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Predicting the Phase Diagram of a Liquid Crystal Using the Convex Peg Model and the
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A molecular theory to determine thermodynamic properties of isotropic and nematic phases of liquid crystals
is proposed, based on a “convex peg” model and semiempirical PM3 (Parametrized Method 3) calculations.
The Helmholtz-free energy of the molecular system, a convex hard core within an encircling spherical square-
well (SW) potential, is obtained from a second-order perturbation theory for SW nonspherical particles,
combined with the Parsons decoupling approximation of the translational and rotational degrees of freedom,
and a long-range approximation for the evaluation of the perturbation terms. The theory is applied to predict
the phase diagram and isotropigematic transition op-azoxyanisole. To do this, an estimation of the volume

of a p-azoxyanisole molecule is derived from a minimum-energy geometry, using PM3 calculations; the
volume obtained is mapped into a hard ellipsoid revolution volume of a Convex Peg molecule. A very good
agreement in the prediction of the thermodynamic properties is obtained when compared with experimental
data.

1. Introduction to extend its validity to nematic phases and basically consists
of scaling the distance between nonspherical particles by the

. ; : distance of nearest approach at the same relative orientation.
of anisotropic hard-core molecular models have confirmed that . .
Because real molecules also have attractive interactions, such

anisotropy in the shape of molecules is the essential feature for .
liquid crystal phase behavior, as Onsager demonstrated theoreti®S the van der Waals forces, a thermodynamic molecular
cally using a virial expansion for a fluid formed by long rdds. approach must take into account their description for a proper

From computer simulation studies, we know now that, for Prediction of the phase diagram. In the MaiGaupe theory?
example, hard ellipsoids of revoluti®@HER) fluids exhibit a the attractive energy arising f_rom_lnduced dlpolar moments is
nematic liquid crystal phase for elongations greater than 2.75: 9iven by a mean-field approximation, to predict their effect in
1, and a hard spherocylinder (HSC) systérhas a nematic the I—_N phase tra_nsmon. Although MaieSaupe and Onsager
phase for aspect ratios greater than 4. The Onsager theory igheories model different molecular effects, they are comple-
exact in the limit of infinitely long rods, and although it is Mentary theories that can be combined to give a first approach
quantitatively deficient for rods of intermediate elongation, it 0 theoretical equations of state for liquid crystalline systems,
is a molecular-based theory and thus can be improved systemas the Augmented van der Waals theory (AVDWWjoes for
atically. One possible route to improve the Onsager theory is isotropic fluids.
by including higher virial coefficient8. After the success of perturbation theories in describing liquid
A very useful and simple approach that extends the applica- isotropic phases, several mean-field thedfi¢$ have been
tion of the Onsager theory to finite length rods is the decoupling proposed that basically extend the AVDW approach to noniso-
approximation of translational and orientational degrees of tropic fluids. Recently, Williamso extended the first-order
freedom, proposed by Parsdi&This approximation has been  Barker and Henderson perturbation thé8fgr isotropic fluids
extensively used in theoretical studies of thermodynamic and to model a convex peg molecule, using the Parsons appfoach,
structural predictions for isotropic and nematic phases? and a long-range approximation (BHL®Ror the calculation
leading to a very good prediction of the-N phase transition of the first perturbation term. The convex peg model comprises
for convex molecular geometries. The Parsons approach takes convex hard-core molecule within an encircling spherical
advantage of accurate and analytical results valid for a hard square-well potential (SW); see Figure 1. Although the convex
spheres (HS) fluid (such as the Carnahan and Starling equatiorpeg model uses an isotropically attractive interaction, the
of staté! and the PercusYevick!? direct correlation function) nonspherical hard-core introduces an effective anisotropy in the
attractive forces. Gelbart and GellF8rtdemonstrated that
*To whom correspondence should be addressed. E-mail: richa@ molecular models comprised of an anisotropic core plus

Over the past two decades, computer simulation stidies

quijote.ugto.mx. . _ isotropically attractive interactions give the basic orientational
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* Instituto de Fsica, Universidad de Guanajuato. behavior in nematics, and that most of the anisotropic interaction
8 Molecular Engineering Program, Instituto Mexicano del Fetro in these phases results from the coupling between the anisotropic
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Figure 1. Convex Peg model comprising a convex hard core with
semi-axis ratioa:b surrounded by a spherical square-well of depth
and rangelb. The square-well extends beyond the tips of the convex
core to a distancé.

repulsion and the isotropic attraction. Evans and co-wofkéts
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given byu(12) = up(12) + euy(12), which consists of a repulsive
hard-core termug(1,2) plus an attractive interacticiuy(1,2);

for the SW interaction the last term reduces to the step function.
A system of particles interacting via this type of potentials can
be treated by a perturbation approach to obtain the Helmholtz
free-energyA, using the hard-core system as the reference fluid.
Following Barker and Henderséf2° and Williamsont® A is
given by a high-temperature expansion (HTE), that in our case
we will approximate to second order

A — Aideal

)

Here,Aigeal iS the ideal contribution to the free enerd\, is an
orientational free energyy is the Helmoltz free energy of the
reference fluid,a; and a, are the first and second-order
perturbation terms, antt = kT/e is a scaled temperature, where

have examined the phase diagram of the convex peg model using is the Boltzmann’s constant.
an AVDW theory, i.e., the hard core is treated as accurately as The ideal term is given by

possible and the contributions from the attractive forces are
incorporated using the second virial coeffc®rand its high-
temperature limi&2 These theories give the general features of
the phase diagram and qualitatively agree with the simulation
data reported by de Miguel and Alléh.

For SW spherical particles, the first-order BH-LR theory
improves the AVDW approach in two and three dimensin&
Its extension to anisotropic fluiéis agrees accurately with
simulation data for fluids of prolate uniaxial cores 3:1, including
the =N phase transition. In this paper, the theory presented in

Aideal
NKT

=In(pl) — 1 ()

whereT is a volume parameter determined by the molecular

degrees of freedom. Taking into account traslational and

rotational degrees of freedom, we have that A3c, whereA

is the de Broglie’s wavelength, ardis a rotational constant

given byc = h%872IkT, | being the molecular moment of inertia.
The orientational term arises from a loss of entropy when

ref 19 is extended to second-order and used to predict the phas@rientational order is present, and is given by the Onsager’s
diagram of a real molecule. The second-order perturbation theoryexpression

is obtained using the local compressibility approximation (LCA)
proposed by Barker and Henderdbfor SW spherical fluids.
Although the LCA gives only a very approximated description
of the second-order contribution to the Helmholtz free-energy
for SW system$? it provides a compact analytical expression

Ao

N JH(Q) In[4f(Q)] dQ

(4)

where f(Q) is the single particle orientational distribution

that can be used to assess the effect of this term in the predictiorfunction (SPODF) for a solid angl€, that satisfies the

of phase diagrams of liquid crystals. By means of quantum

normalization conditioryf(2) dQ = 1. For an isotropic phase,

mechanical calculation, an estimated value of the p-azoxyanisolf(2) = 1/4x, whereas for a nematic phase the SPODF is a
volume was derived. We present in section 4 the application of nonuniform function.

the theory to characterize the-IN phase diagram of this
compound.

2. Molecular Thermodynamic Theory for a Liquid
Crystal

We consider a one-component fluid composedNofmol-
ecules, hard ellipsoids of revolution (HER) with semimajor axis
a and semiminor axi$, contained within a volumé&/ at a
temperaturd. The molecules interact via a square-well potential

o I € Ve (Q;,8)
u(r;€2,82) = —€ 1 = Ao Q)
0 r;>4o

wherer; is the distance between the center of mass for particles

i andj with orientational coordinate®; and Q;, respectively,
Vex(2i,€2)) is the excluded volume that depends on the orienta-
tions of the particlesy = 2b is the diameter of a sphere centered
at the particle’s center of mask; is the range of the square-
well (Ac = 2a + do, wheredo is the distance between the

The hard-core free energd is given by the Lee Parsons
expressiofr®

AO _ wex(Ql’QZ)@!l,Qz AHS
NKT 8V NKT

m

(%)

In this equation,Vy is the volume of the hard cordyys is
the Helmholtz free energy of a hard spheres fluid with the
same packing fraction of the hard-core fluid, i pVm, and
Wex(R21,922) [, o, Is the angular average of the excluded volume
between two particles, that can be expressed as

Ved21,92)04 o, =

- \—1/ [ (e K~ 1)f(Q) (@) d1 d2

[ S~ 1,740,
f(€2,) dry, d€2, d€2, (6)

The averaged excluded volume in eq 6 is written in terms of

edge of the square well and the ends of the spherocylinder, ashe Mayer function for the binary repulsive interaction, i.e.,

shown in Figure 1), and is the SW depth. The SW potential

F(12) = e W2KT — 1 with the values=(12) = —1 andF(12)

given in eq 1 belongs to the general class of hard-core potentials= 0 for overlapping and non overlapping particles, respectively.



10344 J. Phys. Chem. A, Vol. 106, No. 43, 2002 Garcmn-Sachez et al.

Introducing these values of the Mayer function enable us to The second term in eq 10 can be split in two integrals by
rewrite eq 6 in terms of the collision diameter between two changing the integration domains
particles,s(€21,Q5)

Wex(Ql,QZ) %1192 -
e [ 799 (@) () dry, 9, 42, (7)

fj:/: hy(12) f(Q,) f(Q,)X* dx dQ, dQ, =
S5 mo(12)H(Q,) H(Q¥ dx d2, d2, —

I j;“’ hy(12) f(Q,) f(Q,)x° dx dQ, dQ, (11)

The perturbation termsy and a, give the thermodynamic ) ) ] ]
contribution due to attractive forces. The first-order term is a Equation 11 is useful because it allows us to introduce the

mean attractive energy given by definition of Ko, a thermodynamic property of the hard-core
reference fluid
=P
=y J[u,(12)gy(12) d1 d2 Ky =k op)\ _
P,
Ao 00
= —27p [[[7"95(12) f(Q,) (Q)ry," dr,, dQ, dQ, @ 1+ dmp* [ he(12) (Qy) ((Q )X dx dQ, dQ, (12)

) i . Using egs 11 and 12, the attractive energy given in eq 10 can
whereas the second-order term gives a first estimation of po finally expressed as

fluctuations of the attractive energy with respect to its mean

value, and that in the LCA approximation is given by 2ﬂp*/13 (1 - KO)
a=- +
3 2
__ P 0 Ao, 2 o
8, = — 552 [ [u(12)F x 270" [ hg(12)H(Qy) (R, dx dQ, dQ, (13)

12)f(Q,) f(Q,)r,,2 dr,, dQ, dQ
G(12)1(2)) (R, dry, d€2, d25} The first term in eq 13 is the van der Waals contributioraio

008y and is dominant for largé. The second term is independent of

—Ko5 55 9) A and is the first correction to the van der Waals approximation.

P The last term is a correction important foclose to 1, and for
isotropic SW fluids it results a complicated function»pfnd
A that tends to zero asincrease® becauséi(12) goes to zero
as the distance is increased. The long-range approximation
(LRA)?131js then given by neglecting this last term, and that
describes accurately 2D and 3D SW isotropic fllferg8
Because the LCA approximation fas is given as the derivative
of a; with respect to density, it is clear that the complete
thermodynamic contribution of the perturbation terms is given
by a; and the isothermal compressibility facts, i.e.

whereP is the pressure of the fluid an gives the isothermal
compressibility for the repulsive hard-core fluid. In these
equationsgy(12) is the pair distribution function of the hard-
core reference fluid, which depends on the orientational and
positional coordinates of two molecules.

The perturbation terms given in eqs 8 and 9 can be also
expressed in terms of the total correlation functimfl2),
defined byhg(12) = go(12) — 1. This allows us to study the
perturbation termsy anda; as functions of the SW randlein

a systematic way, as del ®end co-workers have shown for PINL 1—K

isotropic SW fluids in a series of studigs?830-32 The a,=— L ( 0) (14)

extension of the same approach to anisotropic SW systems is 3 2

straightforward, but here we will focus the attentioretoonly « 9a

because the analysis fap is algebraically more compleX. a,=— op——i (15)
Becausegyo(12) is null inside the core, i.etg; < 5(Q1,Q5), 2 dp

then the lower limit of the positional integral in eq 7 can be

changed to zero without modifying the actual valueagf Equations 2-5, 14, and 15 resume the LRAVICA perturbation

theory for the convex peg model, that can be applied if the
compressibility factor of the hard-core reference fli@, is

Ao
a, = —27p [ [[79,(12)(Qy) H(Q)r,, dry,dQ, dQ, known. However, if this is not the case, then the decoupling

approximation of Parsons can be used. For doing this, notice

and by introducing the definition dio(12), we have thatin eq 6 we can use the collision diamed2,,£2,) to scale
the relative distance between two particles, i.e., we introduce

a = the variablez = rq12/s(©21,Q27) in eq 6 to obtain the following

1 .
o X expression
_Zﬂpffj; [ho(12) + 1]f(€2,) f(2))r,," dr,, dQ2,; dQ,

m/ex(QrQZ) @21,522 =

which can be partially integrated and expressed as . ffflzz dz é(g Q,) f(Q,) f(Q,) dQ, dQ, (16)

0 1992 L 2 1 Us<p

3
_ 2mp*AT and because the integral mcan be performed directly, we
3 obtain a simple relation

2mp* [ fj hy(12) f(Q,) f(Q,)x° dx dQ, dQ, (10)

=

A
Ve (1,903, 0, = 75 [ S(Q1.9) (Q) H(Q,) dQ, dQ,
where the reduced variableg = po® andx = r/o are used. a7
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or equivalently

Vol @230, =F@] 19
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Nisz In(ol) — 1+ [§(Q) Inf4f()] dQ + IPI%ST_
a\Ks—1) g2 0
o~ wolp-+ o) D B B o

that states that the angular average of the excluded volume ofywherep = 1/T*, w = bla, and W = Ve, (Q1,22) [, 0,/8Vin. TO

two nonspherical particles is equivalent to the volume of a
sphere whose diameter is the angular average of the collision

be able to use this expression, we need to know the HS
thermodynamic propertiedys and Kys, and the excluded

diameter between the particles. The scaling argument used hergolume [Vex(Q1,Q2)[d, 0, For the HS properties, we use the
to obtain eq 18 from eq 6 is the essence of the Parson approachcarnaharn-Starling equation of stafé,thus

and can be applied also to eq 12, to relate the isothermal
compressibility factor&o andKys, the last one corresponding
to a fluid of hard spheres of diamet&(Q1,€22)(d, o,

Introducing the scaled variabien eq 12, and following the
same arguments used to obtain eq 18, we have that

Ko =
1+ 4mp [ (@7 dz $(Q,,Q,) f(Q,) [(Q,) dQ, dQ,

=1+ 4mp [hy(2)7 dz [ ['$5(Q,,Q,) (Q,) x
f(Q,) dQ, dQ, (19)

and identifying in the second line of this equation the expression
of the angular average of the excluded volume, eq 17, we have
that

Ko =1+ 3o (Q,2)0 o[, N7 dz  (20)

The isothermal compressibility factéys is obtained from eq
12 for spherical particles

a 00
b= K B_P%S) =1+ 4drp* [ ()X dx  (21)

Then, if we use the approximatidg(z) = hus(2) in eq 20, from
eq 21 we have that eq 20 can be approximated by

3

1+ M_()ﬁwex(gl’QZ)@zl,Qz(KHS -1)

Ko (22)

which is the desired relation that we were looking for, because
it allows us to calculate the isothermal compressibility of the
anisotropic hard-core fluid througkys. Using the decoupling
result of eq 20 in eqs 14 and 15, we have finally then the
following LRA—MCA—Parsons perturbation terms

a3+ m/’?’X(Ql’QZ)%”QZ(K 1) (b) 23)
a =— - -7 — =
1 Ui 16V, HS a
|N/ex(gllgz)l% Q b\ |» o0&
a,= |14+ Z ey —1(5)ﬂ—1 24
2 ( 8Vm ( HS ) 2 87] ( )
whereV,, = Yzral? ando = 2b. Equations 14 and 15 reduce

to the perturbation expressions for an isotropic SW fluid when
a = b, because in this cas®(21,22)d, 0, = 8Vn.

In summary, by collecting the different contributions to the
free energy obtained before (eqs3 23 and 24), we arrive to
the following expression for the Helmholtz free-energy in the
LRA—MCA. Parsons approximations

As _4n - 3222
NKT (1 — )2 #0)
4
HS — k), (27)

Ay + P — a4

whereadVe,(Q1,922)[d, o, is calculated from the exact angular
dependent excluded volumé,(€21,Q2,), using the recipe of
Camp et all® which gives a reliable description of the
thermodynamic properties of both the isotropic and nematic
phases of a hard-core flufel?33

In the isotropic phase, the free energy is obtained from eq
25 with f(Q) = 1/4r, i = 1, 2 that corresponds to a uniform
distribution of molecular orientations. In the case of the nematic
phase, we have to consider eq 25 as a free energy functional of
f(R2), which must be minimized with respect to this function.
For this work, we have used a numerical minimization using
the Onsager’s trial function

o coshf cosh)

i) = 47 sinha

(28)
wherea is a variable parameter.
Once we have obtained the free energies for the isotropic

and nematic phases, the pressBrand chemical potential
can be evaluated from the standard thermodynamic relationships

p= —(g—C)T’N (29)
‘u - _(g_il\)T,V (30)

The phase diagram is studied using eqs 29 and 30 and by
ensuring for a fixed temperature that the chemical potential and
pressure of each phase are the same.

3. Molecular Volume

Application of quantum theory to chemical systems allows
the calculation of molecular parameters. Quantum mechanical
calculations are based on the minimization of the total energy
of the molecule with respect to all or some structural parameters.
The optimization procedure lead to the most stable structure
observed in ideal conditions.

Molecular parameters obtained by molecular modeling
procedures depend on the method followed to solve the
Schraedinger equation: molecular mechanics, ab initio, semi-
empirical methods, e Semiempirical methods start with the
same two approximations inherent to ab initio methods, and
make use of a minimal valence basis of Slater Type Orbitals
(STOs). The central assumption in these methods is the NDDO
(neglect of diatomic differential overlap) approximation, which
implies that two functions do not overlap unless they are located
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TABLE 1: Temperature T* = kT/e, Coexisting Packing 3.0
Fractions 7 = NV,/V, Density Jump A = #Jnem — Riso @and -
PressureP* = PV, /kT at the |—N Phase Transition for a V »® o
“Convex Peg” Fluid with a Prolate Ellipsoid Hard Core 3:1 . L L Ll
= 25 [ ] °
ando =0 ° . P
T Tiso 1nem An p* : * ) -
o0 0.566 0.574 0.008 15.941 2.0 : ‘. ™Y
2.8 0.561 0.570 0.009 11.137 V+L ., -
2.6 0.560 0.570 0.009 10.777 s |
2.4 0.560 0.569 0.009 10.359 T . L4
2.2 0.559 0.569 0.010 9.866 15 - .o
2.0 0.558 0.569 0.010 9.275
1.8 0.557 0.568 0.010 8.569 b had N
1.6 0.556 0.567 0.011 7.684 10 o oo
1.4 0.555 0.566 0.011 6.567 T, 0“
1.2 0.553 0.565 0.012 5.106 V+N .
1.0 0.550 0.564 0.014 3.082 %
0.9 0.548 0.563 0.015 1.755 06 01 02 03 04 05 08
0.89 0.548 0.563 0.015 1.610
0.88 0.547 0.563 0.016 1.462 n
0.87 0.547 0.563 0.016 1.309 Figure 2. Partial phase diagranT{ — 7 slice) for a convex peg fluid
0.86 0.547 0.563 0.016 1.152 with prolate ellipsoid hard core 3:1 ard= 0 obtained from PT.
0.85 0.546 0.563 0.016 0.993
0.84 0.546 0.563 0.016 0.831 TABLE 2: Temperature T* = kT/e, Coexisting Packing
0.83 0.546 0.562 0.016 0.665 Fractions # = NV/V, Density Jump A5 = fnem — #iso and
0.82 0.546 0.562 0.017 0.495 PressureP* = PV, /KT at the |—N Phase Transition for a
0.81 0.545 0.562 0.017 0.321 “Convex Peg” Fluid with a Prolate Ellipsoid Hard Core
0.80 0.545 0.562 0.017 0.144 3.5:1andd =0
0.795 0.545 0.562 0.018 0.054 T ] A p*
0.794 0.545 0.562 0.018 0.036 Miso Inem iU
0.793 0.545 0.562 0.018 0.017 00 0.509 0.522 0.012 10.278
0.792 0.000 0.562 0.562 0.000 2.8 0.501 0.519 0.017 5.205
0.750 0.000 0.577 0.577 0.000 2.7 0.500 0.518 0.017 5.000
0.700 0.000 0.592 0.592 0.000 2.5 0.499 0.518 0.018 4.605
0.650 0.000 0.606 0.606 0.000 2.3 0.498 0.518 0.019 4.135
2.1 0.497 0.517 0.020 3.572
on the same atomic centers, i.g¢,.¢, dr = 0 for x andv not L9 0.496 0.517 0.021 2.905
. - L 1.7 0.494 0.517 0.023 2.088
on the same center. This leads to a set of equations similarto ;' 0.492 0.517 0.026 1.069
the RoothaafrHall equations but with a greatly simplified Fock 1.4 0.490 0.518 0.028 0.458
matrix. One important feature of semiempirical methods is that ~ 1.39 0.490 0.518 0.028 0.394
they are applicable to fairly large organic molecules containing ~ 1.38 0.489 0.518 0.029 0.326
200 or more atoms. 1.37 0.489 0.518 0.029 0.259
. - . . 1.36 0.489 0.518 0.029 0.191
Semle_mpmcal methods yields continuous energy surfaces ;'3 0.489 0.518 0.030 0.122
from which parameters such as the molecular volume can be 134 0.488 0.519 0.030 0.052
derived. In this work, an optimization of the electronic structure 1.335 0.488 0.519 0.030 0.016
and geometry by PM3 semiempirical molecular orbital calcula- ~ 1.334 0.488 0.519 0.030 0.009
tions®® has been carried out. Molecular characteristics for PAA ~ 1.333 0.488 0.519 0.030 0.002
corresponds to the energy minima obtained by geometry 1'232 8'888 8'5521? 8'5521? gggg
optimization and a full degree of freedom analysis was made 715 0.000 0.548 0.548 0.000
using the gradient optimization routine in the programs. All 1.1 0.000 0.567 0.567 0.000
calculations were carried out on a Silicon Graphics Octane 1.0 0.000 0.586 0.586 0.000
Workstation (Dual MIPS RISC R10000 64-bit 195 MHz/1MB 0.9 0.000 0.605 0.605 0.000
cache Processor, IRIX 6.4 operating system, 256 MB RAM, 4 0.8 0.000 0.625 0.625 0.000

GB Disk). We used the Gaussian 94 program and prepared
molecular coordinates inputs with Spartan 5.1.1 program. The
molecular volume obtained by this method represents a isoden-
sity surface, and was derived considering an electron density
of 0.08 electrons/A This volume is essentially similar to the
volume that encloses the electron density derived from the
overlapping of molecular orbitals that occur during bond
formation. We used the volume derived from the electronic
density of the molecule to map an ideal molecular volume, and
treated it as equivalent to the HER volume described above.

and 3.5, respectively, and in Figure 2 for the syst#b— 3.1.
Because the theory describes isotropic and nematic phases only,
positionally ordered phases cannot be predicted. Qualitatively,
the general features observed in these results agree with those
reported by Tjipte-Margo and Evarfé and Garaa et al.3¢there
is a critical temperaturd,, with vapor and liquid phases for
temperatures below,, and an isotropic homogeneous fluid
phase abové&.; a nematic phase arises at higher densities, with
a very well-defined isotropienematic transition, and with
decreasing temperature, a vaptiquid—nematic (V-L—N)
triple-point T+ appears where these three phases coexist; below
Tr, the liquid phase disappears and only the vapor and nematic
The phase diagrams of ellipsoidal hard-cores of ragibs= phases coexist. For a different potential, using a mean-field
3, 3.1, and 3.5, with a spherical square-well with= 0, were approach, Telo da Gar#z8 predicts a similar phase diagram.
examined using the perturbation theory discussed in section 2.From the limited simulation data reported in the literature, the
Results are given in Tables 1 and 2 for the systefbis— 3 LRA—MCA Parsons theory provides a good description for the

4. Results and Discussion
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TABLE 3: Comparison of Various Parameters Obtained Experimentally at the I-N Phase Transition at 1 atm Pressure and a
Temperature of 409 K for PAA with the Theoretical Prediction from VDW Theory and PT

expt (PAA) (this work) (this work) BH—PT (ref 19) HTE (ref 23) HTE (ref 23)
property (ref 41) (3.5:1) (3:1) (3:1) (3:1.4:1) (3:1.45:1)
Vim (R3) 70 230 230 230 230
elk (K) 307 515.8 486 695 738
(T (K))1 am 409 409 409 408.8 406 411
i 0.62 0.519 0.562 0.548 0.523 0.523
Anln 0.0035 0.057 0.032 0.025 0.015 0.012
[P0 0.36 0.69 0.63 0.57 0.40 0.36
P00 0.07 0.30 0.22 0.23 0.11 0.09
ASNk 0.17 1.07 0.80 0.67 0.23 0.23
thermodynamic properties of the prolate convex-peg fluid with 600
A= 3
However, there are two major limitations of the theory that 500 5
deserve special attention. First, because liquid-state molecular : .

theories valid only for isotropic and nonisotropic fluids cannot 400 4
predict phases with positional order (Smectic (Sm) or Crystalline
(K)), the V=L—N triple point in Figure 2 could be preempted &'
by a V—=L—Sm or V-L—K triple point. This must be stressed &,
because the triple point predicted by our theory occurs at zero®
pressure. In consequence, the predicted results given for the
I—N phase transition near to the triple point could not be realistic
and must be taken with reserves. Second, we must proceed with 100 7
caution extrapolating a perturbation theory beyond its range of

validity because the equation of state given by eq 25 is based 0 e p————
on a second-order high-temperature expansion, and then it will 408 410 418 420 428 430 435
fail at low temperatures. Although the low-temperature limit TIK]

where eq 25 is still valid requires a more detailed study, figyre 3. Pressure (in bar) plotted as a function of the temperature
Benavides et &*3?have demonstrated for SW spherical fluids  (in K) at the -N phase transition for the nematogen PAA. The solid
that a second-order HTE equation of state in the long-range line represents the theoretical prediction of PT (3:1 core with 0)
approximation becomes inaccurate when the temperature is offitted at 1 atm and 409 K. The short dot line represents the predictions
the order of 0.8.. We should conclude that the prediction given from the same theory fitted at zero pressure and 407 K and the boxes
near the +L—N triple point in Figure 2 is approximated because represent the experimental data taken from Chandrasékhar.

Tt ~ 0.3T.. It is clear then that these limitations of the theory

restrict the validity of the predictions obtained in the low-

L.
temperature region of the phase diagram. & Q ‘_
Several studies have focused the attention in describing the % < - n . :
0 2 o tan U
¢
«

300 ~

200 -

phase diagram of 4 4limethoxyazoxybenzeng-@zoxyanisole,

PAA), which presents an—-IN transition at 1 atm pres- &

surel®23.3%40gr example, Tjipto-Margo and Evaipredicted j f C

the phase diagram for this compound using a HTE VDW theory ¥ < h ' = @

for two biaxial cores, 3:1.4:1 and 3:1.45:1 with= 0, and L

determined the molecular parameters through a fitting procedure

consisting in to fix the value of the molecular volume to 230 * Hydeors bab Swesn: @ Dy

A3, and then fitting the potential well depéhto reproduce the  Figure 4. Minimum-energy geometry for p-azoxyanisole or '4,4

I—N transition temperature at 1 atm. William3®osed the same  dimethoxyazoxybenzene (GECsHsNONCsH,OCHs, PAA) obtained

approach with a first-order HTE EOS for an uniaxial core 3:1 by PM3 method?®

ando = 0, but the pressuretemperature behavior prediction

in the =N phase transition around 1 atm results to be poor. is used to find three bond lengthsa &5 taken as the distance
We studied the PAA phase diagram with eq 25 using the between hydrogens of the methoxy groups localized in the

approach of Tjipte-Margo and Evar already explained. The  extremes of the PAA moleculd) is the distance between

results are reported in Table 3. Because the reduced pressuraitrogen (N) and oxygen (@) of the azoxy group (N=N>—05)

PVi/e has a linear dependence wilh, the fitting procedure is at the center of the molecule, and B the distance between

straightforward. The+N transition temperatures predicted in hydrogens on the meta position in the benzene ring (see Figure

this way can be compared with experimental data (taken from 4). The PM3 values obtained a@e= 7.60 A,b = 2.17 A, and

Chandrasekh&) over a wide range of pressures, as indicated ¢ = 2.15 A, thena/b ~ 3.5, and the corresponding molecular

in Figure 3 (solid line). The theoretical prediction obtained is volume is 70 &. Notice that the molecular volume obtained

clearly very poor. Results cannot be improved with different by the PM3 method is considerably smaller than the fitted values

fitting values; for example, the short dot line in Figure 3 reported previously, and its effect on the thermodynamic

corresponds to a fitting at zero pressure and for a temperatureprediction is not negligible at all.

of 407 K. To implement the mapping of the PM3 volume into the HER
The predictions can be improved if we consider the molecular molecular geometry to be used in the thermodynamic perturba-

geometry for PAA derived from more accurate quantum tion theory, we choose to keep the PM3 values of the molecular

mechanical methods, such as the PM3 meffiddis approach volume and the aspect ratadb, which are the only parameters
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800 can improve the thermodynamic prediction. This approach is
1 quite different from a simple refitting procedure. On the other
500 n hand, the thermodynamic correction obtained by using the PM3
- method in combination with a free energy equation for a
400 - primitive model gives a theoretical funded prediction for the
phase diagram.
T 2004 In Table 3, we compare the theoretical predictions for the
% I—N transition for P = 1 atm obtained by us and by
200 Williamsont® for uniaxial cores, and TjipteMargo and Evarts
for biaxial cores. We observe that all of the theories predict
that the transition temperature is very close to the actual value
100 and that the packing fraction at the phase transition is under-
1 estimated, even when the biaxial cores are used. It has been
o T Y observe@*2for systems formed by biaxial ellipsoids that the
405 410 415 420 425 430 435

I—N phase transition shifts to higher densities by increasing
TIK] biaxiality, so the opposite trend observed in Table 3 suggest

Eigure 5. Pressure (in bar) .p.|0tt6d as a function of the temperature that the biaxial-core theory overestimates the angu|ar depen_

(in K) at the N phase transition for the nematogen PAA. The lower  qance of the attractive forces and then induce a shift of the phase

solid line represents the theoretical prediction of PT (3.5:1 coredvith e L i -
= 0) fitted at 1 atm.Vi = 230 A% and 409 K. The short dot line transition to lower densities. Biaxiality decreases the density

represents the prediction from the same theory fitted at zero pressurdUMP at the +-N transition and reduces the orientational order
and volume, but with 407 K. The upper solid line represents the in the nematic phase, effects that are predicted correctly by the
prediction from the same theory fitted at 1 atMy, = 70 A3 and biaxial-core theory when compared to the uniaxial models. Also
409 K and the boxes represent the experimental data taken fromthe entropy change at the phase transition is better described
Chandrasekhaf. using biaxial-cores, an effect that can be explained because the
density jump for the +N phase transition is smaller for these
models.

600

500 ~ - .
5. Conclusions

400 In this paper, we have shown the combined use of a
perturbation theory for liquid crystals and PM3 calculations in
order to predict the phase diagram of these systems. Calculating
an estimated value of the molecular volumgby PM3 instead
of the fitting method to thermodynamic properties, the theoreti-
cal prediction substantially improves its accuracy. The theory
works on the basis of a primitive model for a real liquid crystal,
assuming a decoupling of degrees of freedom and a long-range
approximation for the calculation of the perturbation terms.
Molecular features such as flexibility and polarity are neglected,
but they introduce important effects on the phase diagram, as a
TiK] recent computer simulation study has shdWiit would be
Figure 6. Pressure (in bar) plotted as a function of the temperature desirable to incorporate the contributions to the free energy given
(in K) at the =N phase transition for the nematogen PAA. The solid  py these properties. Furthermore, on the basis of the results given
line represents the theoretical prediction of PT (3.5:1 core #vith0) in Table 3, a cylindrical symmetrical core overestimates the

fitted at 1 atmVy, = 70 A% and 409 K. The dashed line represents the . - - - S
prediction from the same theory fitted at 1 atmy, = 70 A® and orientational order in the nematic phase, and the density jump

407 K and the boxes represent the experimental data taken fromcalculated is higher than the computer simulation predictions.
Chandrasekhét Since the PM3 method clearly indicates that the molecular

geometry is complex, we expect that the observed inaccuracies
required for the calculation of the thermodynamic properties, could be corrected extending the thermodynamic perturbation
as can be seen in eq 25. The mapped HER molecule withtheory to molecules with more complex hard-core geometries.
volume of 70 B has semi-axes' = b’ anda’ = 3.5, i.e., Finally, we want to remark that the combined use of a
a =5.88 A andb’ = 1.68 A, but the reader must bare in mind molecular-based thermodynamic perturbation theory and an
that the values that are relevant for the theory are not the axesaccurate quantum mechanical method for obtaining molecular
lengths but the molecular aspect ratio and the molecular volume.parameters give a more realistic and accurate representation of
The PM3 molecular volume is used to determine the potential real substances phase behavior. It is encouraging that the use
well depthe by reproducing the+N temperature transition  of accurate independent molecular-based methods (i.e., PM3
T = 409K for P =1 atm. In Figure 5 we report the prediction and thermodynamic perturbation methods) designed to describe
obtained in this way (solid line), which is compared with the different features of a real LC substance (i.e., molecular
other two predictions already explained above. We observe thatgeometry and phase behavior, respectively) can give a consistent
a considerable improvement in the prediction is obtained. If we better description of the phase diagram, and reducing to the
readjust the values to reproduce the conditidrs 407K for minimum the use of “fitting procedures”.
P = 0 atm, then a better agreement is observed with the
experimental data (see solid line Figure 6). We can conclude Acknowledgment. The authors gratefully acknowledge the
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