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The intramolecular nuclear wave packet dynamics of carboxy-deuteratedo-phthalic acid monomethylester
following ultrafast excitation of the OD stretching vibration in the hydrogen bond is investigated. On the
basis of quantum chemical calculations of the normal modes as well as the anharmonicities, a three-dimensional
model is proposed comprising the OD stretching and bending as well as a low-frequency mode which modulates
the hydrogen bond geometry. The interaction with the remaining intramolecular and solvent degrees of freedom
is incorporated within a quantum master equation formulation. The linear absorption spectrum is shown to be
dominated by a Fermi resonance, with the actual line widths depending on pure dephasing as well as on a
fourth-order relaxation process. The latter involves two intramolecular vibrational quanta plus a solvent phonon.
It proves to be vital for the explanation of the very fast relaxation of the fundamental OD stretching excitation.
Further, it is shown that in the OD ground state vibrational coherences with respect to the low-frequency
mode are completely dephased only after about 2 ps. These results are discussed in the context of recent
infrared pump-probe and four-wave-mixing experiments.

1. Introduction

Hydrogen bonds A-H‚‚‚B manifest themselves in a red-shift
and a broadening of the infrared (IR) absorption band as
compared to the free A-H vibration.1 In addition a peculiar
substructure often indicates the anharmonic coupling between
the A-H vibration and other intramolecular modes such as the
low-frequency A‚‚‚B vibration. In the condensed phase the
details of the spectrum are usually masked by the broadening
due to intermolecular interactions. This situation renders the
interpretation based solely on the linear absorption spectrum
difficult and nonlinear-IR spectroscopy has to be employed2-15

Recently, Stenger et al.8,9,14 reported femtosecond IR pump-
probe experiments on carboxy-deuteratedo-phthalic acid monom-
ethylester (PMME-D) in C2Cl4 which exhibits an intramolecular
H-bond of medium strength (cf. Figure 1). From the decay of
the excited state absorption of the OD stretching vibration, the
relaxation dynamics of the fundamental transition could be
characterized by a time scale of about 400 fs. A second time
scale of 20 ps was attributed to vibrational cooling of the
anharmonically coupled modes in the OD vibrational ground
state. The most striking observation, however, was an oscillatory
component in the signal, surviving for about 1.5 ps and being
attributed to underdamped wave packet motion with respect to
a low-frequency mode (about 100 cm-1) modulating the H-bond
geometry. This is a clear manifestation of the effect of
anharmonic couplings on the H-bond dynamics which is hidden
under the broad absorption band (cf. Figure 3 below). In
addition, photon echo studies for the normal species PMME-H
in ref 12 revealed an extremely short dephasing time of about
40 fs for the OH fundamental transition.

In the theoretical literature the line shape of A-H‚‚‚B
hydrogen bonds is usually discussed in terms of a fast mode,
νA - H, being anharmonically coupled to a slow mode,νA..B.
After performing an adiabatic separation (second Born-
Oppenheimer approximation) an analytical treatment becomes

possible in close analogy to optical spectroscopy of electronic
transitions.16 In particular, Franck-Condon type vibrational
progressions are obtained from combination transitions involving
the low-frequency mode.17 The dephasing of theνOD funda-
mental transition has been modeled assuming a direct coupling
of the related dipole moment to the fluctuating field of the
surroundings18 or an indirect coupling via the damping of the
low-frequency mode described either quantum mechanically19,20

or via a stochastic process.21

Figure 1. Displacement vectors for those 3 normal modes of PMME
which define the relevant system. Modeν50 is the OD-stretching,ν29

the out-of-plane O-D-O bending, andν1 an out-of-plane torsional
motion. The O-O distance of 2.56 Å and the single minimum
anharmonic shape of the potential surface indicate a H-bond of moderate
strength in this system. The quantum chemical calculations were
performed using the DFT/B3LYP level of theory with a Gaussian
6-31+G(d,p) basis set.
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An additional complication arises from the ubiquitous pres-
ence of Fermi resonances involving the A-H stretch funda-
mental and its bending overtone transition. It leads to the
appearance of the so-called Evans window separating the two
transitions. The most comprehensive study in this respect has
been provided by Henri-Rousseau and co-workers who supple-
mented the above-mentioned two mode quantum model by a
Fermi resonance coupling to a bending overtone transition while
taking into account the direct dephasing of the bending and
stretching modes.22,23In doing so they extended earlier relaxation-
free work by Witkowski and Wo´jcik24 as well as the stochastic
description given by Bratos and co-worker for the static
modulation limit.25,26For an overview see also refs 27 and 28.

In an effort to understand the intramolecular dynamics of
PMME-D we have recently combined a full-dimensional
reaction surface study with a time-dependent Hartree dynamics
simulation in the mean-field29 and the numerically exact
multiconfiguration30,31limit. This parameter-free approach was
capable of reproducing the periodic low-frequency modulation
of the H-bond dynamics. However, the estimated decay time
of the OD stretching excitation was about 20 ps. This led to
the conclusion that the interaction with the solvent must play

an important role for relaxation, e.g., by bridging the gap
between otherwise nonresonant intramolecular transitions. Fol-
lowing this idea we will develop a system-bath model of
PMME-D in the condensed phase in section 2. This approach
combines an accurate description of the relevant degrees of
freedom with a perturbational treatment of its interaction with
a heat bath, i.e., the remaining intramolecular modes and the
solvent. Such a general strategy has been followed, e.g., in refs
32-35. (For an alternative treatment of condensed phase proton-
transfer reactions see, e.g., refs 35 and 36.) In section 3 the
linear absorption spectrum is discussed and the relevant mech-
anisms for understanding the line shape are identified. The
proposed model is supported by comparing relevant time scales
from dissipative quantum dynamics simulations with experi-
mental results8,9,14in section 4. Section 5 summarizes our results.

2. Model Hamiltonian

2.1. Relevant System.The geometry of PMME-D in the
electronic ground state has been optimized using the DFT/
B3LYP level of theory with a Gaussian 6-31+G(d,p) basis set37

(for a comparison of DFT and MP2 results, see refs 29 and
30). Because we are interested in the dynamics in the vicinity
of the most stable configuration we have chosen to express the
system Hamiltonian in terms normal mode coordinates{Qi}.
The most important coordinate corresponds to the normal mode
vibrationν50 having essentially OD stretching character as can
be seen from Figure 1. Displacing the PMME-D structure along
Q50 and performing additional single point energy calculations
one obtains the anharmonic potentialV0(Q50) as well as the
related dipole momentd (Q50).

To quantify the anharmonic mode-mode coupling we have
calculated the force acting on those normal modes which,
according to their displacement vectors, potentially have an
influence on the H-bond. The calculations have been performed
for an elongated OD bond (Q50 ) 0.5aBxamu) by finite
differences. The results are compiled in Table 1. The observation
of coherent vibrational wave packet dynamics in refs 8 and 9
as well as our previous investigations29-31 provide evidence that
in a reasonable model for thereleVant systemthe OD stretching
coordinate has to be supplemented by at least a coordinate
describing a low-frequency modulation of the H-bond. The

Figure 2. Potential energy surfaceV1(Q50, Q1) for Q50 ) -0.35 (A),
-0.23 (B), 0 (C), 0.23 (D), 0.5 (E), and 0.7aBxamu (F).

Figure 3. Linear absorption spectrum of PMME-D in the OD stretching
region: (A) zero temperature (gas phase) stick spectrum of the relevant
system. (B)T ) 300 K stick spectrum together with the condensed
phase spectrum according to Eq. lorentz (solid line) as well as the
experimental spectrum taken from ref 9 (dashed line). The parameters
for the system-bath coupling aregi

(I) ) 0.01, g50
(II) ) 0.005,g1,29

(II) )
0.0001,γpd ) 0.6 s-1, g(III) ) 0.02,ωc

(I)/2πc ) 100 cm-1, andωc
(III) /2πc

) 250 cm-1.

TABLE 1: Normal Modes of PMME-D Which Couple
Appreciably to Mode ν50 (OD Stretch, cf. Figure 1)a

mode ωi/2πc (cm-1) fi(mEh/aBxamu)

1 38 0.24
2 72 0.02
7 228 0.31
8 275 -1.06
9 323 0.34
10 357 0.84
11 390 0.31
12 426 0.73
14 488 -1.07
16 620 2.13
19 692 1.32
21 786 1.79
24 853 -0.31
29 1043 0.64
38 1306 0.21
39 1329 -1.50

a The forces fi have been calculated atQ50 ) 0.5aBxamu by
performing two additional single-point calculations for structures
displaced by(δQi. The two modes which have been included into the
relevant system are given bold-faced; the two modes entering the fourth-
order system-bath coupling are shown in italic.
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experimental frequency of about 100 cm-1 would have sug-
gested that modeν2 is strongly coupled (see also discussion in
ref 9). Surprisingly,ν2 has the smallest force in Table 1. On
the other hand, exploring the PES along modeν1 (cf. Figure 1)
we found that in the vicinity of the equilibrium configuration
the curvature is much better represented by a harmonic force
constant which corresponds toν1 ) 70 cm-1 (see also part C
of Figure 2). Therefore, we conclude that modeν1 needs to be
incorporated into the relevant system.

From Table 1 we notice that the strongest coupling is to mode
ν16 which corresponds to a bending vibration within the H-bond;
the second bending mode isν29. Because the first overtone of
ν29 is close to resonance with the OD fundamental transition
we will include this mode as the third DOF into the relevant
system (see Figure 1). The importance of this type of out-of-
plane bending mode has also been emphasized in ref 29. The
remaining modes will be considered to be part of the environ-
ment in section 2.2, with ν16 and alsoν39 playing an important
role in the relaxation dynamics.

For the potential energy surface of the relevant system we
have used the following form

Here,V0(Q50), V1(Q50,Q1), andV29(Q50,Q29) are the potentials
which are obtained when all other coordinates are fixed at their
equilibrium positions, e.g.,V0(Q50) ) V(Q50,Q1)0,Q29)0).
Notice that eq 1 is an approximation since the direct coupling
betweenν1 andν29 is not included. This treatment reduces the
number of single-point calculations dramatically, i.e., instead
of a full three-dimensional (3D) grid only two two-dimensional
(2D) grids have to be spanned. Here we used 18 points along
Q50 and 7-11 points alongQ29 andQ1, depending on the shape
of the potential. Subsequently the potential surface was fitted
to high order polynomials. In Figure 2 we show representative
plots of V1(Q50,Q1). It is interesting to see that the range of
validity of the harmonic approximation is rather limited. The
anharmonicity ofV29(Q50,Q29) is less striking (not shown).

The interaction of the 3D system with the external electric
field E(t) will be included within the dipole approximation via
the Hamiltonian

Note that the gradient of the dipole moment alongQ29 andQ1

is more than an order of magnitude smaller than forQ50, i.e., it
can be safely neglected.

The 3D system HamiltonianHsys ) Tsys + Vsys has been
diagonalized using an expansion of the total wave function in
terms of zero-order states,|æi

(k)〉. The latter were defined with
respect to the reference potentialsV0(Q50), V1(Q50)0,Q1), and
V29(Q50)0,Q29) using the Fourier grid Hamiltonian method.38

Thus we have for theath eigenstate

where we employed 5, 8, and 25 basis states for the expansion
in Q50, Q29, andQ1 direction, respectively. This was sufficient
to obtain convergence for the lower part of the spectrum up to
energies corresponding to theν50 overtone transition at about
4400 cm-1. Transition energies and expansion coefficients of
some of the more important eigenstates are summarized in Table
2.

2.2. System-Bath Interaction. The coupling of the 3D
relevant system to the remaining intramolecular degrees of
freedom,{qm}, as well as to those of the solvent,{Zê}, will be
taken into account using the formalism of dissipative quantum
dynamics.16 In particular it will be assumed that the conditions
for Markovian dynamics and weak system-(harmonic) bath
coupling apply. In view of our previous studies,29-31 the latter
assumption is most likely fulfilled. The validity of the Markov
approximation especially for the intramolecular modes is a
hypothesis which could be verified at least in principle, e.g.,
by enlarging the relevant system.

For the system-bath interaction Hamiltonian, we take the
standard form16

with the operatorsK(u) and Φ(u) belonging to the system and
the bath, respectively. Explicit expressions for these operators
can be obtained from a Taylor expansion of the global potential
energy surface. In the following we will pick only those terms
which appear to be most relevant for the envisaged relaxation
dynamics in the present system. Our choice is guided by the

V(Q50,Q29,Q1) ) V0(Q50) + V1(Q50,Q1) + V29(Q50,Q29) (1)

Hf(t) ) - E(t)d(Q50) (2)

|a〉 ) ∑
ijk

Ca,ijk|æi
(50)〉|æj

(29)〉|æk
(1)〉 (3)

TABLE 2: The Transition Energies and Relevant Expansion
Coefficients (|Ca,ijk| > 0.2 in Equation 3) for Important
Eigenstates of the Three-Dimensional System Hamiltonian
Are Given Together with Population Relaxation Rates as
Well as Full and Pure Coherence Dephasing Rates with
Respect to the Ground State (See Discussion in Section 3)

state ωa1/2πc (cm-1) ijk Ca,ijk

1/Raa,aa
(ps)

1/Ra1,a1
(ps)

1/R*a1,a1
(ps)

1 0 0 0 0 0.992 18.9
2 65 0 0 1 0.984 7.1 0.590 0.626
3 145 0 0 2 0.983 5.4 0.571 0.613
29 2108 1 0 0 -0.328 0.887 0.367 0.468

0 2 0 0.923
31 2171 1 0 1 -0.336 0.794 0.346 0.447

0 2 1 0.903
34 2250 1 0 2 -0.351 0.728 0.325 0.423

0 2 2 0.889
35 2288 1 0 1 0.318 0.322 0.102 0.121

1 0 0 0.869
0 2 0 0.306

36 2338 1 0 3 -0.366 0.633 0.285 0.372
0 2 3 0.849
0 2 2 0.229

37 2354 1 0 2 0.280 0.329 0.107 0.128
1 0 1 0.789
1 0 0 -0.348
0 2 3 -0.271
0 2 1 0.270

40 2428 1 0 4 0.277 0.345 0.124 0.151
1 0 3 -0.254
1 0 2 0.662
1 0 1 -0.319
0 2 4 -0.393
0 2 3 -0.273
0 2 2 0.250

41 2439 1 0 4 -0.254 0.544 0.224 0.284
1 0 2 0.451
0 2 4 0.792

42 2518 1 0 4 -0.272 0.310 0.103 0.124
1 0 3 0.760
1 0 2 0.359
0 2 4 -0.260
0 2 3 0.277

45 2541 1 0 5 -0.332 0.624 0.278 0.361
1 0 3 -0.244
0 2 5 0.866

46 2614 1 0 5 0.264 0.306 0.102 0.122
1 0 4 0.770
1 0 3 0.364
0 2 5 0.270
0 2 4 0.279

HSB ) ∑
u

K(u)({Qi})Φ(u)({qm},{Zê}) (4)
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“rule” that only lowest-order terms for a particular mechanism
should be taken into account (see also refs 39 and 40). The
simplest contribution toHSB is bilinear, i.e., ∝QiZê. It is
responsible for one quantum transitions in system and bath. This
term will be important for relaxation involving the low-
frequency modeν1 only since the solvent does not support
modes in the frequency range of theν50 and ν29 transitions.
Second, we include a term∝Qi

2Zê which allows us to consider
the effect of pure dephasing. Finally, to model the experimen-
tally observed time scale of 400 fs for theν50 population
relaxation it will be necessary to consider multiquantum
transitions in the bath involving intramolecular plus solvent
modes. This follows from our previous observation that efficient
intramolecular energy distribution is hindered by the lack of
efficient resonant transitions.30,31Inspection of Table 1 suggests
that a fourth-order process,∝QiqmqnZê, could be responsible
for fast relaxation.

To summarize, the system-bath interaction is expressed as
HSB ) HSB

(I) + HSB
(II) + HSB

(III) with

from which the identification ofK(u) and Φ(u) in eq 4 is
straightforward. In eqs 5-7 we introduced the dimensionless
coupling strengthsgi,...

(...)(ê) as well as the frequency of theêth
solvent bath modeΩê. Further, we use dimensionless coordi-
nates according toQ̃i ) Qi/λi. Below we will takeλi ) (p/
2ωi)1/2 with ωi being the fundamental transition frequency of
the uncoupled modeQi. An analogous factor is introduced for
the harmonic bath modes.

2.3. Spectral Densities.The equations of motion for the
reduced density operatorF can be written as16

with the Liouville superoperatorsLsys• ) [Hsys,•]/p andLf(t)•
) [Hf(t),•]/p. The effect of the system-bath interaction is
contained in the (Redfield) relaxation superoperatorR. The
matrix elements ofR in the basis of the eigenstates{|a〉} of the
system HamiltonianHsys can be expressed in terms of the
damping matrix16

as

In eq 9, damping the Fourier transform of the bath correlation
function has been introduced as

where〈•〉B is the expectation value with respect to the equilib-

rium statistical operator of the harmonic bath. Note that we have
neglected the imaginary part of the damping matrix which could
lead to small shifts of the transition frequencies.16 Further it
should be pointed out that the Redfield formulation of dissipation
in general violates translation invariance if the system-bath
coupled is nonlinear in the system coordinate. In ref 42 it was
suggested to use a Hamiltonian expressed in terms ofQi - 〈Qi〉eq

to “cure” this defect. For the present case, however, the
equilibrium expectation values〈Qi〉eq are close to zero and we
did not consider this issue in the following.

To keep the matter simple we proceed by neglecting the
mixing between different contribution toHSB, i.e., the damping
matrix can be split into three terms:

with

where Ĵij
(I)(ω) ) Jij

(I)(ω) - Jij
(I)(-ω). The spectral density is

given by

The second line in eq 14 involves an approximation, i.e., the
coupling strength has been expressed in terms of the single
parametergi

(I), and the new spectral densityj(I)(ω) is assumed
to be equal for all system coordinates. This treatment is
reasonable because it will turn out that it is only the low-
frequency modeν1 which is affected by the bilinear coupling
Hamiltonian.

For the quadratic coupling we obtain

with Cij
(II)(ω) andJij

(II)(ω) having the structure of eqs 13 and 14,
respectively, but with the spectral density being approximated
by

which follows from a similar reasoning as in the bilinear case.
For the quadratic coupling the matrix elements〈a|Q̃i

2|a〉 are
different from zero. (In fact, for the present anharmonic system
this happens already for the linear coupling but with a magnitude
that is much smaller than in the quadratic case.) As a
consequence matrix elements ofΓ(II)(ω) with frequency argu-
ment equal to zero contribute to the Redfield tensor. These terms
are responsible forpure dephasing.16 Following refs 41 and 42
we write

Here, for simplicity we have comprised the magnitude of the
pure dephasing term into the parameterγpd, which has dimen-
sions of s-1. (Note that in principleγpd should be temperature
dependent.) Further, we will not take into account the two-

HSB
(I) ) ∑

i)1,29,50

Q̃i∑
ê

pΩê gi
(I)(ê)Z̃ê (5)

HSB
(II) ) ∑

i)1,29,50

Q̃i
2 ∑

ê

pΩê gi
(II) (ê)Z̃ê (6)

HSB
(III) ) ∑

i)1,29,50

Q̃i∑
m>n

∑
ê

pΩê gi,mn
(III) (ê)q̃mq̃nZ̃ê (7)

∂F
∂t

) - i[Lsys+ Lf(t)]F - RF (8)

Γab,cd(ω) ) ∑
uu′

Kab
(u) Kcd

(u′) Cuu′
(ω) (9)

Rab,cd) δac ∑
e

Γbe,ed(ωde) + δbd ∑
e

Γae,ec(ωce)

- Γca,bd(ωdb) - Γdb,ac(ωca) (10)

Cuu′(ω) ) 1

p2
Re∫0

∞
dt eiωt〈Φ(u)(t)Φ(u′)(0)〉B (11)

Γab,cd
(I) (ω) ) ∑

ij

〈a|Q̃i|b〉〈c|Q̃j|d〉 Cij
(I)(ω) (12)

Cij
(I)(ω) ) πω2(1 + n(ω))Ĵij

(I)(ω) (13)

Jij
(I)(ω) ) ∑

ê

gi
(I) (ê) gj

(I)(ê)δ(ω - Ωê)

≈ gi
(I) gj

(I) j(I)(ω) (14)

Γab,cd
(II) (ω) ) ∑

ij

〈a|Q̃i
2|b〉 〈c|Q̃j

2|d〉 Cij
(II)(ω) (15)

Jij
(II)(ω) ≈ gi

(II) gj
(II) j(II)(ω) (16)

limωf0Cij
(II)(ω) )gi

(II) gj
(II)

4πkBT

p
limωf0ω(j(II)(ω) - j(II)(-ω))

) gi
(II) gj

(II) γpd (17)
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quantum transitions related to the off-diagonal elements ofQ̃i
2.

This would merely affect the low-frequency mode whose
relaxation, however, can be sufficiently described byΓ(I)(ω).
Nevertheless we will stick to the coupling parametersgi

(II)

although the last line in eq 17 contains some redundancy.
Finally, we give the damping matrix for the fourth-order

relaxation. It reads

Here we assumed that the different bath modes are uncorrelated
and thatgi,mn

(III) (ê) ≈ gi
(III) (ê)ci,mn

(III) . If we neglect once again the
coordinate specificity of the spectral density, we have

This approximation appears reasonable since only the OD
stretching and bending vibrations are appreciably affected by
the fourth-order coupling term. Concerning the intramolecular
bath modes, we will focus on modesν16 andν39, which are the
only modes being appreciably coupled to the OD vibration and
at the same time should, in combination with a low-frequency
bath mode, provide a resonant bath transition for both theν50

fundamental and theν29 overtone excitation. In other words,
the sum in eq 19 reduces to the terms withm ) 16 andn ) 39.
In addition we will simulate the fourth-order coupling strength
by gi

(III) only, i.e., theci,mn
(III) values are set to 1. This simplifica-

tion reduces the number of open and otherwise unknown
parameters. In practice it would be rather difficult to calculate
the fourth order derivative defininggi,mn

(III) (ê), especially because
it involves the solvent bath modes.

This holds in particular for the assumed mapping of the real
solvent environment onto aneffectiVeharmonic oscillator bath.
The latter is entirely characterized by its spectral density. Since
we are aiming at the description of low-frequency solvent modes
we have used the standard Ohmic spectral density with a cutoff
frequencyωc

(...),16,43 i.e.,

Note that we included the factorω2 into the definition of the
spectral density as it is usually done in the literature.

To summarize, our relaxation model is formally characterized
by 12 parameters, i.e., 9 coupling strengthsgi

(...), the scaling
factor for pure dephasingγpd, and, neglecting two-quantum
transitions, the two cut-off frequenciesωc

(I) andωc
(III) . One may

argue that this is enough to fit the behavior of any system. Below
we will focus on the linear absorption spectrum as well as on
the relaxation and dephasing dynamics after ultrafast excitation
of the OD stretching fundamental and bending overtone band.
It turns out that the available parameter space can be restricted
from the very beginning because the different coupling terms
are operative only for certain processes/modes, e.g., the linear
coupling does not affect the stretching and bending mode at
all, whose behavior is strongly influenced by the fourth-order
coupling. Pure dephasing, on the other hand, has an impact on
all system modes.

Again we emphasize that the selection of coupling types must
be seen as a compromise between having a minimum number
of parameters, but still being able to describe the most relevant
processes suggested from the experimental results. The ad-
ditional neglect of the two-quantum transitions∝〈a|Q̃j

2|b〉 as
well as the related mixing term∝〈a|Q̃j

2|b〉〈c|Q̃i|d〉 should
mostly affect the relaxation of the low-frequency mode, which,
in view of the available information, is sufficiently described
by the linear relaxation and pure dephasing terms.

3. Linear Absorption Spectrum

In Figure 3 we show the stick spectrum (P(a) is the thermal
distribution function)

as well as the condensed phase spectrum obtained using the
dephasing ratesRab,ab calculated according to section 2.2.

In part A of Figure 3, the stick spectrum atT ) 0 K is given.
Note that it was necessary to shift the experimental spectrum
by 40 cm-1 in order to facilitate comparison with our model
calculation. This small discrepancy could be a result of either
the quantum chemical method used or of the restriction to three
relevant coordinates only. The main peak at 2288 cm-1 is the
eigenstate|a ) 35〉 which is dominated by the fundamental
transition of the OD stretching vibrational zero-order state
(1,0,0), see Table 2. The red shift of 112 cm-1 as compared to
the harmonic value of 2400 cm-1 is an indication for the
anharmonicity of the OD potential in the hydrogen bond. We
note in passing that the major contribution to the excited-state
absorptionν50 ) 1 f 2 is calculated to occur at 2044 cm-1.
However, there are at least two more transitions, namely, at
2288 cm-1 and at 2201 cm-1, which involve a mixing of zero-
order states with substantial (2,0,0) character.

In Figure 3 there are two more relevant transitions atT ) 0
K, both being a consequence of the anharmonic terms in
V1(Q50,Q1) and V29(Q50,Q29). First, there is a combination
transition to a state of (1,0,1) character,|a ) 37〉 in Table 2,
which is located 66 cm-1 above the (1,0,0) transition. Second,
we observe the overtone of the bending vibration, (0,2,0), 180
cm-1 below the (1,0,0) transition (|a ) 29〉). The energy gap
between the two main peaks is in rather good agreement with
the experimental value of 170 cm-1.

In part B of Figure 3 we have shown the stick spectrum atT
) 300 K, which reveals a number of transitions as a conse-
quence of the anharmonicity of the potential energy surface.
To the red of the (1,0,0) peak we observe the (0,0,1)f (1,0,0)

Γab,cd
(III) (ω) ) ∑ij〈a|Q̃i|b〉〈c|Q̃j|d〉 Cij

(III) (ω) (18)

with

Cij
(III) (ω) ) 8π∑

m*n

ci,mn
(III) cj,mn

(III)
exp(pω/2kBT)

sinh(pωm/2kBT) sinh(pωn/2kBT)
×

{ (ω - ωm - ωn)
2

sinh(p(ω-ωm-ωn)/2kBT)
Ĵij

(III) (ω - ωm - ωn) +

(ω - ωm+ ωn)
2

sinh(p(ω - ωm + ωn)/2kBT)
Ĵij

(III) (ω - ωm + ωn) +

(ω + ωm - ωn)
2

sinh(p(ω+ωm-ωn)/2kBT)
Ĵij

(III) (ω + ωm - ωn) +

(ω + ωm+ ωn)
2

sinh(p(ω+ωm+ωn)/2kBT)
Ĵij

(III) (ω + ωm + ωn)} (19)

Jij
(III) (ω) ≈ gi

(III) gj
(III) j(III) (ω) (20)

ω2j(...)(ω) ) Θ(ω)ω exp(-ω/ωc
(...)) (21)

A(S)(ω) ) ∑
ab

P(a)|dab|2δ(ω - ωab) (22)

A(ω) ) ∑
ab

P(a)|dab|2
Rab,ab

(ω - ωab)
2 + Rab,ab

2
(23)
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transition (|a ) 2〉 f |35〉) at 2223 cm-1 (marked “*” in the
figure). Its position together with the smaller peaks around 2200
cm-1, which involve, e.g.,|a ) 3〉 f |37〉 and|a ) 4〉 f |40〉,
corresponds nicely to the weak shoulder in the experimental
spectrum. This also holds for the combination transitions in the
region 2350-2400 cm-1 (e.g.,|a ) 1〉 f |37〉, |a ) 2〉 f |40〉).
In addition an asymmetric broadening of the main peaks is
discernible. It can be attributed to transitions between states
where only the stretching/bending zero-order state is incre-
mented (e.g.,|a ) 3〉 f |40〉, |a ) 2〉 f |31〉). At least for the
bending overtone transition this asymmetry is apparent also in
the experimental spectrum.

Next we discuss the linear absorption spectrum in the presence
of dephasing according to eq 23. The three contributions to the
dephasing rateRab,ab have a rather different influence on the
spectrum in the considered region of the OD fundamental
transition. Let us assume that realistic cut-off frequenciesωc

are in the range of 100-250 cm-1. This implies that the bilinear
coupling viaHSB

(I) does not give a contribution for the relax-
ation back to the ground state. In addition it cannot trigger
effectively a transition between the states|35〉 and|29〉 due to
the linearity in{Qi}. An essential feature of the experimental
spectrum is the difference in the line width of the two main
peaks. To some extent this is due to the fact that combination
transitions are adding to the total width and that the anharmo-
nicity leads to an asymmetry toward the red side (see above).
According to eq 23, the peak heights for transitions from the
ground state|a ) 1〉 are proportional to|d1b|2/R1b,1b. From part
A of Figure 3 we realize that the intensity of the overtone (0,2,0)
is too small compared to the fundamental (1,0,0). In the present
model this is compensated if the dephasing rateR1b,1b for the
bending overtone transition is smaller than for the stretching
fundamental transition which naturally leads to a narrower
overtone band as well.

First, let us discuss the effect of the fourth-order coupling
HSB

(III) on the line width. Inspecting eq 19 we find the first term
∝ Jij

(III) (ω - ωm - ωn) to give the most important contribution
in the considered frequency range (ωn + ωn ) 1949 cm-1).
For the Ohmic spectral density and withωc

(III) ) 250 cm-1,
Cij

(III) (ω) will not change appreciably in the interval 2100-
2300 cm-1. If we assume that all fourth-order coupling strengths
are all identical tog(III) , the main difference in the dephasing
rates comes from the matrix elements of the system part of
HSB

(III) . Due to its linearity in{Qi}, the matrix elements for the
overtone transition will be generally smaller than those for the
fundamental one. Therefore,g(III) can be fixed by comparing
the relaxation time obtained after ultrafast excitation of theν50

mode with the experimental value of about 400 fs;9 the
relaxation of modeν29 is accordingly slower.

The pure dephasing rate, on the other hand, is proportional
to matrix elements of the type〈a|Q̃i

2|a〉, i.e., there is no
qualitative difference between theν29 overtone and theν50

fundamental transition. In the following we will assume that
the overall dephasing time for theν50 mode is about 100 fs,
i.e., in the range of what has been observed for PMME-H.12

For a givenγpd this fixes g50
(II). It turns out that the same

coupling strength cannot be used for theν29 mode, for it gives
an absorption overtone band which is much too broad, i.e., also
the ratio between the heights of the two main peaks is too large.
Thus we have the constraint thatg29

(II) < g50
(II).

The spectrum shown in part B of Figure 3 represents the best
compromise given the additional restrictions imposed by the
phase and energy relaxation dynamics discussed in the next

section. While the overall agreement appears to be reasonable,
details require future refinement of the model. For instance, one
might think of incorporating more modes into the relevant
system. According to Table 1, modeν8 might be a good
candidate for contributing to the broadening of the fundamental
via a combination transition. Also one should keep in mind that
the very appearance and relative height of the bending overtone
transition relies on the Fermi resonance interaction. The details
of the latter could be sensitive to additional anharmonic
interactions entering upon inclusion of more modes into the
relevant system.

4. Dissipative Dynamics

In the following we will discuss the dynamics initiated by
an external field having a Gaussian envelope of width 130 fs
and being centered att ) 0 fs. To simplify matters we make
use of the Bloch approximation to the full Redfield tensor in
which the dynamics of populations and coherences are de-
coupled.16 The equations of motion forFab have been solved
using the Runge-Kutta-Verner fifth and sixth-order method
with adaptive step size control. All states up to a transition
frequency of 3000 cm-1 have been included. The following
examples are intended to highlight the compatibility of the
parameters used for fitting the linear absorption spectrum with
the information on the relaxation and dephasing times available
from the experiment.9,12

In Figure 4 we show the population difference∆Faa(t) )
Faa(t) - Faa(0) for those eigenstates which participate appreciable
in the dynamics after resonant excitation of theνOD ) 0 f 1
(|1〉 f |35〉) transition. The population dynamics of the
eigenstates follows closely from their character expressed in
terms of zero-order states. The excitation goes dominantly into
those states having substantial OD stretch (1,0,0) contributions.
In particular the progression with respect to theν1 mode is
populated, i.e., states|35〉, |37〉, |40〉, |42〉, and|46〉 (cf. Table
2). TheT1-type population relaxation rates for these states, i.e.,
1/Raa,aa, are in the range between 300 and 350 fs as documented
in Table 2. We have estimated the overall relaxation time from
the initial decay of the total population dynamics of all (1,0,0)
and (0,2,0) type excited states to be about 400 fs which is in
agreement with the experiment.9 The slight difference with
respect to the individual relaxation times results from the
excitation of bending type states whose decay times are longer
but also from the competition between resonant excitation by

Figure 4. Population dynamics of selected eigenstates after resonant
excitation of the OD stretching fundamental transition using a Gaussian
shaped electric field with a fwhm of 130 fs and an amplitude of 0.001Eh/
eaBxamu. The relaxation model parameters are given in the caption
of Figure 3. (The states area ) 1-8 (ν1 excitations),a ) 29, 31,
34-37, 40-42, 45, and 46 (see Table 2)).
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the laser field and simultaneous relaxation. The interplay
between both processes determines the total population transfer
but also the moment at which it is achieved. Typically the
maximum of∆Faa(t) occurs during the second half of the pulse.

The depopulation of the excited states proceedsexclusiVely
via the fourth-order relaxation process. The vibrational excitation
of the ν1 mode established this way in the OD ground state is
distinctly nonthermal and mostly determined by processes where
the ν1 quantum number in the dominant zero-order state is
conserved, i.e., (1,0,i) f (0,0,i). The relaxation of theν1 mode
itself is governed by the bilinear couplingHSB

(I) . For the chosen
cut-off frequency of 100 cm-1 and the coupling strengthg1

(I) )
0.01, the time scale for thermalization amounts to several
picoseconds, see Table 2. In the experiment9 a slow relaxation
component of 20 ps was observed and attributed to vibrational
cooling. Because our gas-phase simulations30 indicated that on
this long time scale the excitation energy is likely to be shared
among several low-frequency mode a quantitative comparison
between the present model and the experiment appears to be
not appropriate at this point.

The most intriguing aspect of the experiment9 has been the
observation of an oscillatory modulation of the IR pump-probe
signal. This feature was assigned to originate from the anhar-
monic coupling to a low-frequency mode which modulates the
strength of the H-bond.9,29,30Within the reduced density matrix
formalism the coherent evolution of the relevant system can be
rigorously investigated in terms of the off-diagonal elements
of Fab. First, let us focus on the coherence related to theν50

excitation, i.e.,F1,35, which is shown in part A of Figure 5. The
dephasing ofF1,35 is determined byR1,35,1,35which gives a total
dephasing time (T2-like) of 102 fs, see Table 2. A value of about
100 fs has been set as a goal in our fitting procedure which had
to be accomplished simultaneously with the requirement for a
400 fs population relaxation and for a reasonable agreement
with the absorption line shape. In Table 2 we also report the
contributions to the coherence dephasing,Ra1,a1

/ , which are
solely due to the pure dephasing coupling inHSB

(II) (T2-like). Our
parameters suggest that the dephasing is dominated by pure
dephasing, the time scale of the latter being 121 fs in the present

case. Note that such ultrafast dephasing times for H-bonded
system have been reported from four-wave-mixing experiments
on PMME-H12 and HOD/D2O.11

Let us turn to the coherences with respect to theν1 mode. In
Figure 5 we show|F35,37| and|F35,40|, i.e., those matrix elements
describing coherences within the vibrational progression building
upon the OD fundamental transition (cf. Table 2). In terms of
the Redfield tensor elements these coherences decay very rapidly
on a time scale of 60 and 61 fs, respectively. The dominating
pure dephasing contribution is 69 and 75 fs. Note that also the
coherence with respect to the ground state decays on this time
scale via the pure dephasing mechanism (Table 2). This suggests
that the damped oscillations observed in ref 9 are most likely
due to coherent dynamics in the OD stretch and bending ground
state. This can be clearly seen from part C of Figure 5 where
theν1 coherences|F1,2| and|F1,3| are plotted. According to Table
2 the coherence decay times being dominated by pure dephasing
are about 600 fs. In fact the coupling constantg1

(II) has been
chosen such as to give a good agreement with the value
estimated from the experiment.9 Note that within the Bloch level
of description there is neither coherence transfer nor conversion
of populations into coherences due to the system-bath interac-
tion.16 In other words, the ground state coherences are estab-
lished only by the interaction with the IR laser field.

So far we have considered the dynamics after excitation of
the OD stretch fundamental transition. From the experimental
point of view much less is known for excitation of the bending
overtone transition. In fact, the excitation conditions in ref 9
where such as to excite either to the red of the OD stretch
fundamental or between the two main absorption peaks. For
the latter case some excitation of the bending overtone is to be
expected; however, it is hard to draw any conclusions about
the related relaxation and dephasing dynamics from the present
data. Our choice of parameters for the coupling of theν29 mode
to the bath therefore is based on the linear absorption only. In
section 3, however, we put forward the argument that for the
given system-bath interaction HamiltonianHSB

(III) , which can
be viewed as the lowest order contribution in the system
coordinate, the population relaxation of the bending overtone
will always be slower than for the stretching fundamental
transition. This is reflected in the relaxation times collected in
Table 2 and illustrated in Figure 6. Besides the overall slow-
down in the excited-state relaxation we note that progression
of the ν1 mode building upon the bending overtone is excited
(|29〉, |31〉, |34〉, |36〉, ...), but also states involving modeν50.
Excitation of the ν1 progression implies the possibility of
coherent vibrational motion with respect to this mode. In fact,
the dynamics of the coherences looks rather similar to that

Figure 5. Coherence dynamics for the parameters of Figure 4: (A)
|F1,35|; (B) |F35,37| (solid), and|F35,40| (dashed); (C)|F1, 2| (solid) and
|F1,3| (dashed).

Figure 6. Same as Figure 4 but for excitation of the bending overtone
transition.
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obtained for excitation of the stretching fundamental transition
in Figure 5 (not shown). In other words, due to the Fermi
resonance interaction between the bending overtone and the
stretching fundamental transition, vibrational progressions are
present forboth transitions.

Nevertheless, we should point out that the proposed behavior
of the bending overtone transition requires experimental veri-
fication coming, e.g., from two-color pump-probe experiments
focusing directly on the bending vibrations. This would enable
us to refine the parameters describing the relaxation of the
bending mode which at this point follow solely from the fit of
absorption spectrum. On the other hand, at present we cannot
exclude the possibility of alternative relaxation mechanisms
involving, e.g., a cascading such as (0,2,i) f (0,1,i) f (0,0,i).
For example, using a linear coupling model, Rey and Hynes35

determined the pathway for the vibrational relaxation of HOD
in D2O to involve the first overtone and fundamental bending
transitions.

Summary

With the advent of ultrafast laser source in the mid-IR it
became possible to gain insight into the dynamical processes
which are normally hidden under broad condensed phase spectra
of intramolecular hydrogen bonds. The available knowledge
about dephasing and relaxation time scales requires to go beyond
the theoretical level of simple model potentials supplemented
by ad hoc dephasing rates. In addition the observation of
coherent dynamics demands for a rigorous quantum mechanical
treatment of the relevant degrees of freedom.

In the present contribution we have combined information
from quantum chemical calculations of the normal modes and
anharmonic couplings in carboxy-deuteratedo-phthalic acid
monomethylester to establish a microscopic system-bath model
which was treated with the formalism of the reduced density
matrix. It was shown how a consistent set of parameters
characterizing the system-bath interaction can be obtained by
combining information from stationary IR absorption and
ultrafast pump-probe and four-wave-mixing spectroscopy. For
the considered system we arrived at the following conclusions:

•The double peak structure of the linear absorption spectrum
results from a Fermi resonance interaction between the OD
stretching fundamental and the bending overtone transition. The
line widths which mask the details of the underlying stick
spectrum are determined by pure dephasing and fourth-order
relaxation processes.

•The ultrafast population relaxation after excitation of the OD
stretching fundamental transition can be explained with the help
of a fourth-order mechanism including two intramolecular
modes plus a solvent phonon. For the relaxation of the bending
overtone excitation we predict a slower time scale based on
coupling matrix arguments.

•The dephasing of the OD stretching fundamental transition
can take place on a time scale of 100 fs and is mostly determined
by a pure dephasing process.

•As a consequence of the Fermi resonance vibrational
progressions exist for the OD stretching fundamental as well
as for the bending overtone transition. Therefore an ultrashort
laser pulse will be able to excite a coherent wave packet with
respect to the low-frequency vibration whose dynamics modu-
lates the hydrogen bond. Within the present model, however,
the dephasing of these coherences in the OD excites state is
very rapid. On the other hand, the low-frequency vibrational
coherences created by the laser pulse in the OD ground state

can persist for about 2 ps. The overall thermalization of this
mode can take place on an even longer time scale.

These results extend our previous gas-phase studies29-31 and
provide a microscopic picture for the essential experimental
findings of Stenger et al.9 A more detailed comparison between
theory and experiment would require, e.g., calculating nonlinear-
IR response functions.45 Further testing of the model as well as
its future refinement, for instance, with respect to the choice of
he possible relaxation processes, has to await the availability
of new experimental data scrutinizing, for instance, the dynamics
of the bending vibration.
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