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We discuss at some length the relationship between solutions to the time-dependent, multiple-well master
equation and a macroscopic description of the chemistry in terms of phenomenological rate coefficients. In
so doing, we derive two different methods of obtaining the rate coefficients from the eigenvalues and
eigenvectors o6, the transition matrix of the master equation. We apply the first of the two methods to the
C,Hs + C;H, and GH3 + CgHs reactions, problems we have treated previously using the “experimental” (or
exponential-decay) approach, and obtain considerably more and somewhat different results than we obtained

in our earlier work.

I. Introduction

Many reactions in combustion, particularly those involved
in the formation of aromatic compounds, polycyclic aromatic

compounds (PAH), and soot, are complicated processes that tak

place over multiple, interconnected potential wéllSuch
reactions may be chemically activated, or they may be thermal

dissociation/isomerization processes. Some of the former are

“collisionless” in that the intermediate complexes are so short-
lived that they effectively do not suffer any collisions under

conditions that are normally of interest. Such reactions typically
involve a small number of atoms and relatively shallow potential

wells, resulting in small densities of states. The reaction between

NH, and NO is the classic example of such a “collisionless”
reactiont—2 However, intermediate complexes more commonly
live long enough to suffer numerous collisiorsin such cases,
any of a number of stabilized or bimolecular products may
result. For such reactions, it is necessary to solve the time-
dependent, multiple-well master equation in all its complexity
in order to predict rate constants and product distributigng’
However, obtaining rate-constant information from such an
analysis has not proven to be a simple task.

Let us illustrate concretely the issues involved in obtaining
(product-specific) rate constants from solutions to the master

equation in the general case. It is normally desirable to cast the

master equation in the form

dwi]_

p G|w

O 1)
where |wlis a vector containing the populations of all of the
relevant states an@ is a real, symmetric matrix, the transition
matrix of the master equation in this form. The solution to eq
1 can be written as

N
|me:Z§ﬂqﬂwwmm )
pA

where |w(0)Ocontains the initial condition anfiJand 4; are
the eigenvectors and eigenvalues@fi.e., Glg = 4j|gillj =
0, ...,N. The operatofl' = Z]-N:Oeﬂﬂgjlj]g” is the time evolution
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operator of the system once the eigenvalues and eigenvectors
of G are found, the time evolution of the state populations can
be determined from eq 2 f@ny initial condition by operating

on Iw(0)Cwith T.

Typically, N (or N + 1) is a very large number. However,
under conditions where one might expect to be able to define
rate constants, only the “normal modes of relaxation” corre-
sponding to algebraically the largest eigenvalue§ di.e., the
least negative ones) describe chemical chaigés. The
remainder describe the relaxation of the internal degrees of
freedom of the chemical species under consideration. These
latter degrees of freedom normally (but not always) relax much
more rapidly than the chemical ones. Such a separation of time
scales is generally thought to be a necessary condition for a
phenomenological description of the chemistry to agpty?2
i.e., a description in terms of phenomenological rate constants
and macroscopic rate laws. If there &species, or chemical
configurations, in a problem, there are

Nchem= S-1 3
chemically (or kinetically) significant eigenpairs (CSE’s)@f
in addition tolo = 0 and|golJwhich describe a state of complete
thermal and chemical equilibrium. At least at low temperature,
where thel;'s are distinctly different in magnitude, each of the
CSEs describes an “equilibration”. The first of these normal
modes to relax establishes chemical equilibrium between two
species, although other products may be formed during the
relaxation process. The second mode to relax describes the
equilibration of these two species with a third, and so on.
Clearly, it takesS — 1 such normal modes to relax the entire
system to chemical equilibrium.

At the same time, for a problem wit8 distinct chemical
configurations (or species), there dgforward rate constants,
where

S-1
n

n=

_Ss-1
—

Ny (4)

and an equal number of reverse rate constants or equilibrium
constantd. If S= 2, i.e., one reactant and one product, both
NchemandNg are equal to 1, and it is trivial to determine both
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the forward and reverse rate constants fram the lone
chemically significant eigenvalue, and the equilibrium constant.
However, ifS= 9, as was the case in our recent investigation
of the propargyl (gHs) recombination reactio\chem= 8 and
Nk = 36! In the present article, we discuss how such rate
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corresponding to any one of the wells may actually be the
reactant in the results presented below. In any event, the
bimolecular products are always assumed to be an “infinite
sink”, in which population can only accumulate and from which

molecules can never return to the wells.

constants are related to the CSEs in the general case. Specifi- As in our previous work, we restrict ourselves to a situation

cally, we propose 2 methods of obtainialijof the rate constants

in a given problem once&s has been diagonalized at any
temperature and pressure. We apply the first method to two
problems that we have addressed previously, t#ié;G- CsH3

and GHs + CyH, reactions, obtaining considerably more
information than we were able to obtain before.

We should note at the outset that, in our previous wofk,
we have adopted the point of view of an experimental kineticist
in looking for exponential decays of a “deficient” reactant in
the time evolution of the system, associating such decay

constants with pseudo-first-order rate constants and the products

formed on the same time scale with the products of an

elementary reaction. Of course, such an approach is valid and
yields good rate constants as long as the chemically significant

eigenvalues o6 are well separated in magnitude. However, if

the eigenvalues are close together (even within 1 or 2 orders of

magnitude), the approach can be prone to error. This point is
discussed below.

Il. The Master Equation and Its Solution

For the purposes of the present discussion, it is useful to keep
in mind a potential energy surface (PES) such as those shown

diagrammatically in Figure 1 for £13+C,H, and Figure 6 for
CsH3+CsHs. The master equation for such problems takes the
form of a set of coupled integredifferential equations:

dny(E)
dt

=Z f;; P.(E,E)n(E) dE' — Zn(E) —

M M
> K(ENE) + S k(BB — ky(E)(E) +

Il JZI

Kriki(B)F(E)ngny, — K (E)n(B) (1 =1, ...,M) (5)

In these equationd,is the time,Z is the collision number per
unit time, n(E)dE is the number density of molecules (or
complexes) in well with energy betweek andE + dE, Eg is

the ground-state energy for wellM is the number of wells
(three (Ill) in Figure 1 and seven (VII) in Figure &(E, E')

is the probability that a molecule in welvith energy between

E' andE' + dE' will be transferred by collision to a state with
energy betweek andE + dE, k;(E) is the microcanonical rate
constant for isomerization from wejl to well i, kg(E) and
kii(E) are the microcanonical rate constants for dissociation from
well i to the bimolecular “reactants” and products, respectively;
ng and n, are the number densities, respectively, of the
“deficient” and “excess” reactants, amG; is the equilibrium
constant for stabilization of the reactants into vi€lihe function
Fi(E) is the equilibrium energy distribution in well at
temperaturer:

Fi(E) = p(E)e "F1Q(T) (6)
whereQ;(T) is the vibrationat-rotational partition function for
theith well. In these definitions, and in the discussion below,
we frequently refer to the bimolecular fragments on the left of
Figures 1 and 6 as “reactants” and those on the right as
“products”, consistent with the terminology in our previous
work, although either the bimolecular reactants or an isomer

in which the reacting species are highly dilute in an inert bath
gas:

Ng=>n (1)
whereng is the number density of the bath gas (eitheroNHe

in this work) andneacis the number density of the reactant,
eitherng or that of one of the isomers of;8s shown in Figure

1 or of GHg shown in Figure 6. Generally we assumgto be

of such a magnitude that the following inequalities hold:

(8)

However, for dissociation/isomerization processes, we could take
Nm << Nreac @nd still get the same results for rate constants.

The problem specification is completed by adding an equation
for ng:

reac

nB > nm > nreac

dng

M
w2 Je. ki(E)N(E) dE —

M
M Y Ker J, Ka(E)F(E) dE (9)

Implicitin eq 9 is the assumption that the bimolecular reactants
are maintained in thermal equilibrium throughout the course of
the reaction even though the complexes are not.

As noted in the Introduction, it is convenient and useful to
cast the problem posed by egs 5 and 9 in a slightly different
form 59 First, letXgr(t) = Nr(t)/Nread0), X (E,t) = ni(E,t)/Nread 0),
andyi(E,t) = x(E)/fi(E), wherefi2(E) = Fi(E)Qi(T). Then, after
approximating the integrals in eqs 5 and 9 as discrete sums using
the left-hand rectangle rule with an energy spaciigwe can
express them in the concise form given as eq 1 in the
Introduction:

%|W(I)D= Glw(t)O

where |w(t)Tis the vector
W)=

nm 1/2 T
Yi(Ea)s - Yi(B), --¥i(Eq), --¥i(E), v(QR—aE) XR] (10)

G is a real, symmetric matrix, ané in (10) is the energy of
thelth grid point. Clearly,|w(t)Thas 1+ z{"':, Ni components,
whereN; is the number of grid points in the energy space of
well i, andG is a square matrix of the same size.

From the solution vector at any time, one may obtain the
relative macroscopic population(t), Xi(t), and Xy(t), where

X(t) = . X(E) dE (11)

M
Xo() = 1= Xe() — 3 X0

(12)
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The function Xy(t) is the fraction of the initial reactant whereg is thelth component of th¢th eigenvector ofs and
concentration that has formed bimolecular products at ime G = [gj|wa(0)0is the scalar product dig;Owith the initial
obviously, it refers to either fragment. Equation 12 is a condition vector|wa(0O)C] corresponding to the “reactant” being
consequence of the conservation of mass; we impose it directlyA. For our purposeswa(0)Calways corresponds to a normalized

because the “infinite sink” approximation for the bimolecular Boltzmann distribution in welA = I, ..., M, or it corresponds
products results in the removal of,(t) from the vector of to Xg(0) = 1.
unknowns,|w(t)C] thus, we must calculat&y(t) directly from First, consider the case whe#e corresponds to a well.
eq 12. Multiplying eq 15 byfi(E)) and integrating (in discrete form)
As noted in the Introduction, the solution to eq 1 is with respect toE over alll corresponding to well (i = I, ...,
M) results in
Ni+..Ny+1
\w(t) = Z &' g,(1g;\w(0) O] (13) Nehem
= Xi(t) = Z eijtcj(A)éEZ fi(E)g; (16)
= €l

Let us review some of the properties of this solution. Because
G is Hermitian (real and symmetric), its eigenvectors are Equation 16 can also be written as
orthogonal, and its eigenvalues are real. However, not only are

thel;’s real, they must all be negative; otherwise the populations Neperm
determined by eq 13 would go to infinity &s—~ . Note that X(t) = e’“t(—AX--(A)) (17)
the sum in eq 13 starts pt= 1 and nofj = 0. The equilibrium ' ; I

eigenpair o and|goll)does not come out of our solution because
of the “infinite sink” approximation. As a result, all of the terms  \yhere

in eq 13 go to zero as— o, andXp(») = 1 from eq 12. As

long as no two of thel's are equal, the terms in eq 13 are A _ _~A

linearly independent furjmctions of time. This result has important A% =G 6E;f‘(E')gﬂ (18)
consequences. We can cast eq 12 in a different form by
differentiating it with respect to time and then integrating it over

o . was defined above, except that now we have added the
some specific time interval, i.e.

superscripA to distinguish different possible initial conditions.
y Differentiating eq 17 with respect to time, we get

AXg+ AX,+ S AX =0

dxi Nchem
— = ZA,. i'(=ax?) (19)

Because of the linear independence of the terms in eq 13, this a S

conservation law must apply not only globally but to each term

individually.22-23 Taking the time interval to be froth= 0 to Evaluating (19) at = 0 yields the following result:

t = o, we can write
Nchem

%o—— A AX® 19
dt()_ ;j ij (19a)

M
(AXR + AX, + Z AX ] =0 (14)
1= i

o . i _Now, start withi = A so that eq 19a applies to the reactant
where the terms in this equation now refer to changes in relative

concentrations of the various chemical components as a dX,, Nehem
consequence of the time evolution of tile eigenpair front —0O0=-5 1 AXA-(A) (20)
= 0tot = . In general, we are interested in applying this dt = J :

result only to the $ — 1) chemically significant eigenpairs.

The macroscopic rate law that applies¥gatt = 0 (whenA
Ill. A Simple Method of Determining the Rate is the reactant) is
Coefficients

We are primarily interested in the rate constant regime, i.e., % - _
, ) © (0) = —kaXa(0) (21)
the regime where one can anticipate that a description of the dt

chemistry in terms of macroscopic rate laws and phenomeno- _ _
logical rate constants might apply. Consequently, we assumewherekra is the total rate constant for removalafComparing
that the normal modes @& corresponding to relaxation of the ~ eds 20 and 21 witiXx(0) = 1, we deduce a simple expression
internal energy relax much faster than tBe- 1 modes that  for kra

describe chemical change. Focusing on the chemical time scales,

let us definel; to be the largest eigenvalue Gf(i.e., the least Nehem
negative one)l, to be the next largest, etc. Of coursgl) krp = ZAJ AXAJ-(A) (22)
|g20] ... are the corresponding eigenvectors. After the internal =
degrees of freedom have relaxed, ttie component ofw(t)0]
can be written as It should be kept in mind that macroscopic rate laws such as
eq 21 do not actually apply at= 0; instead, they refer to a
Nehem time that is extremely short compared to tBe- 1 chemical

w(t) = Z élitgj,Cj(A) (15) time scales but is long compared to the internal relaxation time
= scales.
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Next, consider eq 19a with= A and compare it with the
phenomenological rate law fof att = 0 whenA is the reactant:

dX

ot (0= kuXu(0) = ky (23)
where ks is the A — i rate constant. Equating the two
expressions for X (0)/dt, we get

Nehem

ky=—9 4 AX® (24)
Al ]Z | ij

If we want to calculatekar, the rate constant for producing
bimolecular “reactants” from well A, we must consider eq 15
with | = N, + ... + Ny + 1, i.e., the last component of the
eigenvectors

nm 1/2 Nchem
X0 =Y ¢ei'g,c®,
(QRméE) R() JZ gj| |
or
Nchem
Xg(t) = — Z ei'AXg,® (25)
&
where
Q. OE\12
AXgj= _( F:"Im 9 G (26)
m

As above, differentiating eq 25 with respect to time, evaluating
the resulting expression at= 0, and comparing that with the
phenomenological rate law fogz att = 0, we get an expression
for kar that is the same form as those derived above

Nchem

Kag = — Zij AXg,® (27)
£

It should also be clear that one can calculagefrom a similar
expression

Nchem

— Q)
Knp = Z X (28)
£

except thatAXy; must be evaluated from eq 14 with the other
terms in (14) given by eqgs 18 and 26.

If the reactant is R, the derivation of the rate constants is the
same as those given above except that the phenomenological

rate equations at= 0 are

dXg
at (0) = —krr Ny Xz(0)

dXx; .
5 O = kel Xg0) (=1,....M) (29)

and

dX,
E(O) = _kanmXR(O)

which results in the following expressions for the rate constants:

Klippenstein and Miller

Nchem
kir=— ) 4 A%
N, &
Nchem
ke =—— Y 4,A%,® (30)
N, =
Nchem
- _ R)
kRp B ;LJ' AXloj
Ny, =

that is, there is simply an extra factor oh}/when the reactant
is R, because the reaction is actually bimolecular in this case.
It is a remarkable, and somewhat surprising, result that all
of the first-order and pseudo-first-order (e.dginm) rate
constants can be expressed in such a simple, generic form,
typified by eq 24. Let us show that rate constants for some well-
known, simple cases reduce to this form.
Consider a simple isomerization or dissociation reaction,
A=B, for whichKag is the equilibrium constant for the reaction
as written. The rate constant for the forward reactidf @

. AKag
1+Kyg

Kag = (31)

Of course, there is an analogous expression for the reverse rate
constant that can be obtained from the detailed balance condition

Kae _
Kea
Considering A to be the reactant, note tKag = ng(e0)/na()

and na(e) + ng(0) = na(0). Using these identities in eq 31,
one gets

(32)

I‘(AB

Ng()

(33)

whereAny = na() — na(0) andXa = na/na(0). Clearly, eq

33 is the equivalent of eq 22 for the special case wisere?2
andNcrem= 1. Moreover, if the equilibrium constant becomes
very large Kag — « andAXa — —1. Such is generally assumed

to be the case in studying high-temperature dissociation reac-
tions. In such reactions, the rate constant takes the particularly
simple form

Kag = =44 (34)
Clearly then, the well-known results given in eqs 31 and 34
are just special cases of the more general expressions derived
above.

It may appear at first glance from the derivation given here
that the thermal rate coefficients depend on the initial energy
distribution of the reactant. However, that is not the case. The
energy-relaxation eigenpairs always establish the appropriate
distribution prior to the reaction taking place, thus eliminating
any “initial-condition dependence” of the rate coefficients.

IV. A Different Approach

The seminal work on the topic of this article was done by
Bartis and Widori! in the early 1970s and largely overlooked
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thereafter. Bartis and Widom take a completely different whereB = A~L. In component form, eq 41 is

approach to the rate-constant problem than the one we have

employed above. Although their expressions for the rate >

constants are more complicated and less physically appealing Y= ijl X (42)
than those given in the previous section, their approach might =
be considered more general. It thus provides a foundation and
a context for our analysis. Consequently, we believe it is worth ;. eq 37, one obtains equations for the rates of formation of

con3|d_er|ng in some deta_|l. . the populations in terms of the populations themselves:
Bartis and Widom consider a master equation that represents

whereby are the elements @& (i.e., A™1). Substituting eq 42

(macroscopically) a system of first-order chemical reactions, dX, s1s
although the extension to pseudo first-order processes is trivial. = Z le a bjl X (43)
Moreover, they consider the “full” master equation, not the d S &

contracted description that results from making an “infinite sink”
approximation. This difference makes comparing their results Equation 43 is a closed system of first-order differential
with ours (numerically) problematic, although our approach is equations describing the time evolution of tSenacroscopic
applicable generally with or without this approximation. Note Populations. They have the mathematical structure of the
that we could incorporate the bimolecular products into our Phenomenological rate law
master equation and retain linearity by taking one of the
fragments to be in great excess. In the discussion below, the dX
term “species” in such a case should be taken to mean the E: kiX =% ) ki (44)
. . . Z| Z|
deficient product or reactant. However, the most important
difference between our approach and that of Bartis and Widom it e identify the first-order or pseudo first-order rate constants
is that the latter consider the time evolution of the system from yiip
a single initial condition (although that initial condition is
arbitrary), whereas the approach we have taken above considers S-1
multiple initial conditions in the limit that = 0. ki = Z)ljaij by =i (45)
On the chemical time scales, the solution to the master i=
equation (analogous to eq 17) can be written as

and
Nchem 1
xM=YSae" (i=1I.,MR 35
ZI J=
whereajp = Xi() is the equilibrium population of thi¢h species

wherek; is thel — i rate constant anéty; is the total rate
constant for removal of specigs We have used egs 45 in
.= —AX, (j=0) (36) conjunction with the infinite sink approximation to calculate
& i : : late
rate constants in some selected cases and obtain results identical

We have removed the superscript frohX; because we are  © those obtained using the methods of section Ill. However, to
now restricting ourselves to a single (but arbitrary) initial 40 SO, we must “fill out” theA matrix by calculatingAX;; from

condition. Differentiating eq 35 with respect to time, we get €4 14, takingi() = 0 fori = p, and setting¢,(«0) = 1, since
these quantities do not come directly from the eigenvectors of

and

dX;  Nenem our G matrix. In any event, this iBIOT the approach taken by
—= Z)lj a; it (37) Bartis and Widom.
a5 Bartis and Widom were not only interested in deriving
) expressions for rate constants, they were also interested in
It should be remembered thag = 0 so that thg = 0 term  showing that those rate constants satisfy detailed balance (eq
does not actually appear explicitly in this equation. Now, eq 32). This motivated them to derive approximateorthogonality
35 can be written in the form property satisfied by thejj’S:
Nchem 2
_ S a; & S a
X = ;aij Y (38) s =0y - (46)
= =1 &p =1 &o
where It serves no purpose to derive this property here, although we
— it 39 comment briefly below on the assumption on which it is based.
u= (39) Defining hj; as
Equation 38 can be viewed as a set of linear algebraic equations /\/—
for the S ¢j’s, which in matrix form is hij _ g /8o (47)
N,
i
IXO= Alh (40)
) ) whereN,; is given by
whereA is theS x Smatrix whose elements agg. As long as
A is not singular, we can solve eq 40 fil S 5 172
N, = a3y, (48)
|vO= B|XO (42) =
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equation 46 becomes

hy by = 0 (49)

=
or in matrix notation
H'H = (50)

wherel is the identity matrix. Thusi=! = HT, andH is unitary.
Solving (47) fora; and using the result in egs 38 and 37, we
obtain

s-1
)@/\/31—0: Zhij N; 7 (51)
£

and

(x Iao) = Z’zj N o, (52)
In matrix notation, eq 51 can be written
X/ /o= HINO (53)
Proceeding as before, assumirdgs not singular
INoC= H Y X/ /a0

= HT|X//a,0 (54)

In component form, eq 54 can be written as

Zh X, I\
= Zsh” X I/ag (55)

SubstitutingN;y; from eq 55 into eq 52, we get an expression
analogous to eq 43 above

= — Ah
dt Z (aio) XI ]Z j IJ (56)

For| = i, one can identify thé — i rate constant

\/— Z)i] ,, (57)

where

_ % %()

ey X(x)

The reverse rate constant can be obtained by interchamging
andl in eq 57, i.e.

ky = \/_le uhlj

and thus

Klippenstein and Miller

ﬁ = @ =K; (58)

Ki Ki

sinceK; = 1/K;. Therefore, detailed balance is satisfied by the
rate constants.

Applying the Bartis-Widom formulas (with the infinite sink
approximation) for the rate constants (eq 57) to our problem is
complicated by the appearance af)"?in the denominator of
the definition ofh;, eq 47. With the infinite-sink approximation,
ajo = 0 fori = p, andag = 1. Thus, theh;'s blow up fori =
p. However, in our own derivation of eq 46, it@@ that appears
rather thargajp, and consequentlyQ; appears instead o in
the denominator of the definition dfj. In the infinite sink
approximationQ, — « (another complication), but it may be
possible to evaluate rate constants from eq 57 in this limit. In
any event, we have not pursued this approach and have no
particular interest in doing so. It is much easier to evaluate the
rate constants from the expressions derived in the previous
section, or from eq 45, than it is to evaluate them from eq 57.
The value of the BartisWidom analysis is that it shows that
the chemistry embedded in the multiple-well master equation
reduces to ainiqguephenomenological description in terms of
macroscopic rate laws and rate constants sadisfy detailed
balance at least as long as the energy relaxation eigenvalues
are much smaller (more negative) than the chemically significant
ones. Note that the uniqueness of solutions to the master
equation, given a set of initial conditions, and the invertibility
of A andH guarantee that the rate constants are unique.

The Bartis-Widom analysis justifies the results given in the
previous section, in which it waassumedhat a phenomeno-
logical description (satisfying detailed balance) would apply; it
also justifies (or at least adds credibility to) the identification
made in deriving eq 45. The infinite-sink approximation in the
multiple-well case is a complication. However, it has been
shown that, for simple dissociation/recombination reacttbns
and for bimolecular reactions giving bimolecular products over
a single welk® the infinite sink approximation gives good rate
constants that satisfy detailed balance. We expect that the
derivations in these single-well cases can be extended to cover
multiple wells. For the present, we content ourselves with
checking our results numerically, where it is possible, to see if
detailed balance is satisfied. All our checks indicate that it is.

Bartis and Widom’s use of a quantum mechanical analogy
to derive eq 46 obscures somewhat the assumption on which it
is based. Stated simply, the assumption is that the formation
(or removal) rate of molecules in any state of any species,
through the propagation of any CSE, is proportional to the
relative population of that state of that speciestlirermal
equilibrium If every chemical species remained in thermal
equilibrium throughout the course of the reaction, this assump-
tion would be satisfied exactly. However, that is not the case.
Nevertheless, it is probably true that the results that derive from
the assumption will be compromised only if states that are
heavily populated at equilibrium have that population signifi-
cantly perturbed by the reactihThis is likely to happen only
when the rate constant approximation itself begins to fail.
Therefore, we expect eq 46 to hold over a wide range of
conditions, as suggested by Bartis and Widom.

V. Application to C,H3 + C,H, — Products

The potential energy surface (PES) used in our previous®work
on this reaction is shown in Figure 1. For the rate constants
presented below we have used a valuEgf= 5.22 kcal/mol,
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10 g i dominant product of the reaction, in conflict with our previous
5 N n-C4Hs result, which showed thatC4Hs was the dominant product at
9 o /' T~ p=1atm A T~ 700 K forp > latm. This latter result was a consequence
@ ; of a rapidn-C4Hs — ¢c-C4Hs thermal isomerization, whose time
3 1ot ] constant begins to be comparable to the characteristic time for
%’ " Xr(t) decay in this temperature range (both ar&02 s). In
ET 7 general, the temperature range 656<KI < 900 K, where the
E w0 F _ eigenvalues in Figure 9 of ref 5 are all very close together in
:“’, C4H,+H AN magnitude, is a regime of shifting equilibrium. First, the reaction
1078 | 4 C,H3 + CH, == n-C4Hs begins to shift in favor of the reactants,
A and then GH3 + CyH, == ¢-CyHs follows suit. ForT > 900 K,
1071 : 00")05 00(')01 00;15 0(;02 00:)25 . the only observable products argHG + H, primarily because
' ’ ’ . ) 0003 0.003 of this equilibrium shift. These products are principally a

1T (K) consequence of the direct reactionHg + CoH, — C4H4 +
H, although at very high pressure there is a contribution from
the secondary dissociation ofC4Hs.

In our previous work, we did not obtain thermal rate
whereEy; is the threshold energy for transition state 1 (TS-1). coefficients for isomerization and dissociation, because the
This is the value oEy; for which we obtained good agreement methods employed did not lend themselves to determining such
with total rate-constant measurements over a wide range ofrate constants. However, using the methods of section IIl, we
temperatures and pressures in our previous analysis. Other PE8an obtain them quite easily. Dissociation/isomerization rate
parameters remain the same. constants are given for-C4Hs, c-C4Hs, andi-C4Hs in Figures

Figures 2-5 show rate constants for all the possible reactions 3—5, respectively.
(except those where 84 + H are the reactants) obtained by Interestingly, although it was to be expected, the
the methods of section Il for two different pressurpss 30 n-C4Hs == c-C4Hs isomerization is the dominant reaction for
Torr andp = 1 atm. The first pressure is typical of low-pressure both c-C4Hs andn-C4Hs at both pressures up b~ 1000 K.
flame experiments, and the second is that of normal, atmosphericFor c-C4Hs, isomerization is the dominant channel at all
pressure combustion. The results for th&lg+ C,H, reaction temperatures and pressures considered, whereas dissociation of
are largely the same as those obtained in our previous workn-C4Hs begins to be competitive with isomerization for>
— n-C4Hs is the dominant product at low temperature for these 1000 K. If one were interested in measuring the dissociation
pressures, and 8, + H is dominant at high temperature. rate constant for eitherC,Hs or n-C4Hs directly at, for example,
However, the present results indicate that4Hs is never the T =800 K, it would be impossible to do. TheC4Hs == ¢-C4Hs

Figure 2. Thermal rate coefficients for £l; + C;H, — products (a)
p =30 Torr (b)p =1 atm.
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Figure 4. Thermal rate coefficients for isomerization and dissociation

of c-C4Hs (&) p = 30 Torr (b)p = 1 atm. . . .
hydrocarbons, which frequently have relatively low-lying

isomerization barriers.

Although the two dissociation channels have similar rate
constants, Figures 3 and 4 show thatlg+ C,H, is the favored
1 channel for bothc-C4Hs and n-C4Hs at the temperatures and
- pressures shown, more so@t= 1 atm than ap = 30 Torr.
Increasing the pressure at any temperature increasingly favors
the GHs + CyH; channel. If one were to reduce the pressure
1 to the point where the low-pressure limit is reached, the only
- products would be §H4 + H, because they are the energetically
favored channel, and the channel with the lowest threshold
energy is the only observable one in the low-pressure limit.
1 Figure 5 shows rate constants fe€,Hs — C4H, + H atp
0.01 L L L L 1 = 30 Torr and ap = 1 atm. As indicated previoushg TS-4

0.0004 00006 00008 0001 00012 00014  0.0016 (Figure 1) makes-C4Hs virtually inaccessible from gHs; +

1/T (K) C.H,, n-C4Hs, or c-C4Hs. Consequently, the only significant

dissociation channel is#4 + H on this PES. However, we
have explored the PES beyond what is described in ref 5 and
find that the i-C4Hs dissociation rate may be affected by
isomerization to isomers not shown in Figure 1. Nevertheless,
we give thei-C4Hs dissociation rate constants here for com-
pleteness.

100

=

o
S
1

100 |-

k(1/sec.)

Figure 5. Thermal dissociation rate coefficient foCsHs — C4H4 +

H. (@) p =30 Torr (b)p = 1 atm.

isomerization equilibrates so rapidly that one can only measure
the dissociation rate for the equilibrated pair, and this rate
constant is given by-4; for a single eigenpair. AT = 800 K,

both ¢-C4Hs and n-C4Hs have nontrivial concentrations at
equilibrium. However, at lower temperatures, equilibrium — _
heavily favorsc-C4Hs, so its dissociation rate constant would V1. Application to Propargyl Recombination

be measurable at these temperatures (i.e., the dissociation of The BAC-MP4 potential energy surfééé® used in our
c-C4Hs dominates the dissociation of the equilibrated pair). previous worR on the GHs + C3Hs reaction is shown
Similarly, at temperatures much higher than 800 K, equilibrium diagrammatically in Figure 6. We know now that this potential
favors n-C4Hs, so that its dissociation rate constant could be is not sufficiently complete to give good rate constants,
measured under such conditions, at least if it were prepared asparticularly at high temperatufeHowever, this is the most
the reactant. Note that it is only the indicated dissociation rate complex problem we have attacked, and employing the new
constants at most that are measurable regardless of which isomemethodology on it is instructive, even though the results will
is prepared as the reactant. Similar circumstances exist for manysoon be superseded by more accurate ones.
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Figure 7. Thermal rate coefficients for i3 + CsHs — products. (a)
p = 30 Torr (b)p = 1 atm. “Others” indicates stabilization into wells

I, 11, 1, and V. a

Figure 7 shows rate constants as a function of temperature
for CgH3z + CsH3z — products at the two pressures, 30 Torr and
1 atm. Figures 810 show isomerization/dissociation rate
constants for benzene (well VII), fulvene (well 1V), and
2-ethynyl-1,3 butadiene (well VI), the most stable isomers on
the PES. Good eigenvalues and eigenvectors could be calculated
only for T = 1000 K& so only this temperature regime is
considered here. The results are similar to those of our previous
work, the most notable exception beititat benzene is ner
the dominant productAt 30 Torr, the formation of fulvene is
dominant from 1000 to about 1400 K, with phenlylH taking
over forT > 1400 K. At 1 atm, the early wells (particularly
well Ill, dimethylene-cyclobutene) dominate up To~ 1500
K; fulvene dominates between 1500 and 2000 K, and phenyl
+ H is the primary product for > 2000 K.

The appearance of benzene as a dominant produtt~at
1600 K in our previous work is easy to understand from the
present results. The characteristic timeXg(t) to decay ranges
from 4 us at 1000 K to 2.5 ms at 2000 K; it is approximately
0.6 ms at 1600 K. At 1600 K, fulvene isomerizes thermally to
benzene with a time constant that is roughly the same as that
for Xg(t) to decay £0.7 ms), whereas the characteristic time
for benzene to dissociate to pheryH is 0.2 s. Consequently,
on the time scale oXg(t) decay, benzene appears to be a stable
product, but fulvene does not. Such multiple-step processes were
mentioned as a possibility in our previous paper, but we could
not sort out the rate constants at that time.

In our previous work, we discussed the concept of “stabiliza-

b

J. Phys. Chem. A, Vol. 106, No. 40, 2002275

10 T T T T T T T
] ~N phenyl + H _
000 |~ \
100 |- e
p=30Torr
r oo T
1k i
01 | 4
C3H3+C3H; fulvene
R N .
0.01 N
\
0.001 1 1 1 1 A\ 1

Temperature (K)

0.0004 0.00045 0.0005 0.00055 0.0006 0.00065 0.0007 0.00075 0.0008

1
104 ~N -
B \\ phenyl +H i
100 | .
B v/ NN p=1atm -1
1 .
0.01 |- -
- fulvene -
0001 k- C3H3+C3H; “ N\ i
.
L N
\
10 1 1 1 S 1
0.0004 0.0005 0.0006 0.0007 0.0008
1/T (K)

0.0009

Figure 8. Thermal rate coefficients for benzene products. (ap =
30 Torr (b)p = 1 atm.
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tion limits”. Although we were reluctant to make such a Figure 9. Thermal rate coefficients for fulvene products. (ap =
statement at the time, it appears that the vast majority of such30 Torr (b)p = 1 atm.
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a 10° T T r r we address this point in another artiéfeSuch a crossing
indicates that some isomerization or dissociation process
wer T \CfH3+CaH3 i equilibrates on a time scale comparable to that for internal-
.o \~\ phenyl + H energy relaxation. Consequently, for our purposes, the two
p=30Torr species involved cease to be distinct, and it is appropriate in
. the analysis to consider them as a single species. In such a case,
S andNgremare reduced by one, thus reducing the upper limit
on the summations in section Ill by one and the size of the
matrices in section IV by one row and one column. Otherwise,
the rate-constant calculations proceed as described above.
1k - In doing the calculations for this article, it became obvious
o , , , . to us that the “experimental” approach to determining rate
0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 coeffi_cients, i.e., Iooking for exponentia}l decays of reactants
AT (K) and rises for pro_ducts,_ls prone to error in temperature regimes
where the chemically significant eigenvalues are close together.
b 1 ! T T T Of course, there is the obvious problem that exponential decays
~ ™ CaHa*CsH, i may be hard to find. However, the problem is more severe than
= ~N p=1atm that. Suppose the reactant is R, and at some temperature and
pressureAXgr; = —0.99 for the eigenvector corresponding to
1. At first glance, one would expect to be able to calculate the
rate coefficient fromi; and the product distribution from this
- eigenvector— the decay of R and the rise of products would
be pretty good exponentials. However, it frequently happens
0r NN\ that there is another eigenvalue, say that is~100l; (for
L benzene ™\ - example) and for whichXg, ~ —0.01. Using the methods of
. ) section Ill, the contributions to the rate coefficient from these
1 L : . A eigenpairs would be-0.99%; and —1.001;, respectively. By
0.0004 00005 0‘00061 p K°‘°°°7 0.0008 0.0009 equating the exponential decay constant of the reactant with a
* pseudo-first-order rate constant, and thus obtaining the bimo-
Figure 10. Thermal rate coefficients for 2-ethynyl-1,3 butadiene (well |ecular rate coefficient, one makes an error of about a factor of
V1) — products. (ajp = 30 Torr (b)p = 1 atm. 2. Such factor-of-2 errors are ubiquitous in these large, multiple-
- . well problems with closely spaced eigenvalues. Of course,
limits are of macroscopic origin. They occur as a consequence _. . : A
of one of two phenomena: similar errors can occur in p_roduc; distributions. The meth_ods
developed in this article alleviate this problem from a theoretical

1. There is a shift in equilibrium in favor of the reactants, so ; . .
that population in a well is no longer stable with respect to perspective, but such errors remain a problem for experiments.
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