First Principles Examination of the Acetylene-Water Clusters, $\mathbf{H C C H}-\left(\mathbf{H}_{2} \mathrm{O}\right)_{x}, \boldsymbol{x}=\mathbf{2}, \mathbf{3}$, and 4

Demeter Tzeli and Aristides Mavridis*
Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, P.O. Box 64 004, 15710 Zografou, Athens, Greece

Sotiris S. Xantheas
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 906 Battelle Boulevard, P.O. Box 999, MS K8-91, Richland, Washington 99352

Received: May 13, 2002; In Final Form: September 3, 2002

Abstract

The acetylene-water (A-W) interactions have been investigated by examining the van der Waals clusters $\mathrm{AW}_{x}, x=2,3$, and 4, at the second order (MP2) perturbation theory using the correlation-consistent basis sets, aug-cc-pVnZ, $n=\mathrm{D}\left(\mathrm{AW}_{2}, \mathrm{AW}_{3}\right.$, and $\left.\mathrm{AW}_{4}\right)$, $\mathrm{T}\left(\mathrm{AW}_{2}\right)$. We located 4 minima (m) and 2 saddle points (sp), 10 m and 3 sp , and 30 m and 3 sp on the potential energy surfaces of the $\mathrm{AW}_{2}, \mathrm{AW}_{3}$, and AW_{4} clusters, respectively. We report the fully optimized geometries and interaction energies ΔE_{e}, including corrections for basis set superposition error, $\Delta E_{\mathrm{e}}(\mathrm{BSSE})$, as well as zero-point energies, $\Delta E_{0}(\mathrm{BSSE})$, for the various stationary points. The global minima of the AW_{2} and AW_{3} clusters are cyclic configurations in which the acetylene molecule inserts into the water hydrogen bonding network. The corresponding interaction energies $\Delta E_{\mathrm{e}}(\mathrm{BSSE})\left[\Delta E_{0}(\mathrm{BSSE})\right]$ are $\mathrm{AW}_{2},-10.37[-6.70] \mathrm{kcal} / \mathrm{mol}(\mathrm{MP} 2 / \mathrm{aug}-\mathrm{cc}-\mathrm{pVTZ})$ and $\mathrm{AW}_{3},-17.80[-11.46]$ $\mathrm{kcal} / \mathrm{mol}$ (MP2/aug-cc-pVDZ). The global minimum of AW_{4} corresponds to a van der Waals complex between a cyclic water tetramer W_{4} and A with an interaction energy of $-28.01[-18.67] \mathrm{kcal} / \mathrm{mol}$ (MP2/aug-cc$\mathrm{pVDZ})$. The 4 and 10 local minima for the $x=2$ and 3 clusters span an energy range of 4.3 and $6.1 \mathrm{kcal} / \mathrm{mol}$ above the respective global minima. For AW_{4}, the energy range for the 30 minima is $14.1 \mathrm{kcal} / \mathrm{mol}$; however, the first 28 lie within $8.4 \mathrm{kcal} / \mathrm{mol}$ above the global minimum. The analysis of the many-body interaction energy terms suggests that the global and low-lying ring networks are stabilized by the maximization of the many-body (mainly the 3-body) terms, whereas the higher lying minima are mainly described by 2-body interactions.

1. Introduction

The present work is a continuation of our study on the aqueous microsolvation of acetylene. ${ }^{1,2}$ In the first paper, ${ }^{1}$ we presented an extensive study of the potential energy surface (PES) of the $\mathrm{C}_{2} \mathrm{H}_{2}-\mathrm{H}_{2} \mathrm{O}$ (acetylene-water, AW) dimer, where two minima, a global AW-Y (the water acting as proton acceptor), a local AW-T (the water acting as proton donor), and three transition states (shown in Figure 1) were located. However, because of basis set superposition errors (BSSE) and zero-point energy (ZPE) corrections, the AW-T local minimum is destabilized, and it can "slip" into the global minimum (AWY), thus explaining the experimental observation of a single isomer. ${ }^{3-5}$ In a subsequent paper, ${ }^{2}$ we identified the spectroscopic signature for the predicted change in the structural pattern between AW_{3} and AW_{4} from a cyclic configuration that incorporates acetylene (A) into the water hydrogen bonding network $\left(\mathrm{AW}_{3}\right)$ to a van der Waals complex between A and a cyclic water tetramer $\left(\mathrm{AW}_{4}\right)$. That study also produced qualitative differences between the ab initio results and those with an empirical potential as regards the structures of the global minima of the first few AW_{x} clusters.

To the best of our knowledge, there currently exists limited experimental and/or theoretical work on acetylene-water

[^0]

Figure 1. Geometries of the $A W-Y$ and $A W-T$ minima. Bond distances in \AA at the MP2/avdz(avtz)[avqz] level.
clusters $\left(\mathrm{AW}_{x}, x>1\right) .{ }^{6-8}$ Besides our previous work, ${ }^{2}$ we are aware of only three publications on the AW_{x} clusters. Choi et al. ${ }^{6}$ studied the ion/molecule reactions within the acetylene-water heterocluster ions $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{n} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{m}{ }^{+}$using electron impact time-of-flight mass spectrometry. Dykstra, ${ }^{7}$ employing the molecular mechanics for clusters (MMC) model potential, calculated an interaction energy of $\Delta E_{\mathrm{e}}=-12.65 \mathrm{kcal} / \mathrm{mol}\left(\Delta E_{\mathrm{o}}=-8.17\right.$ $\mathrm{kcal} / \mathrm{mol}$, including ZPE corrections) for AW_{2}. van Voorhis and Dykstra, ${ }^{8}$ used the MMC model potential for AW_{3}, comparing it with a number of other four-membered water containing clusters. They found four local minima within $0.8 \mathrm{kcal} / \mathrm{mol}$ of their global minimum, with one of those only $0.24 \mathrm{kcal} / \mathrm{mol}$ higher. Their characterization of the global minimum has it much like W_{3} with an adjacent acetylene. Our results show five local
minima within $0.8 \mathrm{kcal} / \mathrm{mol}$ of the global minimum, but the global minimum is a four-membered ring, and the secondary minimum is $0.26 \mathrm{kcal} / \mathrm{mol}(0.37 \mathrm{kcal} / \mathrm{mol}$ including ZPE) higher in energy. The same authors refer also to a AW_{4} minimum as a cyclic water tetramer interacting with acetylene but without reporting any structural or energetic results.

In view of the rich structural patterns found in the first few AW_{x} clusters and the disagreement between the earlier ab initio results and the ones obtained with empirical models, we have extended our previous work into a detail investigation of the global and local minima of the $\mathrm{AW}_{x}, x=2,3$, and 4 , clusters. The present investigation is organized as follows: in section 2, we outline the computational approach; in section 3, we report the structures and energetics of the various stationary points; and finally in section 4 , we summarize our findings and main conclusions.

2. Computational Approach

A preliminary sampling of the configuration space and the different hydrogen bonding networks was performed with the smaller 4-31G basis set. The resulting geometries were used as starting points and were subsequently fully optimized with the augmented correlation consistent basis sets, aug-cc-pVnZ (=avnz), $n=\mathrm{D}$ and T, of Dunning and co-workers. ${ }^{9}$ For AW_{2}, both the avdz and avtz sets were used, whereas the avdz set was employed for the AW_{3} and AW_{4} clusters. In some instances, configurations of higher symmetry were probed, and this resulted in obtaining saddle points (sp) of higher order (i.e., configurations for which the Hessian matrix has more than one negative eigenvalues). All calculations were performed at the secondorder perturbation (MP2) level of theory with the Gaussian 98^{10} programs. The "very tight" or "tight" options were used in all geometry optimizations. Energies were converged to about 0.01 μ hartree, and the corresponding root-mean-square deviations of energy gradients with respect to nuclear coordinates were ~ 11 μ hartree/bohr. Harmonic vibrational frequencies were computed for all AW_{2} and AW_{3} minima and saddle points and for three minima for AW_{4} at the MP2/avdz level. Furthermore, for the four AW_{2} minima, the harmonic frequencies were also obtained with the avtz basis set.

Corrections due to basis set superposition error (BSSE), ${ }^{11}$ which are important for weakly bound van der Waals complexes, ${ }^{12}$ are taken into account following a procedure described earlier ${ }^{13}$ and briefly outlined below.

The interaction energy $\Delta E_{e}\left(\mathrm{AW}_{x}\right)$ of the AW_{x} cluster is defined as

$$
\begin{equation*}
\Delta E_{\mathrm{e}}\left(\mathrm{AW}_{x}\right)=E_{\mathrm{AW}_{x}}^{\mathrm{aW}_{x}}\left(\mathrm{AW}_{x}\right)-E_{\mathrm{A}}^{\mathrm{a}}(\mathrm{~A})-x E_{\mathrm{W}}^{\mathrm{w}}(\mathrm{~W}) \tag{1}
\end{equation*}
$$

where, $E_{\mathrm{G}}^{s}(\mathrm{M})$ refers to the total energy of the molecule M at the geometry G, computed with basis set s; the above relation is modified appropriately when the BSSE correction is taken into account. For instance, the (BSSE)-corrected interaction energy, ΔE_{e} (BSSE), for the AW_{4} cluster can be written as

$$
\begin{array}{r}
\Delta E_{\mathrm{e}}(\mathrm{BSSE})=E_{\mathrm{AW}_{4}}^{\mathrm{aw}_{4}}\left(\mathrm{AW}_{4}\right)-E_{\mathrm{AW}_{4}}^{\mathrm{aw}_{4}}(\mathrm{~A})-\sum_{i=a}^{d} E_{\mathrm{AW}_{4}}^{\mathrm{aw}_{4}}\left(\mathrm{~W}_{i}\right)+ \\
R_{\mathrm{A}}+\sum_{i=a}^{d} R_{\mathrm{W}_{i}} \tag{2}
\end{array}
$$

where R are relaxation or deformation terms defined by the
relations

$$
\begin{gather*}
R_{\mathrm{A}}=E_{\mathrm{AW}_{x}}^{\mathrm{a}}(\mathrm{~A})-E_{\mathrm{A}}^{\mathrm{a}}(A) \tag{3a}\\
R_{\mathrm{W}_{i}}=E_{\mathrm{AW}_{x}}^{\mathrm{w}_{\mathrm{i}}}\left(\mathrm{~W}_{i}\right)-\mathrm{E}_{\mathrm{W}_{i}}^{\mathrm{w}_{i}}\left(\mathrm{~W}_{\mathrm{i}}\right), i=\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \tag{3b}
\end{gather*}
$$

and $W_{i}(i=\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d$)$ refers to the four water molecules, respectively.

Similarly, the analysis of the many-body interaction energy terms was performed using a procedure described before ${ }^{14}$ which is based on casting the total energy of the n-body cluster $\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \ldots \mathrm{X}_{n}$ as

$$
\begin{align*}
& E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{1} \mathrm{X}_{2} \ldots}\left(\mathrm{X}_{1} \mathrm{X}_{2} \ldots\right)=\sum_{i=1}^{n} E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{i}}\left(\mathrm{X}_{i}\right)+\sum_{i}^{n-1} \sum_{j>i}^{n} \Delta^{2} E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{1} \mathrm{X}_{j}}\left(\mathrm{X}_{i} \mathrm{X}_{j}\right)+ \\
& \sum_{i}^{n-2 n-1} \sum_{j>i} \sum_{k>j}^{n} \Delta^{3} E_{\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{j} \ldots}^{\mathrm{x}_{j}}\left(\mathrm{X}_{i} \mathrm{X}_{j}\right)+\ldots \tag{4}
\end{align*}
$$

where $\Delta^{2} E, \Delta^{3} E, \ldots$ are two-, three-, etc. body terms, respectively, defined as

$$
\begin{align*}
& \Delta^{2} E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{\mathrm{i}} \mathrm{X}_{j}}\left(\mathrm{X}_{i} \mathrm{X}_{j}\right)=E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{\mathrm{i}} \mathrm{X}_{j}}\left(\mathrm{X}_{i} \mathrm{X}_{j}\right)-\left\{E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{i}}\left(\mathrm{X}_{i}\right)+\right. \\
& \left.E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{X}_{j}}\left(\mathrm{X}_{j}\right)\right\} \tag{5}\\
& \Delta^{3} E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}} \mathrm{X}_{k}}\left(\mathrm{X}_{i} \mathrm{X}_{j} \mathrm{X}_{k}\right)=E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{X}_{\mathrm{i}} \mathrm{x}_{j} \mathrm{x}_{k}}\left(\mathrm{X}_{i} \mathrm{X}_{j} \mathrm{X}_{k}\right)-\left\{E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{X}_{i}}\left(\mathrm{X}_{i}\right)+\right. \\
& \left.E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{X}_{j}}\left(\mathrm{X}_{j}\right)+E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{X}_{k}}\left(\mathrm{X}_{k}\right)\right\}-\left\{\Delta^{2} E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{\mathrm{i}} \mathrm{X}_{j}}\left(\mathrm{X}_{i} \mathrm{X}_{j}\right)+\right. \\
& \left.\Delta^{2} E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{\mathrm{i}} \mathrm{~K}_{k}}\left(\mathrm{X}_{i} \mathrm{X}_{k}\right)+\Delta^{2} E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{\mathrm{X}} \mathrm{X}_{k}}\left(\mathrm{X}_{j} \mathrm{X}_{k}\right)\right\} \tag{6}
\end{align*}
$$

In the preceding, the one-, two-, three-, etc. body term summations contain $\binom{n}{1},\binom{n}{2},\binom{n}{3}, \ldots$ terms, respectively, for a total of $\sum_{m=1}^{n}\binom{n}{m}=2^{n}-1$ terms.

In this notation, the BSSE-corrected, two- and three-body terms are ${ }^{14 \mathrm{~b}, \mathrm{c}}$

$$
\begin{align*}
& \Delta^{2} E_{X_{1} X_{2} \ldots}^{\mathrm{x}_{1} X_{2} \ldots}\left(\mathrm{X}_{i} \mathrm{X}_{j}, \mathrm{BSSE}\right)=E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{1} \mathrm{X}_{2} \ldots}\left(\mathrm{X}_{i} \mathrm{X}_{j}\right)-\{ E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{1} \mathrm{X}_{2} \ldots}\left(\mathrm{X}_{i}\right)+ \\
&\left.E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots \ldots}^{\mathrm{x}_{1} \mathrm{X}_{2} \ldots}\left(\mathrm{X}_{j}\right)\right\} \tag{7}
\end{align*}
$$

$$
\begin{align*}
& \Delta^{3} E_{X_{1} X_{2} \ldots}^{\mathrm{x}_{1} \mathrm{X}_{2} \ldots}\left(\mathrm{X}_{i} \mathrm{X}_{j} \mathrm{X}_{k}, \mathrm{BSSE}\right)=E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{1} \mathrm{X}_{2} \ldots}\left(\mathrm{X}_{i} \mathrm{X}_{j} \mathrm{X}_{k}\right)- \\
& \left\{E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{1} \mathrm{X}_{2} \ldots}\left(\mathrm{X}_{i}\right)+E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{1} \mathrm{X}_{2} \ldots}\left(\mathrm{X}_{j}\right)+E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{1} \mathrm{X}_{2} \ldots}\left(\mathrm{X}_{k}\right)\right\}- \\
& \left\{\Delta^{2} E_{X_{1} X_{2} \ldots}^{\mathrm{x}_{1} \mathrm{X}_{2} \ldots}\left(\mathrm{X}_{i} \mathrm{X}_{j}\right)+\Delta^{2} E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{1} \mathrm{X}_{2} \ldots}\left(\mathrm{X}_{i} \mathrm{X}_{k}\right)+\Delta^{2} E_{\mathrm{X}_{1} \mathrm{X}_{2} \ldots}^{\mathrm{x}_{1} \mathrm{X}_{2} \ldots}\left(\mathrm{X}_{j} \mathrm{X}_{k}\right)\right\} \tag{8}
\end{align*}
$$

3. Results and Discussion

a. $\mathrm{C}_{2} \mathbf{H}_{\mathbf{2}}, \mathrm{H}_{\mathbf{2}} \mathrm{O}$, and $\mathrm{C}_{2} \mathrm{H}_{\mathbf{2}}-\mathbf{H}_{\mathbf{2}} \mathrm{O}$. For the purpose of analyzing our current data, we list the results of our previous work ${ }^{1}$ on the $\mathrm{C}_{2} \mathrm{H}_{2}-\mathrm{H}_{2} \mathrm{O}$ cluster in Table 1. Specifically, the total and interaction energies of $\mathrm{A}, \mathrm{W},(\mathrm{AW}-\mathrm{Y}),(\mathrm{AW}-\mathrm{T}), \mathrm{W}_{x},{ }^{15} x=2$, 3 , and 4 , and selected optimal internal coordinates of (AW-Y) and (AW-T) at the MP2/avnz, $n=\mathrm{D}$ and T level of theory are listed (see Figure 1 for the corresponding structures). Table 1 contains a subset of the results of the exhaustive study of the PES of (AW) previously reported in ref 1.
b. $\mathbf{C}_{2} \mathbf{H}_{\mathbf{2}}\left(\mathbf{H}_{\mathbf{2}} \mathrm{O}\right)_{2}$. We have located six stationary points, four minima (m), and two saddle points (sp) on the PES of AW_{2}; their structures are shown in Figure 2. The geometries of all six stationary points were fully optimized with the avdz basis set, whereas the four minima were also optimized with the larger avtz set. ${ }^{16 \mathrm{a}}$ Their total energies $\left(E_{\mathrm{e}}\right)$, interaction energies with respect to the isolated fragments (ΔE_{e}), and BSSE-corrected

TABLE 1: Total Energies $\boldsymbol{E}_{\mathrm{e}}$ (hartree), Interaction Energies $\Delta E_{\mathrm{e}}(\mathrm{kcal} / \mathrm{mol})$, Corrected for BSSE, $\Delta E_{\mathrm{e}}(\mathrm{BSSE})(\mathrm{kcal} / \mathrm{mol})$, and Harmonic ZPE, (kcal/mol), of $\mathrm{C}_{2} \mathbf{H}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{C}_{2} \mathrm{H}_{2}-\mathrm{H}_{2} \mathrm{O}$ $(\mathrm{AW}-\mathrm{Y}, \mathrm{AW}-\mathrm{T})$, and $\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}, x=2,3$, and 4^{a}

${ }^{a}$ van der Waals Geometries, $R_{\mathrm{vdW}}(\AA)$ and ϕ_{vdw} (degrees) of AW-Y and AW-T clusters at the MP2/avnz, $n=\mathrm{D}$ and T level. ${ }^{b}$ See Figure 1. ${ }^{c}$ Experimental value 2.229 A. ref $4 .{ }^{d} \mathrm{H}_{1} \ldots \mathrm{O}$ distance in $\mathrm{AW}-\mathrm{Y}$ (Figure 1a), H_{3}...middle of the triple bond in AW-T (Figure 1b). ${ }^{e}$ Angle between the $\mathrm{C} \equiv \mathrm{C}$ and $\mathrm{C}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ axes in $\mathrm{AW}-\mathrm{Y}($ Figure 1a); angle between $\mathrm{O}-\mathrm{H}_{3}$-middle of the triple bond in AW-T (Figure 1b). ${ }^{f}$ References 13 and 15.
$\mathrm{C}_{2} \mathrm{H}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$

a. AW_{2}-m1 $\left(\mathrm{C}_{1}\right)$

c. $\mathrm{AW}_{2-\mathrm{sp}}\left(\mathrm{C}_{s}\right)$

Figure 2. Geometries of the four minima $\left(\mathrm{AW}_{2} _\mathrm{m} n, n=1-4\right)$ and the two saddle points $\left(\mathrm{AW}_{2} _\operatorname{spn}, n=1-2\right)$ of AW_{2}. Bond distances in \AA at the MP2/avdz(avtz) level.
interaction energies, $\Delta E_{\mathrm{e}}(\mathrm{BSSE})$ are listed in Table 2; van der Waals (vdW) intermolecular distances are also displayed in Figure 2. Harmonic vibrational frequencies and IR intensities of the global minimum are shown in Table 3. ${ }^{16 \mathrm{~b}}$ Finally, the decomposition of the interaction energy of the structures into many-body terms is reported in Table 4. Note that the minima

TABLE 2: Total Energies $\boldsymbol{E}_{\mathrm{e}}$ (hartree), Interaction Energies $\Delta E_{\mathrm{e}}(\mathrm{kcal} / \mathrm{mol})$, Corrected for BSSE [$\Delta E_{\mathrm{e}}($ BSSE $\left.)\right]$, and Zero-Point Energy [ΔE_{0} (BSSE)] for the AW $_{2}$ Cluster at the MP2 Level with the avdz and avtz Basis Sets

$\mathrm{AW}_{2}{ }^{a}$	E_{e}	ΔE_{e}	$\Delta E_{\mathrm{e}}(\mathrm{BSSE})$	$\Delta E_{0}(\mathrm{BSSE})$
		avdz		
m 1	-229.633966	-12.02	-9.60	-5.76
m 2	-229.629037	-8.92	-6.88	-3.71
$\mathrm{sp1}^{b}$	-229.627971	-8.25	-6.23	-3.57
m 3	-229.625556	-6.74	-4.81	-2.71
$\mathrm{sp2}^{c}$	-229.625506	-6.71	-4.47	-2.47
m 4	-229.623800	-5.64	-3.90	-1.75
		avtz		
m 1	-229.840473	-11.57	-10.37	-6.70
m 2	-229.835290	-8.31	-7.34	-4.37
m 3	-229.831277	-5.79	-4.91	-3.03
m 4	-229.830802	-5.50	-4.61	-2.45

${ }^{a} \mathrm{~m}$ (minimum) and sp (saddle point) according to Figure 2. ${ }^{b}$ Two imaginary frequencies. ${ }^{c}$ One imaginary frequency.

TABLE 3: Harmonic Vibrational Frequencies $\omega\left(\mathrm{cm}^{-1}\right)$, IR Intensities IR-I ($\mathbf{k m} / \mathbf{m o l}$), and Zero-Point Energies ZPE ($\mathrm{kcal} / \mathrm{mol}$) of the Global Minima of $\mathrm{AW}_{x}, x=2,3$, and 4 at the MP2 Level of Theory with the avdz and avtz (for AW_{2}) Basis Sets

	AW_{2} _ml			$\mathrm{AW}_{3} \mathrm{~m}$ m1		$\mathrm{AW}_{4 _ \text {ml }}$	
	avdz		avtz	avdz		avdz	
	ω	IR-I	ω	ω	IR-I	ω	IR-I
ω_{1}	88	3.75	91	32	0.591	23	0.228
ω_{2}	94	18.1	95	57	3.06	39	0.211
ω_{3}	118	46.0	116	115	18.0	66	0.132
ω_{4}	148	30.2	151	122	2.79	80	1.83
ω_{5}	170	13.4	173	151	36.8	99	1.54
ω_{6}	183	88.2	192	163	8.00	122	4.24
ω_{7}	192	18.4	194	170	35.6	146	0.398
ω_{8}	240	69.7	251	191	95.9	198	2.50
ω_{9}	348	144	351	207	24.8	221	75.9
ω_{10}	467	38.6	495	236	21.2	237	15.5
ω_{11}	476	6.09	622	252	129	254	9.43
ω_{12}	530	42.3	636	283	65.4	264	86.5
ω_{13}	687	132	691	402	52.1	269	96.9
ω_{14}	775	105	804	418	22.3	285	144
ω_{15}	794	77.9	827	476	13.4	356	70.9
ω_{16}	1629	69.5	1634	490	29.0	413	3.50
ω_{17}	1644	28.7	1651	554	54.5	440	18.6
ω_{18}	1931	5.21	1952	729	119	452	37.7
ω_{19}	3363	228	3365	809	158	463	7.92
ω_{20}	3488	3.55	3497	821	95.2	479	6.28
ω_{21}	3647	285	3657	862	20.5	482	18.5
ω_{22}	3734	147	3741	1632	55.3	713	123
ω_{23}	3891	138	3901	1644	60.1	767	92.4
ω_{24}	3899	104	3910	1664	11.6	775	165
ω_{25}				1922	17.6	807	173
ω_{26}				3297	379	850	134
ω_{27}				3478	12.6	994	4.92
ω_{28}				3532	570	1639	84.6
ω_{29}				3581	534	1652	48.7
ω_{30}				3694	277	1661	80.6
ω_{31}				3883	142	1685	10.6
ω_{32}				3886	99.9	1934	3.97
ω_{33}				3894	88.7	3367	142
ω_{34}						3381	260
ω_{35}						3445	1378
ω_{36}						3484	633
ω_{37}						3493	7.41
ω_{38}						3591	393
ω_{39}						3832	129
ω_{40}						3881	92.5
ω_{41}						3882	84.9
ω_{42}						3885	84.0
ZPE	46.51		47.18	62.39		78.78	

and saddle points are ordered according to their uncorrected (for BSSE and ZPE) interaction energies (ΔE_{e}).

TABLE 4: Many-Body Decomposition of the Interaction Energies (in $\mathrm{kcal} / \mathrm{mol}$) of the AW_{2} at the MP2/avdz and avtz Levels of Theory ${ }^{a}$

$\mathrm{AW}_{2}{ }^{\text {b }}$	m1	m2	sp1	m3	sp2	m4
			avdz			
$\mathrm{A}-\mathrm{W}_{\mathrm{a}}$	-2.94(-2.09)	-3.16(-2.40)	$-2.48(-1.92)$	$-3.58(-2.64)$	-3.59(-2.64)	-3.04(-2.19)
A $-\mathrm{W}_{\mathrm{b}}$	-3.00(-2.18)	$-1.05(-0.46)$	$-2.56(-1.78)$	-3.58(-2.64)	-2.98(-2.65)	-3.04(-2.19)
$\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}$	$-5.20(-4.33)$	$-5.11(-4.39)$	$-3.36(-2.69)$	0.00 (0.12)	0.17 (0.17)	0.15 (0.17)
total two body	$-11.13(-8.60)$	-9.32(-7.25)	-8.41(-6.38)	-7.17(-5.15)	$-6.40(-5.13)$	-5.93(-4.22)
A-W-W	-1.06(-1.18)	0.36(0.34)	0.07(0.07)	0.41(0.32)	-0.33 0.63)	0.29(0.31)
relaxation	0.18	0.03	0.08	0.02	0.02	0.01
$\Delta \mathrm{E}_{\mathrm{e}}\left[\Delta \mathrm{E}_{\mathrm{e}}(\mathrm{BSSE})\right]$	-12.02(-9.60)	-8.92(-6.88)	$-8.25(-6.23)$	$-6.74(-4.81)$	-6.71(-4.47)	-5.64(-3.90)
			avtz			
$\mathrm{A}-\mathrm{W}_{\mathrm{a}}$	$-2.68(-2.33)$	-2.73(-2.39)		$-3.16(-2.71)$		-3.01(-2.57)
$\mathrm{A}-\mathrm{W}_{\mathrm{b}}$	$-2.89(-2.46)$	$-1.05(-0.80)$		$-3.16(-2.71)$		-3.01(-2.57)
$\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}$	-5.10(-4.63)	$-5.02(-4.61)$		0.12(0.12)		0.16(0.17)
total two body	$-10.67(-9.43)$	-8.80(-7.80)		$-6.20(-5.31)$		-5.86(-4.97)
A-W-W	$-1.09(-1.14)$	0.44 (0.41)		$0.37(0.36)$		0.35(0.34)
relaxation	0.20	0.04		0.03		0.02
$\Delta \mathrm{E}_{\mathrm{e}}\left[\Delta \mathrm{E}_{\mathrm{e}}(\mathrm{BSSE})\right]$	-11.57(-10.37)	$-8.31(-7.34)$		$-5.79(-4.91)$		-5.50(-4.61)

${ }^{a}$ BSSE-corrected values are shown in parentheses. ${ }^{a}$ m(minimum) and sp(saddle point), Figure 2.

The two lowest minima $\mathrm{AW}_{2} \mathrm{~m} 1$ and AW_{2} _m2 (Figures 2 a , 2 b) are cyclic trimers of C_{1} and C_{s} symmetry, respectively, in which the acetylene molecule acts simultaneously as a proton donor and a proton acceptor to neighboring water molecules. In essence, both structures can be viewed as resulting from the interaction of a water dimer (albeit with different orientation) with A . The difference between m 1 and m 2 lies in the orientation of the T- and Y-water molecules (cf. Figure 2). In the former, the water molecules are simultaneously proton donors and proton acceptors to A, whereas in the latter, the T-water is a double H donor and the Y -water a double H acceptor.

The van der Waals (vdW) $\mathrm{H}_{1} \ldots \mathrm{O}_{\mathrm{a}}$ distance in $\mathrm{AW}_{2 _} \mathrm{m} 1$ is increased by $\sim 0.02 \AA$ and the $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{O}_{1}$ angle $\left(151.9^{\circ}\right)$ is decreased by 27.6° with respect to the $\mathrm{AW}-\mathrm{Y}$ minimum (Figure $1)^{1}$ at the MP2/avtz level. The intermolecular distance between the two water molecules, $\mathrm{O}_{\mathrm{b}} \ldots \mathrm{H}_{1 \mathrm{a}}$, is $1.916 \AA, 0.017 \AA$ shorter than the corresponding value in the water dimer $\left(\mathrm{W}_{2}\right){ }^{15 b}$ and the angle $\mathrm{H}_{1 \mathrm{a}}-\mathrm{O}_{\mathrm{a}} \ldots \mathrm{O}_{\mathrm{b}}$ is 13.6° as contrasted to 5.7° in $\mathrm{W}_{2} .{ }^{15 \mathrm{c}}$ In general, the structure of the water dimer fragment within the $\mathrm{AW}_{2 _} \mathrm{m} 1$ minimum is very similar to that of the free $\mathrm{W}_{2} .{ }^{15 \mathrm{~b}, \mathrm{c}}$ In contrast, the vdW distances in m 2 are $0.1-0.3 \AA$ longer than the corresponding distances in m 1 , mainly because the T-water in ml acts as double H donor in that configuration.

The MP2 interaction energies $\Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]$ for the global minimum ($\mathrm{AW}_{2} _\mathrm{m} 1$) with the avdz and avtz sets are $-12.02[-$ $9.60]$ and $-11.57[-10.37] \mathrm{kcal} / \mathrm{mol}$, respectively. Upon corrections for ZPE , these become $\Delta E_{0}(\mathrm{BSSE})=-5.76(\mathrm{avdz})$ and -6.70 (avtz) $\mathrm{kcal} / \mathrm{mol}$. The corresponding $\Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]$ $\left\{\Delta E_{0}(\mathrm{BSSE})\right\}$ energies for $\left(\mathrm{AW}_{2} _\mathrm{m} 2\right)$ are $-8.92[-6.88]$ $\{-3.71\} \mathrm{kcal} / \mathrm{mol}$ with the avdz and $-8.31[-7.34]\{-4.37\}$ $\mathrm{kcal} / \mathrm{mol}$ with the avtz sets, respectively. Dykstra ${ }^{7}$ previously reported $\Delta E_{\mathrm{e}}\left(\Delta E_{0}\right)$ values of $-12.65(-8.17) \mathrm{kcal} / \mathrm{mol}$ for the AW_{2} (cyclic) cluster using the MMC approach but without referring to any specific geometry. The energetic stabilization of m 1 with respect to m 2 by $\sim 2.3 \mathrm{kcal} / \mathrm{mol}$ (MP2/avtz) is also reflected in the more "open" structure of the latter when compared to the former. From Table 4, it is seen that a large portion ($\sim 74 \%$) of this difference arises from the $\mathrm{A}-\mathrm{W}_{\mathrm{b}}$ interaction, which is weaker by $1.7 \mathrm{kcal} / \mathrm{mol}$ (MP2/avtz, see Table 4) in m 2 . Furthermore, there is a $1.55 \mathrm{kcal} / \mathrm{mol}$ difference between the two minima in the three-body term $\mathrm{A}-\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}$ which is attractive ($-1.14 \mathrm{kcal} / \mathrm{mol}$) for m 1 but repulsive $(+0.41 \mathrm{kcal} /$ mol) for m 2 . This is consistent with the "homodromic" topology of the ring in ml and the fact that these networks have been
previously reported ${ }^{14 \mathrm{c}}$ to exhibit larger nonadditivities than other hydrogen bonding arrangements. The two-body $\left(\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}\right)$ term is nearly identical in the two isomers ($-4.63 \mathrm{vs}-4.61 \mathrm{kcal} /$ mol, MP2/avtz, BSSE-corrected) and to the free water dimer interaction ($-4.71 \mathrm{kcal} / \mathrm{mol}$, Table 1), indicating that an almost unperturbed water dimer exists within the cluster, a fact that is also evident by the intermolecular $\mathrm{W}-\mathrm{W}$ separations discussed previously.

The geometries of the third and the fourth minima AW_{2} m3 and AW_{2} m 4 (both of $\mathrm{C}_{2 h}$ symmetry) are shown in parts d and f of Figure 2. In m3, two equivalent (AW-Y) bonds are formed, whereas in m 4 , two equivalent ($\mathrm{AW}-\mathrm{T}$) bonds are formed. When compared to the AW-Y and AW-T structures, ${ }^{1}$ both the Y - and T -vdW bond distances in m 3 and m 4 minima increase by approximately $0.04 \AA$. Practically, the geometries of A and W molecules within the m 3 and m 4 clusters are identical with those of AW-Y and AW-T structures, respectively.

With regard to the MP2/avtz interaction energies $\Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}\right.$ (BSSE)] of m 3 and m 4 , these are $-5.79[-4.91]$ and -5.50 $[-4.61] \mathrm{kcal} / \mathrm{mol}$, respectively (cf. Table 4). As expected, these are almost twice as large as the corresponding $\Delta E_{\mathrm{e}}(\mathrm{BSSE})$ values of the AW -Y and AW -T isomers, viz. -2.72×2 and -2.56 $\times 2 \mathrm{kcal} / \mathrm{mol},{ }^{1}$ a result consistent with the fact that the rest of the terms in the many-body expansion (two-body $\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}<$ $0.2 \mathrm{kcal} / \mathrm{mol}$ and three-body $\left.\mathrm{A}-\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}<0.4 \mathrm{kcal} / \mathrm{mol}\right)$ are quite small and repulsive. These terms are responsible for the destabilization of m 3 and m 4 with respect to the global minimum (m1), although the former two have slightly larger two-body $\mathrm{A}-\mathrm{W}_{\mathrm{a}}$ and $\mathrm{A}-\mathrm{W}_{\mathrm{b}}$ terms with respect to m 1 because of the more optimal orientation of the water molecules on either side of (A) when compared to the ring ml structure. Inclusion of ZPE corrections produces $\Delta E_{0}(\mathrm{BSSE})=-3.03 \mathrm{kcal} / \mathrm{mol}$ (m3) and -2.46 (m4) kcal/mol at the MP2/avtz level.
Finally, two saddle point structures, AW_{2} sp1 and AW_{2} sp2, both of C_{s} symmetry (see Figure $2 \mathrm{c}, \mathrm{e}$) were located. The sp1 is a second-order saddle point (two imaginary frequencies) constituting a three-member ring, whereras the sp2 is a transition state (one imaginary frequency) resulting from the m 3 by a 90° rotation of the σ plane of one of the water molecules around the acetylene axis. The MP2/avdz interaction energies of sp 1 and $\mathrm{sp} 2, \Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]\left\{\Delta E_{0}(\mathrm{BSSE})\right\}$, are $-8.25[-6.23]$ $\{-3.57\}$ and $-6.71[-4.47]\{-2.47\} \mathrm{kcal} / \mathrm{mol}$, respectively. Judging from the variation of the energetics of the minima with
$\mathrm{C}_{2} \mathrm{H}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$

a. AW_{3} _m1

d. AW_{3}-m4

m. $\mathbf{A W}_{3}$ m10 $\left(\mathrm{C}_{\mathrm{s}}\right)$

k. $\mathrm{AW}_{3} _\mathrm{m} 9\left(\mathrm{C}_{s}\right)$

l. $\mathbf{A W}_{3-} \operatorname{sp} \mathbf{3}\left(\mathrm{C}_{s}\right)$

Figure 3. Geometries of the 10 minima $\left(\mathrm{AW}_{3-} \mathrm{m} n, n=1-10\right)$ and the three saddle points $\left(\mathrm{AW}_{3_{-}} \mathrm{sp} n, n=1-3\right)$ of AW_{3}. Bond distances in \AA at the MP2/avdz level.
basis set, we estimate that these energies are $\sim 0.5 \mathrm{kcal} / \mathrm{mol}$ weaker than the analogous values with the avtz set.
c. $\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{2}}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)_{3}$. We located 10 minima and 3 saddle points on the PES of AW_{3}. The optimal structures, together with representative intermolecular vdW distances, are shown in Figure 3. The depicted configurations were derived by combining the following sets of building units: $\mathrm{W}_{3}+\mathrm{A}, \mathrm{W}_{2}+\mathrm{A}$ $+\mathrm{W}, \mathrm{W}_{2}+\mathrm{AW}, \mathrm{AW}_{2}+\mathrm{W}, \mathrm{AW}+2 \mathrm{~W}$, and $\mathrm{A}+3 \mathrm{~W}$. All structures were fully optimized at the MP2/avdz level. ${ }^{16 c}$ Total energies (E_{e}) and interaction energies $\Delta E_{\mathrm{e}}, \Delta E_{\mathrm{e}}(\mathrm{BSSE})$, and ΔE_{0} (BSSE) are listed in Table 5; the vibrational frequencies and the IR intensities of the global minimum (m 1) are given in Table 3. ${ }^{16 \mathrm{~d}}$ Finally, the decomposition of interaction energies into two-, three- and four-body terms for 6 selected minima are presented in Table 6. The structures of the stationary points fall into groups according to the various hydrogen bonding networks that are formed and are discussed as such below.

The AW_{3} m1 and $\mathrm{AW}_{3} _\mathrm{m} 4$ minima and the AW_{3} _sp2 saddle point (two imaginary frequencies) form a four member heavy atom ring (see Figure 3 parts a, d, and j). The global (m1) minimum resembles the W_{4} cyclic tetramer ${ }^{15}$ arrangement but with one W replaced by the $\mathrm{C}-\mathrm{H}$ bond of A . The m 1 and m 4 isomers are quite similar, with the main difference being the relative positions of the hydrogens $\mathrm{H}_{1 \mathrm{a}}$ and $\mathrm{H}_{1 \mathrm{~b}}$ with respect to

TABLE 5: Total Energies $\boldsymbol{E}_{\mathrm{e}}$ (hartree), Interaction Energies $\Delta E_{\mathrm{e}}(\mathrm{kcal} / \mathrm{mol})$, Corrected for BSSE [$\left.\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]$, and Zero-Point Energy [$\Delta E_{0}($ BSSE $)$] for AW $_{3}$ at the MP2/avdz Level of Theory

$\mathrm{AW}_{3}{ }^{a}$	E_{e}	ΔE_{e}	$\Delta E_{\mathrm{e}}(\mathrm{BSSE})$	$\Delta E_{0}(\mathrm{BSSE})$
m 1	-305.910717	-21.96	-17.80	-11.46
m 2	-305.909968	-21.49	-17.54	-11.09
m 3	-305.909879	-21.43	-17.47	-11.05
m 4	-305.909764	-21.36	-17.25	-11.07
m 5	-305.909479	-21.18	-17.12	-10.63
m 6	-305.903302	-17.30	-13.81	-8.47
m 7	-305.902655	-16.90	-13.55	-8.10
m 8	-305.901287	-16.04	-12.60	-7.65
$\mathrm{sp1}^{b}$	-305.901011	-15.87	-12.43	-7.79
sp2 c	-305.899517	-14.93	-11.55	-6.66
m 9	-305.898487	-14.28	-10.92	-5.91
sp3 b	-305.896882	-13.28	-10.11	-5.80
$\mathrm{~m}^{2} 0$	-305.895900	-12.66	-9.62	-5.35

${ }^{a} \mathrm{~m}$ (minimum) and sp (saddle point), Figure 3. ${ }^{b}$ Three imaginary frequencies. ${ }^{c}$ Two imaginary frequencies.
the almost planar $\mathrm{C}_{1} \mathrm{O}_{a} \mathrm{O}_{b} \mathrm{O}_{c}$ ring: $\mathrm{H}_{1 \mathrm{a}}$ is up and $\mathrm{H}_{1 \mathrm{~b}}$ is down (ud) in m1, whereas $H_{1 a}$ is down and $H_{l b}$ is up (du) in m4. In this notation, the W_{3} moiety in m 1 and m 4 can be characterized as udu and duu, respectively. A noted difference between (m1, $\mathrm{m} 4)$ and sp 2 is that, in the former, every water acts as a donor-

TABLE 6: Many-Body Decomposition of the Interaction Energies ($\mathrm{kcal} / \mathrm{mol}$) for the $\mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 5, \mathrm{~m} 6, \mathrm{~m} 7$, and m 9 Minima of AW_{3} at the MP2/avdz Level of Theory ${ }^{a}$

$\mathrm{AW}_{3}{ }^{b}$	m 1	m 2	m 5	m 6	m 7	m 9
$\mathrm{~A}-\mathrm{W}_{\mathrm{a}}$	$-3.29(-2.19)$	$-1.27(-0.59)$	$-2.54(-1.82)$	$-2.49(-1.99)$	$-3.02(-2.08)$	$-2.99(-2.21)$
$\mathrm{A}-\mathrm{W}_{\mathrm{b}}$	$-1.18(-1.03)$	$-3.07(-2.25)$	$-2.92(-2.22)$	$-2.62(-1.54)$	$-2.91(-2.09)$	$0.25(0.30)$
$\mathrm{A}-\mathrm{W}_{\mathrm{c}}$	$-2.94(-1.95)$	$-1.03(-0.87)$	$0.34(0.52)$	$-2.49(-1.99)$	$-0.29(-0.24)$	$-2.99(-2.21)$
$\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}$	$-5.14(-4.14)$	$-4.60(-3.91)$	$-4.87(-3.82)$	$-4.82(-4.02)$	$-5.12(-4.33)$	$-5.18(-4.45)$
$\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{c}}$	$-1.25(-1.15)$	$-4.43(-3.50)$	$-4.67(-3.87)$	$0.47(0.49)$	$-5.29(-4.48)$	$1.13(1.31)$
$\mathrm{W}_{\mathrm{b}}-\mathrm{W}_{\mathrm{c}}$	$-5.14(-4.13)$	$-4.92(-3.96)$	$-4.60(-3.79)$	$-4.82(-4.02)$	$0.48(0.49)$	$-5.18(-4.44)$
total two body	$-18.94(-14.60)$	$-19.32(-15.08)$	$-19.25(-15.00)$	$-16.78(-13.07)$	$-16.52(-12.73)$	$-14.96(-11.70)$
$\mathrm{A}-\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}$	$-0.72(-0.81)$	$0.26(0.20)$	$-0.90(-0.94)$	$-0.74(-0.83)$	$-1.02(-1.15)$	$0.31(0.29)$
$\mathrm{A}-\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{c}}$	$-0.55(-0.60)$	$-0.17(-0.22)$	$0.33(0.30)$	$0.23(0.21)$	$-0.45(-0.45)$	$-0.14(-0.04)$
$\mathrm{A}-\mathrm{W}_{\mathrm{b}}-\mathrm{W}_{\mathrm{c}}$	$-0.64(-0.70)$	$-0.49(-0.55)$	$0.26(0.27)$	$-0.74(-0.83)$	$0.05(0.04)$	$0.31(0.29)$
$\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}-\mathrm{W}_{\mathrm{c}}$	$-1.20(-1.25)$	$-2.17(-2.33)$	$-2.13(-2.28)$	$0.37(0.31)$	$0.47(0.50)$	$0.23(0.28)$
total three body	$-3.11(-3.36)$	$-2.57(-2.91)$	$-2.44(-2.66)$	$-0.87(-1.14)$	$-0.95(-1.05)$	$0.71(0.81)$
$\mathrm{A}-\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}-\mathrm{W}_{\mathrm{c}}$	$-0.33(-0.27)$	$-0.04(0.01)$	$0.06(0.08)$	$0.01(0.07)$	$-0.03(0)$	$-0.07(-0.06)$
relaxation	0.43	0.44	0.46	0.34	0.23	-164
$\Delta \mathrm{E}_{\mathrm{e}}\left[\Delta \mathrm{E}_{\mathrm{e}}(\mathrm{BSSE})\right]$	$-21.96(-17.80)$	$-21.49(-17.54)$	$-21.18(-17.12)$	$-17.30(-13.81)$	$-16.90(-13.55)$	$-14.28(-10.92)$

${ }^{a}$ BSSE-corrected values are shown in parentheses. ${ }^{b} \mathrm{~m} 1$ to m 9 minima as shown in Figure 3.
acceptor to nearest neighbors, whereas in the latter, the W_{c} and W_{a} fragments are double H -donors and double acceptors, respectively.

The interaction energies $\Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]\left\{\Delta E_{0}(\mathrm{BSSE})\right\}$ are $-21.96[-17.80]\{-11.46\},-21.36[-17.25]\{-11.07\}$, and $-14.93[-11.55]\{-6.66\} \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{m} 1, \mathrm{~m} 4$, and sp 2 , respectively. It is interesting to point out that the $\Delta E_{0}(\mathrm{BSSE})$ interaction energies for the $\mathrm{m} 2, \mathrm{~m} 3$, and m 4 minima are almost identical ($-11.09,-11.05$, and $-11.07 \mathrm{kcal} / \mathrm{mol}$, cf. Table 5). The many-body analysis of the global minimum (m1) configuration, listed in Table 6, shows that (BSSE-corrected) total two-, three-, and four-body terms are $-14.60,-3.36$, and -0.27 $\mathrm{kcal} / \mathrm{mol}$, respectively, summing up to $-18.23 \mathrm{kcal} / \mathrm{mol}$, yielding a $\Delta E_{\mathrm{e}}(\mathrm{BSSE})$ of $-17.80 \mathrm{kcal} / \mathrm{mol}$ when the total relaxation energy of $+0.43 \mathrm{kcal} / \mathrm{mol}$ is taken into account. Furthermore, we obtain an interaction of A with the three water molecules of $-9.56(-7.46$ including ZPE) $\mathrm{kcal} / \mathrm{mol}$ by summing together the two-body terms $\mathrm{A}-\mathrm{W}_{i}$, the three-body terms $\mathrm{A}-\mathrm{W}_{i}-\mathrm{W}_{j}$, the 4-body term $\mathrm{A}-\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}-\mathrm{W}_{\mathrm{c}}$, and the relaxation energy.

The $\mathrm{AW}_{3 _} \mathrm{m} 2, \mathrm{AW}_{3} _\mathrm{m} 3$, and $\mathrm{AW}_{3 _} \mathrm{m} 5$ minima all have a cyclic water trimer structure that interacts with A via two vdW bonds (Figure 3 parts b, c, and e). The dihedral angles between the planes $\mathrm{C}_{1} \mathrm{O}_{\mathrm{b}} \mathrm{O}_{\mathrm{a}}$ and $\mathrm{O}_{\mathrm{b}} \mathrm{O}_{\mathrm{a}} \mathrm{O}_{\mathrm{c}}$ are $108.5^{\circ}, 107.4^{\circ}$, and 96.3° for $\mathrm{m} 2, \mathrm{~m} 3$, and m 5 , respectively. The directions of the hydrogen-bonded H atoms within the W_{3} fragment are, for a fixed orientation of A with respect to W_{3}, clockwise (m2 and m 3) and counterclockwise (m5). The main difference between the m 2 and m 3 isomers lies in the direction of the free H -atom of the W_{c} fragment which is "down" for m 2 and "up" for m 3 , with respect to the $\mathrm{O}_{a} \mathrm{O}_{b} \mathrm{O}_{c}$ plane; the direction of the rest of the "free" H atoms for W_{a} and W_{b} being the same.

The interaction energies $\Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]\left\{\Delta E_{0}(\mathrm{BSSE})\right\}$ are $-21.49[-17.54]\{-11.09\},-21.43[-17.47]\{-11.05\}$, and $-21.18[-17.12]\{-10.63\} \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{m} 2, \mathrm{~m} 3$, and m 5 , respectively. We note that the BSSE-corrected interaction energies of the five minima $(\mathrm{m} 1-\mathrm{m} 5)$ discussed so far are within an energy range of $0.68 \mathrm{kcal} / \mathrm{mol}(0.83 \mathrm{kcal} / \mathrm{mol}$ with ZPE corrections). The many-body analysis of the configurations of the m 2 and m 5 minima (the m 3 being very similar to m 2), shown in Table 6, indicates that the BSSE-corrected total contributions of the two-, three- and four-body terms are -15.08 , $-2.91, \sim 0.0 \mathrm{kcal} / \mathrm{mol}$ (for m 2) and $-15.0,-2.66,+0.1 \mathrm{kcal} /$ mol (for m 5). The corresponding relaxation terms are similar $(+0.44$ and $+0.46 \mathrm{kcal} / \mathrm{mol}$ respectively for m 2 and m 5$)$. At the m 2 and m 5 minimum configurations, the interaction of A with the three water molecules is $-5.78(-4.24$ including ZPE $)$
$\mathrm{kcal} / \mathrm{mol}(\mathrm{m} 2)$ and $-5.34(-3.78) \mathrm{kcal} / \mathrm{mol}(\mathrm{m} 5)$, values that are about half of the analogous interaction in m 1 . As expected, the water-only $\left(\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}-\mathrm{W}_{\mathrm{c}}\right)$ three-body term is larger for m 2 and $m 5$ than for $m 1$ because of the formation of the water trimer ring in the first two. However, the total four-body term for m 1 is larger than for m 2 because of the formation of the homodromic four heavy-atom ring in the former, again in accordance with previous conclusions ${ }^{14 \mathrm{c}}$ suggesting the maximization of the nonadditivities for homodromic hydrogen-bonding networks.

The AW_{3} _m6 minimum (Figure 3f) is the first minimum of higher symmetry $\left(C_{s}\right)$ found. The five heavy atoms form a pentagonal structure of trapezoidal topology divided in two equal parts by the $\mathrm{H}_{2 \mathrm{~b}} \ldots \equiv$ (middle of the A-triple bond) line. Its interaction energy $\Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]\left\{\Delta E_{0}(\mathrm{BSSE})\right\}$ is $-17.30[-$ $13.81]\{-8.47\} \mathrm{kcal} / \mathrm{mol}$, placing it $4.0 \mathrm{kcal} / \mathrm{mol}$ (3.0 when ZPE corrections are included) above the global minimum. The total (BSSE-corrected) two-, three- and four-body interactions, listed in Table 6, are $-13.07,-1.14$, and $+0.1 \mathrm{kcal} / \mathrm{mol}$, respectively, showing the dominance of the two-body contributions. The interaction of A with the three water molecules is $-8.67(-6.73$ including ZPE) $\mathrm{kcal} / \mathrm{mol}$.

The AW_{3} _m7 minimum originates from the interaction of AW_{2} m1 with a water molecule via a $\mathrm{H}_{1 \mathrm{a}} \ldots \mathrm{O}_{\mathrm{c}}$ vdW bond (Figure 2 g), whereas the $\mathrm{AW}_{3 _} \mathrm{m} 8$ and $\mathrm{AW}_{3 _} \mathrm{m} 10$ minima (the second of C_{s} symmetry) are reminiscent of the $\mathrm{AW}_{2 _} \mathrm{m} 1$ and $\mathrm{AW}_{2 _} \mathrm{m} 2$ configurations interacting with a water molecule via a $\mathrm{H}_{2} \ldots \mathrm{O}_{c}$ (Y-like) vdW bond (Figure 3h,m). The interaction energies ΔE_{e} $\left[\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]\left\{\Delta E_{0}(\mathrm{BSSE})\right\}$ are $-16.90[-13.55]\{-8.10\},-16.04$ [-12.60$]\{-7.65\}$, and $-12.66[-9.62]\{-5.35\} \mathrm{kcal} / \mathrm{mol}$ for m 7 , m 8 , and m 10 , respectively. By summing up the interaction energies of AW_{2} m1 and $\mathrm{AW}-\mathrm{Y},{ }^{1}$ we obtain $\Delta E_{\mathrm{e}}(\mathrm{BSSE})=$ $-9.60-2.62=-12.22 \mathrm{kcal} / \mathrm{mol}$, just $0.4 \mathrm{kcal} / \mathrm{mol}(0.3 \mathrm{kcal} /$ mol including ZPE) weaker than $\Delta E_{\text {e }}(\mathrm{BSSE})$ of AW_{3} m8 (Table 5), rationalizing our previous characterization of the m 8 minimum as the combination of the interaction between the $\mathrm{AW}_{2} \mathrm{~m} 1$ moiety and a water molecule in the Y arrangement. The same holds for $\mathrm{AW}_{3} \mathrm{~m} 10$, for which the corresponding difference is just $0.12 \mathrm{kcal} / \mathrm{mol}(0.05 \mathrm{kcal} / \mathrm{mol}$ including ZPE). The analysis of the many-body energy terms for selected AW_{3} minima suggests that the nonadditive (three-body and higher) terms are larger for the global minimum (m1) for which they amount to 18%, again in accordance with the formation of the homodromic ring incorporating all fragments. The percentage contribution of the many-body terms decreases with increasing separation from the global minimum, becoming 6% for m 7 .

The last group of the AW_{3} isomers is composed of the AW_{3} m m 9 minimum, and the third order (3 imaginary frequencies) saddle structures, AW_{3} sp1 and AW_{3} sp3 (Figure 3 parts k, i, and l). All three have C_{s} symmetry and four member rings $\mathrm{O}_{\mathrm{a}} \mathrm{O}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}} \equiv$, where \equiv represents the center of the acetylene triple bond. Their energetics, $\Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]\left\{\Delta E_{0}(\mathrm{BSSE})\right\}$, are $-14.28[-10.92]\{-5.91\},-15.87[-12.43]\{-7.79\}$,and $-13.28[-10.11]$ $\{-5.80\} \mathrm{kcal} / \mathrm{mol}$ for m 9 , sp1, and sp3, respectively. The total three-body interaction for m 9 is positive $(+0.8 \mathrm{kcal} / \mathrm{mol}$, Table 6), notably the only destabilizing three-body interaction in all $10 \mathrm{AW}_{3}$ m configurations studied.
d. $\mathbf{C}_{2} \mathbf{H}_{\mathbf{2}}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)_{\mathbf{4}}$. For the AW_{4} cluster, we located 30 minima $\left(\mathrm{AW}_{4 _} \mathrm{m} 1\right.$ to $\left.\mathrm{AW}_{4 _\mathrm{m} 30}\right)$ and three saddle point structures $\left(\mathrm{AW}_{4}\right.$ _sp1, 2, 3) which are depicted in Figure 4. With the exception of the $\mathrm{m} 19, \mathrm{~m} 26$, and m 27 minima and sp 1 and sp 2 saddle points, which are obtained at the MP2/4-31G level, ${ }^{16 e}$ all other structures were fully optimized at the MP2/avdz level of theory. ${ }^{16 e}$ Out of the 30 minima studied, only two (m28 and m 30) belong to the S_{2} and $C_{2 h}$ point groups, whereas the rest lack any symmetry elements $\left(C_{1}\right)$. The minima were obtained by considering the following building units: $\mathrm{W}_{4}+\mathrm{A}, \mathrm{W}_{3}+$ $\mathrm{W}+\mathrm{A}, \mathrm{W}_{3}+\mathrm{AW}, \mathrm{W}_{2}+\mathrm{AW}_{2}, 2 \mathrm{~W}_{2}+\mathrm{A}, \mathrm{W}_{2}+2 \mathrm{~W}+\mathrm{A}$, $4 \mathrm{~W}+\mathrm{A}, \mathrm{AW}_{3}+\mathrm{W}, \mathrm{AW}_{2}+2 \mathrm{~W}$, and $\mathrm{AW}+3 \mathrm{~W}$. The total and interaction energies are listed in Table 7, whereas the manybody analysis for eight selected minima is presented in Table 8. The harmonic vibrational frequencies and IR intensities for m 1 are listed in Table 3, whereas corresponding values for m 8 and $m 9$ are available in the Supporting Information. ${ }^{16 f}$ Because ZPE corrections have been computed only for the $\mathrm{m} 1, \mathrm{~m} 8$, and m 9 minima, the main body of the interaction energy analysis is based on ΔE_{e} and $\Delta E_{\mathrm{e}}(\mathrm{BSSE})$ values. Below, we discuss the different structures according to their grouping into similar morphologies.

The $\mathrm{AW}_{4 _} \mathrm{m} 1, \mathrm{AW}_{4 _} \mathrm{m} 4, \mathrm{AW}_{4 _m} \mathrm{~m}$, and $\mathrm{AW}_{4 _} \mathrm{m} 7$ minima span an energy difference range of $1 \mathrm{kcal} / \mathrm{mol}$ and are composed of a cyclic water tetramer $\left(\mathrm{W}_{4}\right)$ interacting with the A moiety via two adjacent W molecules. In all four previous structures, the four-member oxygen rings $\left(\mathrm{O}_{\mathrm{a}} \mathrm{O}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}} \mathrm{O}_{\mathrm{d}}\right)$ are almost planar with the A molecule located on the $\mathrm{O}_{a} \mathrm{O}_{\mathrm{b}} \mathrm{C}_{1}$ plane, with the dihedral angles between these two planes ranging from 111 (m1) to $91^{\circ}(\mathrm{m} 7)$. Within (m 1 and m 4) and (m 6 and m 7), the W_{4} fragment assumes the structure of the free W_{4} global (udud) and first local (uudd) minima, respectively, according to the MP2/avdz//CCSD(T) and MP2-R12 calculations of Schultz et al. ${ }^{17}$ These four minima result from all possible combinations of the direction of the "hydrogen-bonded" H atoms in the W_{4} ring with respect to a fixed A orientation (clockwise, counterclockwise) and the position of the "free" H-atoms with respect to the $\mathrm{O}_{\mathrm{a}} \mathrm{O}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}} \mathrm{O}_{\mathrm{d}}$ plane, viz., (udud) and (uudd).

The interaction energies $\Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]$ are $-33.89[-$ 28.01], $-33.51[-27.57],-33.08[-27.25]$, and $-32.96[-26.96]$ $\mathrm{kcal} / \mathrm{mol}$ for $\mathrm{m} 1, \mathrm{~m} 4, \mathrm{~m} 6$, and m 7 , respectively (cf. Table 7). When ZPE corrections are included, the interaction energy $\Delta E_{0^{-}}$ (BSSE) of ml becomes $-18.67 \mathrm{kcal} / \mathrm{mol}$. At the same level of theory (MP2/avdz), the free water tetramer W_{4} has an interaction energy $\Delta E_{0}($ BSSE $)=16.03 \mathrm{kcal} / \mathrm{mol} .{ }^{15}$ Therefore, the difference of $-2.64 \mathrm{kcal} / \mathrm{mol}$ closely resembles the binding of $\mathrm{AW}_{4 _\mathrm{m}} \mathrm{m}$ with respect to $\mathrm{W}_{4}+\mathrm{A}$. This value is practically equal to the sum of $\Delta E_{0}(\mathrm{BSSE})$ interactions for $\mathrm{AW}-\mathrm{T}+\mathrm{AW}-\mathrm{Y}(-2.59$ $\mathrm{kcal} / \mathrm{mol}) .{ }^{1}$ The analysis of many-body energy terms for m 1 (cf. Table 8), reveals that the sum of two-, three-, four-, and five-body interactions are $-21.90,-6.65,-0.51$, and +0.01 $\mathrm{kcal} / \mathrm{mol}$, respectively, with the total relaxation R being +1.03 $\mathrm{kcal} / \mathrm{mol}$.

The $\mathrm{AW}_{4 _} \mathrm{m} 2, \mathrm{AW}_{4 _} \mathrm{m} 3$, and $\mathrm{AW}_{4 _} \mathrm{m} 5$ minima are also composed of water tetramers, but with two diagonal water molecules of the W_{4} ring interacting with A through two vdW bonds, forming puckered four-member rings with dihedral angles between the $\mathrm{O}_{\mathrm{a}} \mathrm{O}_{\mathrm{b}} \mathrm{O}_{\mathrm{d}}$ and $\mathrm{O}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}} \mathrm{O}_{\mathrm{d}}$ planes of $150.4^{\circ}, 150.6^{\circ}$, and 155.0°, respectively (see Figure 4 parts b, c, and e). As with the previous group, these minima arise from the different choices of the direction of the "hydrogen-bonded" (clockwise, counterclockwise) and "free" (up, down, and planar (p)) H atoms. Although the m 2 and m 3 minima are practically degenerate, their energy difference being $0.11 \mathrm{kcal} / \mathrm{mol}(0.12 \mathrm{kcal} / \mathrm{mol}$ including BSSE), they correspond to structures that have different directions as regards the "hydrogen-bonded" H atoms within the W_{4} fragment (clockwise for m 2 and counterclockwise for m3). It should be mentioned that the corresponding structures (dpud) and (ddup) of the gas-phase water tetramer W_{4}, lying $\sim 1.2 \mathrm{kcal} / \mathrm{mol}$ higher than the global minimum, are saddle points of second and first order on the water tetramer PES, ${ }^{17}$ but are stabilized as minima m 2 and m 3 in AW_{4}. The corresponding interaction energies $\Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]$ are $-33.68[-27.47]$, $-33.57[-27.35]$, and $-33.46[-27.25] \mathrm{kcal} / \mathrm{mol}$ for m 2 , m 3 , and m5, see Table 7. Note that BSSE corrections alter the order of the minima to $\mathrm{m} 4, \mathrm{~m} 2, \mathrm{~m} 3$, and $\mathrm{m} 5=\mathrm{m} 6$.

The AW_{4} m8 and $\mathrm{AW}_{4 _} \mathrm{m} 18$ minima are formed by the interaction of a perturbed "cage" water tetramer with A (Figure 4 parts h and t). The cage W_{4} structure was found to be a minimum on the PES of the ASP-P (anisotropic site potential neglecting all nonpairwise additive effects) potential by Gregory and Clary; ${ }^{18}$ however, at the MP2/dzp level, the cage morphology was found to collapse to the global ring minimum. ${ }^{18}$ In the W_{4} cage, the $\mathrm{H}_{\text {la }}$ hydrogen forms a vdW bond with the O_{c} atom, but in the m 8 and m 18 minima, this interaction is altered because of the intervention of the A molecule and the formation of two vdW bonds between W_{4} and A . The difference between m 8 and m18 lies again in the topology of the hydrogen bonding network. Furthermore, the W_{4} ring is more "puckered" than the one in $\mathrm{m} 2, \mathrm{~m} 3$, and m 5 minima: the dihedral angles between the two oxygen planes $\mathrm{O}_{\mathrm{a}} \mathrm{O}_{\mathrm{b}} \mathrm{O}_{\mathrm{d}}$ and $\mathrm{O}_{\mathrm{b}} \mathrm{O}_{\mathrm{d}} \mathrm{O}_{\mathrm{c}}$ are $95.6^{\circ}(\mathrm{m} 8)$ and 110.4° (m18).

The interaction energies $\Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]$ are $-30.81[-$ $25.01] \mathrm{kcal} / \mathrm{mol}$ for m 8 and $-28.63[-23.01] \mathrm{kcal} / \mathrm{mol}$ for m 18 . Including ZPE corrections, the m8 interaction energy becomes $-15.89 \mathrm{kcal} / \mathrm{mol}$. The energy difference of $2.18 \mathrm{kcal} / \mathrm{mol}(2.0$ $\mathrm{kcal} / \mathrm{mol}$ including the BSSE) between the two isomers is rather due to the extra H bond in m 8 .

The $\mathrm{AW}_{4 _} \mathrm{m} 9$ minimum (Figure 4i) forms a cyclic pentamer ring that incorporates A and resembles the free W_{5} duduu configuration. ${ }^{15}$ The replacement of any other water molecule by A collapses to the previous minimum. All six heavy atoms are approximately on the same plane and the interaction energy $\Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]\left\{\Delta E_{0}(\mathrm{BSSE})\right\}$ is $-30.64[-25.14]\{-16.57\}$ $\mathrm{kcal} / \mathrm{mol}$. Correcting for BSSE and ZPE was found to invert the ordering between m 8 and m 9 . As expected from the homodromic ring configuration of this structure, all nonadditive (three-body and higher) energy terms are negative; that is, they all stabilize this particular network.

The common feature among the $\mathrm{AW}_{4 _} \mathrm{m} 10, \mathrm{AW}_{4 _} \mathrm{m} 16$, and $\mathrm{AW}_{4 _} \mathrm{m} 17$ minima (Figure 4 parts j, p, and q) and the two firstorder saddle point structures, $\mathrm{AW}_{4 _} \mathrm{sp} 1$ and AW_{4} sp2 (Figure 4 parts r and s), is a water tetramer with identical topology, whose gas-phase configuration has symmetry C_{s} This structure was previously identified by Clementi et al. ${ }^{19}$ and later discussed by Gregory and Clary. ${ }^{18}$ The intervention of the A molecule destroys the C_{s} symmetry of the W_{4} fragment in the $\mathrm{m} 10, \mathrm{~m} 16$,

$\mathbf{C}_{2} \mathbf{H}_{\mathbf{2}}\left(\mathbf{H}_{\mathbf{2}} \mathrm{O}\right)_{\mathbf{4}}$

m. AW_{4} m13

n. AW_{4} m14

o. AW_{4} m15

u. AW_{4} m19

bb. AW_{4} m26

Figure 4. Geometries of the 30 minima $\left(\mathrm{AW}_{4} \mathrm{~m} n, n=1-30\right)$ and three saddle points $\left(\mathrm{AW}_{4} \mathrm{sp} n, n=1-3\right)$ of AW_{4} cluster. Bond distances in \AA at the MP2/avdz level.
and m17 minima, but this symmetry is maintained in the sp1 and sp2 conformations. The difference between these five structures lies in which water molecule(s) of the W_{4} fragment interacts with the acetylene. The dihedral angles between the oxygen planes $\mathrm{O}_{\mathrm{a}} \mathrm{O}_{\mathrm{b}} \mathrm{O}_{\mathrm{d}}$ and $\mathrm{O}_{\mathrm{b}} \mathrm{O}_{\mathrm{d}} \mathrm{O}_{\mathrm{c}}$ are $97.3^{\circ}, 99.3^{\circ}$, and 115.3° in the $\mathrm{m} 10, \mathrm{~m} 16$, and m 17 minima, respectively.

The interaction energies $\Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]$ are $-30.63[-$ 24.70], $-28.78[-23.28]$, and $-28.73[-23.27] \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{m} 10, \mathrm{~m} 16$, and m 17 , respectively; note that m 16 and m 17 are practically degenerate at this level of theory. The many-body analysis for the m 10 isomer is given in Table 8. We remind the reader that the sp 1 and sp 2 structures were calculated at the MP2/4-31G level, and they might be lying higher than m17 and near to m18.

In the $\mathrm{AW}_{4 _} \mathrm{m} 11$ to $\mathrm{AW}_{4 _\mathrm{m}} 15$ series (Figure 4 parts $\mathrm{k}-\mathrm{o}$), a water trimer ring interacts with A through two vdW bonds forming an almost planar four member ring. The dihedral angles between the oxygen "triangles" and the "squares" range from 95 to 113°. It is interesting to note that all five minima lie within an energy range of $0.3 \mathrm{kcal} / \mathrm{mol}$ (with or without BSSE corrections) at the MP2/avdz level (Table 7). The five structures can be divided in three groups (m11), (m12 and m14), and (m13 and m 15) according to the vdW bonds formed between the five molecules. The difference between m 12 and $\mathrm{m} 14, \mathrm{~m} 13$ and m 15 is the $\mathrm{H}_{1 \mathrm{~d}}$ hydrogen direction (up or down) with respect to the $\mathrm{O}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}} \mathrm{O}_{\mathrm{d}}$ plane.

The $\mathrm{AW}_{4 _} \mathrm{m} 19, \mathrm{AW}_{4 _\mathrm{m}} 20, \mathrm{AW}_{4 _\mathrm{m}} 21$, and $\mathrm{AW}_{4 _} \mathrm{m} 23$ minima (Figure 4 parts u, v, w, and y) can be considered as $\mathrm{AW}_{3} \mathrm{~m} 1+\mathrm{W}_{\mathrm{d}}$ and $\mathrm{AW}_{3 _} \mathrm{m} 4+\mathrm{W}_{\mathrm{d}}$. The four-member rings $\mathrm{O}_{\mathrm{a}} \mathrm{O}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}} \mathrm{C}_{1}$ in $\mathrm{m} 19, \mathrm{~m} 21$, and m 23 are almost planar, but in m20, the dihedral angle between the $\mathrm{O}_{\mathrm{a}} \mathrm{O}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}}$ and $\mathrm{O}_{\mathrm{b}} \mathrm{O}_{\mathrm{c}} \mathrm{C}_{1}$ planes is -28.0°. The similarity between the m 21 and m 23 structures is

TABLE 7: Total Energies $\boldsymbol{E}_{\mathrm{e}}$ (hartree), Interaction Energies $\Delta E_{\mathrm{e}}(\mathrm{kcal} / \mathrm{mol})$, Corrected for BSSE [$\Delta E_{\mathrm{e}}($ BSSE $\left.)\right]$, and Zero-Point Energy [$\Delta_{0}($ BSSE $)$] for $\mathbf{A W}_{4}$ at the MP2/avdz Level of Theory

$\mathrm{AW}_{4}{ }^{a}$	E_{e}	ΔE_{e}	$\Delta E_{\mathrm{e}}(\mathrm{BSSE})$	$\Delta E_{0}(\mathrm{BSSE})$
m 1	-382.190641	-33.89	-28.01	-18.67
m 2	-382.190305	-33.68	-27.47	
m 3	-382.190136	-33.57	-27.35	
m 4	-382.190037	-33.51	-27.57	
m 5	-382.189952	-33.46	-27.25	
m 6	-382.189348	-33.08	-27.25	
m 7	-382.189163	-32.96	-26.96	
m 8	-382.185732	-30.81	-25.01	-15.89
m 9	-382.185459	-30.64	-25.14	-16.57
m 10	-382.185443	-30.63	-24.70	
m 11	-382.185102	-30.41	-24.65	
m 12	-382.184782	-30.21	-24.52	
m 13	-382.184743	-30.19	-24.49	
m 14	-382.184703	-30.16	-24.41	
m 15	-382.184659	-30.13	-24.36	
m 16	-382.182504	-28.78	-23.28	
m 17	-382.182414	-28.73	-23.27	
m 18	-382.182267	-28.63	-23.01	
m 20	-382.181013	-27.85	-22.52	
m 21	-382.178107	-26.02	-20.82	
m 22	-382.177154	-25.43	-20.41	
m 23	-382.177139	-25.42	-20.28	
m 24	-382.176850	-25.23	-20.26	
m 25	-382.176520	-25.03	-19.95	
m 28	-382.175652	-24.48	-19.60	
m 29	-382.170289	-21.12	-16.58	
m 30	-382.165349	-18.02	-13.87	
$\mathrm{sp} 33^{b}$	-382.161304	-15.48	-11.65	

${ }^{a} \mathrm{~m}$ (minimum) and sp (saddle point), Figure $4 .{ }^{b}$ Four imaginary frequencies.

TABLE 8: Many-Body Decomposition of Interaction Energies $\Delta E_{\mathrm{e}}(\mathrm{kcal} / \mathrm{mol})$ of the $\mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3, \mathrm{~m} 4, \mathrm{~m} 8, \mathrm{~m} 9, \mathrm{~m} 10$, and m 11 Minima of AW_{4} at the MP2/avdz Level of Theory ${ }^{a}$

$\mathrm{AW}_{4}{ }^{\text {b }}$	m1	m2	m3	m4	m8	m9	m10	m11
A-	-1.05(-0.37)	0.29(0.56)	$-1.36(-1.14)$	-2.71(-2.02)	$-2.57(-1.66)$	-3.34(-2.19)	-3.44(-2.45)	$-2.88(-1.95)$
$\mathrm{A}-\mathrm{W}_{\mathrm{b}}$	-2.95(-2.20)	-3.22(-2.32)	-3.29(-2.40)	-2.88(-2.17)	-0.26(-0.18)	-0.72(-0.64)	-0.33(-0.17)	-1.10(-0.96)
$\mathrm{A}-\mathrm{W}_{\mathrm{c}}$	$-0.67(-0.58)$	$-1.17(-0.97)$	0.44(0.70)	0.23(0.38)	-3.16(-2.12)	$-0.70(-0.60)$	-2.52(-1.65)	-3.37(-2.32)
$\mathrm{A}-\mathrm{W}_{\mathrm{d}}$	$-0.30(-0.24)$	$-2.34(-1.61)$	$-2.28(-1.51)$	0.17(0.24)	$-0.96(-0.84)$	$-2.88(-1.85)$	$-0.40(-0.30)$	$0.10(0.17)$
$\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}$	-4.99(-4.07)	-4.88(-3.97)	-4.60(-3.48)	-4.74(-3.59)	-4.65(-4.00)	-5.00(-3.95)	-3.76(-3.26)	-4.66(-3.53)
$\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{c}}$	-1.75(-1.59)	-1.85(-1.69)	-1.90(-1.73)	$-1.69(-1.52)$	-0.82(-0.61)	-1.03(-0.96)	0.10(0.27)	-1.07(-0.95)
$\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{d}}$	$-4.87(-3.78)$	$-4.23(-3.25)$	$-4.37(-3.25)$	-4.84(-3.81)	$-4.82(-3.73)$	$-0.80(-0.74)$	$-4.50(-3.63)$	-4.75(-4.00)
$\mathrm{W}_{\mathrm{b}}-\mathrm{W}_{\mathrm{c}}$	-4.84(-3.73)	-4.44(-3.32)	-4.53(-3.59)	-5.06(-4.05)	-1.92(-1.38)	$-4.90(-3.81)$	-3.91(-3.02)	$-5.25(-4.36)$
$\mathrm{W}_{\mathrm{b}}-\mathrm{W}_{\mathrm{d}}$	-1.71(-1.57)	-2.09(-1.88)	-2.08(-1.87)	-1.68(-1.54)	-4.41(-3.57)	-0.94(-0.86)	-4.51(-3.34)	-4.57(-3.81)
$\mathrm{W}_{\mathrm{c}}-\mathrm{W}_{\mathrm{d}}$	$-4.85(-3.76)$	$-4.68(-3.55)$	$-4.63(-3.67)$	-5.04(-4.00)	$-4.40(-3.71)$	-4.98(-3.94)	-4.49(-3.92)	0.54(0.69)
total two body	-27.99(-21.90)	-28.63(-22.00)	-28.59(-21.94)	-28.25(-22.08)	-27.98(-21.81)	$-25.28(-19.56)$	-27.77(-21.47)	27.01(-21.01)
$\mathrm{A}-\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}$	0.50(0.46)	0.51(0.47)	-0.68(-0.75)	$-1.09(-1.16)$	0.27(0.26)	-0.73(-0.80)	0.19(0.14)	-0.61(-0.62)
$\mathrm{A}-\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{c}}$	0.03(0.02)	0.02(0.06)	0.02(0.06)	0.13(0.11)	-0.39(-0.49)	$-0.18(-0.20)$	$-0.24(-0.32)$	$-0.46(-0.52)$
$\mathrm{A}-\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{d}}$	-0.32(-0.29)	0.50(0.43)	-0.46(-0.52)	0.28(0.27)	$-0.51(-0.53)$	-0.43(-0.46)	-0.38(-0.40)	0.34(0.32)
$\mathrm{A}-\mathrm{W}_{\mathrm{b}}-\mathrm{W}_{\mathrm{c}}$	$-0.59(-0.61)$	-0.53(-0.60)	0.51(0.47)	0.34(0.34)	$-0.19(-0.22)$	-0.15(-0.18)	$-0.25(-0.30)$	$-0.61(-0.70)$
$\mathrm{A}-\mathrm{W}_{\mathrm{b}}-\mathrm{W}_{\mathrm{d}}$	0.00(0.00)	-0.21(-0.27)	-0.18(-0.24)	0.05(0.07)	-0.02(0.00)	-0.14(-0.15)	0.02(-0.01)	0.02(0.05)
$\mathrm{A}-\mathrm{W}_{\mathrm{c}}-\mathrm{W}_{\mathrm{d}}$	-0.10(-0.12)	$-0.53(-0.59)$	0.55(0.49)	0.11(0.09)	$-0.51(-0.58)$	$-0.59(-0.63)$	0.19(0.17)	0.10(0.08)
$\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}-\mathrm{W}_{\mathrm{c}}$	-1.38(-1.46)	-1.42(-1.49)	-1.19(-1.28)	-1.50(-1.55)	0.34(0.32)	-1.30(-1.34)	0.42(0.35)	-1.17(-0.18)
$\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}-\mathrm{W}_{\mathrm{d}}$	-1.35(-1.43)	$-1.04(-1.14)$	$-1.66(-1.74)$	$-1.47(-1.53)$	-1.97(-2.13)	-0.23(-0.25)	$-1.76(-1.85)$	$-2.20(-2.35)$
$\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{c}}-\mathrm{W}_{\mathrm{d}}$	$-1.53(-1.60)$	$-1.20(-1.28)$	-1.44(-1.50)	-1.38(-1.46)	$-0.85(-0.94)$	-0.27(-0.28)	0.30(0.31)	0.16(0.15)
$\mathrm{W}_{\mathrm{b}}-\mathrm{W}_{\mathrm{c}}-\mathrm{W}_{\mathrm{d}}$	-1.54(-1.62)	-1.66(-1.74)	-1.03(-1.12)	$-1.36(-1.44)$	0.47(0.43)	-1.26(-1.29)	-1.96(-2.07)	0.44(0.44)
Total three body	$-6.27(-6.65)$	-5.57(-6.14)	$-5.55(-6.14)$	-5.89(-6.26)	-3.36(-3.88)	-5.27(-5.57)	-3.47(-3.96)	$-4.00(-4.34)$
$\mathrm{A}-\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}-\mathrm{W}_{\mathrm{c}}$	0.00(0.06)	0.05(0.06)	0.03(0.04)	-0.01(0.04)	-0.01(0.02)	$-0.18(-0.15)$	$-0.07(-0.04)$	$-0.28(-0.23)$
$\mathrm{A}-\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}-\mathrm{W}_{\mathrm{d}}$	0.02(0.04)	0.08(0.12)	-0.18(-0.13)	0.00(0.05)	-0.01(0.03)	-0.12(-0.10)	-0.04(0.00)	0.00(0.05)
$\mathrm{A}-\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{c}}-\mathrm{W}_{\mathrm{d}}$	$-0.05(-0.04)$	0.02(0.04)	0.04(0.05)	0.02(0.04)	$-0.22(-0.15)$	$-0.11(-0.10)$	$-0.04(-0.03)$	0.02(0.04)
$\mathrm{A}-\mathrm{W}_{\mathrm{b}}-\mathrm{W}_{\mathrm{c}}-\mathrm{W}_{\mathrm{d}}$	$-0.07(-0.04)$	$-0.20(-0.16)$	0.11(0.12)	0.05(0.03)	-0.2(0.00)	$-0.13(-0.12)$	-0.03(0.02)	0.04(0.03)
$\begin{aligned} & \mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}- \\ & \mathrm{W}_{\mathrm{c}}-\mathrm{W}_{\mathrm{d}} \end{aligned}$	$-0.61(-0.53)$	$-0.51(-0.44)$	$-0.51(-0.44)$	$-0.59(-0.50)$	0.04(0.07)	-0.19(-0.18)	0.07(0.09)	0.00(0.04)
total four body	$-0.71(-0.51)$	$-0.57(-0.38)$	$-0.52(-0.36)$	$-0.53(-0.34)$	$-0.22(-0.03)$	$-0.72(-0.65)$	-0.11(0.04)	$-0.21(-0.06)$
$\begin{gathered} \mathrm{A}-\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{b}}- \\ \mathrm{W}_{\mathrm{c}}-\mathrm{W}_{\mathrm{d}} \end{gathered}$	0.06(0.01)	0.05(0.03)	0.04(0.03)	0.05(0.01)	0.04(0.00)	$-0.04(-0.04)$	0.01(-0.01)	0.06(0.01)
relaxation	1.03	1.03	1.05	1.11	0.72	0.68	0.71	0.75
$\begin{aligned} & \Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}\right. \\ & \quad(\mathrm{BSSE})] \end{aligned}$	-33.89(-28.01)	-33.68(-27.47)	-33.57(-27.35)	-33.51(-27.57)	-30.81(-25.01)	-30.64(-25.14)	-30.63(-24.70)	-30.41(-24.65)

${ }^{a}$ BSSE-corrected values are shown in parentheses. ${ }^{b}$ All minimum structures are shown in Figure 4.
striking, and it is remarkable that these constitute separate minima (at least at the MP2/avdz level of theory), their difference being in the directions of the $\mathrm{H}_{1 \mathrm{a}}$ and $\mathrm{H}_{1 \mathrm{~b}}$ hydrogen atoms with respect to the $\mathrm{O}_{\mathrm{a}} \mathrm{O}_{b} \mathrm{O}_{\mathrm{c}}$ plane. Finally, the interaction energies $\Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]$ are $-27.85[-22.52],-26.02[-$ 20.82], and -25.42 [-20.28] kcal/mol for $\mathrm{m} 20, \mathrm{~m} 21$, and m 23 , respectively. As expected, for $\mathrm{m} 21(\mathrm{~m} 23)$, these interaction energies are equal to the energies of $\mathrm{AW}_{3} _\mathrm{m} 1(\mathrm{~m} 4)+\mathrm{AW}-\mathrm{Y}$. Again note that the m19 isomer has been computed at the MP2/ 4-31G level of theory.

The $\mathrm{AW}_{4 _} \mathrm{m} 22, \mathrm{AW}_{4 _} \mathrm{m} 24$, and $\mathrm{AW}_{4 _m} 25$ minima (Figure 4 parts x, z, and aa) can be viewed as the $\mathrm{AW}_{3} _\mathrm{m} 2, \mathrm{AW}_{3} _\mathrm{m} 3$, and $\mathrm{AW}_{3} \mathrm{~m} 5$ structures, respectively, in which the A molecule is interacting with an additional water molecule in an Y arrangement (as an acceptor to acetylene). Correspondingly, the $\mathrm{AW}_{4 _\mathrm{m}} 26$ and $\mathrm{AW}_{4 _\mathrm{m}} 27$ isomers (obtained at the MP2/4-31G level) are seen as AW_{3} m 3 and $\mathrm{AW}_{3} _\mathrm{m} 2$ isomers, respectively, interacting with a water molecule in a T fashion (Figures 4bb and 4 cc$)$. The first three minima lie within an energy range of $0.40 \mathrm{kcal} / \mathrm{mol}(0.46 \mathrm{kcal} / \mathrm{mol}$ including BSSE corrections), having interaction energies in the range -25.43 to $-25.03 \mathrm{kcal} /$ mol (-20.41 to $-19.95 \mathrm{kcal} / \mathrm{mol}$ including BSSE corrections, cf. Table 7).

The $\mathrm{AW}_{4 _} \mathrm{m} 28, \mathrm{AW}_{4 _\mathrm{m}} 29$, and $\mathrm{AW}_{4 _} \mathrm{m} 30$ (Figure 4 parts dd, ee, and ff) are the energetically highest and most well separated minima studied in the present work, their energy differences being approximately $3 \mathrm{kcal} / \mathrm{mol}$ (Table 7). The m 28 $\left(S_{2}\right)$ and m30 ($C_{2 h}$) minima can be thought of as "double" $\mathrm{AW}_{2} \mathrm{~m} 1$ and $\mathrm{AW}_{2} \mathrm{~m} 2$ configurations, whereas the m 29 minimum can be thought of as a combination of the $\mathrm{AW}_{2} _\mathrm{m} 1$ and $\mathrm{AW}_{2 _} \mathrm{m} 2$ structures. Although all of the heavy atoms in m 30 and the four oxygen atoms in m 28 are coplanar by
symmetry, in the latter, all six heavy atoms are also, practically, coplanar. The interaction energies $\Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]$ are $-24.48[-$ 19.60], $-21.12[-16.58]$, and $-18.02[-13.87] \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{m} 28, \mathrm{~m} 29$, and m 30 , respectively. By summing up twice the interaction energies of AW_{2} m1 and AW_{2} m2, we obtain $-24.04[-19.20],-20.94[-16.48]$, and $-17.84[-13.76] \mathrm{kcal} /$ mol , values that are very close indeed to the interaction energies of $\mathrm{m} 28, \mathrm{~m} 29$, and m 30 minima.

Finally, the AW_{4} sp3 (Figure 4 gg) is a fourth order saddle point (four imaginary frequencies) of $C_{2 h}$ symmetry, and is composed of two independent Y and two independent T arrangements (Figure 1). Alternatively, it can be seen as a "superposition" of the AW_{2} m3 and AW_{2} m4 arrangements (Figure 2d,f). Its interaction energy $\Delta E_{\mathrm{e}}\left[\Delta E_{\mathrm{e}}(\mathrm{BSSE})\right]$ is $-15.48[-$ $11.65] \mathrm{kcal} / \mathrm{mol}$, as contrasted to the sum of interaction energies of two AW-Y and two AW-T isomers, which is $-13.30[-$ $9.56] \mathrm{kcal} / \mathrm{mol} .{ }^{1}$

4. Summary

Extended parts of the multidimensional PESs of a number of acetylene-water, $\mathrm{AW}_{x}, x=2,3$, and 4 clusters have been probed by ab initio calculations. Using chemical intuition and extended systematic searches on the multidimensional PESs with smaller basis sets to obtain candidates of stationary points, we have located 4,10 , and 30 minima for $\mathrm{AW}_{2}, \mathrm{AW}_{3}$, and AW_{4} clusters, respectively. Although we cannot claim that every possible isomer has been located within the energy range considered here, we can ascertain that the global minima for these clusters have been identified. The energy separation between the located stationary points (minima and saddle points) is shown in Figure 5. As expected, ${ }^{20}$ the density of the local

Figure 5. Interaction energies $\Delta E_{\mathrm{e}}(\mathrm{BSSE})$ and $\Delta E_{0}(\mathrm{BSSE})$ of all stationary points of the $\mathrm{AW}_{2}, \mathrm{AW}_{3}$, and AW_{4} clusters relative to the corresponding global minina (m1).

Figure 6. Variation of the "average" dissociation energies, $\Delta E_{\mathrm{e}} /(x+$ $1), \Delta E_{\mathrm{e}}(\mathrm{BSSE}) /(x+1)$, and $\Delta E_{0}(\mathrm{BSSE}) /(x+1)$ of the global minima (m1) with cluster size x at the MP2/avdz level.
minima is increasing dramatically with cluster size, a manifestation of the energetic competition between different hydrogen bonding networks. For instance, for AW_{4}, the first 28 minima lie within a range of $\sim 8 \mathrm{kcal} / \mathrm{mol}$. To this end, corrections for BSSE and ZPE can alter the order of these closely spaced minima. Such is the case for the range of m10-m15 of AW_{4} where six minima are packed within an energy range of just $0.34 \mathrm{kcal} / \mathrm{mol}$ and the change in order for m 8 and m 9 upon including ZPE corrections. The "average" interaction energies, $\Delta E_{\mathrm{e}} /(x+1), \Delta E_{\mathrm{e}}(\mathrm{BSSE}) /(x+1)$, and $\Delta E_{0}(\mathrm{BSSE}) /(x+1)$ for the $\mathrm{AW}, \mathrm{AW}_{2}, \mathrm{AW}_{3}$, and AW_{4} global mimima are plotted in Figure 6. The analysis of the many-body interactions for several hydrogen bonded networks indicates that there are different requirements as regards an empirical interaction potential needed to reproduce the relative cluster energetics: usually the low(er) lying energy structures are stabilized because of the maximization of the nonadditive (mainly the three-body) components of the interaction energies, whereas higher lying structures are composed from mainly two-body interactions. Therefore, empirical interaction potentials that aim to reproduce the relative cluster energetics will need to include many-body effects because they need to describe both the ring configurations (large nonadditivities, mainly three-body) as well as other more compact configurations (mainly two-body) with the same accuracy.

Acknowledgment. Part of this work was performed under the auspices of the Division of Chemical Sciences, Office of

Basic Energy Sciences, U.S. Department of Energy under Contract DE-AC06-76RLO 1830 with Battelle Memorial Institute, which operates the Pacific Northwest National Laboratory. Computer resources were provided by the Division of Chemical Sciences and by the Scientific Computing Staff, Office of Energy Research, at the National Energy Research Supercomputer Center (Berkeley, CA). D.T. acknowledges an Associated Western Universities (AWU) Fellowship during her visit to PNNL in the summer of 1998. This research was performed in the Environmental Molecular Sciences Laboratory, a national used facility funded by DOE's Office of Biological and Environmental Research.

Supporting Information Available: Optimal geometries of all AW_{2} structures (Table 1). Harmonic vibrational frequencies and IR intensities of AW_{2} stationary points (Table 2). Cartesian coordinates of all AW_{3} structures (Table 3). Harmonic vibrational frequencies and IR intensities of AW_{3} structures (Table 4). Cartesian coordinates of all AW_{4} structures (Table 5). Harmonic vibrational frequencies and IR intensities of two AW 4 structures (Table 6). This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Tzeli, D.; Mavridis, A.; Xantheas, S. S. J. Chem. Phys. 2000, 112, 6178.
(2) Tzeli, D.; Mavridis, A.; Xantheas, S. S. Chem. Phys. Lett. 2001, 340, 538.
(3) Engdahl, A.; Nelander, B. Chem. Phys. Lett. 1983, 100, 129.
(4) Peterson, K. J.; Klemperer, W. J. Chem. Phys. 1984, 81, 3842.
(5) Block, P. A.; Marshall, M. D.; Pedersen, L. G.; Miller, R. E. J. Chem. Phys. 1992, 96, 7321.
(6) Choi, S.-S.; Jung, K. W.; Jung, K.-H. Int. J. Mass. Spectrosc. Ion Proc. 1993, 124, 11.
(7) Dykstra, C. E. J. Phys. Chem. 1995, 99, 11680.
(8) van Voorhis, T.; Dykstra, C. E. Mol. Phys. 1996, 87, 931.
(9) (a) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007. (b) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796.
(10) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98; Gaussian, Inc.: Pittsburgh, PA, 1998.
(11) (a) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553. (b) Davidson, E. R.; Chakravorty, S. J. Chem. Phys. Lett. 1994, 217, 48.
(12) (a) Van Duijneveldt, F. B.; van Duijneveldt-van de Rijdt, J. G. C. M.; van Lenthe, J. H. Chem. Rev. 1994, 94, 1873. (b) Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem. Rev. 1994, 94, 1887.
(13) Xantheas, S. S. J. Chem. Phys. 1996, 104, 8821.
(14) (a) Hankins, D.; Moskowitz, J. W.; Stillinger, F. H. J. Chem. Phys. 1970, 53, 4544. (b) Xantheas, S. S. J. Chem. Phys. 1994, 100, 7523. (c) Xantheas, S. S. Chem. Phys. 2000, 258, 225.
(15) (a) Xantheas, S. S.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 99, 8774. (b) Xantheas, S. S. J. Chem. Phys. 1995, 102, 4505. (c) Xantheas, S. S.; Burnham, C. J.; Harrison, R. J. J. Chem. Phys. 2002, 116, 1493.
(16) Supporting Information. (a) Optimal geometries of all AW_{2} structures are given in Table 1. (b) Harmonic vibrational frequencies and IR intensities of AW_{2} stationary points are given in Table 2. (c) Cartesian coordinates of all AW_{3} structures are given in Table 3. (d) Harmonic vibrational frequencies and IR intensities of AW_{3} structures are given in Table 4. (e) Cartesian coordinates of all AW_{4} structures are given in Table 5. (f) Harmonic vibrational frequencies and IR intensities of two AW_{4} structures are given in Table 6.
(17) Schutz, M.; Klopper, W.; Luthi, H.-P.; Leutwyler, S. J. Chem. Phys. 1995, 103, 6114.
(18) Gregory, J. K.; Clary, D. C. J. Phys. Chem. 1996, 100, 18014.
(19) Kim, K. S.; Dupuis, M.; Lie, G. C.; Clementi, E.; Chem. Phys. Lett. 1986, 131, 451.
(20) Wales, D. J.; Scheraga, H. A. Science 1999, 285, 1368.

[^0]: * To whom correspondence should be addressed. E-mail: mavridis@ chem.uoa.gr.

