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We discuss at some length the relationship between solutions to the time-dependent, multiple-well master
equation and a macroscopic description of the chemistry in terms of phenomenological rate coefficients. In
so doing, we derive two different methods of obtaining the rate coefficients from the eigenvalues and
eigenvectors ofG, the transition matrix of the master equation. We apply the first of the two methods to the
C2H3 + C2H2 and C3H3 + C3H3 reactions, problems we have treated previously using the “experimental” (or
exponential-decay) approach, and obtain considerably more and somewhat different results than we obtained
in our earlier work.

I. Introduction

Many reactions in combustion, particularly those involved
in the formation of aromatic compounds, polycyclic aromatic
compounds (PAH), and soot, are complicated processes that take
place over multiple, interconnected potential wells.1 Such
reactions may be chemically activated, or they may be thermal
dissociation/isomerization processes. Some of the former are
“collisionless” in that the intermediate complexes are so short-
lived that they effectively do not suffer any collisions under
conditions that are normally of interest. Such reactions typically
involve a small number of atoms and relatively shallow potential
wells, resulting in small densities of states. The reaction between
NH2 and NO is the classic example of such a “collisionless”
reaction.1-3 However, intermediate complexes more commonly
live long enough to suffer numerous collisions.1,4 In such cases,
any of a number of stabilized or bimolecular products may
result. For such reactions, it is necessary to solve the time-
dependent, multiple-well master equation in all its complexity
in order to predict rate constants and product distributions.1,4-17

However, obtaining rate-constant information from such an
analysis has not proven to be a simple task.4

Let us illustrate concretely the issues involved in obtaining
(product-specific) rate constants from solutions to the master
equation in the general case. It is normally desirable to cast the
master equation in the form

where|w〉 is a vector containing the populations of all of the
relevant states andG is a real, symmetric matrix, the transition
matrix of the master equation in this form. The solution to eq
1 can be written as

where|w(0)〉 contains the initial condition and|gj〉 and λj are
the eigenvectors and eigenvalues ofG, i.e.,G|gj〉 ) λj|gj〉, j )
0, ...,N. The operatorΤ̂ ) ∑j)0

N eλj t|gj〉〈gj| is the time evolution

operator of the system- once the eigenvalues and eigenvectors
of G are found, the time evolution of the state populations can
be determined from eq 2 forany initial condition by operating
on |w(0)〉 with Τ̂.

Typically, N (or N + 1) is a very large number. However,
under conditions where one might expect to be able to define
rate constants, only the “normal modes of relaxation” corre-
sponding to algebraically the largest eigenvalues ofG (i.e., the
least negative ones) describe chemical changes.18-23 The
remainder describe the relaxation of the internal degrees of
freedom of the chemical species under consideration. These
latter degrees of freedom normally (but not always) relax much
more rapidly than the chemical ones. Such a separation of time
scales is generally thought to be a necessary condition for a
phenomenological description of the chemistry to apply,18-22

i.e., a description in terms of phenomenological rate constants
and macroscopic rate laws. If there areS species, or chemical
configurations, in a problem, there are

chemically (or kinetically) significant eigenpairs (CSE’s) ofG4

in addition toλ0 ) 0 and|g0〉, which describe a state of complete
thermal and chemical equilibrium. At least at low temperature,
where theλj’s are distinctly different in magnitude, each of the
CSEs describes an “equilibration”. The first of these normal
modes to relax establishes chemical equilibrium between two
species, although other products may be formed during the
relaxation process. The second mode to relax describes the
equilibration of these two species with a third, and so on.
Clearly, it takesS - 1 such normal modes to relax the entire
system to chemical equilibrium.

At the same time, for a problem withS distinct chemical
configurations (or species), there areNk forward rate constants,
where

and an equal number of reverse rate constants or equilibrium
constants.4 If S ) 2, i.e., one reactant and one product, both
Nchem andNk are equal to 1, and it is trivial to determine both* To whom correspondence should be addressed.

d|w〉
dt

) G|w〉 (1)

|w(t)〉 ) ∑
j)0

N

eλ j t|gj 〉 〈gj|w(0)〉 (2)

Nchem) S- 1 (3)

Nk ) ∑
n)1

S-1

n )
S(S- 1)

2
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the forward and reverse rate constants fromλ1, the lone
chemically significant eigenvalue, and the equilibrium constant.
However, ifS ) 9, as was the case in our recent investigation
of the propargyl (C3H3) recombination reaction,Nchem) 8 and
Nk ) 36! In the present article, we discuss how such rate
constants are related to the CSEs in the general case. Specifi-
cally, we propose 2 methods of obtainingall of the rate constants
in a given problem onceG has been diagonalized at any
temperature and pressure. We apply the first method to two
problems that we have addressed previously, the C3H3 + C3H3

and C2H3 + C2H2 reactions, obtaining considerably more
information than we were able to obtain before.

We should note at the outset that, in our previous work,5-9

we have adopted the point of view of an experimental kineticist
in looking for exponential decays of a “deficient” reactant in
the time evolution of the system, associating such decay
constants with pseudo-first-order rate constants and the products
formed on the same time scale with the products of an
elementary reaction. Of course, such an approach is valid and
yields good rate constants as long as the chemically significant
eigenvalues ofG are well separated in magnitude. However, if
the eigenvalues are close together (even within 1 or 2 orders of
magnitude), the approach can be prone to error. This point is
discussed below.

II. The Master Equation and Its Solution

For the purposes of the present discussion, it is useful to keep
in mind a potential energy surface (PES) such as those shown
diagrammatically in Figure 1 for C2H3+C2H2 and Figure 6 for
C3H3+C3H3. The master equation for such problems takes the
form of a set of coupled integro-differential equations:

In these equations,t is the time,Z is the collision number per
unit time, ni(E)dE is the number density of molecules (or
complexes) in welli with energy betweenE andE + dE, E0i is
the ground-state energy for welli, M is the number of wells
(three (III) in Figure 1 and seven (VII) in Figure 6),Pi(E, Ε′)
is the probability that a molecule in welli with energy between
E′ andE′ + dE′ will be transferred by collision to a state with
energy betweenE andE + dE, kij(E) is the microcanonical rate
constant for isomerization from wellj to well i, kdi(E) and
kpi(E) are the microcanonical rate constants for dissociation from
well i to the bimolecular “reactants” and products, respectively;
nR and nm are the number densities, respectively, of the
“deficient” and “excess” reactants, andKRi is the equilibrium
constant for stabilization of the reactants into welli. The function
Fi(E) is the equilibrium energy distribution in welli at
temperatureT:

whereQi(T) is the vibrational-rotational partition function for
the ith well. In these definitions, and in the discussion below,
we frequently refer to the bimolecular fragments on the left of
Figures 1 and 6 as “reactants” and those on the right as
“products”, consistent with the terminology in our previous
work, although either the bimolecular reactants or an isomer

corresponding to any one of the wells may actually be the
reactant in the results presented below. In any event, the
bimolecular products are always assumed to be an “infinite
sink”, in which population can only accumulate and from which
molecules can never return to the wells.

As in our previous work, we restrict ourselves to a situation
in which the reacting species are highly dilute in an inert bath
gas:

wherenB is the number density of the bath gas (either N2 or He
in this work) andnreac is the number density of the reactant,
eithernR or that of one of the isomers of C4H5 shown in Figure
1 or of C6H6 shown in Figure 6. Generally we assumenm to be
of such a magnitude that the following inequalities hold:

However, for dissociation/isomerization processes, we could take
nm , nreac and still get the same results for rate constants.

The problem specification is completed by adding an equation
for nR:

Implicit in eq 9 is the assumption that the bimolecular reactants
are maintained in thermal equilibrium throughout the course of
the reaction even though the complexes are not.

As noted in the Introduction, it is convenient and useful to
cast the problem posed by eqs 5 and 9 in a slightly different
form.5-9 First, letXR(t) ) nR(t)/nreac(0), xi(E,t) ) ni(E,t)/nreac(0),
andyi(E,t) ) xi(E,t)/fi(E), wherefi2(E) ) Fi(E)Qi(T). Then, after
approximating the integrals in eqs 5 and 9 as discrete sums using
the left-hand rectangle rule with an energy spacingδE, we can
express them in the concise form given as eq 1 in the
Introduction:

where|w(t)〉 is the vector

G is a real, symmetric matrix, andEl in (10) is the energy of
the lth grid point. Clearly,|w(t)〉 has 1+ ∑i)I

M Ni components,
whereNi is the number of grid points in the energy space of
well i, andG is a square matrix of the same size.

From the solution vector at any time, one may obtain the
relative macroscopic populationsXR(t), Xi(t), andXp(t), where

and

dni(E)

dt
) Z∫E0i

∞
Pi(E,E′)ni(E′) dE′ - Zni(E) -

∑
j*i

M

kji(E)ni(E) + ∑
j*i

M

kij(E)nj(E) - kdi(E)ni(E) +

KRikdi(E)Fi(E)nRnm - kpi(E)ni(E) (i ) I, ...,M) (5)

Fi(Ε) ) Fi(E)e-âE/Qi(Τ) (6)

nB . nreac (7)

nB . nm . nreac (8)

dnR

dt
) ∑

i)I

M ∫E0i

∞
kdi(E)ni(E) dE -

nRnm ∑
i)I

M

KRi ∫E0i

∞
kdi(E)Fi(E) dE (9)

d
dt

|w(t)〉 ) G|w(t)〉

|w(t)〉 )

[yI(E0I), ...yI(El), ...yi(E0i), ...yi(El), ...,( nm

QRmδE)1/2

XR]T

(10)

Xi(t) ) ∫E0i

∞
xi(E,t) dE (11)

Xp(t) ) 1 - XR(t) - ∑
i)I

M

Xi(t) (12)
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The function Xp(t) is the fraction of the initial reactant
concentration that has formed bimolecular products at timet;
obviously, it refers to either fragment. Equation 12 is a
consequence of the conservation of mass; we impose it directly
because the “infinite sink” approximation for the bimolecular
products results in the removal ofXp(t) from the vector of
unknowns,|w(t)〉; thus, we must calculateXp(t) directly from
eq 12.

As noted in the Introduction, the solution to eq 1 is

Let us review some of the properties of this solution. Because
G is Hermitian (real and symmetric), its eigenvectors are
orthogonal, and its eigenvalues are real. However, not only are
theλj’s real, they must all be negative; otherwise the populations
determined by eq 13 would go to infinity ast f ∞. Note that
the sum in eq 13 starts atj ) 1 and notj ) 0. The equilibrium
eigenpair,λ0 and|g0〉, does not come out of our solution because
of the “infinite sink” approximation. As a result, all of the terms
in eq 13 go to zero ast f ∞, andXp(∞) ) 1 from eq 12. As
long as no two of theλj’s are equal, the terms in eq 13 are
linearly independent functions of time. This result has important
consequences. We can cast eq 12 in a different form by
differentiating it with respect to time and then integrating it over
some specific time interval, i.e.

Because of the linear independence of the terms in eq 13, this
conservation law must apply not only globally but to each term
individually.22-23 Taking the time interval to be fromt ) 0 to
t ) ∞, we can write

where the terms in this equation now refer to changes in relative
concentrations of the various chemical components as a
consequence of the time evolution of thejth eigenpair fromt
) 0 to t ) ∞. In general, we are interested in applying this
result only to the (S - 1) chemically significant eigenpairs.

III. A Simple Method of Determining the Rate
Coefficients

We are primarily interested in the rate constant regime, i.e.,
the regime where one can anticipate that a description of the
chemistry in terms of macroscopic rate laws and phenomeno-
logical rate constants might apply. Consequently, we assume
that the normal modes ofG corresponding to relaxation of the
internal energy relax much faster than theS - 1 modes that
describe chemical change. Focusing on the chemical time scales,
let us defineλ1 to be the largest eigenvalue ofG (i.e., the least
negative one),λ2 to be the next largest, etc. Of course,|g1〉,
|g2〉, ... are the corresponding eigenvectors. After the internal
degrees of freedom have relaxed, thelth component of|w(t)〉
can be written as

wheregjl is the lth component of thejth eigenvector ofG and
Cj

(A) ) 〈gj|wA(0)〉 is the scalar product of|gj〉 with the initial
condition vector,|wA(0)〉, corresponding to the “reactant” being
A. For our purposes,|wA(0)〉 always corresponds to a normalized
Boltzmann distribution in wellA ) I, ..., M, or it corresponds
to XR(0) ) 1.

First, consider the case whereA corresponds to a well.
Multiplying eq 15 by fi(El) and integrating (in discrete form)
with respect toE over all l corresponding to welli (i ) I, ...,
M) results in

Equation 16 can also be written as

where

was defined above, except that now we have added the
superscriptA to distinguish different possible initial conditions.
Differentiating eq 17 with respect to time, we get

Evaluating (19) att ) 0 yields the following result:

Now, start withi ) A so that eq 19a applies to the reactant

The macroscopic rate law that applies toXA at t ) 0 (whenA
is the reactant) is

wherekTA is the total rate constant for removal ofA. Comparing
eqs 20 and 21 withXA(0) ) 1, we deduce a simple expression
for kTA

It should be kept in mind that macroscopic rate laws such as
eq 21 do not actually apply att ) 0; instead, they refer to a
time that is extremely short compared to theS - 1 chemical
time scales but is long compared to the internal relaxation time
scales.

Xi(t) ) ∑
j)1

Nchem

eλj tCj
(A)δE∑

l∈i

fi(El)gjl (16)

Xi(t) ) ∑
j)1

Nchem

eλj t(-∆Xij
(A)) (17)

∆Xij
(A) ) -Cj

(A)δE∑
l∈i

fi(El)gjl (18)

dXi

dt
) ∑

j)1

Nchem

λj e
λj t(-∆Xij

(A)) (19)

dXi

dt
(0) ) - ∑

j)1

Nchem

λj ∆Xij
(A) (19a)

dXA

dt
(0) ) - ∑

j)1

Nchem

λj ∆XAj
(A) (20)

dXA

dt
(0) ) -kTAXA(0) (21)

kTA ) ∑
j)1

Nchem

λj ∆XAj
(A) (22)

|w(t)〉 ) ∑
j)1

NI+...NM+1

eλj t|gj〉 〈gj|w(0)〉 (13)

∆XR + ∆Xp + ∑
i)I

M

∆Xi ) 0

(∆XR + ∆Xp + ∑
i)I

M

∆Xi)
j

) 0 (14)

wl(t) ) ∑
j)1

Nchem

eλj tgjlCj
(A) (15)
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Next, consider eq 19a withi * A and compare it with the
phenomenological rate law forXi at t ) 0 whenA is the reactant:

where kAi is the A f i rate constant. Equating the two
expressions for dXi(0)/dt, we get

If we want to calculatekAR, the rate constant for producing
bimolecular “reactants” from well A, we must consider eq 15
with l ) NI + ... + NM + 1, i.e., the last component of the
eigenvectors

or

where

As above, differentiating eq 25 with respect to time, evaluating
the resulting expression att ) 0, and comparing that with the
phenomenological rate law forXR at t ) 0, we get an expression
for kAR that is the same form as those derived above

It should also be clear that one can calculatekAp from a similar
expression

except that∆Xpj must be evaluated from eq 14 with the other
terms in (14) given by eqs 18 and 26.

If the reactant is R, the derivation of the rate constants is the
same as those given above except that the phenomenological
rate equations att ) 0 are

and

which results in the following expressions for the rate constants:

that is, there is simply an extra factor of 1/nm when the reactant
is R, because the reaction is actually bimolecular in this case.

It is a remarkable, and somewhat surprising, result that all
of the first-order and pseudo-first-order (e.g.,kRinm) rate
constants can be expressed in such a simple, generic form,
typified by eq 24. Let us show that rate constants for some well-
known, simple cases reduce to this form.

Consider a simple isomerization or dissociation reaction,
AaB, for whichKAB is the equilibrium constant for the reaction
as written. The rate constant for the forward reaction is18-22

Of course, there is an analogous expression for the reverse rate
constant that can be obtained from the detailed balance condition

Considering A to be the reactant, note thatKAB ) nB(∞)/nA(∞)
and nA(∞) + nB(∞) ) nA(0). Using these identities in eq 31,
one gets

where∆nA ) nA(∞) - nA(0) andXA ) nA/nA(0). Clearly, eq
33 is the equivalent of eq 22 for the special case whereS ) 2
andNchem) 1. Moreover, if the equilibrium constant becomes
very large,KAB f ∞ and∆XA f -1. Such is generally assumed
to be the case in studying high-temperature dissociation reac-
tions. In such reactions, the rate constant takes the particularly
simple form

Clearly then, the well-known results given in eqs 31 and 34
are just special cases of the more general expressions derived
above.

It may appear at first glance from the derivation given here
that the thermal rate coefficients depend on the initial energy
distribution of the reactant. However, that is not the case. The
energy-relaxation eigenpairs always establish the appropriate
distribution prior to the reaction taking place, thus eliminating
any “initial-condition dependence” of the rate coefficients.

IV. A Different Approach

The seminal work on the topic of this article was done by
Bartis and Widom21 in the early 1970s and largely overlooked

dXi

dt
(0) ) kAiXA(0) ) kAi (23)

kAi ) - ∑
j)1

Nchem

λj ∆Xij
(A) (24)

( nm

QRmδE)1/2

XR(t) ) ∑
j)1

Nchem

eλj tgjlCj
(A),

XR(t) ) - ∑
j)1

Nchem

eλj t∆XR j
(A) (25)

∆XR j ) - (QRmδE

nm
)1/2

gjl Cj
(A) (26)

kAR ) - ∑
j)1

Nchem

λj ∆XR j
(A) (27)

kAp ) - ∑
j)1

Nchem

λj ∆Xpj
(A) (28)

dXR

dt
(0) ) -kTRnmXR(0)

dXi

dt
(0) ) kRi nmXR(0) (i ) I, ...,M) (29)

dXp

dt
(0) ) -kRpnmXR(0)

kTR )
1

nm
∑
j)1

Nchem

λj ∆XRj
(R)

kRi ) -
1

nm
∑
j)1

Nchem

λj ∆X ij
(R) (30)

kRp ) -
1

nm
∑
j)1

Nchem

λj ∆Xpj
(R)

kAB ) -
λ1KAB

1 + KAB
(31)

kAB

kBA
) KAB (32)

kAB ) -λ1

nB(∞)

nA(0)

) -λ1

-∆nA

nA(0)

) λ1∆XA (33)

kAB ) -λ1 (34)
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thereafter. Bartis and Widom take a completely different
approach to the rate-constant problem than the one we have
employed above. Although their expressions for the rate
constants are more complicated and less physically appealing
than those given in the previous section, their approach might
be considered more general. It thus provides a foundation and
a context for our analysis. Consequently, we believe it is worth
considering in some detail.

Bartis and Widom consider a master equation that represents
(macroscopically) a system of first-order chemical reactions,
although the extension to pseudo first-order processes is trivial.
Moreover, they consider the “full” master equation, not the
contracted description that results from making an “infinite sink”
approximation. This difference makes comparing their results
with ours (numerically) problematic, although our approach is
applicable generally with or without this approximation. Note
that we could incorporate the bimolecular products into our
master equation and retain linearity by taking one of the
fragments to be in great excess. In the discussion below, the
term “species” in such a case should be taken to mean the
deficient product or reactant. However, the most important
difference between our approach and that of Bartis and Widom
is that the latter consider the time evolution of the system from
a single initial condition (although that initial condition is
arbitrary), whereas the approach we have taken above considers
multiple initial conditions in the limit thatt ) 0.

On the chemical time scales, the solution to the master
equation (analogous to eq 17) can be written as

whereai0 ) Xi(∞) is the equilibrium population of theith species
and

We have removed the superscript from∆Xij because we are
now restricting ourselves to a single (but arbitrary) initial
condition. Differentiating eq 35 with respect to time, we get

It should be remembered thatλ0 ) 0 so that thej ) 0 term
does not actually appear explicitly in this equation. Now, eq
35 can be written in the form

where

Equation 38 can be viewed as a set of linear algebraic equations
for the S Vj’s, which in matrix form is

whereA is theS× Smatrix whose elements areaij. As long as
A is not singular, we can solve eq 40 for|V〉:

whereB ) A-1. In component form, eq 41 is

wherebjl are the elements ofB (i.e., A-1). Substituting eq 42
into eq 37, one obtains equations for the rates of formation of
the populations in terms of the populations themselves:

Equation 43 is a closed system of first-order differential
equations describing the time evolution of theS macroscopic
populations. They have the mathematical structure of the
phenomenological rate law

if we identify the first-order or pseudo first-order rate constants
with

and

where kli is the l f i rate constant andkTi is the total rate
constant for removal of speciesi. We have used eqs 45 in
conjunction with the infinite sink approximation to calculate
rate constants in some selected cases and obtain results identical
to those obtained using the methods of section III. However, to
do so, we must “fill out” theA matrix by calculating∆Xpj from
eq 14, takingXi(∞) ) 0 for i * p, and settingXp(∞) ) 1, since
these quantities do not come directly from the eigenvectors of
our G matrix. In any event, this isNOT the approach taken by
Bartis and Widom.

Bartis and Widom were not only interested in deriving
expressions for rate constants, they were also interested in
showing that those rate constants satisfy detailed balance (eq
32). This motivated them to derive anapproximateorthogonality
property satisfied by theaij ’s:

It serves no purpose to derive this property here, although we
comment briefly below on the assumption on which it is based.

Defining hij as

whereNj is given by

Xi(t) ) ∑
j)0

Nchem

aij e
λj t (i ) I, ...,M, R, p) (35)

aij ) -∆Xij (j * 0) (36)

dXi

dt
) ∑

j)0

Nchem

λj aij e
λj t (37)

Xi ) ∑
j)0

Nchem

aij Vj (38)

Vj ) eλj t (39)

|X〉 ) A|V〉, (40)

|V〉 ) B|X〉 (41)

Vj ) ∑
l)1

S

bjl Xl (42)

dXi

dt
) ∑

j)0

S-1

∑
l)1

S

λj aij bjl Xl (43)

dXi

dt
) ∑

l*i

kli Xl - Xi ∑
l*i

kil (44)

kli ) ∑
j)0

S-1

λjaij bjl l * i (45)

kTi ) ∑
l*i

kil ) -∑
j)0

S-1

λj aij bji

∑
i)1

S aij aij ′

ai0

) δjj ′∑
i)1

S aij
2

ai0

(46)

hij )
aij /xai0

Nj
(47)

Nj ) (∑
i)1

S

aij
2/ai0)1/2

(48)
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equation 46 becomes

or in matrix notation

whereI is the identity matrix. ThusH-1 ) HT, andH is unitary.
Solving (47) foraij and using the result in eqs 38 and 37, we
obtain

and

In matrix notation, eq 51 can be written

Proceeding as before, assumingH is not singular

In component form, eq 54 can be written as

SubstitutingNjVj from eq 55 into eq 52, we get an expression
analogous to eq 43 above

For l * i, one can identify thel f i rate constant

where

The reverse rate constant can be obtained by interchangingi
and l in eq 57, i.e.

and thus

sinceKil ) 1/Kli. Therefore, detailed balance is satisfied by the
rate constants.

Applying the Bartis-Widom formulas (with the infinite sink
approximation) for the rate constants (eq 57) to our problem is
complicated by the appearance of (ai0)1/2 in the denominator of
the definition ofhij, eq 47. With the infinite-sink approximation,
ai0 ) 0 for i * p, andap0 ) 1. Thus, thehij ’s blow up for i *
p. However, in our own derivation of eq 46, it isQi that appears
rather thanai0, and consequently,Qi appears instead ofai0 in
the denominator of the definition ofhij. In the infinite sink
approximationQp f ∞ (another complication), but it may be
possible to evaluate rate constants from eq 57 in this limit. In
any event, we have not pursued this approach and have no
particular interest in doing so. It is much easier to evaluate the
rate constants from the expressions derived in the previous
section, or from eq 45, than it is to evaluate them from eq 57.
The value of the Bartis-Widom analysis is that it shows that
the chemistry embedded in the multiple-well master equation
reduces to auniquephenomenological description in terms of
macroscopic rate laws and rate constants thatsatisfy detailed
balance, at least as long as the energy relaxation eigenvalues
are much smaller (more negative) than the chemically significant
ones. Note that the uniqueness of solutions to the master
equation, given a set of initial conditions, and the invertibility
of A andH guarantee that the rate constants are unique.

The Bartis-Widom analysis justifies the results given in the
previous section, in which it wasassumedthat a phenomeno-
logical description (satisfying detailed balance) would apply; it
also justifies (or at least adds credibility to) the identification
made in deriving eq 45. The infinite-sink approximation in the
multiple-well case is a complication. However, it has been
shown that, for simple dissociation/recombination reactions24

and for bimolecular reactions giving bimolecular products over
a single well,25 the infinite sink approximation gives good rate
constants that satisfy detailed balance. We expect that the
derivations in these single-well cases can be extended to cover
multiple wells. For the present, we content ourselves with
checking our results numerically, where it is possible, to see if
detailed balance is satisfied. All our checks indicate that it is.

Bartis and Widom’s use of a quantum mechanical analogy
to derive eq 46 obscures somewhat the assumption on which it
is based. Stated simply, the assumption is that the formation
(or removal) rate of molecules in any state of any species,
through the propagation of any CSE, is proportional to the
relative population of that state of that species inthermal
equilibrium. If every chemical species remained in thermal
equilibrium throughout the course of the reaction, this assump-
tion would be satisfied exactly. However, that is not the case.
Nevertheless, it is probably true that the results that derive from
the assumption will be compromised only if states that are
heavily populated at equilibrium have that population signifi-
cantly perturbed by the reaction.26 This is likely to happen only
when the rate constant approximation itself begins to fail.
Therefore, we expect eq 46 to hold over a wide range of
conditions, as suggested by Bartis and Widom.

V. Application to C 2H3 + C2H2 f Products

The potential energy surface (PES) used in our previous work5

on this reaction is shown in Figure 1. For the rate constants
presented below we have used a value ofE01 ) 5.22 kcal/mol,
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whereE01 is the threshold energy for transition state 1 (TS-1).
This is the value ofE01 for which we obtained good agreement
with total rate-constant measurements over a wide range of
temperatures and pressures in our previous analysis. Other PES
parameters remain the same.

Figures 2-5 show rate constants for all the possible reactions
(except those where C4H4 + H are the reactants) obtained by
the methods of section III for two different pressures,p ) 30
Torr andp ) 1 atm. The first pressure is typical of low-pressure
flame experiments, and the second is that of normal, atmospheric-
pressure combustion. The results for the C2H3 + C2H2 reaction
are largely the same as those obtained in our previous work
- n-C4H5 is the dominant product at low temperature for these
pressures, and C4H4 + H is dominant at high temperature.
However, the present results indicate thatc-C4H5 is never the

dominant product of the reaction, in conflict with our previous
result, which showed thatc-C4H5 was the dominant product at
T ≈ 700 K for p > 1atm. This latter result was a consequence
of a rapidn-C4H5 f c-C4H5 thermal isomerization, whose time
constant begins to be comparable to the characteristic time for
XR(t) decay in this temperature range (both are≈10-3 s). In
general, the temperature range 650 K< T < 900 K, where the
eigenvalues in Figure 9 of ref 5 are all very close together in
magnitude, is a regime of shifting equilibrium. First, the reaction
C2H3 + C2H2 a n-C4H5 begins to shift in favor of the reactants,
and then C2H3 + C2H2 a c-C4H5 follows suit. ForT > 900 K,
the only observable products are C4H4 + H, primarily because
of this equilibrium shift. These products are principally a
consequence of the direct reaction, C2H3 + C2H2 f C4H4 +
H, although at very high pressure there is a contribution from
the secondary dissociation ofn-C4H5.

In our previous work, we did not obtain thermal rate
coefficients for isomerization and dissociation, because the
methods employed did not lend themselves to determining such
rate constants. However, using the methods of section III, we
can obtain them quite easily. Dissociation/isomerization rate
constants are given forn-C4H5, c-C4H5, andi-C4H5 in Figures
3-5, respectively.

Interestingly, although it was to be expected, the
n-C4H5 a c-C4H5 isomerization is the dominant reaction for
both c-C4H5 andn-C4H5 at both pressures up toT ≈ 1000 K.
For c-C4H5, isomerization is the dominant channel at all
temperatures and pressures considered, whereas dissociation of
n-C4H5 begins to be competitive with isomerization forT >
1000 K. If one were interested in measuring the dissociation
rate constant for eitherc-C4H5 or n-C4H5 directly at, for example,
T ) 800 K, it would be impossible to do. Then-C4H5 a c-C4H5

Figure 1. Potential energy surface for the C2H3 + C2H2 reaction.5

Figure 2. Thermal rate coefficients for C2H3 + C2H2 f products (a)
p ) 30 Torr (b)p ) 1 atm.

Figure 3. Thermal rate coefficients for isomerization and dissociation
of n-C4H5 (a) p ) 30 Torr (b)p ) 1 atm.
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isomerization equilibrates so rapidly that one can only measure
the dissociation rate for the equilibrated pair, and this rate
constant is given by-λj for a single eigenpair. AtT ) 800 K,
both c-C4H5 and n-C4H5 have nontrivial concentrations at
equilibrium. However, at lower temperatures, equilibrium
heavily favorsc-C4H5, so its dissociation rate constant would
be measurable at these temperatures (i.e., the dissociation of
c-C4H5 dominates the dissociation of the equilibrated pair).
Similarly, at temperatures much higher than 800 K, equilibrium
favors n-C4H5, so that its dissociation rate constant could be
measured under such conditions, at least if it were prepared as
the reactant. Note that it is only the indicated dissociation rate
constants at most that are measurable regardless of which isomer
is prepared as the reactant. Similar circumstances exist for many

hydrocarbons, which frequently have relatively low-lying
isomerization barriers.

Although the two dissociation channels have similar rate
constants, Figures 3 and 4 show that C2H3 + C2H2 is the favored
channel for bothc-C4H5 and n-C4H5 at the temperatures and
pressures shown, more so atp ) 1 atm than atp ) 30 Torr.
Increasing the pressure at any temperature increasingly favors
the C2H3 + C2H2 channel. If one were to reduce the pressure
to the point where the low-pressure limit is reached, the only
products would be C4H4 + H, because they are the energetically
favored channel, and the channel with the lowest threshold
energy is the only observable one in the low-pressure limit.

Figure 5 shows rate constants fori-C4H5 f C4H4 + H at p
) 30 Torr and atp ) 1 atm. As indicated previously,4,5 TS-4
(Figure 1) makesi-C4H5 virtually inaccessible from C2H3 +
C2H2, n-C4H5, or c-C4H5. Consequently, the only significant
dissociation channel is C4H4 + H on this PES. However, we
have explored the PES beyond what is described in ref 5 and
find that the i-C4H5 dissociation rate may be affected by
isomerization to isomers not shown in Figure 1. Nevertheless,
we give thei-C4H5 dissociation rate constants here for com-
pleteness.

VI. Application to Propargyl Recombination

The BAC-MP4 potential energy surface27,28 used in our
previous work8 on the C3H3 + C3H3 reaction is shown
diagrammatically in Figure 6. We know now that this potential
is not sufficiently complete to give good rate constants,
particularly at high temperature.4 However, this is the most
complex problem we have attacked, and employing the new
methodology on it is instructive, even though the results will
soon be superseded by more accurate ones.

Figure 4. Thermal rate coefficients for isomerization and dissociation
of c-C4H5 (a) p ) 30 Torr (b)p ) 1 atm.

Figure 5. Thermal dissociation rate coefficient fori-C4H5 f C4H4 +
H. (a) p ) 30 Torr (b)p ) 1 atm.

Figure 6. Potential energy surface for C3H3 + C3H3 f products.8,27,28

(a) Head-to-head and tail-to-tail recombination. (b) Head-to-tail re-
combination. The CH2 end of propargyl is the head; the CH end is the
tail.
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Figure 7 shows rate constants as a function of temperature
for C3H3 + C3H3 f products at the two pressures, 30 Torr and
1 atm. Figures 8-10 show isomerization/dissociation rate
constants for benzene (well VII), fulvene (well IV), and
2-ethynyl-1,3 butadiene (well VI), the most stable isomers on
the PES. Good eigenvalues and eigenvectors could be calculated
only for T g 1000 K,8 so only this temperature regime is
considered here. The results are similar to those of our previous
work, the most notable exception beingthat benzene is neVer
the dominant product. At 30 Torr, the formation of fulvene is
dominant from 1000 to about 1400 K, with phenyl+ H taking
over for T > 1400 K. At 1 atm, the early wells (particularly
well III, dimethylene-cyclobutene) dominate up toT ≈ 1500
K; fulvene dominates between 1500 and 2000 K, and phenyl
+ H is the primary product forT > 2000 K.

The appearance of benzene as a dominant product atT ≈
1600 K in our previous work is easy to understand from the
present results. The characteristic time forXR(t) to decay ranges
from 4 µs at 1000 K to 2.5 ms at 2000 K; it is approximately
0.6 ms at 1600 K. At 1600 K, fulvene isomerizes thermally to
benzene with a time constant that is roughly the same as that
for XR(t) to decay (≈0.7 ms), whereas the characteristic time
for benzene to dissociate to phenyl+ H is 0.2 s. Consequently,
on the time scale ofXR(t) decay, benzene appears to be a stable
product, but fulvene does not. Such multiple-step processes were
mentioned as a possibility in our previous paper, but we could
not sort out the rate constants at that time.

In our previous work, we discussed the concept of “stabiliza-
tion limits”. Although we were reluctant to make such a
statement at the time, it appears that the vast majority of such

Figure 8. Thermal rate coefficients for benzenef products. (a)p )
30 Torr (b)p ) 1 atm.

Figure 9. Thermal rate coefficients for fulvenef products. (a)p )
30 Torr (b)p ) 1 atm.

Figure 7. Thermal rate coefficients for C3H3 + C3H3 f products. (a)
p ) 30 Torr (b)p ) 1 atm. “Others” indicates stabilization into wells
I, II, III, and V.

From the Master Equation to Rate Coefficients J. Phys. Chem. A, Vol. 106, No. 40, 20029275



limits are of macroscopic origin. They occur as a consequence
of one of two phenomena:

1. There is a shift in equilibrium in favor of the reactants, so
that population in a well is no longer stable with respect to
dissociation back to reactants.

2. A temperature is reached beyond which a “stabilized”
isomer thermally isomerizes to another well or to some set of
dissociated products faster than it can be formed from the
reactants. The two phenomena obviously are similar, but the
former can result in an avoided crossing of the eigenvalue
curves;7,8 the latter does not.

VII. Concluding Remarks

In the past, it has not been a simple task to determine
phenomenological rate coefficients from solutions to the time-
dependent master equation for multiple-well problems. Of
course, the major difficulty is determining whether a particular
product is formed in a single elementary step or whether its
formation is a consequence of two or more sequential reactions,
with the first in the sequence controlling the overall rate. In the
present article, we have provided two methods (section III and
eq 45 of section IV) of calculating allS(S - 1)/2 independent
rate constants from the eigenvalues and eigenvectors ofG, thus
eliminating the above problem once and for all. The methods
of section III are the simplest to apply, and we have reanalyzed
our previous work on the C2H3 + C2H2 and C3H3 + C3H3

reactions using this approach, obtaining many new and some-
what different results. At the moment, it is not clear which of
the two methods is actually better in practice. We expect to
pursue this question in future applications.

In this article, we have avoided the issue of what happens at
high temperature when one (or more) of the CSE’s merges with
what is essentially a continuum of energy-relaxation eigenvalues;

we address this point in another article.29 Such a crossing
indicates that some isomerization or dissociation process
equilibrates on a time scale comparable to that for internal-
energy relaxation. Consequently, for our purposes, the two
species involved cease to be distinct, and it is appropriate in
the analysis to consider them as a single species. In such a case,
S andNchem are reduced by one, thus reducing the upper limit
on the summations in section III by one and the size of the
matrices in section IV by one row and one column. Otherwise,
the rate-constant calculations proceed as described above.

In doing the calculations for this article, it became obvious
to us that the “experimental” approach to determining rate
coefficients, i.e., looking for exponential decays of reactants
and rises for products, is prone to error in temperature regimes
where the chemically significant eigenvalues are close together.
Of course, there is the obvious problem that exponential decays
may be hard to find. However, the problem is more severe than
that. Suppose the reactant is R, and at some temperature and
pressure∆ÌR1 ) -0.99 for the eigenvector corresponding to
λ1. At first glance, one would expect to be able to calculate the
rate coefficient fromλ1 and the product distribution from this
eigenvector- the decay of R and the rise of products would
be pretty good exponentials. However, it frequently happens
that there is another eigenvalue, sayλ2, that is ≈100λ1 (for
example) and for which∆ÌR2 ≈ -0.01. Using the methods of
section III, the contributions to the rate coefficient from these
eigenpairs would be-0.99λ1 and -1.00λ1, respectively. By
equating the exponential decay constant of the reactant with a
pseudo-first-order rate constant, and thus obtaining the bimo-
lecular rate coefficient, one makes an error of about a factor of
2. Such factor-of-2 errors are ubiquitous in these large, multiple-
well problems with closely spaced eigenvalues. Of course,
similar errors can occur in product distributions. The methods
developed in this article alleviate this problem from a theoretical
perspective, but such errors remain a problem for experiments.

Acknowledgment. This work was supported by the United
States Department of Energy, Office of Basic Energy Sciences,
Division of Chemical Sciences, Geosciences, and Biosciences.

References and Notes
(1) Miller, J. A. Proc. Combust. Inst. 1996, 20, 461-480.
(2) Miller, J. A.; Klippenstein, S. J.J. Phys. Chem A2000, 104, 2061-

2069.
(3) Fang, D.-C.; Harding, L. B.; Klippenstein, S. J.; Miller, J. A.

Faraday Discuss. 2001, 119, 207.
(4) Miller, J. A. Faraday Discuss.2001, 119, 461-475.
(5) Miller, J. A.; Klippenstein, S. J.; Robertson, S. H.J. Phys. Chem.

A 2000, 104, 7525-7536;J. Phys. Chem. A2000, 104, 9806 (correction).
(6) Miller, J. A.; Klippenstein, S. J.; Robertson, S. H.Proc. Combust.

Inst. 2000, 28, 1479.
(7) Miller, J. A.; Klippenstein, S. J.Int. J. Chem. Kinet. 2001, 105, 7254.
(8) Miller, J. A.; Klippenstein, S. J.J. Phys. Chem. A2001, 105, 7254-

7266.
(9) Hahn, D. K.; Klippenstein, S. J.; Miller, J. A.Faraday Discuss.

2001, 119, 79.
(10) Frankcombe, T. J.; Smith, S. C.Faraday Discuss.2001, 119, 159.
(11) Frankcombe, T. J.; Smith, S. C.; Gates, K. E.; Robertson, S. H.

Phys. Chem. Chem. Phys. 2000, 2, 793-803.
(12) Gates, K. E.; Robertson, S. H.; Smith, S. C.; Pilling, M. J.; Beasley,

M. S.; Maschhoff, K. J.J. Phys. Chem. A1997, 101, 5765-5769.
(13) Blitz, M. A.; Beasley, M. S.; Pilling, M. J.; Robertson, S. A.Phys.

Chem. Chem. Phys.2000, 2, 905-812.
(14) Tsang, W.; Mokrushin, V.Proc. Combust. Inst. 2000, 28, 1717-

1723.
(15) Bedanov, V. M.; Tsang, W.; Zachariah, M. R.J. Phys. Chem.1995,

99, 11452-11457.
(16) Tsang, W.; Bedanov, V.; Zachariah, M. R.Ber. Bunsen-Ges., Phys.

Chem.1997, 101, 491-499.
(17) Venkatesh, P. K.; Dean, A. M.; Cohen, M. H.; Carr, R. W.J. Chem.

Phys.1999, 111, 8313-8329.
(18) Widom, B.Science1965, 148, 1555-1560.

Figure 10. Thermal rate coefficients for 2-ethynyl-1,3 butadiene (well
VI) f products. (a)p ) 30 Torr (b)p ) 1 atm.

9276 J. Phys. Chem. A, Vol. 106, No. 40, 2002 Klippenstein and Miller



(19) Widom, B.J. Chem. Phys.1971, 55, 44-52.
(20) Widom, B.J. Chem. Phys.1974, 61, 672-680.
(21) Bartis, J. T.; Widom, B.J. Chem. Phys. 1974, 60, 3474-3482.
(22) Boyd, R. K.J. Chem. Phys.1974, 60, 1214-1222.
(23) Montroll, E. W.; Shuler, K. E.AdV. Chem. Phys. 1958, 1, 361.
(24) Smith, S. C.; McEwan, M. J.; Gilbert, R. J.J. Chem. Phys.1989,

90, 4265-4273.
(25) Smith, S. C.; McEwan, M. J.; Brauman, J. I.J. Phys. Chem. A

1997, 101, 7311-7314.

(26) Miller, J. A.; Klippenstein, S. J.; Raffy, C.J. Phys. Chem. A2002,
106, 4904-4913.

(27) Miller, J. A.; Melius, C. F.Combust. Flame1992, 91, 21-39.
(28) Melius, C. F.; Miller, J. A.; Evleth, E. M.Proc. Combust. Inst.

1992, 24, 621-628.
(29) Miller, J. A.; Klippenstein, S. J. From the Multiple-Well Master

Equation to Phenomenological Rate Coefficients: Reactions on a C3H4
Potential Energy Surface.J. Phys. Chem. A2002, 106, submitted for
publication.

From the Master Equation to Rate Coefficients J. Phys. Chem. A, Vol. 106, No. 40, 20029277


