ADDITIONS AND CORRECTIONS

1996, Volume 100

Murthy S. Gudipati^{*,†} and Daniel H. Katayama^{*,‡}: Corrected Rate Constants for Collision-Induced Electronic Transitions from the N₂ $a^{1}\Pi_{g}$ (v = 0 and 1) Levels.

Pages 7854-7858. Several years ago, one of the present authors (DHK) and colleagues published two papers^{1,2} on the collision-induced electronic transitions (CIET) between the nested vibronic levels of the electronic states $a^{1}\Pi_{g}$ and $a'^{1}\Sigma_{u}^{-}$ of N₂. Using a double-resonance-enhanced multiphoton ionization (REMPI) technique, rate constants and branching ratios between the adjacent vibrational levels of the *a* and *a'* states were determined in these studies.

Recently, one of us (MSG) found an error in the straightforward numerical analysis of eq 8 in ref 2. This arithmetical error led to incorrect rate constants being reported for $N_2a(v = 1)$ in Table 1 of this reference. We correct these errors in the present work because of the important role played by these rate constants in modeling the earth's upper atmosphere.³

With the correct values for eq 8, eq 14 in ref 2 will become

$$A(t) = A'_{0} \{ 19.23 \exp(-83.8k_{1 \to 1}[Q]t) + 63.8 \exp(-0.77k_{1 \to 1}[Q]t) \}$$
(1)

and the second term dominates as a single exponential function, resulting in eq 16 of this reference being written as

$$1/\tau = 0.77 k_{1 \to 1}[Q] \tag{2}$$

Using these equations, the rate constants and cross sections for $N_2a(v = 1)$ given in Table 1 of ref 2 are corrected and

TABLE 1:	State-Specific Rat	e Constants :	and Cross	Sections
for Quench	ing the $N_2 a^{l} \Pi_{g}(v)$	= 0 and 1) L	evels as a	
Function of	Collision Partner	at 295 Ka		

data for $v = 1$									
collision partner	$k_{1 \rightarrow 2} b$	$\sigma_{1 \rightarrow 2}$	$k_{2\rightarrow 1} b$	$\sigma_{2 \rightarrow 1}$	$k_{1 \rightarrow 1} c$	$\sigma_{1 \rightarrow 1}$			
helium argon nitrogen	7.8 19.5 48.7	5.8 33 74	25.3 62 164	19.5 103 245	0.39 0.97 2.53	0.29 1.56 3.9			
data for $v = 0$									
collision partner	$k_{0 \rightarrow 1} c$	$\sigma_{0 \rightarrow 1}$	$k_{1 \rightarrow 0} c$	$\sigma_{1 \rightarrow 0}$	$k_{0 \rightarrow 0} c$	$\sigma_{0 \rightarrow 0}$			
helium	0.5	0.4	3.9	3.0	0.7	0.5			
argon nitrogen	0.8 1.7	1.3 2.6	6.6 14.3	10.8 21.5	1.2 2.6	2.0 3.9			

^{*a*} The rate constants, *k*, are in units of 10^{-11} molecule⁻¹ s⁻¹ cm³, and the cross sections, σ , are in 10^{-16} cm². ^{*b*} The estimated error for these rate constants is ± 1 . ^{*c*} The estimated error for this rate constant is ± 0.1 .

summarized in Table 1 here. We also include the rate constants and cross sections for $N_2a(v = 0)$ at room temperature given in Table 1 of ref 1, for which erroneous values of $k_{1\rightarrow0}$ and $\sigma_{1\rightarrow0}$ have been corrected.

Finally, in section IV (Discussion and Conclusions) of ref 2, there are typographical errors. The second sentence should read "... deactivation path from a(v = 1) is to the a'(v = 2 and 1) levels, respectively." Similarly, the fourth sentence should read, "The branching ratio from a(v = 1) to a'(v = 2 and 1) is independent of these collision partners...".

References and Notes

(1) Katayama. D. H.; Dentamaro, A. V.; Welsh, J. A. J. Chem. Phys. **1984**, 101, 9422–9428.

(2) Katayama, D. H.; Dentamaro, A. V.; Welsh, J. A. J. Phys. Chem. **1996**, 100, 7854–7858.

(3) Eastes, R. W. J. Geophys. Res. 2000, 105, 18557-18573.

10.1021/jp021090s Published on Web 07/10/2002

^{*} To whom correspondence should be addressed.

[†] Institute of Physical Sciences and Technology, University of Maryland, College Park, MD 20742 (also at the Institute of Physical Chemistry, University of Cologne, Germany). E-mail: murthy.gudipati@sri.com.

[‡] 1525 Ohialoke St., Honolulu, Hawaii 96821-1413. É-mail: janedan@ lava.net.