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For systems far from equilibrium, a potential determines the fluctuations from stable attractors, such as stationary
states, and the thermodynamic approach to such states (Lyapunov function). For a reaction system with ionic
reactions in a stationary state far from equilibrium, the imposition of a current displaces the system from that
state. For such systems, we show that an electrochemical potential due to the imposed current, consisting of
both a Nernstian term and a non-Nernstian term, directly yields the stochastic potential around its maximum
to a good approximation, without knowledge of the reaction mechanism of the system. The approximation is
good to the order of the percent difference between the Nernstian and non-Nernstian terms and can be used
for evaluating the stochastic potential. For general systems, the imposition of a flow of intermediates also
displaces the system from its stationary state to a new stationary state, which is a nonstationary state of the
system without flow. The concentrations of the chemical species can be measured without time restraints,
and by repeating various such displacements, sufficient data can be obtained to determine rate coefficients
for a solution of a stationary master equation and its stochastic potential for a known or assumed reaction
mechanism. Several experiments are suggested to test the consistency of the results with predictions of the

master equation and, thus, to test that equation itself.

I. Introduction state, and that it provides measures of relative stability of
stationary states in systems with multiple stationary states.

for example, an electrochemical potential or a Gibbs free energy Extensive prior worlg has be.en per.formed by many nv e§t|g§tors
difference. AG, must be done from measurements carried out " the master equation and its stationary probability distribition.

reversibly, wih a * balance of active tendencies” accordingto ~ \We have several purposes in mind for the present study: (1)
Gibbs! Intensive variables must be continuous across the @ discussion of the determination of the stochastic potential
boundary of the system, say the pressure in an expansion proces®/RT from macroscopic measurements, (2) suggestions for
or the electrode potential in an electrochemical experirient. testing the consistency of the master equation with such
Fluctuations of concentrations in a system at equilibrium and Measurements, and (3) an application of our prior work on
constant temperature and pressure are given by the stationanglectrochemical systems in nonequilibrium stationary stétes.

The determination of equilibrium thermodynamic quantities,

solution of a master equatigrthe probability of a fluctuation For the suggestion of a direct method of determining the
at constant temperatur&, and pressurep, is proportional to stochastic potential of a chemical system in a stationary state
the exponential of the Gibbs free energy chanyé, far from equilibrium, we choose a reaction system with ionic
reactants, section Il. An (ion-selective) electrode is inserted into
P ~ exp(~AG/RT) (@) the chemical system and connected to a reference electrode.

The imposition of a current flow through the electrode connec-
Fluctuations of concentrations (or numbers of species) in ation drives the chemical system (CS) away from its initial
stationary state of a nonequilibrium system are also determinedstationary state to a new stationary state of the combined
by the stationary solution of a master equation. The probability chemical and electrochemical system (CCECS), analogous to
of a fluctuation from this stationary state is proportional to the driving the CS away from equilibrium in the same manner. A
exponential of a potential function, labeled her@®/RT. We potential difference is generated by the imposed current, which
have shown in theoretical and experimental studi€shat ® consists of a Nernstian term and a non-Nernstian term dependent
is an excess work of removing the system from its stationary on the kinetics; this potential difference is directly related to
state, that it is a Lyapunov function for the deterministic path the stochastic potential for systems with detailed balance, and
returning the system to its stationary state, that it provides it is related with small error to that potential for all systems
necessary and sufficient conditions for stability of the stationary around nonequilibrium stationary states. (This is an easier
realization of the determination of the stochastic potential by

T Part of the special issue “R. Stephen Berry Festschrift”. macroscopic measurements than suggested in ref 4.) In these
:;?a‘r’]‘?g‘r’énucr?ic:rssﬁ’&”dence should be addressed. cases, for the electrochemical method suggested, we need to
§ Michigan State University. know the ionic species in the chemical system, but we do not
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without detailed balance and displaced sufficiently from non- and R-Q-, a stationary state of the chemical system will be
equilibrium stationary states, the potential difference generatedestablished. We next insert an electrode into the reaction system
by an imposed current is still closely related to the stochastic (see Fig.1 in ref.12) and connect that electrode to a reference

potential, as we show in Appendix B. electrode. The electrode reactions are
For reaction systems with or without ionic species, we offer
a suggestion for an indirect method of determining the stochastic A,+e =A, B +e =B, (4a)

potential from macroscopic measurements (section 1V): impose

a flow of any of the stable intermediate chemical species on \ye aso consider a combination of the electrode reactions in

the CS, and thus displace the CS from its initial stationary state eqs 4a and buffer chemical reactions involving the species R
to a new stationary state of the combined CS and inflow that is Q. R, and Q

not a stationary state of the chemical system for the fixed
constraints. If, in repeated experiments for different imposed . P N o
flow rates of the different species, the concentrations of the R,=A te =A,=R Q. =B, +e =B,=Q.

reacting species are measured in each new stationary state, then (4b)

the rate coefficients and the stochastic potential can be evaluated . .
; Ve notice that the sum of the two sets of reactions (eqgs 4a and

4b) is the chemical reaction in eq 2. Upon insertion of the
electrode into the reacting system, there is a change in the
concentrations of the species away from their values in the
stationary state prior to the electrode insertion. If a current flow
is imposed through the external circuit connecting the electrode
in the system and the reference electrode, then a stationary state
of the CCECS is attained. The CS now is not in a stationary
Consider a simple model system state. The electrochemical system is a device for removing the
chemical system, for given inflow conditions, from its stationary
Kty K K, state to different values of concentrations and maintaining these
R+ Qi At T B Bi A T="R +Q. (2) new concentrations in a stationary state of the CCECS. The
' o stationary state is maintained by a balance of fluxes. In ref 11,
where R, Q;, R_, and Q are each held at given constant We present a derivation of an electrochemical potential in a
Concentrations ®1 Q+’ Ri, anin’ respectlve|y The Spec|es .nonequ[hbnum SyStem and ShOW that the pOtentIa| measured
A1, A, By, and B (at concentrationsd;, A, By, and By, in a stationary state of a combined reaction and electrochemical
respectively) are uniformly distributed (mixed) in a reaction System differs from the equilibrium expression for the Nernst

vessel. For values &?;Q;/R_Q_ not equal to the equilibrium  Potential; for experiments, see ref 12. In ref 13, we illustrate
constant for the overall reaction, a nonequilibrium stationary these differences with calculations for the minimal bromate

reaction mechanism.
In section V, we present further suggestions for testing the
master equation.

Il. Change of Chemical System into Coupled Chemical
and Electrochemical System. A Simple Example

+

state is achieved asymptotically in time. oscilliatory reaction system in a nonequilibrium stationary state.
The deterministic kinetic equations are Experiments were performed on the displacement of the

minimum bromate reaction from stationary states far from

dA, dB, | _ B N equilibrium and from equilibrium as outlined here, and th&’Ce

T a - KHRQe HkoBA — (Kt k)AB, cé' electrode potential was measured for various imposed
currentst?

dA, dB, N N B The expression for_ a given impo;ed curreistgiven by the

T a R Q T koAB, — (Kot ko)BiA, (3) Butler—\Volmer equations (see eq 4 in ref 11) and repeated here

in a slightly different notation

We assume that the constant concentrations;0fQ®, R-, and o
Q- are known and that the concentrations af A,, B1, and J=Ji =it —lotls —lstis —lat)s =5+
B, can be measured, at least at the stationary state. Radioactive - j+ (5)
tracer experiments might help to determine some rate coef- 6 6
ficients, although such methods are complicated by the revers-
ibility of the chemical reactions. In principle, further measure-
ments can be made on this system in nonstationary states to | .
obtain rate coefficients, but there might be serious time  J1 =7 Cgr R, exp[~AGg 4 (0)/RT] exp(—og  fE)
constraints in doing so.

To overcome the difficulties cited in the previous paragraph, j,~ =
we need to devise a method of removing the CS from its +
stationary state at the fixed external constraisQ; and <7CA1A1 eXp[—AGR+A1 (0)/RT] expl(1 - aRJM)fE]’ etc. (6)
R_Q-. This can be achieved in several ways. For reactions with
ionic species, electrodes can be inserted into the chemicalln these equationss is the potential difference between the
system, which thus becomes coupled to an electrochemicaltwo electrodes;” is the Faraday constanGg,,Ca,, etc., are
system. Such cases are discussed in section Ill. Another methodArrhenius prefactorsR:, A1, Bz, etc., are concentrations;
involves the introduction of a flux of an intermediate species AG§+A1(O) is the Gibbs free energy of activation for the
into the reaction chamber of the chemical system, and such caseglectrode reaction R= A; + € when the potential difference
are discussed in section IV. between the electrode and the reacting solution vanishes (and

Consider the introduction of an electrochemical system to similarly for the other activation energies)i. a, is the transfer
the chemical system, run in solution, eq 1. Reaction 1 is run in coefficient for the R/A; reaction and similarly for the other
an open, isothermal reactor, and for given constraiR{€+ reactions; and finallf = 7/RT.

where
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In eq 5, the first term is the current due to the half-cell reaction

R,—A +e @)
the second term due to
A +e —R, (8)

and similarly for the other reactions (eq 4b).

Now consider a stationary state of the combined chemical
and electrochemical systems with a given imposed cujrent
the external circuit, which can be positive, negative, or zero.
The chemical flux in the forward direction, which produces A
and B, can be thought of as being opposed by the sum of the
electrode reactions A+ e — A and B — B; + e". The
chemical flux in the backward reaction, which producesAd
B,, can be thought of as being opposed by the sum of the
electrode reactions A~ A; + e and B + € — B

The chemical composition of the CCECS can be described
by a set of modified evolution equations that contain chemical
terms, present in eq 3, and electrochemical terms depending o
the current§;, u=1, ..., 6

i =K 1RQp + ko BiA, — (Kiy + ko)A B, +

1. e
S0~ + iz 1)

dA,

5 = R QKA — (K + kg )BA, +

1o

Sz —z +is — )

B, . L

ot KaRQ_+ kAB, = (Kt kg)BiA +
1o
Sla —s s —1s)

de A+ — - +
at KR Qy + Ko BiA, — (Kyy + kg )A B, +

1, . . .
Sl — s +is —Is) (9)

For a stationary state of the CCECS, the stationary concentra-

tions of the species A Ai, By, and B are the solutions of the
equations

dA, dA, dB, dB,

A A (10)

The stationary concentrations of the speciesM, By, and B
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db, = (u; — ) dn (11)

with
i = A,, B, taken to be neutral
i = A,, B, taken to be singly negatively charged

wheren; denotes the number of moles of spedies

The differential db. is exact, and hence, choices of paths of
integration are arbitrary; the path could be a most probable
fluctuational path or an anti-deterministic path, etc. The chemical
potentialsui0 are those of the species in a reference state; the
reference state concentratigrfor species Xis obtained from
the momentum canonically conjugateq@long the fluctuational
trajectory (see egs 4244 in ref 4). Alternatively, the exponential
of the integral in eq 11 can be viewed as a formal representation
of the eikonal solution to first order for the stationary solution
of the master equation for the chemical system; differentiation

ields the master HamiltenJacobi equation that, in the eikonal
pproximation, is equivalent to the master equation.

For the electrochemical system, we choose the same variables
as for the chemical system. The reactions at the electrodes are
assumed to be sufficiently fast that the measured potential is
the equilibrium potential at the electrode, and fluctuations in it
and in the imposed current are neglected. This is a commonly
used approximation, analogous to neglecting fluctuations in
concentrations of species in equilibrium with mass reservoirs.
For systems with detailed balance, for example all systems with
the concentration state space for which equilibrium is the only
stable attractor, we can write the electrochemical potential of
each ionic species, say.Aas

Un, + EpNT (12)

whereEa; is the potential for a given imposed current; is

the number of equivalents of electrons in the half-cell reaction
for A,, and. 7 is the Faraday constant. We postulate that we
can write db of the combined chemical and electrochemical

system, @g, for small deviations from a stationary state far

from equilibrium as

dde = (up, — ﬂgl) dny t (ug, — P‘gl) dng,
77— 0 _ g0 (77
+ (un, + En 17— S, — E3,127) dn,
+ (ug, + Eg, 17— ug, — Eg 177) dng,

= dd, + (E, — Ex ) V7dn, + (Eg, — Ep) 17dng,
(13)

in the CCECS are altered from those in the CS to satisfy eqs 9 The postulate is consistent with an expansion of the master
and 10; they can be measured without time restrictions. For theequation or an equivalent Hamilteddacobi equation (see
CS, these concentrations correspond to a nonstationary state foappendix B).
the given constraints. Thus, by varying the input curjemte At a stationary state of the combined system, the differential
obtain stationary (without electrodes) and nonstationary (with ddg = 0, and therefore, we obtain fodg
electrodes) states of the CS, all time-independent.
‘ 0
V7U(EA, — Eays) — (Ea, — Eays)l Ay,

» 0
— NV 71(Es, — Bgy) — (Eg, — Eg )] dng,

do
I1l. Determination of the Stochastic Potential ® in ¢

Coupled Chemical and Electrochemical Systems (14)

In prior studies} we showed that the differential of the
stochastic potential for the chemical system in the stationary where we have added and subtracteds) and Eg,s), the
state, db., can be written as potentials of A and B, respectively, in the stationary state of
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the chemical system. The imposition of electrodes and a currentThis imposition must be added to the deterministic kinetic
moves the chemical system away from that stationary state. Theequations of the elementary steps in a known or assumed
first term in each square bracket depends on concentrationsreaction mechanism. The problem then is to deduce the effect
sayA; andAys), only and thus is the Nernstian contribution to  of this imposition on the stochastic potential. For that, we need
the measured electrochemical potential. The second term in eactio go from the deterministic kinetic equations to a stochastic
bracket depends on the kinetics of the chemical system and isequation, say the lowest-order eikonal approximation of the
the non-Nernstian contribution to the measured electrochemicalmaster equation. Hence, the measurements provide an indirect
potential. The measurements of the electrochemical potentials,determination of the stochastic potential, one that depends on
say with ion-specific electrodes, yieltdi®/9na,) and @P/9ns,), the use of the master equation and an assumed reaction
respectively. Thus, we obtain the important result that from these mechanism.
macroscopic measurements of potentials and macroscopic For one-variable systems, this procedure is easy because we
concentrations of A A,, B;, and B at a sufficient number of  know the stationary solution of the master equation to that order.
displacements from the stationary state of the chemical system,For example, for the Schipp model, we have the elementary
the stochastic potentia®. of the chemical system can be reaction steps
determined in some regions around stationary states.
. _ k K

If the chemical system approaches equilibrium rather than a A+2X=3X, X=B (15)
stationary state (nonequilibrium), then the non-Nernstian terms ko ks
vanish, and @ becomes d{G).

No direct use has been made of the master equation itself in
obtaining the stochastic potentidl; from the measurements

where the concentrations of A and B are fixed; the kinetic
equation with imposed flud = kX' is

described, and no knowledge of the reaction of the chemical ax 2 _ 3 -

system is required; hence, the measurements provide a direct dt KAX"+ kB — (lX™ + kX) =t t (16)
determination of the stochastic potential in a limited range ) . ) .
around a stationary state of the chemical system. The stationary solution of the lowest-order eikonal approxima-

For systems without detailed balance, that is, for most tion of the master equation corresponding to the chemical
systems, in the domain of concentration state space with afeactions in eqs 15 is
nonequilibrium stable attractor such as a node or focus, the @'
relation of the electrochemical potential induced by a given P(X) ~ exr( T) a7
imposed current flow into the stochastic potential is, in general, ke
not as simple as for cases with detailed balance. Near a
stationary state far from equilibrium, the electrical potential is

still, to good approximation, linearly related to the stochastic ' + +
good app y 1 3<I>=|(t+J) I(t)+|n(1+ ) (18)

where

potential around its maximum, as we show in Appendix B. - WW

Hence, if we are interested in determining the stochastic potential

near a stationary state far from equilibrium, we can do so |n the absence of an external flux, this solution reduces to

directly, again without the use of a master equation or

knowledge of the reaction mechanism. If, however, the sto- P(X) ~ exp(

chastic potential must be known in the domain of concentration

state space around a given stationary state extending to regions

where the lowest-order approximation does not suffice, then it Where

is necessary to gather sufficient data of concentrations, currents, .
")

o) 49

and voltages at several displacements from the stationary state __1 @ _
and to use these data to evaluate the rate coefficients and the kg TV 09X
stochastic potential by numerical solution of the master equation
for a given model of the reaction mechanism.

(20)

At a stationary state of the system with imposed fdx/0X =
0, the first term on the rhs of eq 18 is
IV. Chemical Systems with Imposed Fluxes.

1 9P

+
Consider the chemical system in eq 1, with specigsAa, - 7= |n(t ) = —In(l + i) (21)
B, and B being either ions or neutrals, in a reaction chamber kg TV 90X t

in a nonequilibrium stationary state. If we impose a flux of
q y P which is proportional to the derivative of the stochastic potential

species A, J = KA/, into the reaction chamber wi and
P A ! Q: t, ® for the system without imposed flux. We see that this

Q- unchanged, we move the chemical system to a differen
nonequilibrium stationary state with different concentrations of d€rivative is given not by the imposed flux alone but by the
fratio Jitt . Therefore we need to know the rate coefficients in

the reacting species. This procedure allows the sampling of 7

different combinations of\;, Az, B1, andB; values at fixedQ-

and Q- by means of the imposition of different fluxes of any

of these reactants. These combinations represent nonstationar#ﬂ - o

states in the absence of the imposed flux, but with the imposed easurements 1o determlne the rate coefficients and th? nu-

flux, they are stationary states, and hence, the measurementdnerical solution of the stationary form of the master equation,

of concentrations can be made without constraints of time. If &S detailed in Appendix A

we were to attempt to measure concentrations in nonstationary,

states, then the measurement technique would have to be fas

compared to the time scale of change of the concentrations.
In an electrochemical system (section IV), we impose a  One direct test of the master equation for a nonequilibrium

change in chemical potential; here we impose a flux of a species.system in a stationary state involves a comparison of the

For multivariable systems, this approach is more difficult;
e determination of the stochastic potential requires sufficient

. Suggestions for Experimental Tests of the Master
quation
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B A chemical system will return to the stable stationary state 4. By
7 6 I means of such experiments, the separatrix, which is the branch
N 2 \ of unstable stationary states shown by the dotted line in Figure
S 1, can be determined. The same approach works for a system
N 1 displaced from a stationary state by an influx of a species.
S The condition of equistability of a homogeneous stationary
\ state on the upper branch of the hysteresis loop, labeled I, with
\ a homogeneous stationary state on the lower branch, labeled
3 \ II, occurs at one value of the inflow coefficiektwithin the
\ hysteresis loop. If the deterministic rate equation for the
N concentratiort is

\_ ‘ N\ de/dt = F(0) 22)

s then the deterministic condition of equistability8s

J'F©de=0 (23)

influx Cocflicient k

Figure 1. Typical hysteresis loop for a one-variable system with a
cubic kinetic equation: plot of concentratianvs influx coefficient.
Solid lines, stable stationary states (nodes); broken line, unstable 5 5

stationary state. For a discussion of lines A and B and numbers, see j; F(C) dc = j; F(C) de (24)
the text.

Alternatively, if line A is at the value ok at equistability, then
we have

If these two integrals are not equal, then one stable stationary

probability of a fluctuation with measured fluctuations. Such state, the one with the large value of the integral in eq 24, is

measurements have not yet been made. However, another dire&ald to be more stable than the other.

test is made possible by the developments presented here. In The predict_ions of the stationary _solution of the stochastic
sections Il and Ill, we described direct macroscopic measure- master equation, to be compared with measurements, are that

ments of the stochastic potential in a stationary state of chemical(.a) the minimum of f[he blmodal stationary probability dlstrlbu-'
systems with detailed balance and for any system at and near glonin the hys;eres]s_ region must t_)_e located on _the separatrix
stationary state far from equilibrium. In section IV, we discussed and (b) at ;aqwstablllty, the probability of fluctuatioRéc) dc
the displacement of a system in a nonequilibrium stationary stateMUSt obey
by an imposed flux as a means of generating additional and 5 _ (®
sufficient data for the determination of the rate coefficients. In L P(c) de fZ P(c) de (25)
Appendix A we outline several methods of calculating that Approximately, the height of the probability peak at 2 is equal
stochastic potential from the necessary rate coefficients deter-o that at 4. To either side of the valuelo#t equistability, one
mined in macroscopic experiments and from the numerical peak, that of the more stable stationary state, is higher than the
solution of an assumed master equation. Comparison of thegtherlé
direct measurement of the stochastic potential with the indirect ~ A comparison of deterministic and stochastic calculations (but
method of calculating the stochastic potential from macroscopic not experiments) has been discussed in a different context, that
measurements and the master equation provides a test of thgf viewing the stochastic potential as an excess viork.
measurements and of the master equation itself. Such tests have B_ Critical Slowing. In Figure 1, one of the two marginal
also not yet been made. stability points is labeled 7. Near such points, for example 6 on
There are other, indirect tests of the master equation. Considetline B, a critical slowing occurs: on perturbation of the chemical
a chemical reaction system with one (or effectively one) variable system initially at point 6, the system decays back to 6 more
stationary state and multiple stationary states, for example, theslowly than for values ok to the right of 6 and faster than for
iodate-arsenous acid reaction in an open systemschematic values ofk to the left of 6 but still to the right of 7. Similar
drawing of the hysteresis loop in such a system is shown in slowing occurs to the left of 7, but only for a small rangekof
Figure 1. Several macroscopic experiments can be performedThis effect has been observed experimentally in several systems.
that can test predictions of the master equation, in particular  Critical slowing manifests itself also in the stationary solutions

predictions concerning the stationary stochastic potedtial of the master equation. In ref 16, we discuss a simple example
A. Relative Stability and Equistability of Two Stable with a cubic deterministic rate equation. Linearization of a
Stationary States in the Homogeneous Reaction Systeie perturbation away from a stationary state yields the relaxation

label the concentration of a given variable byand assume  time within one branch of stationary states, which increases on
that we can measure it as the influx into the system, denotedthe approach to a marginal stability point. A quantitative
by the influx coefficienk, is varied; thus, we trace out the solid ~comparison with experiments with the predictions based on the
lines of the hysteresis loop shown in Figure 1. If next we can potential®, without any linearization, needs to be made.

form a combined chemical and electrochemical system as Acknowledgment. This research was supported in part by
discussed in section Ill, then we can locate the combined systemyno National Science Foundation and by the Department of
at point 1 on line A, say, by imposing a given current flow. gnerqy BES/Engineering Research Program. This paper is

This point is a stab_le stationary.state of the cpmbined System. gedicated to Steve Berry to pay tribute to his great contributions
If the electrochemical system is suddenly disconnected, the iy science.

chemical system will return deterministically to the stable .

stationary state 2 on the solid line in Figure 1. If this kind of Appendix A

experiment is repeated to locate the combined system on point To calculate the potentiab for a chemical system, such as
3, then on disconnection of the electrochemical system, thein eq 3, we first need to determine the rate coefficients. There
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are six rate coefficients, but only three are independent if three

equilibrium constants are known. The rate coefficients can be

measured in standard kinetic experiments. Second, the concen-

trations of the species AA,, B;, and B can be measured in
sufficient numbers of stationary states achieved by varying the
known ratios of R- and Q- to Ry and Q4+, and the rate
coefficients are obtained by fitting these concentrations to the
equations for the stationary states, eq 3, with/dt, dA./dt,
dB,/dt, and dB/dt set equal to 0. Third, the rate coefficients

can be determined by fitting measurements made by removing

the chemical system with an imposed flux, as described.
To calculate the stochastic potential for the chemical system,

Ross et al.

In the thermodynamic limit

X — 00, V— o0, with x = X/V constant (A.6)

we introduce the probability densities of the concentration vector
P(x,t) and of the reaction extenB&,t). These two probabilities
are related to each other by the relationship

Pt = f.[]olx = x(0) qubé?blp(&t) @ (A7)

Starting from eq A.4, we can derive a master equation for the
probability densityP(&,t) that can be written in a form similar

we assume the validity of the stochastic version of mass-actionto a Schidinger equation

law2 and with that, we can derive a Markovian master equation
for the state probability of the system. In the following, rather

than considering the particular example considered in this article,

we consider a reaction network of the type

S

5%

which include the reaction network in eq 2 as a particular case.
Here, a; and 8 are stoichiometric coefficients, ank"

ki+

=

K

S S
JZOL“_% +;ﬁii_xi’ i=1,..R

(A1)

s
ZOL]T% +
£

represents the rates of the forward and backward steps. To

prevent the approach of the system to chemical equilibrium,
one assumes that the numbers of specjemré&controlled by

interaction with a system of reservoirs connected to the system

by means of semipermeable walls. If the numbers of the S
species are known a simplified description of the system is
possible. By removing from egs A.1 the stable substanges A
we obtain a set of reduced reactiths

Qi

V

S K S
X =YX, i=1,..,R A.2
]Zﬁu JKr ;ﬁn ! (A-2)
where
S — 1) (§—o+1
- l_'§(§ ) (91 Q ) A3)

=

are reduced rate constarisrepresents the number of molecular
species S andV is the volume of the system.

We introduce the composition vector of the systén¥ (X,
Xz, ...) whereXy, X, ... are the numbers of the specieg Xo,
..., respectively. We can derive a Markovian master equation
for the probabilityPx(t) of the state vector at time

dPy (t)/dt = Z[WX'XPX’(t) = Wy Py (B)] (A.4)

where the transition rated/x: can be determined from the
deterministic rate constamf. We define the concentration
vectorx = X/V and the vectok of the reaction extents attached
to the reduced reactions in eq 2

X(t) = x(0) + F& (A.5)
whereF is the matrix of the net stoichiometric coefficients for
the reduced reactions in A.E, = [; — ﬂ;].

- gtp(g,t) = HP(EL) (A.8)

where the Hamiltonian operatéf is given by

)
H[E, V] = Z[ll - eX;{—\fla_g)][rr(g)...] +
[1 - exp(+v1 ai&)][rl(g)]] (A.9)

and rji(f;) represents the rates of the reduced reactions in eq
A.2, expressed in terms of the vectbof the reaction extents.

In the thermodynamic limit, eq A.8 can be solved by using
the eikonal approximation

P(&,t) = constx exp[VJ(&;1)] asV — o with & constant

(A.10)

whereP(£,t) = @ (VW) is a chemical action. In the particular
case of a stochastic stationary regime, both the probability of
concentration fluctuations and the chemical action are time-
independent, i.eR(&,t) = P(&), J(&;t) = J(§), and the stationary
actionJ(€) is related to the stochastic potent} by
J(§) = —DPJRTV (A.12)

By inserting eq A.11 into eq A.8 and keeping the dominant
terms inV, we come to a HamiltonJacobi equation for the
chemical actionJ(&)

239+ HIEVIE)] = 0 (A12)
where
HEEP) = S {IL — expp)I () + [1 — exp@)]r; ()}
' (A.13)

is a Hamiltonian function attached to the operatbandp is
the vector of generalized impulses attached to the state vector

&

By solving the Hamiltor-Jacobi equation (eq A.6), we can
evaluate the stochastic potenti®l. This can be achieved in
several ways, and we outline two methods: (1) the direct
numerical solution of eq A.12 and (2) the reduction of the
Hamilton—Jacobi equation to a system of Hamiltonian equa-
tions. The most direct approach is the numerical solution of
the Hamiltor-Jacobi equation; however, because this approach
does not provide any useful physical insight, we are not going
to discuss it. In the following, we give a short presentation of
approach 2.
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For the purpose of this article, it is enough if we manage to EOES)) =& SEEDDD =& (A22)
evaluate the stochastic potential for a stationary stochastic
regime @, that emerges for large times. However, the method The chemical actiod(&;t), which enters the eikonal approxima-
chosen for obtaining. is based on the solution of Hamiltonian tion (eq A.10), can be expressed as
equations of motion, which provides the actia;t), at all ’
times, including®. for the stationary regime (eq A.11). We ) — 7 £
represent an initial probability distribution, say a Gaussian &Y = JEEO:9:9 (A.23)

distribution In particular, the stationary chemical action and the stochastic

potential®. can be obtained from eq A.23 for large times.
The physical significance of this method of solving the
by a cloud of characteristic points in the phase space. The statechemical Hamiltor-Jacobi equation (eq A.11) is straightfor-
vector & attached to a point is randomly selected from the ward. The temporal evolution of the probability density of
probability distribution (eq A.14), and the corresponding impulse concentration fluctuations in the composition space can be

P(&,0) = constx exp[VI(&)] (A.14)

vectorp is computed from the initial action viewed as the flow of a probability fluid. The flow of the
probability fluid can be represented either by a single partial
p= VSJO(E) (A.15) differential equation, eq A.12, or by a set of coupled ordinary

differential equations, egs A.16, which have a structure similar
where the initial action)’(§) is evaluated from the initial  to that of the Hamiltonian equations in classical mechanics. The
probability density (eq A.14). Each point in the cloud is the Hamilton—Jacobi equation (eq A.12) describes the probability
starting point of a trajectory in the phase space. All trajectories, fluid as a scalar field (Eulerian representation), whereas the
taken together, represent the flow of the probability fluid in  Hamiltonian equations (egs A.16) describe the probability fluid
phase space. Each individual trajectory is described by a systemas a bundle of trajectories that represent the motion of the
of Hamiltonian equations probability fluid in time (Lagrangian representation). In terms
of the Eulerian representation, we describe the motion of the
Qg = V_H(Ep), Qp = —V.H(Ep) (A.16) probability fluid with respect to a fixed frame of reference,
dt . dt ) whereas in the case of Lagrange representation, we use a mobile
frame of reference that moves together with the probability fluid.
By solving the Hamiltonian equations, we can compute the value
_ £0 _ 0 of the chemical action for each trajectory, expressed in terms
s0=¢ pO)=Vd (go) (A-17) of the Lagrange variables. On the other hand, to compute the
probability of concentration fluctuations, we need to express
the chemical action in terms of the Eulerian variables. The
— 0. — (&0 passage from the Lagrange to the Euler representation can be
§(r) =&, 57), p(@) =p(E7) (A.18) done by using eqs A 20A.23.

wherer is an intermediate time variable that can take any value

between the initial moment = 0 and the current time = t. Appendix B

Equations A.18 express a “characteristic flow” in the phase o ] ) )
space. In terms of this characteristic flow, we can express the The derivation presented in Appendix A can be easily
chemical action at time To each trajectory in the characteristic ~€Xtended to a compound chemical and electrochemical system.

By solving eqs A.10 numerically with the initial conditions

we know the dependences

flow, we can attach a Lagrangian chemical actigsf;t), which We consider that, in addition to the chemical processes in eq
depends on the initial position vectg? and the timet. We A.1, the following electrochemical processes occur
have K
S S k- S S
N _+ 2+ IR 7
A = PE + fe [p) o) ~ HED PO PLERDYL AR RapLE DYt
(A.19) i=1,..R (B.1)

. . . .
Equation A.19 gives the actiod(c™1) at timet attached to a which include the reaction network in eq 4b as a particular case.

given point with the initial coordinat&’. The actioni(£%t) gives . L oL _ L )
a Lagrangian representation of the motion of characteristic pointsl_n these equationsi, f3;, and » are stoichiometric coef-

in the phase space. We are, however, also interested in the V<'alu<I:'Cients and

of the Eulerian chemical actiod(&;t), which depends on the . E

current vectorf at timet. To compute the Eulerian chemical Pt — i F{(l +1 ) i
actionJ(&;t), we must express the initial vectét as a function k‘i k‘i(E) k‘i(o) ex 2 ‘) RT (B2a)
of the current valug at time 7z = t. We can express these 3 . N

dependences from the solutions k"(0)= ¢ exp[~AG; . (0)/RT] (B2b)

E(t) = (&%) (A.20) are electrochemical rate coefficients that are exponential func-
tions of the potential differende that are described by equations
of the type of eq 6,&}i denotes preexponential factors, and
50: E(E(D):) (A.21) AGifi(O) denotes Gibbs free energies of activation for the
direct and reverse reactions at zero potential. By removing from
where(&(t);t) is the inverse function af(£%t), that is, it fulfills egs B.1 the stable substancgs e obtain a set of reduced
the identities reactions similar to eqs A.2

of the Hamiltonian equations (egs A.16)
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S oS B
Zﬂ;xj +re = Zﬂ;xj, i=1,.,R (B3)
= k1=

where

RN Il ©(C Rl Vi CRul Tk
FEO=KE1[] ’
L

— (B.4)

\Y,

are reduced electrochemical rate coefficients.

We can derive a compound master equation that includes the

contribution of the reduced chemical and electrochemical
processes (eqs A.2 and B.3, respectively). We can express th
concentration vectox(t) in terms of the reaction extent vectors
& and 5 attached to the reduced reactions A.2 and B.3,
respectively. We have

x(t) = x(0) + FE + Fy (B.5)
whereF = [8; — ;] andF = [B; — ;1.

By following the procedure presented in Appendix A, in the
thermodynamic limit, we can reduce the determination of the
stochastic potential to the evaluation of the stationary solution
of a Hamilton-Jacobi equation. We have

P = constx exp[VJ(&,n;t)] (B.6)

where the action functiod(&,;t) is the solution of a Hamilton
Jacobi equation similar to eq A.12

0
G + HIERVIEMRD,V,IEMD] =0 (B.7)
where the Hamiltonan function

H[s&v’?,py(ﬂ = Hchen{g!nyp] + Helectrn{an’q]

is made up of a chemical term

Hanenl 601 = 5 HOerl &m0

(B.8)

= S 11— expp)lr, (&) +
[~ expp)]r; (£77) (B.9)

which expresses the contribution of the reduced chemical
reactions in eq A.2, and an electrochemical term

Helectr([an’q] = z Hg?eetdfﬁﬂi]

N
= 21_/—7{ [1 — expC-alii (EmiE) +

[1—exp@)i; (§7:E)} (B.10)

Ross et al.

equation (eq B.7). These stationary solutions are related to the

stochastic potential® by a relation similar to eq A.11,

introduced in Appendix A for chemical systems
J(&m) = —DIRTV (B.11)

For a stochastic stationary regime, the Hamittdacobi equa-
tion becomes

. 0J
H(') n—
z che/v[é n 3&

) 0J
* ZHS?em{g,n%] =0 (B.12)
T i

éNe first consider the particular case where the reduced

electrochemical reactions in egs B.3 are in detailed balance,
even though the reduced chemical reaction might be far from
detailed balance. From the theory of chemical Hamittdacobi
equationg? it follows that, under these circumstances, each term
of the electrochemical part of eq B.12 is equal to O

i 0J .
Hgl)ectrc[gvnaa_ni] =0, i=

Equations B.13 are quadratic equations in 830¢;); by solving
these equations and keeping the physically significant roots, we
find

12, ..

(B.13)

L
a%q=m("—)=ri—vifE, i=1,2 .. (B.14)

Ji

whereK:"is the apparent chemical equilibrium constant of the
ith reduced electrochemical proce€, is the concentration
of the species X and

K

_— (B.15)
)

We express the chemical action as the sum of a term
independent of the potential differenég J(0), and anE-
dependent termAJ(E)

J=J(0)+ AJE) (B.16)
By assuming the validity of egs B.14, we have
I ANE) =T, — v fE (B.17)
o,

which shows that, for electrochemical systems at detailed
balance AJ(E) is a linear function of the potential difference
E, which is consistent with what is known from equilibrium
studies. To calculate the stochastic poterthalve have to pass
from reaction extents to concentrations. By expressing eqs B.17

which expresses the contribution of the reduced eleCtrOChemicalin terms of Concentrations’ we obtain a set of expressions for

reactions B.3. Hereq = [q] is the impulse vector conjugate to
the electrochemical extent vectgr jf(&,n;E) andj; (§m;E)

(0AJ[Cx;) = y; that fulfill the Schwartz conditiondy/dCx, =
dy,/0Cx;. It follows that egs B.17 can be used to construct the

are the electrical currents generated by the forward and backwardcomponeniJ(E) starting from eq B.16 (for details, see ref 19).

ith electrochemical reduced reaction in eq B.3, respectively,
expressed as functions of the extent vectpesmdz and of the
potential differences; 1" is Avogadro’s number; and the other
symbols have the same significance as before.

In this paper, we are mainly interested in the stationary
solutions J = J(&;;t) of the compound HamiltonJacobi

After standard but lengthy computations, we have

AJ(E) = AJ(0) + fE;7Z%CXJ +const  (B.18)
]

wherez; is the charge number of speciegs By combining eqgs
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B.11, B.16, and B.18, we obtain 75 K ; S T _
0 |
O = O(E=0) — VE:7ZZ,—CX — VRT x const (B.19) 8(%) 5 — —
T ! \ 81:'_0.51 1
25— —
where
0 - ———

O (E=0) = —VRTJI(0) + AJ(0)] (B.20) —asl -
is the stochastic potential in the case where the difference of st ( &=+0.51
electrical potentials is equal to 0. Because the electrochemical ‘
reactions do not take place f&r= 0, we have =150 ] ]

-1 —380 — 60 — 40 —20 0
@, = B(E=0)= —~VRTIO0)+ AJO0)] (B.21) 00
Oi
and thus, eq B.19 justifies the conjecture made in section Il Figure 2. Graphical representation of the relative erré{s) vs the
(egs 13 and 14). relative deviation from detailed balanas, for ¢ = £0.51. The value

Rigorously speaking, eq 19 is valid only if the electrochemical €= —0.51 corresponds to the maximum deviation of the electromotive
reactions are at detailed balance. However, it can be used as afpree from the equilibrium Nernstian value for the minimal bromate
approximation for other systems for which the detailed balance °Scilator (ef 12).

does not hold. For a system that is not at detailed balance, eqgjependent on the deviationfrom detailed balance arid;(%)|

B.13 become becomes larger and larger fs| increases. The deviation
can take any real value betweeno and¥,. As o; decreases,
e,em{g n,— =R i=1,2,... (B.22) for values ofe; close to O, the error is limited to about 8%,
o, provided thato; is larger than—100. Figure 2 shows the

dependence ofi(%) ong; for ¢ = —0.51 ande; = 0.51 (see
electro | below) in the region where the approximation developed in

action flux vector® %2, is a measure of the departure of section IIl is reasonable.

the ith electrochemical reaction from detailed balance; in  The apove analysis shows that the linear expression B.19 for

particular, at detailed balance?, {..,,,= 0. We solve eqs B.22  the stochastic potential might hold approximately even for

for 8J/dni, resulting in systems away from detailed balance, provided that the variable

5 € is close to 0, that is

Y 1= — . 1 7(r|71_’le) J—
3y =TI~ FE+In{ 31+ e ¢ =T - BE~O (B.28)

where 29 =1, 2 ., represents the components of the

\/ 1—e ) - 40ie_2m_mE)]} (B.23) To clarify the physical meaning of eq B.28, we recall that the
N ‘ reaction affinity of the reduced electrochemical reacfias
where we take
0} Kieq
= A clecrdli’ (B.24) A =RTInf[——"—— (B.29)

. . I_l(C )'Bll Bi
as a relative measure of the departure ofithelectrochemical AV
reaction from detailed balance. We define the percent error in

j
. . L By using eqs B.15 and B.28, we can rewrite the condition in
the evaluation of partial derivatives

eq B.28 in the form

& (%) =1 ({(3\]/377i)no detba— (0907 det ba (B.25) A~V TE (B.30)

(33/3771)no det bal . . . . H
which is essentially the Nernst equation for the electromotive
where 0J/97i)det bat 2Nd 0J/07i)no detbar are the values of the  force applied to the reduced electrochemical reagtidxperi-
partial derivative at detailed balance and away from detailed mental studies have shown that, for nonequilibrium systems,
balance, respectively. The percent error depends on only twothere are deviations from the Nernst equation. However, these
variables: the relative measusg of the deviation of electro-  deviations are small, which justifies the use of the conjecture
chemical reaction from detailed balance and the additional made in section IlI.
variable To evaluate the validity range of the method suggested in
section 1ll, we must establish a correspondence between the
=TI, —nfE (B.26) value of the parameter; and the order of magnitude of the
deviation from the stationary state. A crude estimation of the
correspondence betweerand the deviation from the stationary
state can be made by assuming a single couple of forward and
backward electrochemical reactions and considering that the
actionJ is approximately a biquadratic function

For small values o§;, ; ~ 0, the values of the derivative8)
Mi)no det bai@re close to the values of the derivatives computed
by assuming the validity of detailed balancel/7i)det bar that

is

(030 )00 gervar™ (00 )ger @€~ 0 (B27) 3y — G2+ oy — GO, with b~ VP ande ~

31
For ¢ ~ 0, &i(%) is relatively insensitive with respect to the (8:31)

value of the deviatiow; from detailed balance (see Figure 2). wherey is the reaction extent of the electrochemical process.
For large values ot;, however, the erroki(%) is strongly By using eq 31, we can obtain a rough estimate of the deviation
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on = n — Glcorresponding to the extremum valuemfo; ~ A complete solution to the problem should be based on a global
—100 for which the approximation developed in section Il is approach, which must involve the solution of the Hamitton
reasonable. Foc/b? ~ 0.2, [Ap?0~ 1/(2b?), we havedn(— Jacobi equation. Such a solution must be based on the approach
100) ~ +0.4V A presented in Appendix A.
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