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For systems far from equilibrium, a potential determines the fluctuations from stable attractors, such as stationary
states, and the thermodynamic approach to such states (Lyapunov function). For a reaction system with ionic
reactions in a stationary state far from equilibrium, the imposition of a current displaces the system from that
state. For such systems, we show that an electrochemical potential due to the imposed current, consisting of
both a Nernstian term and a non-Nernstian term, directly yields the stochastic potential around its maximum
to a good approximation, without knowledge of the reaction mechanism of the system. The approximation is
good to the order of the percent difference between the Nernstian and non-Nernstian terms and can be used
for evaluating the stochastic potential. For general systems, the imposition of a flow of intermediates also
displaces the system from its stationary state to a new stationary state, which is a nonstationary state of the
system without flow. The concentrations of the chemical species can be measured without time restraints,
and by repeating various such displacements, sufficient data can be obtained to determine rate coefficients
for a solution of a stationary master equation and its stochastic potential for a known or assumed reaction
mechanism. Several experiments are suggested to test the consistency of the results with predictions of the
master equation and, thus, to test that equation itself.

I. Introduction

The determination of equilibrium thermodynamic quantities,
for example, an electrochemical potential or a Gibbs free energy
difference,∆G, must be done from measurements carried out
reversibly, with a “ balance of active tendencies” according to
Gibbs.1 Intensive variables must be continuous across the
boundary of the system, say the pressure in an expansion process
or the electrode potential in an electrochemical experiment.2

Fluctuations of concentrations in a system at equilibrium and
constant temperature and pressure are given by the stationary
solution of a master equation;3 the probability of a fluctuation
at constant temperature,T, and pressure,p, is proportional to
the exponential of the Gibbs free energy change,∆G

Fluctuations of concentrations (or numbers of species) in a
stationary state of a nonequilibrium system are also determined
by the stationary solution of a master equation. The probability
of a fluctuation from this stationary state is proportional to the
exponential of a potential function, labeled here-Φ/RT. We
have shown in theoretical and experimental studies4-10 that Φ
is an excess work of removing the system from its stationary
state, that it is a Lyapunov function for the deterministic path
returning the system to its stationary state, that it provides
necessary and sufficient conditions for stability of the stationary

state, and that it provides measures of relative stability of
stationary states in systems with multiple stationary states.
Extensive prior work has been performed by many investigators
on the master equation and its stationary probability distribution.3

We have several purposes in mind for the present study: (1)
a discussion of the determination of the stochastic potential
Φ/RT from macroscopic measurements, (2) suggestions for
testing the consistency of the master equation with such
measurements, and (3) an application of our prior work on
electrochemical systems in nonequilibrium stationary states.11,12

For the suggestion of a direct method of determining the
stochastic potential of a chemical system in a stationary state
far from equilibrium, we choose a reaction system with ionic
reactants, section II. An (ion-selective) electrode is inserted into
the chemical system and connected to a reference electrode.
The imposition of a current flow through the electrode connec-
tion drives the chemical system (CS) away from its initial
stationary state to a new stationary state of the combined
chemical and electrochemical system (CCECS), analogous to
driving the CS away from equilibrium in the same manner. A
potential difference is generated by the imposed current, which
consists of a Nernstian term and a non-Nernstian term dependent
on the kinetics; this potential difference is directly related to
the stochastic potential for systems with detailed balance, and
it is related with small error to that potential for all systems
around nonequilibrium stationary states. (This is an easier
realization of the determination of the stochastic potential by
macroscopic measurements than suggested in ref 4.) In these
cases, for the electrochemical method suggested, we need to
know the ionic species in the chemical system, but we do not
need to know the reaction mechanism of the system. For systems
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without detailed balance and displaced sufficiently from non-
equilibrium stationary states, the potential difference generated
by an imposed current is still closely related to the stochastic
potential, as we show in Appendix B.

For reaction systems with or without ionic species, we offer
a suggestion for an indirect method of determining the stochastic
potential from macroscopic measurements (section IV): impose
a flow of any of the stable intermediate chemical species on
the CS, and thus displace the CS from its initial stationary state
to a new stationary state of the combined CS and inflow that is
not a stationary state of the chemical system for the fixed
constraints. If, in repeated experiments for different imposed
flow rates of the different species, the concentrations of the
reacting species are measured in each new stationary state, then
the rate coefficients and the stochastic potential can be evaluated
numerically from an assumed master equation and an assumed
reaction mechanism.

In section V, we present further suggestions for testing the
master equation.

II. Change of Chemical System into Coupled Chemical
and Electrochemical System. A Simple Example

Consider a simple model system

where R+, Q+, R-, and Q- are each held at given constant
concentrations ofR+, Q+, R-, andQ-, respectively. The species
A1, A2, B1, and B2 (at concentrationsA1, A2, B1, and B2,
respectively) are uniformly distributed (mixed) in a reaction
vessel. For values ofR+Q+/R-Q- not equal to the equilibrium
constant for the overall reaction, a nonequilibrium stationary
state is achieved asymptotically in time.

The deterministic kinetic equations are

We assume that the constant concentrations of R+, Q+, R-, and
Q- are known and that the concentrations of A1, A2, B1, and
B2 can be measured, at least at the stationary state. Radioactive
tracer experiments might help to determine some rate coef-
ficients, although such methods are complicated by the revers-
ibility of the chemical reactions. In principle, further measure-
ments can be made on this system in nonstationary states to
obtain rate coefficients, but there might be serious time
constraints in doing so.

To overcome the difficulties cited in the previous paragraph,
we need to devise a method of removing the CS from its
stationary state at the fixed external constraints,R+Q+ and
R-Q-. This can be achieved in several ways. For reactions with
ionic species, electrodes can be inserted into the chemical
system, which thus becomes coupled to an electrochemical
system. Such cases are discussed in section III. Another method
involves the introduction of a flux of an intermediate species
into the reaction chamber of the chemical system, and such cases
are discussed in section IV.

Consider the introduction of an electrochemical system to
the chemical system, run in solution, eq 1. Reaction 1 is run in
an open, isothermal reactor, and for given constraints,R+Q+

and R-Q-, a stationary state of the chemical system will be
established. We next insert an electrode into the reaction system
(see Fig.1 in ref.12) and connect that electrode to a reference
electrode. The electrode reactions are

We also consider a combination of the electrode reactions in
eqs 4a and buffer chemical reactions involving the species R+,
Q+, R-, and Q-

We notice that the sum of the two sets of reactions (eqs 4a and
4b) is the chemical reaction in eq 2. Upon insertion of the
electrode into the reacting system, there is a change in the
concentrations of the species away from their values in the
stationary state prior to the electrode insertion. If a current flow
is imposed through the external circuit connecting the electrode
in the system and the reference electrode, then a stationary state
of the CCECS is attained. The CS now is not in a stationary
state. The electrochemical system is a device for removing the
chemical system, for given inflow conditions, from its stationary
state to different values of concentrations and maintaining these
new concentrations in a stationary state of the CCECS. The
stationary state is maintained by a balance of fluxes. In ref 11,
we present a derivation of an electrochemical potential in a
nonequilibrium system and show that the potential measured
in a stationary state of a combined reaction and electrochemical
system differs from the equilibrium expression for the Nernst
potential; for experiments, see ref 12. In ref 13, we illustrate
these differences with calculations for the minimal bromate
oscilliatory reaction system in a nonequilibrium stationary state.

Experiments were performed on the displacement of the
minimum bromate reaction from stationary states far from
equilibrium and from equilibrium as outlined here, and the CeIV/
CeIII electrode potential was measured for various imposed
currents.14

The expression for a given imposed currentj is given by the
Butler-Volmer equations (see eq 4 in ref 11) and repeated here
in a slightly different notation

where

In these equations,E is the potential difference between the
two electrodes;F is the Faraday constant;CR+,CA1, etc., are
Arrhenius prefactors;R+, A1, B2, etc., are concentrations;
∆GR+A1

q (0) is the Gibbs free energy of activation for the
electrode reaction R+ ) A1 + e- when the potential difference
between the electrode and the reacting solution vanishes (and
similarly for the other activation energies);RR+A1 is the transfer
coefficient for the R+/A1 reaction and similarly for the other
reactions; and finallyf ) F /RT.

R+ + Q+ {\}
k+1

+

k+1
-

A1 + B2 {\}
k0

+

k0
-

B1 + A2 {\}
k-1

+

k-1
-

R- + Q- (2)

dA1

dt
)

dB2

dt
) k+1

+ R+Q+ + k0
-B1A2 - (k+1

- + k0
+)A1B2

dA2

dt
)

dB1

dt
) k-1

- R-Q- + k0
+A1B2 - (k-1

+ + k0
-)B1A2 (3)

A1 + e- a A2, B1 + e- a B2 (4a)

R+ a A1 + e- a A2 a R-; Q+ a B1 + e- a B2 a Q-

(4b)

j ) j1
- - j1

+ + j2
- - j2

+ + j3
- - j3

+ + j4
- - j4

+ + j5
- - j5

+ +

j6
- - j6

+ (5)

j1
+ ) F CR+

R+ exp[-∆GR+A1

q (0)/RT] exp(-RR+A1
fE)

j1
- )

F CA1
A1 exp[-∆GR+A1

q (0)/RT] exp[(1 - RR+A1
)fE], etc. (6)
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In eq 5, the first term is the current due to the half-cell reaction

the second term due to

and similarly for the other reactions (eq 4b).
Now consider a stationary state of the combined chemical

and electrochemical systems with a given imposed currentj in
the external circuit, which can be positive, negative, or zero.
The chemical flux in the forward direction, which produces A2

and B1, can be thought of as being opposed by the sum of the
electrode reactions A1 + e- f A2 and B2 f B1 + e-. The
chemical flux in the backward reaction, which produces A1 and
B2, can be thought of as being opposed by the sum of the
electrode reactions A2 f A1 + e- and B1 + e- f B2.

The chemical composition of the CCECS can be described
by a set of modified evolution equations that contain chemical
terms, present in eq 3, and electrochemical terms depending on
the currentsju

(, u ) 1, ..., 6

For a stationary state of the CCECS, the stationary concentra-
tions of the species A2, A1, B2, and B1 are the solutions of the
equations

The stationary concentrations of the species A2, A1, B2, and B1

in the CCECS are altered from those in the CS to satisfy eqs 9
and 10; they can be measured without time restrictions. For the
CS, these concentrations correspond to a nonstationary state for
the given constraints. Thus, by varying the input currentj, we
obtain stationary (without electrodes) and nonstationary (with
electrodes) states of the CS, all time-independent.

III. Determination of the Stochastic Potential Φ in
Coupled Chemical and Electrochemical Systems

In prior studies,4 we showed that the differential of the
stochastic potential for the chemical system in the stationary
state, dΦc, can be written as

with

whereni denotes the number of moles of speciesi.
The differential dΦc is exact, and hence, choices of paths of

integration are arbitrary; the path could be a most probable
fluctuational path or an anti-deterministic path, etc. The chemical
potentialsµi

0 are those of the species in a reference state; the
reference state concentrationxj for species Xj is obtained from
the momentum canonically conjugate toxj along the fluctuational
trajectory (see eqs 42-44 in ref 4). Alternatively, the exponential
of the integral in eq 11 can be viewed as a formal representation
of the eikonal solution to first order for the stationary solution
of the master equation for the chemical system; differentiation
yields the master Hamilton-Jacobi equation that, in the eikonal
approximation, is equivalent to the master equation.

For the electrochemical system, we choose the same variables
as for the chemical system. The reactions at the electrodes are
assumed to be sufficiently fast that the measured potential is
the equilibrium potential at the electrode, and fluctuations in it
and in the imposed current are neglected. This is a commonly
used approximation, analogous to neglecting fluctuations in
concentrations of species in equilibrium with mass reservoirs.
For systems with detailed balance, for example all systems with
the concentration state space for which equilibrium is the only
stable attractor, we can write the electrochemical potential of
each ionic species, say A2, as

whereEA2 is the potential for a given imposed current,N is
the number of equivalents of electrons in the half-cell reaction
for A2, andF is the Faraday constant. We postulate that we
can write dΦ of the combined chemical and electrochemical
system, dΦE, for small deviations from a stationary state far
from equilibrium as

The postulate is consistent with an expansion of the master
equation or an equivalent Hamilton-Jacobi equation (see
Appendix B).

At a stationary state of the combined system, the differential
dΦE ) 0, and therefore, we obtain for dΦc

where we have added and subtractedEA2(s) and EB2(s), the
potentials of A and B, respectively, in the stationary state of

R+ f A1 + e- (7)

A1 + e- f R+ (8)

dA1

dt
) k+1
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- + k0
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1
F
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- - j2
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1
F
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dt
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1
F

(j4
+ - j4
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+)
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dt
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1
F
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+ - j5

-) (9)

dA1

dt
)

dA2

dt
)

dB1

dt
)

dB2

dt
) 0 (10)

dΦc ) ∑
i

(µi - µi
0) dni (11)

i ) A1, B1 taken to be neutral

i ) A2, B2 taken to be singly negatively charged

µA2
+ EA2

NF (12)

dΦE ) (µA1
- µA1

0 ) dnA1
+ (µB1

- µB1

0 ) dnB1

+ (µA2
+ EA2

NF - µA2

0 - EA2

0 NF ) dnA2

+ (µB2
+ EB2

NF - µB2

0 - EB2

0 NF ) dnB2

) dΦc + (EA2
- EA2

0 )NF dnA2
+ (EB2

- EB2

0 )NF dnB2

(13)

dΦc ) -NF [(EA2
- EA2(s)) - (EA2

0 - EA2(s))] dnA2

- N F [(EB2
- EB2(s)) - (EB2

0 - EB2(s))] dnB2
(14)
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the chemical system. The imposition of electrodes and a current
moves the chemical system away from that stationary state. The
first term in each square bracket depends on concentrations,
sayA2 andA2(s), only and thus is the Nernstian contribution to
the measured electrochemical potential. The second term in each
bracket depends on the kinetics of the chemical system and is
the non-Nernstian contribution to the measured electrochemical
potential. The measurements of the electrochemical potentials,
say with ion-specific electrodes, yield (∂Φc/∂nA2) and (∂Φc/∂nB2),
respectively. Thus, we obtain the important result that from these
macroscopic measurements of potentials and macroscopic
concentrations of A1, A2, B1, and B2 at a sufficient number of
displacements from the stationary state of the chemical system,
the stochastic potentialΦc of the chemical system can be
determined in some regions around stationary states.

If the chemical system approaches equilibrium rather than a
stationary state (nonequilibrium), then the non-Nernstian terms
vanish, and dΦc becomes d(∆G).

No direct use has been made of the master equation itself in
obtaining the stochastic potentialΦc from the measurements
described, and no knowledge of the reaction of the chemical
system is required; hence, the measurements provide a direct
determination of the stochastic potential in a limited range
around a stationary state of the chemical system.

For systems without detailed balance, that is, for most
systems, in the domain of concentration state space with a
nonequilibrium stable attractor such as a node or focus, the
relation of the electrochemical potential induced by a given
imposed current flow into the stochastic potential is, in general,
not as simple as for cases with detailed balance. Near a
stationary state far from equilibrium, the electrical potential is
still, to good approximation, linearly related to the stochastic
potential around its maximum, as we show in Appendix B.
Hence, if we are interested in determining the stochastic potential
near a stationary state far from equilibrium, we can do so
directly, again without the use of a master equation or
knowledge of the reaction mechanism. If, however, the sto-
chastic potential must be known in the domain of concentration
state space around a given stationary state extending to regions
where the lowest-order approximation does not suffice, then it
is necessary to gather sufficient data of concentrations, currents,
and voltages at several displacements from the stationary state
and to use these data to evaluate the rate coefficients and the
stochastic potential by numerical solution of the master equation
for a given model of the reaction mechanism.

IV. Chemical Systems with Imposed Fluxes.

Consider the chemical system in eq 1, with species A1, A2,
B1, and B2 being either ions or neutrals, in a reaction chamber
in a nonequilibrium stationary state. If we impose a flux of
species A1, J ) k′A1′, into the reaction chamber withQ+ and
Q- unchanged, we move the chemical system to a different,
nonequilibrium stationary state with different concentrations of
the reacting species. This procedure allows the sampling of
different combinations ofA1, A2, B1, andB2 values at fixedQ+
andQ- by means of the imposition of different fluxes of any
of these reactants. These combinations represent nonstationary
states in the absence of the imposed flux, but with the imposed
flux, they are stationary states, and hence, the measurements
of concentrations can be made without constraints of time. If
we were to attempt to measure concentrations in nonstationary
states, then the measurement technique would have to be fast
compared to the time scale of change of the concentrations.

In an electrochemical system (section IV), we impose a
change in chemical potential; here we impose a flux of a species.

This imposition must be added to the deterministic kinetic
equations of the elementary steps in a known or assumed
reaction mechanism. The problem then is to deduce the effect
of this imposition on the stochastic potential. For that, we need
to go from the deterministic kinetic equations to a stochastic
equation, say the lowest-order eikonal approximation of the
master equation. Hence, the measurements provide an indirect
determination of the stochastic potential, one that depends on
the use of the master equation and an assumed reaction
mechanism.

For one-variable systems, this procedure is easy because we
know the stationary solution of the master equation to that order.
For example, for the Schlo¨gl model, we have the elementary
reaction steps

where the concentrations of A and B are fixed; the kinetic
equation with imposed fluxJ ) k′X′ is

The stationary solution of the lowest-order eikonal approxima-
tion of the master equation corresponding to the chemical
reactions in eqs 15 is

where

In the absence of an external flux, this solution reduces to

where

At a stationary state of the system with imposed flux∂Φ′/∂X )
0, the first term on the rhs of eq 18 is

which is proportional to the derivative of the stochastic potential
Φ for the system without imposed flux. We see that this
derivative is given not by the imposed flux alone but by the
ratio J/t+ . Therefore we need to know the rate coefficients in
t+.

For multivariable systems, this approach is more difficult;
the determination of the stochastic potential requires sufficient
measurements to determine the rate coefficients and the nu-
merical solution of the stationary form of the master equation,
as detailed in Appendix A

V. Suggestions for Experimental Tests of the Master
Equation

One direct test of the master equation for a nonequilibrium
system in a stationary state involves a comparison of the

A + 2X {\}
k1

k2
3X, X {\}

k3

k4
B (15)

dX
dt

) k1AX2 + k4B - (k2X
3 + k3X) ≡ t+ - t- (16)

P(X) ≈ exp(- Φ′
kBT) (17)

- 1
kBTV

∂Φ′
∂X

) ln(t+ + J

t- ) ) ln(t+t-) + ln(1 + J

t-) (18)

P(X) ≈ exp(- Φ
kBT) (19)

- 1
kBTV

∂Φ
∂X

) ln(t+t-) (20)

- 1
kBTV

∂Φ
∂X

) ln(t+t-) ) -ln(1 + J

t-) (21)
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probability of a fluctuation with measured fluctuations. Such
measurements have not yet been made. However, another direct
test is made possible by the developments presented here. In
sections II and III, we described direct macroscopic measure-
ments of the stochastic potential in a stationary state of chemical
systems with detailed balance and for any system at and near a
stationary state far from equilibrium. In section IV, we discussed
the displacement of a system in a nonequilibrium stationary state
by an imposed flux as a means of generating additional and
sufficient data for the determination of the rate coefficients. In
Appendix A we outline several methods of calculating that
stochastic potential from the necessary rate coefficients deter-
mined in macroscopic experiments and from the numerical
solution of an assumed master equation. Comparison of the
direct measurement of the stochastic potential with the indirect
method of calculating the stochastic potential from macroscopic
measurements and the master equation provides a test of the
measurements and of the master equation itself. Such tests have
also not yet been made.

There are other, indirect tests of the master equation. Consider
a chemical reaction system with one (or effectively one) variable
stationary state and multiple stationary states, for example, the
iodate-arsenous acid reaction in an open system.15 A schematic
drawing of the hysteresis loop in such a system is shown in
Figure 1. Several macroscopic experiments can be performed
that can test predictions of the master equation, in particular
predictions concerning the stationary stochastic potentialΦc.

A. Relative Stability and Equistability of Two Stable
Stationary States in the Homogeneous Reaction System.We
label the concentration of a given variable byc and assume
that we can measure it as the influx into the system, denoted
by the influx coefficientk, is varied; thus, we trace out the solid
lines of the hysteresis loop shown in Figure 1. If next we can
form a combined chemical and electrochemical system as
discussed in section III, then we can locate the combined system
at point 1 on line A, say, by imposing a given current flow.
This point is a stable stationary state of the combined system.
If the electrochemical system is suddenly disconnected, the
chemical system will return deterministically to the stable
stationary state 2 on the solid line in Figure 1. If this kind of
experiment is repeated to locate the combined system on point
3, then on disconnection of the electrochemical system, the

chemical system will return to the stable stationary state 4. By
means of such experiments, the separatrix, which is the branch
of unstable stationary states shown by the dotted line in Figure
1, can be determined. The same approach works for a system
displaced from a stationary state by an influx of a species.

The condition of equistability of a homogeneous stationary
state on the upper branch of the hysteresis loop, labeled I, with
a homogeneous stationary state on the lower branch, labeled
II, occurs at one value of the inflow coefficientk within the
hysteresis loop. If the deterministic rate equation for the
concentrationc is

then the deterministic condition of equistability is16

Alternatively, if line A is at the value ofk at equistability, then
we have

If these two integrals are not equal, then one stable stationary
state, the one with the large value of the integral in eq 24, is
said to be more stable than the other.

The predictions of the stationary solution of the stochastic
master equation, to be compared with measurements, are that
(a) the minimum of the bimodal stationary probability distribu-
tion in the hysteresis region must be located on the separatrix
and (b) at equistability, the probability of fluctuationsP(c) dc
must obey17

Approximately, the height of the probability peak at 2 is equal
to that at 4. To either side of the value ofk at equistability, one
peak, that of the more stable stationary state, is higher than the
other.16

A comparison of deterministic and stochastic calculations (but
not experiments) has been discussed in a different context, that
of viewing the stochastic potential as an excess work.4

B. Critical Slowing. In Figure 1, one of the two marginal
stability points is labeled 7. Near such points, for example 6 on
line B, a critical slowing occurs: on perturbation of the chemical
system initially at point 6, the system decays back to 6 more
slowly than for values ofk to the right of 6 and faster than for
values ofk to the left of 6 but still to the right of 7. Similar
slowing occurs to the left of 7, but only for a small range ofk.
This effect has been observed experimentally in several systems.

Critical slowing manifests itself also in the stationary solutions
of the master equation. In ref 16, we discuss a simple example
with a cubic deterministic rate equation. Linearization of a
perturbation away from a stationary state yields the relaxation
time within one branch of stationary states, which increases on
the approach to a marginal stability point. A quantitative
comparison with experiments with the predictions based on the
potentialΦ, without any linearization, needs to be made.
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Appendix A
To calculate the potentialΦc for a chemical system, such as

in eq 3, we first need to determine the rate coefficients. There

Figure 1. Typical hysteresis loop for a one-variable system with a
cubic kinetic equation: plot of concentrationc vs influx coefficient.
Solid lines, stable stationary states (nodes); broken line, unstable
stationary state. For a discussion of lines A and B and numbers, see
the text.

dc/dt ) F(c) (22)

∫I

II
F(c) dc ) 0 (23)

∫4

5
F(c) dc ) ∫2

5
F(c) dc (24)

∫4

5
P(c) dc ) ∫2

5
P(c) dc (25)
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are six rate coefficients, but only three are independent if three
equilibrium constants are known. The rate coefficients can be
measured in standard kinetic experiments. Second, the concen-
trations of the species A1, A2, B1, and B2 can be measured in
sufficient numbers of stationary states achieved by varying the
known ratios of R- and Q- to R+ and Q+, and the rate
coefficients are obtained by fitting these concentrations to the
equations for the stationary states, eq 3, with dA1/dt, dA2/dt,
dB1/dt, and dB2/dt set equal to 0. Third, the rate coefficients
can be determined by fitting measurements made by removing
the chemical system with an imposed flux, as described.

To calculate the stochastic potential for the chemical system,
we assume the validity of the stochastic version of mass-action
law,3 and with that, we can derive a Markovian master equation
for the state probability of the system. In the following, rather
than considering the particular example considered in this article,
we consider a reaction network of the type

which include the reaction network in eq 2 as a particular case.
Here, Rji

( and âji
( are stoichiometric coefficients, andki

(

represents the rates of the forward and backward steps. To
prevent the approach of the system to chemical equilibrium,
one assumes that the numbers of species Sj are controlled by
interaction with a system of reservoirs connected to the system
by means of semipermeable walls. If the numbers of the Sj

species are known a simplified description of the system is
possible. By removing from eqs A.1 the stable substances Aj,
we obtain a set of reduced reactions19

where

are reduced rate constants,Sj represents the number of molecular
species Sj, andV is the volume of the system.

We introduce the composition vector of the systemX ) (X1,
X2, ...) whereX1, X2, ... are the numbers of the species X1, X2,
..., respectively. We can derive a Markovian master equation
for the probabilityPX(t) of the state vector at timet

where the transition ratesWXX ′ can be determined from the
deterministic rate constantkj

(. We define the concentration
vectorx ) X/V and the vectorê of the reaction extents attached
to the reduced reactions in eq 2

whereF is the matrix of the net stoichiometric coefficients for
the reduced reactions in A.2,F ) [âji

- - âji
+].

In the thermodynamic limit

we introduce the probability densities of the concentration vector
P(x,t) and of the reaction extentsP(ê,t). These two probabilities
are related to each other by the relationship

Starting from eq A.4, we can derive a master equation for the
probability densityP(ê,t) that can be written in a form similar
to a Schro¨dinger equation

where the Hamiltonian operatorH is given by

and rj
((ê) represents the rates of the reduced reactions in eq

A.2, expressed in terms of the vectorê of the reaction extents.
In the thermodynamic limit, eq A.8 can be solved by using

the eikonal approximation

whereP(ê,t) ) O (V0) is a chemical action. In the particular
case of a stochastic stationary regime, both the probability of
concentration fluctuations and the chemical action are time-
independent, i.e.,P(ê,t) ) P(ê), J(ê;t) ) J(ê), and the stationary
actionJ(ê) is related to the stochastic potentialΦc by

By inserting eq A.11 into eq A.8 and keeping the dominant
terms inV, we come to a Hamilton-Jacobi equation for the
chemical actionJ(ê)

where

is a Hamiltonian function attached to the operatorH andp is
the vector of generalized impulses attached to the state vector
ê.

By solving the Hamilton-Jacobi equation (eq A.6), we can
evaluate the stochastic potentialΦc. This can be achieved in
several ways, and we outline two methods: (1) the direct
numerical solution of eq A.12 and (2) the reduction of the
Hamilton-Jacobi equation to a system of Hamiltonian equa-
tions. The most direct approach is the numerical solution of
the Hamilton-Jacobi equation; however, because this approach
does not provide any useful physical insight, we are not going
to discuss it. In the following, we give a short presentation of
approach 2.

∑
j)1

S1

Rji
+Sj + ∑

j)1

S2

âji
+Xj {\}

ki
+

ki
-

∑
j)1

S1

Rji
-Sj + ∑

j)1

S2

âji
-Xj, i ) 1, ...,R

(A.1)

∑
j)1

S2

âji
+Xj {\}

κi
+

κi
-

∑
j)1

S2

âji
-Xj, i ) 1, ...,R (A.2)

κi
( ) ki

({∏
j)1

S1 [Sj(Sj - 1)‚‚‚(Sj - Rji
( + 1)

V
Rji

( ]} (A.3)

dPX(t)/dt ) ∑
X′

[WX′XPX′(t) - WXX ′PX(t)] (A.4)

x(t) ) x(0) + Fê (A.5)

X f ∞, V f ∞, with x ) X/V constant (A.6)

P(x,t) ) ∫ê∏
u

δ[xu - xu(0) - ∑
b

fubêb]P(ê,t) dê (A.7)

- ∂

∂t
P(ê,t) ) HP(ê,t) (A.8)

H[ê,∇ê]‚‚‚ ) ∑
i

{[1 - exp(-V-1 ∂

∂êi
)][ri

+(ê)‚‚‚] +

[1 - exp(+V-1 ∂

∂êi
)][ri

-(ê)‚‚‚]} (A.9)

P(ê,t) ) const× exp[VJ(ê;t)] asV f ∞ with ê constant
(A.10)

J(ê) ) -Φc/RTV (A.11)

∂

∂t
J(ê) + H[ê,∇êJ(ê)] ) 0 (A.12)

H[ê,p] ) ∑
i

{[1 - exp(-pi)]ri
+(ê) + [1 - exp(pi)]ri

-(ê)}

(A.13)
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For the purpose of this article, it is enough if we manage to
evaluate the stochastic potential for a stationary stochastic
regime,Φc, that emerges for large times. However, the method
chosen for obtainingΦc is based on the solution of Hamiltonian
equations of motion, which provides the action,J(ê;t), at all
times, includingΦc for the stationary regime (eq A.11). We
represent an initial probability distribution, say a Gaussian
distribution

by a cloud of characteristic points in the phase space. The state
vector ê attached to a point is randomly selected from the
probability distribution (eq A.14), and the corresponding impulse
vectorp is computed from the initial action

where the initial actionJ0(ê) is evaluated from the initial
probability density (eq A.14). Each point in the cloud is the
starting point of a trajectory in the phase space. All trajectories,
taken together, represent the flow of the probability fluid in
phase space. Each individual trajectory is described by a system
of Hamiltonian equations

By solving eqs A.10 numerically with the initial conditions

we know the dependences

whereτ is an intermediate time variable that can take any value
between the initial momentτ ) 0 and the current timeτ ) t.
Equations A.18 express a “characteristic flow” in the phase
space. In terms of this characteristic flow, we can express the
chemical action at timet. To each trajectory in the characteristic
flow, we can attach a Lagrangian chemical actionJ̃(ê0;t), which
depends on the initial position vectorê0 and the timet. We
have

Equation A.19 gives the actionJ̃(ê0;t) at time t attached to a
given point with the initial coordinateê0. The actionJ̃(ê0;t) gives
a Lagrangian representation of the motion of characteristic points
in the phase space. We are, however, also interested in the value
of the Eulerian chemical actionJ(ê;t), which depends on the
current vectorê at time t. To compute the Eulerian chemical
actionJ(ê;t), we must express the initial vectorê0 as a function
of the current valueê at time τ ) t. We can express these
dependences from the solutions

of the Hamiltonian equations (eqs A.16)

whereú(ê(t);t) is the inverse function ofϑ(ê0;t), that is, it fulfills
the identities

The chemical actionJ(ê;t), which enters the eikonal approxima-
tion (eq A.10), can be expressed as

In particular, the stationary chemical action and the stochastic
potentialΦc can be obtained from eq A.23 for large times.

The physical significance of this method of solving the
chemical Hamilton-Jacobi equation (eq A.11) is straightfor-
ward. The temporal evolution of the probability density of
concentration fluctuations in the composition space can be
viewed as the flow of a probability fluid. The flow of the
probability fluid can be represented either by a single partial
differential equation, eq A.12, or by a set of coupled ordinary
differential equations, eqs A.16, which have a structure similar
to that of the Hamiltonian equations in classical mechanics. The
Hamilton-Jacobi equation (eq A.12) describes the probability
fluid as a scalar field (Eulerian representation), whereas the
Hamiltonian equations (eqs A.16) describe the probability fluid
as a bundle of trajectories that represent the motion of the
probability fluid in time (Lagrangian representation). In terms
of the Eulerian representation, we describe the motion of the
probability fluid with respect to a fixed frame of reference,
whereas in the case of Lagrange representation, we use a mobile
frame of reference that moves together with the probability fluid.
By solving the Hamiltonian equations, we can compute the value
of the chemical action for each trajectory, expressed in terms
of the Lagrange variables. On the other hand, to compute the
probability of concentration fluctuations, we need to express
the chemical action in terms of the Eulerian variables. The
passage from the Lagrange to the Euler representation can be
done by using eqs A.20-A.23.

Appendix B

The derivation presented in Appendix A can be easily
extended to a compound chemical and electrochemical system.
We consider that, in addition to the chemical processes in eq
A.1, the following electrochemical processes occur

which include the reaction network in eq 4b as a particular case.
In these equations,Rji

(, âh ji
(, and νji are stoichiometric coef-

ficients and

are electrochemical rate coefficients that are exponential func-
tions of the potential differenceE that are described by equations
of the type of eq 6,G i

( denotes preexponential factors, and
∆Gi,(

q (0) denotes Gibbs free energies of activation for the
direct and reverse reactions at zero potential. By removing from
eqs B.1 the stable substances Sj, we obtain a set of reduced
reactions similar to eqs A.2

P(ê,0) ) const× exp[VJ0(ê)] (A.14)

p ) ∇êJ
0(ê) (A.15)

d
dt

ê ) ∇pH(ê,p),
d
dt

p ) -∇êH(ê,p) (A.16)

ê(0) ) ê0, p(0) ) ∇êJ
0(ê0) (A.17)

ê(τ) ) ê1,2(ê
0;τ), p(τ) ) p(ê0;τ) (A.18)

J̃(ê0;t) ) J0(ê0) + ∫0

t
dτ [p(τ)‚ d

dτ
ê(τ) - H(ê(τ),p(τ))]

(A.19)

ê(t) ) ϑ(ê0;t) (A.20)

ê0 ) ú(ê(t);t) (A.21)

ú(ϑ(ê0;t);t) ) ê0, ϑ(ú(ê(t);t);t) ) ê(t) (A.22)

J(ê;t) ) J̃(ú(ê(t);t);t) (A.23)

∑
j)1

S1

Rj ji
+Sj + ∑

j)1

S2

âh ji
+Xj + νjie

- {\}
khi

+

khi
-

∑
j)1

S1

Rj ji
- Sj + ∑

j)1

S2

âh ji
-Xj,

i ) 1,...,Rh (B.1)

khi
( ) khi

((E) ) khi
((0) exp[(1 ( 1

2
- Rc)νjiF E

RT ] (B2a)

khi
((0) ) G i

( exp[-∆Gi,(
q (0)/RT] (B2b)
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where

are reduced electrochemical rate coefficients.
We can derive a compound master equation that includes the

contribution of the reduced chemical and electrochemical
processes (eqs A.2 and B.3, respectively). We can express the
concentration vectorx(t) in terms of the reaction extent vectors
ê and η attached to the reduced reactions A.2 and B.3,
respectively. We have

whereF ) [âji
- - âji

+] and Fh ) [âh ji
- - âh ji

+].
By following the procedure presented in Appendix A, in the

thermodynamic limit, we can reduce the determination of the
stochastic potential to the evaluation of the stationary solution
of a Hamilton-Jacobi equation. We have

where the action functionJ(ê,η;t) is the solution of a Hamilton-
Jacobi equation similar to eq A.12

where the Hamiltonan function

is made up of a chemical term

which expresses the contribution of the reduced chemical
reactions in eq A.2, and an electrochemical term

which expresses the contribution of the reduced electrochemical
reactions B.3. Here,q ) [qi] is the impulse vector conjugate to
the electrochemical extent vectorη; j i

+(ê,η;E) and j i
-(ê,η;E)

are the electrical currents generated by the forward and backward
ith electrochemical reduced reaction in eq B.3, respectively,
expressed as functions of the extent vectorsê andη and of the
potential differenceE; N is Avogadro’s number; and the other
symbols have the same significance as before.

In this paper, we are mainly interested in the stationary
solutions J ) J(ê,η;t) of the compound Hamilton-Jacobi

equation (eq B.7). These stationary solutions are related to the
stochastic potentialΦ by a relation similar to eq A.11,
introduced in Appendix A for chemical systems

For a stochastic stationary regime, the Hamilton-Jacobi equa-
tion becomes

We first consider the particular case where the reduced
electrochemical reactions in eqs B.3 are in detailed balance,
even though the reduced chemical reaction might be far from
detailed balance. From the theory of chemical Hamilton-Jacobi
equations,19 it follows that, under these circumstances, each term
of the electrochemical part of eq B.12 is equal to 0

Equations B.13 are quadratic equations in exp(∂J/∂ηi); by solving
these equations and keeping the physically significant roots, we
find

whereKi
eq is the apparent chemical equilibrium constant of the

ith reduced electrochemical process,CX j is the concentration
of the species Xj, and

We express the chemical action as the sum of a term
independent of the potential differenceE, J(0), and anE-
dependent term,∆J(E)

By assuming the validity of eqs B.14, we have

which shows that, for electrochemical systems at detailed
balance,∆J(E) is a linear function of the potential difference
E, which is consistent with what is known from equilibrium
studies. To calculate the stochastic potentialΦ, we have to pass
from reaction extents to concentrations. By expressing eqs B.17
in terms of concentrations, we obtain a set of expressions for
(∂∆J/∂CX j) ) øj that fulfill the Schwartz condition,∂øj/∂CXu )
∂øu/∂CX j. It follows that eqs B.17 can be used to construct the
component∆J(E) starting from eq B.16 (for details, see ref 19).
After standard but lengthy computations, we have

wherezj is the charge number of species Xj. By combining eqs

∑
j)1

S2

âh ji
+Xj + νjie

- {\}
κji

+

κji
-

∑
j)1

S2

âh ji
-Xj, i ) 1, ...,Rh (B.3)

κji
((E) ) khi

((E){∏
j)1

S1 [Sj(Sj - 1)‚‚‚(Sj - Rj ji
( + 1)

V
Rj ji

( ]} (B.4)

x(t) ) x(0) + Fê + Fhη (B.5)

P ) const× exp[VJ(ê,η;t)] (B.6)

∂

∂t
J(ê,η;t) + H[ê,η,∇êJ(ê,η;t),∇ηJ(ê,η;t)] ) 0 (B.7)

H[ê,η,p,q] ) Hchem[ê,η,p] + Helectro[ê,η,q] (B.8)

Hchem[ê,η,p] ) ∑
i

Hchem
(i) [ê,η,pi]

) ∑
i

[1 - exp(-pi)]ri
+(ê,η) +

[1 - exp(pi)]ri
-(ê,η) (B.9)

Helectro[ê,η,q] ) ∑
i

Helectro
(i) [ê,η,qi]

) ∑
i

N

νjiF
{[1 - exp(-qi)]j i

+(ê,η;E) +

[1 - exp(qi)]j i
-(ê,η;E)} (B.10)

J(ê,η) ) -Φ/RTV (B.11)

∑
i

Hchem
(i) [ê,η,

∂J

∂êi
] + ∑

i

Helectro
(i) [ê,η,

∂J

∂ηi
] ) 0 (B.12)

Helectro
(i) [ê,η,

∂J
∂ηi] ) 0, i ) 1, 2, ... (B.13)

∂

∂ηi
J ) ln(j i+j i-) ) Γi - νji f E, i ) 1, 2, ... (B.14)

Γi ) ln( Ki
eq

∏
j

(CXj
)âh ji

--âh ji
+) (B.15)

J ) J(0) + ∆J(E) (B.16)

∂

∂ηi
∆J(E) ) Γi - νjifE (B.17)

∆J(E) ) ∆J(0) + fEF ∑
j

zjCX j
+ const (B.18)
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B.11, B.16, and B.18, we obtain

where

is the stochastic potential in the case where the difference of
electrical potentials is equal to 0. Because the electrochemical
reactions do not take place forE ) 0, we have

and thus, eq B.19 justifies the conjecture made in section III
(eqs 13 and 14).

Rigorously speaking, eq 19 is valid only if the electrochemical
reactions are at detailed balance. However, it can be used as an
approximation for other systems for which the detailed balance
does not hold. For a system that is not at detailed balance, eqs
B.13 become

whereR electro
(i) , i ) 1, 2, ..., represents the components of the

action flux vector.19 R electro
(i) is a measure of the departure of

the ith electrochemical reaction from detailed balance; in
particular, at detailed balance,R electro

(i) ) 0. We solve eqs B.22
for ∂J/∂ηi, resulting in

where we take

as a relative measure of the departure of theith electrochemical
reaction from detailed balance. We define the percent error in
the evaluation of partial derivatives

where (∂J/∂ηi)det bal and (∂J/∂ηi)no det bal are the values of the
partial derivative at detailed balance and away from detailed
balance, respectively. The percent error depends on only two
variables: the relative measureσi of the deviation of electro-
chemical reactioni from detailed balance and the additional
variable

For small values ofεi, εi ≈ 0, the values of the derivatives (∂J/
∂ηi)no det balare close to the values of the derivatives computed
by assuming the validity of detailed balance, (∂J/∂ηi)det bal, that
is

For εi ≈ 0, Ei(%) is relatively insensitive with respect to the
value of the deviationσi from detailed balance (see Figure 2).
For large values ofεi, however, the errorEi(%) is strongly

dependent on the deviationσi from detailed balance and|Ei(%)|
becomes larger and larger as|σi| increases. The deviationσi

can take any real value between-∞ and1/4. As σi decreases,
for values ofεi close to 0, the error is limited to about 8%,
provided thatσi is larger than-100. Figure 2 shows the
dependence ofEi(%) on σi for εi ) -0.51 andεi ) 0.51 (see
below) in the region where the approximation developed in
section III is reasonable.

The above analysis shows that the linear expression B.19 for
the stochastic potential might hold approximately even for
systems away from detailed balance, provided that the variable
εi is close to 0, that is

To clarify the physical meaning of eq B.28, we recall that the
reaction affinity of the reduced electrochemical reactioni is

By using eqs B.15 and B.28, we can rewrite the condition in
eq B.28 in the form

which is essentially the Nernst equation for the electromotive
force applied to the reduced electrochemical reactioni. Experi-
mental studies have shown that, for nonequilibrium systems,
there are deviations from the Nernst equation. However, these
deviations are small, which justifies the use of the conjecture
made in section III.

To evaluate the validity range of the method suggested in
section III, we must establish a correspondence between the
value of the parameterσi and the order of magnitude of the
deviation from the stationary state. A crude estimation of the
correspondence betweenσi and the deviation from the stationary
state can be made by assuming a single couple of forward and
backward electrochemical reactions and considering that the
actionJ is approximately a biquadratic function

whereη is the reaction extent of the electrochemical process.
By using eq 31, we can obtain a rough estimate of the deviation

Φ ) Φ(E)0) - VEF ∑
j

zjCX j
- VRT× const (B.19)

Φ(E)0) ) -VRT[J(0) + ∆J(0)] (B.20)

Φc ) Φ(E)0) ) -VRT[J(0) + ∆J(0)] (B.21)

Helectro
(i) [ê,η,

∂J
∂ηi] ) R electro

(i) , i ) 1, 2, ... (B.22)

∂

∂ηi
J ) Γi - νjifE + ln{1

2
[1 + e-(Γi-νjifE) -

x(1 - e-(Γi-νjifE))2 - 4σie
-2(Γi-νjifE)]} (B.23)

σi ) R electro
(i) /j i

- (B.24)

E (%) ) 100[(∂J/∂ηi)no det bal- (∂J/∂ηi)det bal

(∂J/∂ηi)no det bal
] (B.25)

εi ) Γi - νjifE (B.26)

(∂J/∂ηi)no det bal≈ (∂J/∂ηi)det balasεi ≈ 0 (B.27)

Figure 2. Graphical representation of the relative errorEi(%) vs the
relative deviation from detailed balance,σi, for εi ) (0.51. The value
εi ) -0.51 corresponds to the maximum deviation of the electromotive
force from the equilibrium Nernstian value for the minimal bromate
oscillator (ref 12).

εi ) Γi - νjifE ≈ 0 (B.28)

A i ) RT ln( Ki
eq

∏
j

(CXj
)âh ji

--âh ji
+) (B.29)

A i ≈ νjiF E (B.30)

J ≈ b(η - 〈η〉)2 + c(η - 〈η〉)4, with b ≈ V2 andc ≈ V4

(B.31)
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δη ) η - 〈η〉 corresponding to the extremum value ofσi, σi ≈
-100 for which the approximation developed in section III is
reasonable. Forc/b2 ≈ 0.2, 〈∆η2〉 ≈ 1/(2b2), we haveδη(-
100) ≈ (0.4x∆η2.

We illustrate our approach by considering the experimental
data on the non-Nernstian potential measured for the minimal
bromate oscillator.12 The largest deviation from the Nernst
potential reported in ref 12 is∆E ) E - ENernst) 13 mV. It is
easy to relate this difference to the value of the parameterεi.
From eqs B.26 and B.29, we can compute the non-Nernstian
potential,E, as a function of the parameterεi

Because the Nernst potential is given by

it follows that ∆E is proportional toεi

In the particular case of the experiments reported in ref 12, we
have RT/νjiF ) 25.37 mV and the deviation∆E ) 13 mV
corresponds toεi ) -0.51. According to Figure 2, forεi )
-0.51, the error in evaluating the partial derivative of the
stochastic potential with respect to the reaction extentη is less
than 8%.

In conclusion, the approach presented in this appendix
suggests that, close to a steady state, the deviation from the
assumption made in section III is generally small, even for
systems away from detailed balance. In particular, for the
experimental data reported in ref 12, this deviation is less than
8%. We emphasize that, although useful, our analysis is limited
because it involves the derivatives of the stochastic potential,
not the stochastic potential itself. The main advantage of our
approach is its simplicity: it is a local method that does not
involve the numerical solution of the Hamilton-Jacobi equation.

A complete solution to the problem should be based on a global
approach, which must involve the solution of the Hamilton-
Jacobi equation. Such a solution must be based on the approach
presented in Appendix A.
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E )
A i - εiRT

νjiF
(B.32)

ENernst) A i/(νjiF) (B.33)

∆E ) E - ENernst) -εiRT/νjiF (B.34)
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