theory with the Marcus rate to the experimental kinetic curves
reflecting the fluorescence quenching by electron transfer. The
small difference between the value obtained here and that
reported previously may be attributable to the fact that we
included neither the solvent radial distribution functggn) nor

the distance dependence of the diffusion constn}.

1Ky = (4.19)

V. High-Viscosity Asymptote of the Quenching Radius

The analysis of the dependence of the rate constant on
diffusion, which is shown in the curves in Figure 3, was proven
to be very useful. A similar analysis of the quenching radii
variation with the diffusion constant, which is displayed in
Figure 6, is even more instructive. The curve that represents
the transition from kinetic to diffusion control in the simplest
contact approximation levels off at the value of the true contact
radiuso, whereas the generalized Collinkimball approxima-
tion, which includes the reaction layer in the reaction sphere,
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Figure 5. Slope parameter of the Collins—Kimball relationship for

the Marcus transfer rate in the normal region (thick line) and for its
exponential transfer rate equivalent (thin line). The difference between
L andl related to the same is indicated by the vertical dashed lines.
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Figure 6. Dependence of the effective electron-transfer raigi®on
diffusion. Experimental data, indicated by circles, are approximated
by thin and dashed lines representing the contact and the Cellins
Kimball relationships, respectively. The thick line depicts the same
dependence, but for the exponential transfer rate Wwith0.85 A and

W, = 180 ns that is depicted by a dotted line in Figure 4.
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Figure 7. Same data as in Figure 6, but for a much larger range of
viscosity variation. The dashediotted line represents the linear
asymptote for the true Marcus rate, which is steeper than the asymptote
for the exponential approximation of the transfer rate (the end of the
thick line).

magnifies this value to the size & However, the effective
quenching radiRqg in more viscous solvents exceed even this
value and tend to increase BgD) does with further increases
of the viscosity.

The model dependencies of the radii on diffusion can be seen
better in Figure 7, where they are represented over a much larger
range of viscosity variation than the range that was available
experimentally. In the region of deep diffusion control of
electron transfer, both the contact and the generalized Cellins

15 20
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Figure 8. Rqo(D) dependence for the exponential transfer rate for two
different values of the tunnelling parameter. The thick line represents
the short tunnelling length obtained in the present work 0.85A),
whereas the thin line represents the overestimate8.4 A value found
in ref 13. The vertical solid lines indicate the viscosity range used in
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A. The real values oRq that we have obtained from the proper
analysis of the same data are much smaller then their rough
estimates that ignore nonstationary quenching. Therefore, fitting
the data with the remote quenching equation (eq 1.6) is
inappropriate, whereas the CollinKimball approximation of
guasi-contact quenching holds in almost all situations.

VI. Conclusions

By fitting the differential encounter theory to the most
accurate experimental data on electron-transfer kinetics observed
by fluorescence quenching, we obtained excellent agreement
between data and theory over the entire viscosity range used in
the seven experimental systems. Reasonable values of the
important parameters of electron transfer were obtained from
the best fit of the predicted diffusion dependence of the transfer
rate constant to the experimental value. A few important
conclusions can be deduced from this work:

(1) The effective quenching radii should be extracted from

the present study, whereas the dotted lines indicate the range studiedhe reg| quenching kinetics, taking into account its nonstationary

in ref 13 in which the effective electron-transfer radii were substantially
overestimated.

Kimball approximations are represented by horizontal lines. The

nature.
(2) The linear relationship between the inverse rate constant
and the inverse diffusion constant should be used to specify

heights of these plateaus indicate the sizes of the external radiithe kinetic rate constariy, and the effective CollinsKimball

of the reaction spheres. In contrast, the radius for remote
guenching with the exponential transfer rate lies far above the

radius of the quenching sphefR,
(3) For electron transfer in the Marcus normal region, the

plateaus and increases as the logarithm of inverse viscosity®XPonential approximation of the Marcus model is reasonable.

following eq 1.6. In fact, this relationship f&t(D) is the straight
line with slope'/, in the coordinates of Figure 7. This linear
asymptote is common for reflectihgnd absorbint'®boundary
conditions because under diffusional control it does not matter

Allowing an analytical solution of the problem, the exponential
approximation gives a better fit to the experimental data than
do contact or generalized CollirKimball models. The effec-
tive tunnelling lengtH is obtained from the appropriate fitting

whether there is quenching at contact. The excitations neverProcedure. o
reach contact because, for slow diffusion, they are quenched (4) This length can be related to an actual length by equalizing

by electron transfer farther apart, Ri> o.
However, it is important to remember that the largBst

the slopes of the CollinsKimball lines corresponding to the
Marcus transfer rate and its exponential approximation. The data

results from the most remote electron transfer represented byca@n also be fit using the Marcus transfer rate with numerical
the larger exponent of the Marcus transfer rate (eq 4.2) (seeMethods.

Figure 4). There, the asymptotic equation (eq 1.6) gives way to
a similar equation but one with the true tunnelling length

L2
RQ
Because in our cadeis almost twice as large dsthe dashes

dotted line representing the final asymptotic behavioRgfin
D) in Figure 7 is twice as steep as the heavy line calculated

YW,

4D

—a+§m( (5.1)

with the pure exponential rate. However, experiments at such a

high viscosity seem unattainable. Even the initial change in the
slope of the data is not definitive, which means that not only
the kinetic but also the diffusional electron transfer remains near-
contact in the available range of viscosities.

The opposite situation was expected in early widrowing
to a strong overestimation of the effective radii, which were
incorrectly extracted from the nonstationary quenching, the

maximal values (about 15 A) exceeded the contact radius (4

A) by a factor of almost 4. The transfer reaction at such a large
distance was attributed to diffusion control wh&D) has to

obey the asymptotic relationship (eq 1.6), which is represented

by the linear increase &g(In D) in Figure 8. Because the slope
of this line can be greatly overestimated by the incorrect
extraction ofRg from the kinetic data, there is nothing surprising
about the fact that the value 6ffound in ref 13 is also too
large: | = 5.4 A. WhenRg was found in the same way from

The work presented here solves an important, long-standing
problem—the overestimation of the tunnelling lendthin liquid
solutions!® Now it is clear that proper analysis will yield values
similar to those obtained here, such las= 1.65 A, which
corresponds to the Marcus value pf= 2/L = 1.2 A~ and
does not exceed earlier repoftk rigid structures, tunnelling
over long distances was sometimes attributed to the super
exchange through molecular intermediates (as occurs in mo-
lecular wiresy* However, in liquid solutions, intermolecular
electron transfer is expected to be shorter than intramolecular
electron transfer. When the intermediates are mobile solvent
molecules, the coherence of transfer is broken, and super
exchange becomes ineffecti¥fe.

Acknowledgment. V.S.G. and A.l.B. are very grateful to
the Israeli Science Foundation (Project No. 6863) for their
support of this work. H.L.T. and M.D.F. thank the U.S.
Department of Energy, Office of Basic Energy Science (DE-
FGO03-84ER13251), for their support of this research.

References and Notes

(1) Smoluchowski, M. VZ. Phys. Chem1917, 92, 129.

(2) Caollins, F. C.; Kimball, G. EJ. Colloid Sci.1949 4, 425.

(3) Wasielewski, M. RChem. Phys. Re 1992 92 435.

(4) Davis, W. B.; Svec, W. A.; Ratner, M. A.; Wasielewski, M. R.
Nature (London)1998 396, 60.

(5) Tunitskii, N. N.; Bagdasar’yan, Kh. 8pt. Spectral963 15, 303.
Kilin, S. F.; Mikhelashvili, M. S.; Rozman, |. MOpt. Spectral964 16,

the present data and was fit by the same linear asymptotiCs7g 'vasirev, I. I.; Kirsanov, B. P.: Krongaus, V. Kinet. Katal. 1964 5,

relation (eq 1.6), the result obtained was also incorréet: 4

792.



6990 J. Phys. Chem. A, Vol. 106, No. 30, 2002

(6) Steinberg, I. Z.; Katchalsky BE. Chem. Phys1968 48, 2404.
(7) Doktorov, A. B.; Burshtein, A. ISaw. Phys. JETPL975 41, 671.
(8) Burshtein, A. I.J. Lumin.2001, 93, 229.
(9) Pilling, M. J.; Rice, SJ. Chem. Soc., Faraday Trans.1975 71,
1563.
(10) Berlin, Yu. A.Dokl. Akad. Nauk. SSSF975 223 625.
(11) Burshtein, A. I.; Neufeld, A. AJ. Phys. Chem. B00], 105 12364.
(12) Burshtein, A. |.; Khudyakov, I. V.; Yakobson, B.Prog. React.
Kinet. 1984 13, 221.

(13) Burshtein, A. |.; Kapinus, E. |.; Kucherova, I. Yu.; Morozov, V.

A. J. Lumin.1989 43, 291.

(14) Neufeld, A. A.; Burshtein, A. I.; Angulo, G.; Grampp, &.Chem.
Phys.,submitted for publication.

(15) Burshtein, A. I.; Morozov, V. AChem. Phys. Letl99Q 165, 432.

(16) Burshtein, A. I.; Frantsuzov, P. A. Lumin.1992 51, 215.

(17) Tavernier, H. L.; Kalashnikov, M. M.; Fayer, M. D. Chem. Phys.
200Q 113 10191.

(18) Angel, S. A.; Peters, K. S. Phys. Chem1991, 95, 3606.

(19) Nishikava, S.; Asahi, T.; Okada, T.; Mataga, N.; KakitaniChiem.
Phys. Lett.1991 185, 237.

(20) Scully, A. D.; Takeda, T.; Okamoto, M.; Hirayama,Ghem. Phys.
Lett. 1994 228 32.

(21) Zhou, H.; Szabo, ABiophys J.1996 71, 2440.

(22) Doktorov, A. B.; Kipriyanov, A. A.Mol. Phys.1996 88, 453.

(23) Rice, S. ACompr. Chem. Kinetl985 25, 404.

Gladkikh et al.

(24) Murata, S.; Nishimura, M.; Matsuzaki, S. Y.; Tachiya, ®hem.
Phys. Lett.1994 219, 200.

(25) Murata, S.; Matsuzaki, S. Y.; Tachiya, Nl. Phys. Chem1995
99, 5354.

(26) Szabo, AJ. Phys. Chem1989 93, 6929.

(27) Eads, D. D.; Dismer, B. G.; Fleming, G. R.Chem. Phys1990
93, 1136.

(28) Kakitani, T.; Matsuda, N.; Yoshimori, A.; Mataga, Rrog. React.
Kinet. 1995 20, 347.

(29) Burshtein, A. 1. Adv. Chem. Phys200Q 114, 419.

(30) Tavernier, H. L.; Fayer, M. DJ. Chem. Phys2001, 114, 4552.

(31) Kakitani, T.; Yoshimori, A.; Mataga, NI. Phys. Cheml992 96,
5385.

(32) Yoshimori, A.; Watanabe, K.; Kakitani, Them. Phys1995 201,
35.

(33) Song, L.; Dorfman, R. C.; Swallen, S. F.; Fayer, M.DPhys.
Chem.1995 95, 3453.

(34) Song, L.; Swallen, S. F.; Dorfman, R. C.; Weidemaier, K.; Fayer,
M. D. J. Phys. Chem1993 97, 1374.

(35) Burshtein, A. I.; Zharikov, A. A.; Shokhirev, N. V.; Spirina, O.
B.; Krissinel, E. B.J. Chem. Phys1991 95, 8013.

(36) Wilemski, G.; Fixman, MJ. Chem. Physl1973 58, 4009.

(37) Tachiya, M.; Hilczer, MAIP Conf. Proc.1994 298, 447.

(38) Kroon, J.; Oliver, A. M.; Verhoeven, J. W.; Paddon-Row, M. N.
J. Am. Chem. So0d.99Q 112, 4868.



