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Femtosecond time-resolved experiments on chemical and biophysical electron-transfer systems may reveal
complicated coherent beating which often cannot be simply attributed to nuclear motion on a single Born-
Oppenheimer potential-energy surface but rather reflects electronic transitions driven by coherent nuclear
motion. To facilitate an intuitive classical interpretation of these experiments, a recently proposed theoretical
formulation is employed that affords an exact mapping of discrete electronic states onto continuous degrees
of freedom and therefore provides a well-defined classical limit of a nonadiabatically coupled system. The
formulation is used to consider the classical periodic orbits of an electron-transfer system, i.e., trajectories
that describe periodic nuclear motion on several coupled potential-energy surfaces. Employing concepts of
semiclassical periodic-orbit theory, it is demonstrated that transient oscillations observed in electron-transfer
femtosecond experiments may be explained in terms of a few classical trajectories.

With the advent of femtosecond laser pulses it has become
possible to observe the nuclear motion during a chemical
reaction in real time.1 This is achieved by a pump-probe type
experiment in which the molecular system is prepared at time
t ) 0 by a first laser pulse (the “pump”) into a nonstationary
state, whose time evolution is interrogated by a second laser
pulse (the “probe”) at the delay time∆t. Employing ultrashort
laser pulses, the transient absorption of a polyatomic system
may exhibit multiple kinetics and complex oscillation patterns,
thus reflecting coherent wave packet motion on multidimen-
sional potential-energy surfaces.

In many cases, however, the interpretation of photoinduced
molecular dynamics is complicated by the fact that the underly-
ing Born-Oppenheimer assumption of noninteracting adiabatic
potential-energy surfaces may break down. This becomes
evident, for example, for molecules exhibiting internal conver-
sion or photoinduced electron transfer.2 Here, various groups
have reported transient spectra showing complicated oscilla-

tions, which often cannot be simply attributed to nuclear motion
on a single Born-Oppenheimer potential-energy surface but
rather reflect electronic transitions driven by coherent nuclear
motion.3

To facilitate a classical interpretation of these nonadiabatic
processes, we have recently proposed a bosonization formulation
that affords a well-defined classical limit of a vibronically
coupled system.5 Moreover, the approach allows us to introduce
the classical periodic orbits of a vibronic system.6 Periodic orbits,
i.e., solutions of the classical equation of motion that return to
their initial conditions, are of particular interest, because they
can be directly linked to spectral response functions via
semiclassical trace formulas.7 In favorable cases, periodic-orbit
theory allows us to interpret complex absorption spectra in terms
of only a few classical trajectories.8 Considering the vibronic
periodic orbits of a simple electron-transfer model, it is the goal
of this work to obtain a clear and physically appealing
interpretation of femtosecond experiments reflecting coherent
electron-transfer.* Corresponding author. E-mail: stock@theochem.uni-frankfurt.de
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As a simple example, let us consider a standard model of
electron transfer (ET) with the Hamiltonian9

It describes an electronic coupled two-state system (n, m ) 1,
2), comprising the vibrational Hamiltonianhnn ) T + Vn in the
electronic state|ψn〉 as well as the off-diagonal coupling
elementsh12 ) h21 ) g, which are assumed to be constant. For
simplicity, we restrict ourselves to a harmonic system with a
single vibrational mode, wherex andp denote the dimensionless
position and momentum of the vibrational mode, respectively,
ω is its vibrational frequency,κn denotes the linear coordinate
shift in the electronic state|ψn〉, and we have setp ≡ 1.10

Assuming that the system is initially prepared in state|ψ2〉 via
impulsive laser excitation from the electronic ground state|ψ0〉,
the model describes the situation of photoinduced ET promoted
by a high-frequency vibrational mode (see Figure 1).

To illustrate the motion of the laser-induced wave packet on
the coupled potential-energy curvesV1 andV2, we consider the
time-dependent ET probability distribution

whereP̂2(x) ) | x〉〈x| |ψ2〉〈ψ2| projects the time-dependent state
vector|Ψ(t)〉 on the nuclear coordinatex and the electronic state
|ψ2〉. Figure 2A shows a contour plot of the quantum-mechanical
time evolution ofP2(x, t), calculated by standard methods.2 As
a consequence of the impulsive|ψ0〉 f |ψ2〉 excitation, the wave
function at timet ) 0 is a Gaussian centered atx0 ) 3.10 With
increasing time, the wave packet is seen to undergo an oscillation
alongx with a period of≈80 fs, which roughly corresponds to
the vibrational frequencyω of the model. Since∫P2(x, t) dx
represents the population probability of the initially excited
electronic state|ψ2〉, the color-coded intensity pattern also
monitors the ET dynamics of the system. In particular, it is seen
that the nuclear motion is directly linked to an oscillation of
the electronic population, i.e., the vibrational dynamics triggers

electronic transitions between the two coupled states|ψ1〉 and
|ψ2〉. A closer analysis of Figure 2A reveals that this simple
model of ET already gives rise to a wealth of coherent features.
These features reflect nuclear (not electronic) coherence, as
P2(x, t) describes the electronic population. In addition to a
general dispersion of the wave packet due to the nonadiabatic
transitions, one can observe double-peak structures of the main
recurrences of the electronic population as well as the occurrence
of various side maxima.

To study to what extent these structures can be monitored in
a femtosecond experiment, we now assume that the wave packet
dynamics is probed at timet ) ∆t by a second laser pulseEP(t)
that causes stimulated emission from the optically bright state
|ψ2〉 back to the electronic ground state|ψ0〉.10,11 Employing
the time-dependent perturbation theory with respect to the field-
matter interactionHint ) - µ̂EP(t), the transient stimulated-
emission spectrum can be written as2,12

where ωP denotes the carrier frequency of the probe field
EP(t). Evaluating eq 3 for Gaussian laser pulses with a duration
of 10 fs (panel A) and 20 fs (panel B), Figure 3 shows the
femtosecond pump-probe spectra obtained for the ET model.
Apart from the pulse-induced averaging in frequency and time,
the time evolution of the spectrum is seen to match the
nonadiabatic wave packet dynamics shown in Figure 2A in
almost every detail, thus highlighting the promise of “fem-
tochemistry” to monitor elementary molecular processes in real
time.1

While the quantum-mechanical computation of ET dynamics
and spectra is straightforward, it is not that clear how to achieve
a classical description of nonadiabatic transitions, because
discrete electronic states do not possess an obvious classical
analogue. As a remedy, various mixed quantum-classical
formulations such as the “surface-hopping” model and the
“Ehrenfest mean-field” ansatz have been suggested.13 Because
electronic and nuclear degrees of freedom are treated on a
different dynamical footing, however, these theories do not
necessarily provide a satisfying classical picture of nonadiabatic
dynamics.

As an alternative approach to incorporate quantum degrees
of freedom in a classical formulation, it has recently been
proposed to utilize quantum-mechanical bosonization techniques,
i.e., to represent discrete electronic states by continuous
harmonic oscillators, which possess a well-defined classical
limit.5 This is achieved by the mapping relations

whereXn, Pn are position and momentum operators of thenth
oscillator with commutation relations [Xn, Pm] ) iδnm, and
|01, ..., 1n, ..., 0N〉 denotes a harmonic-oscillator eigenstate
with a single quantum excitation in the moden.14 Inserting
eq 4 into eq 1, we obtain the boson representation of the ET
system

Figure 1. Schematic representation of the potential-energy curves of
the electron-transfer model. Following impulsive laser excitation from
the electronic ground-state potentialV0, the system exhibits coherent
wave packet motion on the nonadiabatically coupled potentialsV1 and
V2.
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As the mapping Hamiltonian (eq 6) contains only continuous
operators, the quantum-mechanical system has a well-defined
classical analogue. The transition to classical mechanics is per-
formed by changing from the Heisenbergoperators yk(t) (yk )
Xn, Pn, x, p) obeying Heisenberg’s equations of motion (iy̆k )
[yk, H]) to the corresponding classicalfunctionsobeying Hamil-
ton’s equations (e.g.,Ẋk ) ∂H/∂Pk). In this classical limit, the
formalism can be shown to recover the classical electron ana-

logue model of Meyer and Miller.15 Since the mapping formu-
lation is quantum-mechanically exact, it allows us, without any
further approximations, to extend well-established classical
concepts and techniques to problems of nonadiabatic quantum
dynamics.

In addition to numerical studies,5,16 the mapping formulation
also enables us to introduce and study the periodic orbits of the
ET system (eq 1). To this end, it is advantageous to eliminate

Figure 2. Time evolution of the electron-transfer probability distributionP2(x, t). The rainbow-color-coded intensity oscillations reflect electronic
transitions driven by coherent nuclear motion along the coordinatex. Compared are exact quantum (A) and approximate classical (B) results. The
latter are composed of the contributions of the two shortest periodic orbits of the system, which are shown with (C, D) and without (E, F) energy
averaging of the orbits.

Figure 3. Time- and frequency-resolved stimulated-emission spectra of the coherent electron-transfer process, assuming probe pulse durations of
10 fs (upper panels) and 20 fs (lower panels). Compared are exact quantum data (A,B) and classical periodic-orbit results, which are obtained with
(C,D) and without (E,F) energy averaging of the orbits. To avoid confusion arising from overlapping pump and probe laser fields, the signal is
shown only for delay timesg40 fs.
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one electronic degree of freedom by noting that the total
electronic population is conserved.17 This yields the classical
ET Hamiltonian

which consists of a nuclear oscillator (x, p) that is nonlinearly
coupled to an electronic oscillator (X, P) representing the two-
state system. Analyzing the classical phase-space dynamics of
the Hamiltonian (eq 7) under various conditions, the system is
found to exhibit mixed classical dynamics: Most of the area of
the energetically available phase space belongs to chaotic
motion, but there are also some integrable islands which contain
fixed points associated with the periodic orbits of the ET
system.6

To represent the periodic orbits (POs) for a vibronically
coupled system in an intuitively clear way, we introduce the
classical electronic population variableN ) (X2 + P2)/4, which
by construction varies between 0 (system is in|ψ1〉) and 1
(system is in|ψ2〉). Describing, moreover, the nuclear motion
through the positionx, Figure 4 shows the two shortest and
most important vibronic POs of the ET system. Both orbits
shown are self-retracing and reflect the symmetry of the
potentials with respect to thex ) 0 axis. The shortest PO, orbit
A, is seen to vibrate between two turning points atx ≈ (2.75.
At the same time, the PO oscillates between the electronic states
|ψ1〉 and |ψ2〉 with a period of 72.8 fs. While orbit A is
particularly simple as the vibrational and electronic oscillation
occur with the same period, the situation is already somewhat
more complicated for orbit B. Within one vibrational cycle
taking≈78.4 fs, this orbit oscillates about three times between
the electronic states. It turns out that orbits of type B are of
particular importance, because there are numerous POs that are
composed of such orbits with slightly shifted turning points.6

To express the quantum observables discussed above in terms
of the POs of the ET system, we consider the function

where Nk(t) and xk(t) denote the electronic population and
nuclear position of thekth orbit at timet, respectively.Nk(x, t)
can be regarded as a classical representation of the quantum-
mechanical projectorP̂2(x), which was used in eq 2 to define
the ET probability distributionP2(x, t) of the ET system. Hence
the corresponding classical distributionP2

C(x, t) is obtained by
averagingNk(x, t) over an initial phase-space density function
Fk ) F0(xk, pk, Xk, Pk) that mimics the initial state|Ψ(0)〉 of the
quantum system. Summing up all POs that contribute to the
ET dynamics, we get6

wherewk and Tk denote the weight and the period of thekth
orbit, respectively.

Adopting a quasiclassical approximation, moreover, the
transient stimulated-emission spectrum (eq 3) can be written
as average over the ET probability distributionP2

C(x, t),
yielding18

Due to the resonance conditionωP ) ∆V(t) ≡ V2[x(t)] -
V0[x(t)], the spectral evolution of the spectrum follows the wave
packet motion along the coordinatex.

We are now in a position to analyze nonadiabatic quantum
dynamics in terms of classical POs. Let us begin with the
simplest version of the theory, that is, the approximation of
P2(x, t) by asingleorbit. Figures 2F and 2E show the classical
ET probability distribution associated with the orbits A and B,
respectively. The population probabilities of both orbits are seen
to oscillate along the nuclear coordinatex in a similar way but
with different amplitudes and periods. Furthermore, it is noticed
that the ET dynamics differs for the two POs. For example, it
is seen that orbit B affects a recurrence of the population
probability at the left-hand-side turning points while orbit A
does not. Both single-orbit contributions resemble the quantum-
mechanical time evolution shown in panel A, but do not account
for the details.

In a next step, we take into account the energy distribution
of the initial state and consider the energy-averaged probability
distribution of both orbits.19 Figures 2D and 2C show the
resulting ET probability distribution obtained for orbits A and
B, respectively. As may be expected, the averaging results in
an increase of the energetically accessible phase space and
therefore also of the width of the probability distribution. As a
consequence of the energy-dependent periods of the orbits,
moreover, the peaks at the right-hand-side turning points become
more pronounced and are shifted toward earlier times in the
case of orbit A.

Adding the energy-averaged contributions of orbits A and B
(Figure 2B), we may now analyze the quantum-mechanical ET
dynamics (Figure 2A). Taking into account that only two
classical orbits enter the calculation, the overall agreement and
the amount of details of the classical result are remarkable.
Considering the right-hand-side turning points of the quantum-
mechanical probability distribution, for example, it turns out
that the single peak at the first and the double peak at the second
turning point can directly be explained by the superposition of
the two POs. Furthermore, the weaker maxima associated with
the left turning points and the intermediate area of low
probability density aroundx ≈ 2.5 arise as consequences of
this superposition. While the classical probability distribution
exhibits a clear cut-off around the turning points, the quantum
distribution is more delocalized in these regions, because
quantum mechanics can also invade classically forbidden
regions. The limits of the two-orbit approximation can be seen
at times≈160 fs, where the quantum wave packet splits up in
three components. This interference effect cannot be reproduced
by a simple quasiclassical approximation.

Let us finally investigate to what extent these results transfer
to the analysis of ET femtosecond spectra. Evaluating eq 10 by
a sum over the two shortest POs, Figure 3 compares the
quantum-mechanical spectra obtained for 10 and 20 fs probe
pulses (panels A,B) to the corresponding classical results.
Although the accurate reproduction of the recurrences around

Figure 4. Shortest vibronic periodic orbits of the electron-transfer
system, drawn as a function of the nuclear positionx and the electronic
populationN.
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the turning points deteriorates due to the field-matter interaction,
the PO approximation is still in good overall agreement with
the quantum data. It is interesting to note that the PO results
with (panels C, D) and without (panels E, F) averaging over
the energy distribution of the initial state look quite similar.
This finding is explained by the fact that the spectrum is already
averaged over the energy distribution of the laser field. In
general, it may be noted that the averaging due to the field-
matter interaction tends to support the classical approximation
in that it is sufficient to include only the orbits with mean energy.
Furthermore, the averaging removes the subtle interferences of
the wave function at larger times, which are not amenable to a
simple classical description.

To summarize, we have introduced a new theoretical concept
to analyze coherent ET dynamics as monitored in femtosecond
experiments. The theory combines (i) a mapping formulation,
which allows us to introduce classical periodic orbits that
describe nuclear motion on several coupled potential-energy
surfaces and (ii) the ideas of semiclassical PO theory, which
enables us to interpret complex spectra in terms of a few
classical trajectories.

Considering multidimensional molecular dynamics, it may
be difficult to determine the exact POs of the system. Neverthe-
less, recent studies on nonadiabatic photoisomerization reactions
have indicated that in many cases the general concept still holds,
i.e., the classical analysis allows us to obtain a classification of
various types of vibronic trajectories, thereby providing an
intuitive picture of nonadiabatic processes.
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