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Structural and electronic properties of neutral and anionic magnesium clusters with 2 to 22 atoms are studied
using gradient-corrected density functional theory. A new scheme for the conversion of the Kohn-Sham
eigenenergies into electron binding energies is utilized to compute the difference in the binding energies of
the two most external electrons in the anionic clusters. The results are in very good agreement with the data
obtained in recent electron photodetachment experiments. The other electronic properties studied include (a)
the binding energy, the second difference of the total energies, the HOMO-LUMO gap, and the vertical
ionization potential of the neutral clusters; (b) the vertical electron detachment energy of the anionic clusters;
and (c) the character of bonding in both the neutral and the anionic clusters. The analysis focuses on the
finite-size analogue of the insulator-to-metal transition. The role and manifestation of the finite-size effects
are discussed, and some important implications regarding the interpretation of the experimental data are pointed
out.

1. Introduction

Metal clusters, or more precisely, atomic clusters of elements
that are metals in bulk quantities, form an area of special
interest.1 Apart from the direct relevance to many technologies,
they exhibit a host of novel features and phenomena not found
in clusters of other elements. One of these is the change in the
nature of bonding as a function of the cluster size. In fact, small
atomic clusters of metallic elements may altogether lack
characteristics usually associated with the metallic state. These
characteristics then grow in as the clusters grow in size.2 Is the
transition to metallicity monotonic or not? What is the typical
size or size-range at which it takes place? The answers to these
questions are sketchy at best. The phenomenon is complex and
multifaceted because different properties evolve differently with
size. Therefore, the apparent onset and manifestations of the
transition may depend on the property studied. The task is to
identify and understand those size-induced changes in the
different properties that can be viewed as the finite-size analogue
of the bulk insulator-to-metal transition.

Magnesium, similarly to beryllium and mercury, is especially
appropriate for the investigation of the size-induced transition
to metallicity. Whereas the diatomic molecule of magnesium
is a weakly bonded van der Waals system, magnesium clusters
of larger sizes exhibit strong bonding. The structural and
electronic properties of magnesium clusters have been inves-
tigated theoretically utilizing different quantum chemical and
density functional theory (DFT) approaches.3-13 The quantities
used to interrogate the transition to the metallic state include
the gap between the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO), the
degree ofp-character of the valence electronic charge,5,8,13 the
distribution of the electron charge density, the changes in the

nearest-neighbor bond lengths,5,8 the similarity with the jellium
model picture,6 the electronic density of states,8 and the
excitation energies.12 The changes in these quantities with the
cluster size were interpreted as consistent with the emergence
of metallic attributes. However, because of the lack of appropri-
ate experimental data, the results of the computations remained
unverified. Even more importantly, the general subject of the
finite-size specificity of the transition and of the ways it exhibits
itself remained largely unexplored.

The goal of this study is to reexamine the structural and
electronic properties of small magnesium clusters with the
above-mentioned issues in mind. An added impetus for such a
reexamination is furnished by two recent experimental explora-
tions. In the first,14 mass-spectra of Mgn+, n e 80, have been
measured and used to analyze the corresponding neutral clusters
in the context of the jellium model. Invoking compatibility with
the jellium picture as a signature of metallic behavior, the
authors concluded that the smallest magnesium cluster that
exhibits such behavior is Mg20. In the second exploration,15

photoelectron spectroscopy (PES) measurements on Mgn
-, n

) 3-35, clusters were used to evaluate the difference between
the binding energies of the two most external electrons. This
difference was viewed as the HOMO-LUMO gap in the
corresponding neutral clusters, and the reduction and eventual
closure of this gap was invoked as the criterion of the transition
to metallicity. The measurements showed that the difference in
the binding energies of the two most external electrons indeed
decreases with the size of the Mgn

- clusters and becomes zero
at or aroundn ) 18.15 The decrease, however, is not monotonic,
and nonzero values of the difference reemerge at some larger
anion-cluster sizes.

We utilize a gradient-corrected version of the DFT. In the
next section, we present the results of the tests used to select
the exchange and correlation functionals and the pseudopoten-
tial/basis set. In section 3, we recap our recently formulated
scheme16 for converting the Kohn-Sham (KS) eigenenergies
into electron binding energies. Results on the structural and
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energy characteristics of the anionic and neutral Mgn, n ) 2-22,
clusters are presented in section 4. Their electronic features, as
obtained in the computations, are given and discussed in section
5. The discussion includes comparisons with the experimental
PES data and an analysis of the interpretation of these data
regarding the finite-size analogue of the insulator-to-metal tran-
sition. Some general remarks on the specificity of this transition
in the finite-size regime are summarized in section 6.

2. Computational Details

The computations are performed within the DFT with the
Becke exchange17 and Perdew correlation18 functionals (BP’86),
and using unrestricted, for open-shell cases, and restricted, for
closed-shell cases, wave functions. The valence electrons (two
per each Mg atom) are described by a (21|21) basis set. The
remaining ionic cores are represented by the Wadt-Hay pseudo-
potential.19 The BP’86 exchange-correlation functional emerged
as the optimal in test studies on Mgn, n ) 1-4, performed using
all-electron computations with the 6-31G* basis set.20 The
other functionals considered include BPW91, B3LYP, and
MPW1PW91, as implemented in the Gaussian98 program. The
performance of the functionals was evaluated against the avail-
able quantum chemical and experimental data (cf. Table 1). Two
pseudopotential/basis set choices, that of Wadt and Hay19 and
of Fuentealba et al.23 (the “Stuttgart pseudopotential”), were
tested within the BP’86 approach. The results of the BP’86 all-
electron treatment were used as a basis for judgment. As indi-
cated by the data in Table 2, the two choices yield overall
comparable results, with the Wadt-Hay pseudopotential per-
forming somewhat better.

The search for the stable structural forms was performed for
both the neutral and the anionic clusters. Gradient-based
techniques were used, and a variety of initial guess configura-
tions, including asymmetric ones, was considered for each
cluster size. The energy minimization included all degrees of
freedom. Normal-mode analysis was applied to filter out those
stationary structures that correspond to saddle points, rather than
minima, of the corresponding potential energy surfaces.

The optimization of the structures also provides the structure-
specific electronic features. Among these are the ones that
correspond to the native configurations of the clusters (the term
“native” denotes here the most stable configuration of a cluster
of a fixed size in a chosen charge state). Additional complete
DFT computations were performed for each cluster size to obtain
its electronic characteristics in the anionic, neutral, and cationic
charge states, all considered in the native configurations of both
the neutral and the anionic clusters. The discussion below (see
section 5) clarifies the role of these additional computations in
elucidating the meaning and implications of the measured PES
data15 in the context of the size-induced transition to metallicity,
and in shedding light on the finite-size-specific aspects of the
phenomenon. On the technical side, these additional computa-
tions are needed for conversion of the DFT KS eigenenergies
into electron binding energies as described in the next section.

3. Conversion of Kohn-Sham Eigenenergies into
Electron Binding Energies

One of the central goals of this study, prompted by the recent
PES experiments15 (cf. section 1), is to compute the binding
energies of the two most external electrons in anionic magne-
sium clusters. To accomplish this within a DFT treatment one
has to correct the (negative of the) KS eigenenergies because
they correspond to auxiliary particles rather than to electrons.
A number of correction procedures have been suggested in the
past24-28 (a brief review is given in ref 16). Here, we recap the
main elements of a new scheme that we have formulated
recently.16

Consider Janak’s29 analytical continuationẼ(P) of the total
electronic energyE(N) of an N(integer)-electron system to a
real-valued total electronic chargeP. If the occupation numbers
of the KS orbitals obey the Fermi-Dirac distribution,Ẽ(P) )
E(P), whereE(P) is the DFT-defined ground-state energy of
the system with the total chargeP.29 The binding energy
BEHOMO(P) of the most external (“top”, “HOMO”)whole
electron charge of this system is defined and can be computed
within a chosen version of DFT rigorously

TABLE 1: Comparison of the Present All-Electron DFT Results (BP’86, BPW91, and B3LYP) with Those of Earlier ab Initio
(CCSD(T) and MP2-R12) and Experimental (exp) Studiesa

system property BP86 BPW91 B3LYP CCSD(T) MP2-R12 exp

Mg IP (eV) 7.731 7.529 7.751 7.646e

EA (eV) < 0 < 0 < 0 unstable
Mg2 re (Å) 3.562 3.527 3.919 3.891d 3.891f

De (eV) 0.091 0.099 0.016 0.057d 0.049f

Mg3 re (Å) 3.295 3.275 3.480 3.387b 3.387d

(D3h) De (eV) 0.41 0.46 0.13 0.25b 0.33d

Mg4 re (Å) 3.103 3.094 3.180 3.110b 3.110d

(Td) 3.103c

De(eV) 1.21 1.33 0.55 1.04b 1.37d

1.14c

a The DFT computations are performed with the 6-31G* basis Set. The MPW1PW91 functional yields results similar to those of BPW91. IP is
the ionization potential, EA is the electron affinity,re is the equilibrium interatomic distance, andDe is the dissociation energy.b Ref 3a.c Ref 3b.
d Ref 3c.e Ref 21. f Ref 22.

TABLE 2: Comparison of the BP’86 DFT Results Obtained
within Two Pseudopotential and an All-Electron Treatmentsa

pseudopotential

system property WHb Stuttgartc all-electron

Mg IP (eV) 7.803 7.812 7.731
EA (eV) < 0 < 0 < 0

Mg2 re (Å) 3.560 3.633 3.562
De (eV) 0.091 0.073 0.091

Mg3 re (Å) 3.282 3.361 3.295
(D3h) De (eV) 0.47 0.34 0.41
Mg4 re (Å) 3.082 3.155 3.103
(Td) De (eV) 1.25 1.02 1.21
Mg5 re (Å) 3.005d 3.072 3.018
(D3h) 3.333 3.407 3.330

De (eV) 1.52 1.25 1.53
a The notations are the same as in Table 1. b Ref 19.c Ref 23.d The

first number is the bond length between two “waist” atoms and the
second between a waist atom and an apex atom of the trigonal
bipyramid (cf. Figure. 3).

BEHOMO(P) ) E(P - 1) - E(P) (1)
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One can associate with this top whole electron charge an
effective one-particle HOMO eigenenergyεHOMO

eff (P) such that

where εHOMO(N) is the true KS HOMO eigenenergy of the
N-electron system. For any givenN, one can obtain the values
of εHOMO(M) for all integersM, 1 e M e N, by removing from
the system one electron at a time and repeating the DFT
computation. In Figure 1 we display, as an example, the values
of εHOMO(M) for Mg5

- (full circles). εHOMO
eff (P) can then be

obtained for any real-valuedP through interpolation of the
εHOMO(M) values. The correction∆HOMO(P) needed to convert
the effective eigenenergyεHOMO

eff (P) into the binding energy of
the top whole electron charge is then

WhenP is an integer, eq 3 defines the correction that has to be
added to the negative of the KS HOMO eigenenergy of the
system to obtain the binding energy of its top electron.

The corrections needed to convert the inner KS eigenenergies
into the binding energies of the corresponding electrons are
obtained as follows. Define a real-valued grid{t} that includes
all the integers from 1 toN. If the interval δt between the
neighboring points of the grid is sufficiently small, then the
correction∆i(N), needed to convert thei-th KS eigenenergyεi-
(N) of an N-electron system into the bindingBEi(N) of the
corresponding electron

is well approximated by the linear [inRi(N)] interpolation

where

The meaning of eqs 5 and 6 is quite transparent. If incrementing
of the total electronic charge by a small amountδt from N -

δt to N does not shift the KS eigenenergyεi(N - δt), i.e.,εi(N)
) εi(N - δt), then∆i(N) ) ∆i(N - δt). If, on the other hand,
incrementing of the charge results inεi(N) ) εi+1(N), then∆i(N)
) ∆i+1(N). In a typical situation, the value ofεi(N) is between
those ofεi(N - δt) andεi+1(N). The correction∆i(N) associated
with εi(N) is then computed as a linear interpolation between
∆i(N - δt) and∆i+1(N).

The corrections∆i(N - δt) and ∆i+1(N) in the rhs of eq 5
are themselves defined through recursive application of eqs 5
and 6, until they are reduced to∆HOMO(t) with t running over
all the grid points between and includingt ) i andt ) N. The
values of∆HOMO(t) are computed using eq 3. The effective
eigenenergiesεHOMO

eff (t) are to be used in the rhs of eq 6 when
the correction∆HOMO(t) appears in the rhs of eq 5. In actual
implementations of this scheme one first computes the values
of ∆HOMO(t), and then propagates these using eqs 5 and 6 as
the total charge is gradually increased fromt to N. For further
technical details, including those that allow one to reduce the
amount of the computational labor associated with the use of
the real-valued grid{t}, we refer the reader to ref 16. Here, we
mention only that the scheme proved highly accurate (the
computed electron binding energies are on average within 2.5%
of the measured values) in applications to atoms and mol-
ecules.16

In cases, when the gap between the KS eigenenergies is small,
sufficiently accurate values of the corrections∆i(N) may be
obtained with the grid of integers only. This substantially reduces
the scope of the computational task. Figure 2 illustrates the rate
of convergence of the corrections associated with the KS
eigenenergies of the Mg5

- cluster. One extra grid point between
neighboring integers is sufficient to converge the values of the
corrections to 99% or better. If one uses the grid of integers
only, then the values are converged to 98% or better. The results
on the difference between the binding energies of the two most
external electrons in anionic magnesium clusters presented in
section 5 are obtained using the grid of integers only.

4. Mgn and Mgn
-: Structural Forms

The computed most stable structures of the neutral Mgn, n )
2-22, clusters are shown in Figure 3. The graph of their binding
energies per atom is displayed in Figure 4. Mg2 is only weekly

Figure 1. Full circles are the computed KS HOMO eigenenergies of
the Mg5

+(10-P) cluster in its+(10-P) charge state (P is the total valence
electronic charge). The dotted lines are the effective HOMO eigen-
energies obtained as linear interpolation between neighboring KS
HOMO eigenenergies. See the text for details.

εHOMO
eff (P ) N) ) εHOMO(N) (2)

∆HOMO(P) ) BEHOMO(P) - (-εHOMO
eff (P)) (3)

∆i(N) ≡ BEi(N) - (-εi(N)) (4)

∆i(N) ) ∆i(N - δt) + [∆i+1(N) - ∆i(N - δt)]Ri(N) (5)

Ri(N) )
εi(N) - εi(N - δt)

εi+1(N) - εi(N - δt)
(6)

Figure 2. Values of the correction terms∆i(N) for the different (i-th)
KS eigenenergies of the Mg5

- cluster (the number of valence electrons
N ) 11) as a function of the number of extra grid points between
neighboring integers used in the interpolation procedure, eqs 5 and 6
(see the text for details). The symbols in the brackets are the symmetry
labels of theR- andâ-spin KS orbitals.
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bound. Starting with Mg3, however, the binding energy per atom
rapidly increases with the cluster size. The most stable
configurations of Mg4-6 are tetrahedron-based. The structures
of Mg7 and Mg8 are pentagonal bipyramid-based. The common
element in the structures of the Mg9-15 clusters is the underlying
trigonal prism. The configurations of Mg17-22 are derivatives
of the structure of Mg16. They are obtained by successive
addition of an atom and allowing for relaxations. Overall, these
structures agree with or are close to those obtained in earlier
studies.5,7,12,13The lowest energy configurations of Mg15 and
Mg16, however, appear to be new. The most stable structures
of these clusters, as given by Ko¨hn et al.,12 emerge as second
isomers in our computations. With the exception of Mg18, the

most stable configurations of the neutral clusters correspond to
the singlet spin-multiplicity state. For Mg18 it is a triplet.

Earlier theoretical studies of anionic magnesium clusters4

covered the rangen ) 2-7 (cf. also ref 13). In agreement with
these4 and the experimental evidence,30 our computations give
an energy of the anion of the Mg atom that is higher than the
energy of the neutral atom, which means that Mg- is not a stable
species. The most stable configurations of Mgn

-, n ) 2-22, as
obtained in our computations, are shown in Figure 5. The
structures of Mg6- and Mg7

- are different from those obtained
by Reuse et al.4 These authors define the octahedron as the most
stable form of Mg6-, and the distorted pentagonal bipyramid
as the most stable isomer of Mg7

-. Both structures emerge in
our computations also, but as the second isomer of Mg6

- and
Mg7

-, respectively. With the exception of Mg18
-, the most stable

configurations of the anionic clusters correspond to the doublet
spin-multiplicity state. For Mg18

-, it is a quartet.

An examination of Figures 3 and 5 shows that although some
of the structures of the anionic clusters replicate those of the
corresponding neutral cluster, the most stable forms of the
anionic species are, in general, different from those of their
neutral counterparts. It is this difference that is of particular
importance for the analysis of the PES data15 (cf. next section).
More detailed results on the structural characteristics of neutral
and charged magnesium clusters, including different isomeric
forms, will be given elsewhere.31

5. Electronic Features and the Size-Induced
Nonmetal-to-Metal Transition

As mentioned, the electronic properties were computed in
different charge states, and for each charge state, the native

Figure 3. Most stable structures and their symmetries of the neutral
Mgn, n ) 2-22, clusters.

Figure 4. Binding energy per atom of neutral Mgn clusters.

Figure 5. Most stable structures and their symmetries of the anionic
Mgn

-, n ) 2-22, clusters.

10922 J. Phys. Chem. A, Vol. 106, No. 45, 2002 Jellinek and Acioli



configuration of the anionic as well as of the neutral cluster
was considered. The correction scheme outlined in section 3
was then used to convert the two highest KS eigenenergies of
the anionic clusters in the two configurations into the binding
energies of the corresponding electrons. (The difference in the
zero-point energies of the anionic and neutral clusters, each
considered in its native configuration, does not exceed 0.02 eV
and was not included in the evaluation of the electron binding
energies.) The computed difference in the binding energies of
the two most external electrons is plotted in panel a) of Figure
6, which also displays the values of this difference inferred from
the measurements.15 The graphs clearly show that the results
obtained considering the Mgn

- clusters in their native configura-
tions are in very good agreement with the data derived from
the experiments. On the other hand, the outcome of computa-
tions performed for anions fixed in the native structures of the
neutrals is not only quantitatively different, but also it shows
qualitatively different local trends. For example, whereas the
computed difference in this latter case increases as the cluster
size increases fromn ) 10 ton ) 11, the measured data indicate
a decrease. The overall conclusion one arrives at analyzing panel
a) of Figure 6 is that the measurements15 probe the electronic
properties of the anionic, rather than the neutral, clusters.

This conclusion, although not unexpected considering that
in the experiments the electrons are photodetached from the
negatively charged species, is an important one. Its significance

becomes clear in light of the following considerations. It is often
stipulated that the extra electron occupies the LUMO of the
neutral cluster, or more generally, the neutral system at hand.
Therefore, it is argued, the difference in the binding energies
of the electrons occupying the two highest eigenstates of the
anion is the HOMO-LUMO gap of the neutral. This statement,
of course, would be true if the structure of the anion were the
same as that of the neutral and the eigenenergies of the neutral
were not shifting upon addition of an electron. The discussion
on the structures above and the results in panel a) of Figure 6
indicate that these conditions do not hold for small magnesium
clusters (which, as a rule, is the case for clusters in general),
and the photodetachment experiments15 on Mgn

- do not measure
the HOMO-LUMO gap in the neutral Mgn clusters. An explicit
confirmation of this is given in panel b) of Figure 6, which
displays the graphs of the HOMO-LUMO gap in Mgn

considered in their native configurations and of the difference
in the binding energies of the two most external electrons in
Mgn

- obtained in the PES measurements. The two are quite
different. As is clear from the comparison of the graphs in panels
a) and b), the HOMO-LUMO gap of Mgn is much closer to
the computed difference in the binding energies of the two most
external electrons in Mgn- considered in the native structures
of their neutral counterparts. The variance between the two is
a consequence of the shifts in the energy levels caused by the
addition of an electron.

The HOMO-LUMO gap of finite neutral systems is con-
sidered traditionally as the analogue of the gap between the
valence and the conduction bands of bulk materials, and the
closure of the HOMO-LUMO gap is customarily interpreted
as an indication of the transition to a metallic state. In view of
this, the above analysis may leave the impression that the
photodetachment experiments on finite negatively charged
systems contain little, if at all, information on the nonmetal-
to-metal transition, since they do not, in general, probe the
HOMO-LUMO gap. Such an impression, however, would be
misleading. Not only are the PES measurements on anions
relevant to this transition, but also they point to an important
aspect of it. This aspect is the role of the charge state, which is
one of the important consequences and manifestations of the
finite-size effects, and which should explicitly be taken into
account in the analysis. The geometric and electronic charac-
teristics of the bulk are not affected by addition or withdrawal
of electrons, whereas the equilibrium structures and the electron
eigenenergies of finite systems may be and, in general, are. The
difference between the binding energies of the two most external
electrons in anions takes on the role of the HOMO-LUMO
gap in the corresponding neutrals, and this difference is as a
representative finite-size analogue of the bulk band gap as the
HOMO-LUMO gap. Indeed, this difference and the HOMO-
LUMO gap approach each other, and both converge to the bulk
band gap as the system grows in size.

Another indicator used to analyze the transition to metallicity
in magnesium clusters is the extent of thes-p hybridization, or,
alternatively, the degree of thep-character of the valence charge
distribution. Figure 7 displays the graphs of the latter as
evaluated from the Mulliken population analysis. The data are
for the anionic and neutral clusters in their respective native
configurations, but the results remain largely unchanged when
the most stable structures of the neutrals are used for the anions
and vice versa. The graphs show that thep-character is present
in the bonding of even the smallest clusters, but its degree
depends on the charge state. This degree changes only weakly
with the cluster size in the anionic clusters. The change in the

Figure 6. a) The computed and deduced from the experiments15

difference between the binding energies of the two most external
electrons in anionic Mgn- clusters; b) The computed HOMO-LUMO
gap in neutral Mgn clusters and the deduced from the experiments15

difference between the binding energies of the two most external
electrons in anionic Mgn- clusters.

Magnesium Clusters J. Phys. Chem. A, Vol. 106, No. 45, 200210923



neutral clusters is considerable, and the extent of thep-character
in Mgn approaches that in Mgn

- asn increases. The sensitivity
of the degree of thep-character to the charge state is another
manifestation of the specificity of the finite-size regime. An
important implication of this particular manifestation is that the
p-character of bonding considered in isolation may not be an
adequate criterion of the size-induced transition to metallicity.
It is the combination of the two changes, the increase of the
degree of thep-character in Mgn and the convergence of this
degree to that in Mgn-, rather than either of the two changes
alone, which is significant in the analysis of the transition. For
calibration, we note that the degree ofp-character in the density
of states at the Fermi level of bulk magnesium is about 50%.32

Next, we touch briefly on the issue of consistency with the
jellium model picture. Figure 4 shows local enhancement in
the strength of bonding in Mgn clusters atn ) 4, 10, and 20,
which is consistent with the spherical jellium shell closure at
8, 20, and 40 electrons.33 A local maximum in the binding
energy appears also atn ) 15, which is consistent with the
ellipsoidal shell closure at 30 electrons.34

A complementary analysis can be performed in terms of the
second difference∆2E(Mgn)

whereE(Mgn) is the total energy of the Mgn cluster. Within
the jellium model, the maxima of∆2E(Mgn) are associated with
electronic shell closure.33 This quantity is also often used as a
measure of local stability. The graph of∆2E(Mgn) shown in
Figure 8 displays maxima atn ) 4, 10, 15, and 20 (cf. the
discussion of Figure 4), as well as atn ) 13 and 17. The latter
two cases correspond to ellipsoidal shell closure at 26 and 34
electrons.34

Finally, in Figure 9 we present the vertical electron detach-
ment energies (VDE) computed for the anionic Mgn

- clusters
and the vertical ionization potentials (IPv) computed for the
neutral Mgn clusters, all considered in their respective native
configurations. The anticorrelation between the IPv and VDE,
anticipated from the jellium model for those clusters the neutrals
of which have closed electronic shells, holds only forn)20.
However, in addition to Mg20, also Mg4 (but not Mg10, Mg13,
Mg15, and Mg17) shows the anticipated increase in the IPv. And
in addition to Mg20

-, also Mg10
-, Mg15

-, and Mg17
- (but not

Mg13
-) exhibit the anticipated decrease in the VDE.

The conclusion from the above observations is that magne-
sium clusters in the size range considered exhibit elements of
jellium-like behavior. However, these elements are not fully
consistent, at least not within the spherical and ellipsoidal forms
of the jellium model. The lack of consistency may be a
consequence of the fact that the jellium-like attributes, which
have been invoked as yet another indicator of metallicity, are
still not fully developed in magnesium clusters smaller than 18-
20 atoms (cf. a related discussion on the jellium model and the
measured mass-spectra in refs 14 and 15). This would be
consistent with the gradual onset of metallic features as
discussed above in terms of the difference in the electron binding
energies and the degree ofp-character of the valence charge.
But it may also be that the deviations from the jellium behavior
reflect, at least in part, only a limited applicability of the jellium
model to magnesium clusters. This issue will have to be resolved
in future studies.

The overall conclusion from the analysis of the properties of
Mgn and Mgn

-, n ) 2-22, clusters presented above is that the
changes in their electronic features with the size point to what
can be viewed as emergence of metal-like characteristics. It is
clear, however, that further studies are needed to unravel the
full complexity of the size-induced transition to metallicity. The

Figure 7. Degree ofp-character of the valence charge in neutral Mgn

and anionic Mgn- clusters, each considered in its native structure.

∆2E(Mgn) ) E(Mgn+1) + E(Mgn-1) - 2E(Mgn) (7)

Figure 8. Second difference of the total energies of neutral Mgn

clusters.

Figure 9. Vertical ionization potential of the neutral Mgn clusters and
the vertical electron detachment energy of the anionic Mgn

- clusters.
The value of the work function of the bulk magnesium is also indicated.
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emphasis should be on a more detailed understanding of the
nature and manifestations of those size-driven changes in the
different properties that eventually evolve into the familiar
attributes of the bulk insulator-to-metal transition. This under-
standing should also include the role of the added correlations
and dependencies, which are specific to the finite-size regime,
and which play no role in the bulk limit. An example is the
above-discussed dependence on the charge state, which affects
the electronic properties of finite systems directly (shift in the
electronic energy levels and change in the character of the charge
distribution) and indirectly (change in the native structure) and
which has no effect on the bulk insulator-to-metal transition.
These added correlations and dependencies cannot be neglected,
and it is particularly important to include them in the analysis
and interpretation of the results of measurements. To arrive at
a comprehensive picture, the studies will have to be extended
to clusters of larger sizes. They also will have to address the
complex issue of the role of the temperature and the higher
energy isomeric forms of the clusters.

6. Summary

In this paper, we presented density functional theory results
on the most stable structural forms of Mgn and Mgn

-, n ) 2-22,
clusters and a variety of their electronic properties. The
difference in the computed binding energies of the two most
external electrons in the Mgn

- clusters considered in their native
structures is in very good agreement with the data obtained in
the electron photodetachment experiments. The cumulative
conclusion from the analysis of this difference, as well as of
the changes in the other electronic features of Mgn and Mgn

-,
is that they are consistent with what can be viewed as emergence
of metallic attributes.

The study also leads to some general observations. The finite-
size analogue of the bulk insulator-to-metal transition manifests
itself in a variety of ways. A comprehensive understanding and
description of the phenomenon can be achieved only through
the exploration of all its different manifestations, which represent
complementary, rather than different but equivalent, aspects and
attributes. In this sense, the size-induced transition to metallicity
is a richer and more complex phenomenon than the bulk
insulator-to-metal transition. The source of the added complexity
is the finite-size-specific correlations and dependencies, which
become inessential or even irrelevant in the bulk limit. An
example of these is the dependence on the charge state. We
presented evidence for this dependence in three respects. The
first is the shift in the electron energy spectra, the second is the
possible change in the energetically preferred structure, and the
third is the change in the character of bonding, all caused by
changing the charge of the system. Another effect is the
existence of different structural forms (isomers) associated with
a given cluster size. The role of the isomers will become
especially relevant and important in studies directed at under-
standing the temperature-dependent attributes of the transition.
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