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A molecular theory to determine thermodynamic properties of isotropic and nematic phases of liquid crystals
is proposed, based on a “convex peg” model and semiempirical PM3 (Parametrized Method 3) calculations.
The Helmholtz-free energy of the molecular system, a convex hard core within an encircling spherical square-
well (SW) potential, is obtained from a second-order perturbation theory for SW nonspherical particles,
combined with the Parsons decoupling approximation of the translational and rotational degrees of freedom,
and a long-range approximation for the evaluation of the perturbation terms. The theory is applied to predict
the phase diagram and isotropic-nematic transition ofp-azoxyanisole. To do this, an estimation of the volume
of a p-azoxyanisole molecule is derived from a minimum-energy geometry, using PM3 calculations; the
volume obtained is mapped into a hard ellipsoid revolution volume of a Convex Peg molecule. A very good
agreement in the prediction of the thermodynamic properties is obtained when compared with experimental
data.

1. Introduction

Over the past two decades, computer simulation studies1-4

of anisotropic hard-core molecular models have confirmed that
anisotropy in the shape of molecules is the essential feature for
liquid crystal phase behavior, as Onsager demonstrated theoreti-
cally using a virial expansion for a fluid formed by long rods.5

From computer simulation studies, we know now that, for
example, hard ellipsoids of revolution2 (HER) fluids exhibit a
nematic liquid crystal phase for elongations greater than 2.75:
1, and a hard spherocylinder (HSC) system3,4 has a nematic
phase for aspect ratios greater than 4. The Onsager theory is
exact in the limit of infinitely long rods, and although it is
quantitatively deficient for rods of intermediate elongation, it
is a molecular-based theory and thus can be improved system-
atically. One possible route to improve the Onsager theory is
by including higher virial coefficients.6

A very useful and simple approach that extends the applica-
tion of the Onsager theory to finite length rods is the decoupling
approximation of translational and orientational degrees of
freedom, proposed by Parsons.6,7 This approximation has been
extensively used in theoretical studies of thermodynamic and
structural predictions for isotropic and nematic phases,4,8-10

leading to a very good prediction of the I-N phase transition
for convex molecular geometries. The Parsons approach takes
advantage of accurate and analytical results valid for a hard
spheres (HS) fluid (such as the Carnahan and Starling equation
of state11 and the Percus-Yevick12 direct correlation function)

to extend its validity to nematic phases and basically consists
of scaling the distance between nonspherical particles by the
distance of nearest approach at the same relative orientation.

Because real molecules also have attractive interactions, such
as the van der Waals forces, a thermodynamic molecular
approach must take into account their description for a proper
prediction of the phase diagram. In the Maier-Saupe theory,13

the attractive energy arising from induced dipolar moments is
given by a mean-field approximation, to predict their effect in
the I-N phase transition. Although Maier-Saupe and Onsager
theories model different molecular effects, they are comple-
mentary theories that can be combined to give a first approach
to theoretical equations of state for liquid crystalline systems,
as the Augmented van der Waals theory (AVDW)14 does for
isotropic fluids.

After the success of perturbation theories in describing liquid
isotropic phases, several mean-field theories15-18 have been
proposed that basically extend the AVDW approach to noniso-
tropic fluids. Recently, Williamson19 extended the first-order
Barker and Henderson perturbation theory20 for isotropic fluids
to model a convex peg molecule, using the Parsons approach,7

and a long-range approximation (BHLR)21 for the calculation
of the first perturbation term. The convex peg model comprises
a convex hard-core molecule within an encircling spherical
square-well potential (SW); see Figure 1. Although the convex
peg model uses an isotropically attractive interaction, the
nonspherical hard-core introduces an effective anisotropy in the
attractive forces. Gelbart and Gelbart22 demonstrated that
molecular models comprised of an anisotropic core plus
isotropically attractive interactions give the basic orientational
behavior in nematics, and that most of the anisotropic interaction
in these phases results from the coupling between the anisotropic
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repulsion and the isotropic attraction. Evans and co-workers23,24

have examined the phase diagram of the convex peg model using
an AVDW theory, i.e., the hard core is treated as accurately as
possible and the contributions from the attractive forces are
incorporated using the second virial coeffcient24 and its high-
temperature limit.23 These theories give the general features of
the phase diagram and qualitatively agree with the simulation
data reported by de Miguel and Allen.25

For SW spherical particles, the first-order BH-LR theory
improves the AVDW approach in two and three dimensions.26-28

Its extension to anisotropic fluids19 agrees accurately with
simulation data for fluids of prolate uniaxial cores 3:1, including
the I-N phase transition. In this paper, the theory presented in
ref 19 is extended to second-order and used to predict the phase
diagram of a real molecule. The second-order perturbation theory
is obtained using the local compressibility approximation (LCA)
proposed by Barker and Henderson29 for SW spherical fluids.
Although the LCA gives only a very approximated description
of the second-order contribution to the Helmholtz free-energy
for SW systems,30 it provides a compact analytical expression
that can be used to assess the effect of this term in the prediction
of phase diagrams of liquid crystals. By means of quantum
mechanical calculation, an estimated value of the p-azoxyanisol
volume was derived. We present in section 4 the application of
the theory to characterize the I-N phase diagram of this
compound.

2. Molecular Thermodynamic Theory for a Liquid
Crystal

We consider a one-component fluid composed ofN mol-
ecules, hard ellipsoids of revolution (HER) with semimajor axis
a and semiminor axisb, contained within a volumeV at a
temperatureT. The molecules interact via a square-well potential

whererij is the distance between the center of mass for particles
i and j with orientational coordinatesΩi andΩj, respectively,
Vex(Ωi,Ωj) is the excluded volume that depends on the orienta-
tions of the particles,σ ) 2b is the diameter of a sphere centered
at the particle’s center of mass,λσ is the range of the square-
well (λσ ) 2a + δσ, whereδσ is the distance between the
edge of the square well and the ends of the spherocylinder, as
shown in Figure 1), andε is the SW depth. The SW potential
given in eq 1 belongs to the general class of hard-core potentials

given byu(12)) u0(12)+ εup(12), which consists of a repulsive
hard-core termu0(1,2) plus an attractive interactionεup(1,2);
for the SW interaction the last term reduces to the step function.
A system of particles interacting via this type of potentials can
be treated by a perturbation approach to obtain the Helmholtz
free-energyA, using the hard-core system as the reference fluid.
Following Barker and Henderson,20,29 and Williamson,19 A is
given by a high-temperature expansion (HTE), that in our case
we will approximate to second order

Here,Aideal is the ideal contribution to the free energy,AΩ is an
orientational free energy,A0 is the Helmoltz free energy of the
reference fluid,a1 and a2 are the first and second-order
perturbation terms, andT* ) kT/ε is a scaled temperature, where
k is the Boltzmann’s constant.

The ideal term is given by

whereΓ is a volume parameter determined by the molecular
degrees of freedom. Taking into account traslational and
rotational degrees of freedom, we have thatΓ ) Λ3c, whereΛ
is the de Broglie’s wavelength, andc is a rotational constant
given byc ) h2/8π2IkT, I being the molecular moment of inertia.

The orientational term arises from a loss of entropy when
orientational order is present, and is given by the Onsager’s
expression

where f(Ω) is the single particle orientational distribution
function (SPODF) for a solid angleΩ, that satisfies the
normalization condition∫f(Ω) dΩ ) 1. For an isotropic phase,
f(Ω) ) 1/4π, whereas for a nematic phase the SPODF is a
nonuniform function.

The hard-core free energyA0 is given by the Lee-Parsons
expression7-9

In this equation,Vm is the volume of the hard core,AHS is
the Helmholtz free energy of a hard spheres fluid with the
same packing fraction of the hard-core fluid, i.e.,η ) FVm, and
〈Vex(Ω1,Ω2)〉Ω1,Ω2 is the angular average of the excluded volume
between two particles, that can be expressed as

The averaged excluded volume in eq 6 is written in terms of
the Mayer function for the binary repulsive interaction, i.e.,
F(12) ) e-u0(12)/kT - 1, with the valuesF(12) ) -1 andF(12)
) 0 for overlapping and non overlapping particles, respectively.

Figure 1. Convex Peg model comprising a convex hard core with
semi-axis ratioa:b surrounded by a spherical square-well of depthε

and rangeλb. The square-well extends beyond the tips of the convex
core to a distanceδ.
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Introducing these values of the Mayer function enable us to
rewrite eq 6 in terms of the collision diameter between two
particles,s(Ω1,Ω2)

The perturbation termsa1 and a2 give the thermodynamic
contribution due to attractive forces. The first-order term is a
mean attractive energy given by

whereas the second-order term gives a first estimation of
fluctuations of the attractive energy with respect to its mean
value, and that in the LCA approximation is given by

whereP is the pressure of the fluid andK0 gives the isothermal
compressibility for the repulsive hard-core fluid. In these
equations,g0(12) is the pair distribution function of the hard-
core reference fluid, which depends on the orientational and
positional coordinates of two molecules.

The perturbation terms given in eqs 8 and 9 can be also
expressed in terms of the total correlation functionh0(12),
defined byh0(12) ) g0(12) - 1. This allows us to study the
perturbation termsa1 anda2 as functions of the SW rangeλ in
a systematic way, as del Rı´o and co-workers have shown for
isotropic SW fluids in a series of studies.26-28,30-32 The
extension of the same approach to anisotropic SW systems is
straightforward, but here we will focus the attention toa1 only
because the analysis fora2 is algebraically more complex.30

Becauseg0(12) is null inside the core, i.e.,r12 < s(Ω1,Ω2),
then the lower limit of the positional integral in eq 7 can be
changed to zero without modifying the actual value ofa1

and by introducing the definition ofh0(12), we have

which can be partially integrated and expressed as

where the reduced variablesF* ) Fσ3 and x ) r/σ are used.

The second term in eq 10 can be split in two integrals by
changing the integration domains

Equation 11 is useful because it allows us to introduce the
definition of K0, a thermodynamic property of the hard-core
reference fluid

Using eqs 11 and 12, the attractive energy given in eq 10 can
be finally expressed as

The first term in eq 13 is the van der Waals contribution toa1

and is dominant for largeλ. The second term is independent of
λ and is the first correction to the van der Waals approximation.
The last term is a correction important forλ close to 1, and for
isotropic SW fluids it results a complicated function ofη and
λ that tends to zero asλ increases31 becauseh0(12) goes to zero
as the distance is increased. The long-range approximation
(LRA)21,31 is then given by neglecting this last term, and that
describes accurately 2D and 3D SW isotropic fluids.26-28

Because the LCA approximation fora2 is given as the derivative
of a1 with respect to density, it is clear that the complete
thermodynamic contribution of the perturbation terms is given
by a1 and the isothermal compressibility factorK0, i.e.

Equations 2-5, 14, and 15 resume the LRA-MCA perturbation
theory for the convex peg model, that can be applied if the
compressibility factor of the hard-core reference fluid,K0, is
known. However, if this is not the case, then the decoupling
approximation of Parsons can be used. For doing this, notice
that in eq 6 we can use the collision diameters(Ω1,Ω2) to scale
the relative distance between two particles, i.e., we introduce
the variablez ) r12/s(Ω1,Ω2) in eq 6 to obtain the following
expression

and because the integral inz can be performed directly, we
obtain a simple relation
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)
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or equivalently

that states that the angular average of the excluded volume of
two nonspherical particles is equivalent to the volume of a
sphere whose diameter is the angular average of the collision
diameter between the particles. The scaling argument used here
to obtain eq 18 from eq 6 is the essence of the Parson approach,
and can be applied also to eq 12, to relate the isothermal
compressibility factorsK0 andKHS, the last one corresponding
to a fluid of hard spheres of diameter〈s(Ω1,Ω2)〉Ω1,Ω2.

Introducing the scaled variablez in eq 12, and following the
same arguments used to obtain eq 18, we have that

and identifying in the second line of this equation the expression
of the angular average of the excluded volume, eq 17, we have
that

The isothermal compressibility factorKHS is obtained from eq
12 for spherical particles

Then, if we use the approximationh0(z) ) hHS(z) in eq 20, from
eq 21 we have that eq 20 can be approximated by

which is the desired relation that we were looking for, because
it allows us to calculate the isothermal compressibility of the
anisotropic hard-core fluid throughKHS. Using the decoupling
result of eq 20 in eqs 14 and 15, we have finally then the
following LRA-MCA-Parsons perturbation terms

whereVm ) 4/3πab2 andσ ) 2b. Equations 14 and 15 reduce
to the perturbation expressions for an isotropic SW fluid when
a ) b, because in this case〈Vex(Ω1,Ω2)〉Ω1,Ω2 ) 8Vm.

In summary, by collecting the different contributions to the
free energy obtained before (eqs 3-5, 23 and 24), we arrive to
the following expression for the Helmholtz free-energy in the
LRA-MCA. Parsons approximations

whereâ ) 1/T*, ω ) b/a, andΨ ) 〈Vex(Ω1,Ω2)〉Ω1,Ω2/8Vm. To
be able to use this expression, we need to know the HS
thermodynamic propertiesAHS and KHS, and the excluded
volume 〈Vex(Ω1,Ω2)〉Ω1,Ω2. For the HS properties, we use the
Carnahan-Starling equation of state,11 thus

whereas〈Vex(Ω1,Ω2)〉Ω1,Ω2 is calculated from the exact angular
dependent excluded volumeVex(Ω1,Ω2), using the recipe of
Camp et al.,10 which gives a reliable description of the
thermodynamic properties of both the isotropic and nematic
phases of a hard-core fluid.4,19,33

In the isotropic phase, the free energy is obtained from eq
25 with f(Ωi) ) 1/4π, i ) 1, 2 that corresponds to a uniform
distribution of molecular orientations. In the case of the nematic
phase, we have to consider eq 25 as a free energy functional of
f(Ω), which must be minimized with respect to this function.
For this work, we have used a numerical minimization using
the Onsager’s trial function

whereR is a variable parameter.
Once we have obtained the free energies for the isotropic

and nematic phases, the pressureP and chemical potentialµ
can be evaluated from the standard thermodynamic relationships

The phase diagram is studied using eqs 29 and 30 and by
ensuring for a fixed temperature that the chemical potential and
pressure of each phase are the same.

3. Molecular Volume

Application of quantum theory to chemical systems allows
the calculation of molecular parameters. Quantum mechanical
calculations are based on the minimization of the total energy
of the molecule with respect to all or some structural parameters.
The optimization procedure lead to the most stable structure
observed in ideal conditions.

Molecular parameters obtained by molecular modeling
procedures depend on the method followed to solve the
Schröedinger equation: molecular mechanics, ab initio, semi-
empirical methods, etc.34 Semiempirical methods start with the
same two approximations inherent to ab initio methods, and
make use of a minimal valence basis of Slater Type Orbitals
(STOs). The central assumption in these methods is the NDDO
(neglect of diatomic differential overlap) approximation, which
implies that two functions do not overlap unless they are located
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on the same atomic centers, i.e.,∫φµφν dτ ) 0 for µ andν not
on the same center. This leads to a set of equations similar to
the Roothaan-Hall equations but with a greatly simplified Fock
matrix. One important feature of semiempirical methods is that
they are applicable to fairly large organic molecules containing
200 or more atoms.

Semiempirical methods yields continuous energy surfaces
from which parameters such as the molecular volume can be
derived. In this work, an optimization of the electronic structure
and geometry by PM3 semiempirical molecular orbital calcula-
tions35 has been carried out. Molecular characteristics for PAA
corresponds to the energy minima obtained by geometry
optimization and a full degree of freedom analysis was made
using the gradient optimization routine in the programs. All
calculations were carried out on a Silicon Graphics Octane
Workstation (Dual MIPS RISC R10000 64-bit 195 MHz/1MB
cache Processor, IRIX 6.4 operating system, 256 MB RAM, 4
GB Disk). We used the Gaussian 94 program and prepared
molecular coordinates inputs with Spartan 5.1.1 program. The
molecular volume obtained by this method represents a isoden-
sity surface, and was derived considering an electron density
of 0.08 electrons/Å3. This volume is essentially similar to the
volume that encloses the electron density derived from the
overlapping of molecular orbitals that occur during bond
formation. We used the volume derived from the electronic
density of the molecule to map an ideal molecular volume, and
treated it as equivalent to the HER volume described above.

4. Results and Discussion

The phase diagrams of ellipsoidal hard-cores of ratiosa/b )
3, 3.1, and 3.5, with a spherical square-well withδ ) 0, were
examined using the perturbation theory discussed in section 2.
Results are given in Tables 1 and 2 for the systemsa/b ) 3

and 3.5, respectively, and in Figure 2 for the systema/b ) 3.1.
Because the theory describes isotropic and nematic phases only,
positionally ordered phases cannot be predicted. Qualitatively,
the general features observed in these results agree with those
reported by Tjipto-Margo and Evans23 and Garcı´a et al.:36 there
is a critical temperatureTc, with vapor and liquid phases for
temperatures belowTc, and an isotropic homogeneous fluid
phase aboveTc; a nematic phase arises at higher densities, with
a very well-defined isotropic-nematic transition, and with
decreasing temperature, a vapor-liquid-nematic (V-L-N)
triple-pointTT appears where these three phases coexist; below
TT, the liquid phase disappears and only the vapor and nematic
phases coexist. For a different potential, using a mean-field
approach, Telo da Gama37,38 predicts a similar phase diagram.
From the limited simulation data reported in the literature, the
LRA-MCA Parsons theory provides a good description for the

TABLE 1: Temperature T* ) kT/E, Coexisting Packing
Fractions η ) NVm/V, Density Jump ∆η ) ηnem - ηiso and
PressureP* ) PVm/kT at the I-N Phase Transition for a
“Convex Peg” Fluid with a Prolate Ellipsoid Hard Core 3:1
and δ ) 0

T* ηiso ηnem ∆η P*

∞ 0.566 0.574 0.008 15.941
2.8 0.561 0.570 0.009 11.137
2.6 0.560 0.570 0.009 10.777
2.4 0.560 0.569 0.009 10.359
2.2 0.559 0.569 0.010 9.866
2.0 0.558 0.569 0.010 9.275
1.8 0.557 0.568 0.010 8.569
1.6 0.556 0.567 0.011 7.684
1.4 0.555 0.566 0.011 6.567
1.2 0.553 0.565 0.012 5.106
1.0 0.550 0.564 0.014 3.082
0.9 0.548 0.563 0.015 1.755
0.89 0.548 0.563 0.015 1.610
0.88 0.547 0.563 0.016 1.462
0.87 0.547 0.563 0.016 1.309
0.86 0.547 0.563 0.016 1.152
0.85 0.546 0.563 0.016 0.993
0.84 0.546 0.563 0.016 0.831
0.83 0.546 0.562 0.016 0.665
0.82 0.546 0.562 0.017 0.495
0.81 0.545 0.562 0.017 0.321
0.80 0.545 0.562 0.017 0.144
0.795 0.545 0.562 0.018 0.054
0.794 0.545 0.562 0.018 0.036
0.793 0.545 0.562 0.018 0.017
0.792 0.000 0.562 0.562 0.000
0.750 0.000 0.577 0.577 0.000
0.700 0.000 0.592 0.592 0.000
0.650 0.000 0.606 0.606 0.000

Figure 2. Partial phase diagram (T* - η slice) for a convex peg fluid
with prolate ellipsoid hard core 3:1 andδ ) 0 obtained from PT.

TABLE 2: Temperature T* ) kT/E, Coexisting Packing
Fractions η ) NVm/V, Density Jump ∆η ) ηnem - ηiso and
PressureP* ) PVm/kT at the I-N Phase Transition for a
“Convex Peg” Fluid with a Prolate Ellipsoid Hard Core
3.5:1 and δ ) 0

T* ηiso ηnem ∆η P*

∞ 0.509 0.522 0.012 10.278
2.8 0.501 0.519 0.017 5.205
2.7 0.500 0.518 0.017 5.000
2.5 0.499 0.518 0.018 4.605
2.3 0.498 0.518 0.019 4.135
2.1 0.497 0.517 0.020 3.572
1.9 0.496 0.517 0.021 2.905
1.7 0.494 0.517 0.023 2.088
1.5 0.492 0.517 0.026 1.069
1.4 0.490 0.518 0.028 0.458
1.39 0.490 0.518 0.028 0.394
1.38 0.489 0.518 0.029 0.326
1.37 0.489 0.518 0.029 0.259
1.36 0.489 0.518 0.029 0.191
1.35 0.489 0.518 0.030 0.122
1.34 0.488 0.519 0.030 0.052
1.335 0.488 0.519 0.030 0.016
1.334 0.488 0.519 0.030 0.009
1.333 0.488 0.519 0.030 0.002
1.332 0.000 0.519 0.519 0.000
1.3 0.000 0.527 0.527 0.000
1.2 0.000 0.548 0.548 0.000
1.1 0.000 0.567 0.567 0.000
1.0 0.000 0.586 0.586 0.000
0.9 0.000 0.605 0.605 0.000
0.8 0.000 0.625 0.625 0.000
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thermodynamic properties of the prolate convex-peg fluid with
λ g 3.

However, there are two major limitations of the theory that
deserve special attention. First, because liquid-state molecular
theories valid only for isotropic and nonisotropic fluids cannot
predict phases with positional order (Smectic (Sm) or Crystalline
(K)), the V-L-N triple point in Figure 2 could be preempted
by a V-L-Sm or V-L-K triple point. This must be stressed
because the triple point predicted by our theory occurs at zero
pressure. In consequence, the predicted results given for the
I-N phase transition near to the triple point could not be realistic
and must be taken with reserves. Second, we must proceed with
caution extrapolating a perturbation theory beyond its range of
validity because the equation of state given by eq 25 is based
on a second-order high-temperature expansion, and then it will
fail at low temperatures. Although the low-temperature limit
where eq 25 is still valid requires a more detailed study,
Benavides et al.30,32have demonstrated for SW spherical fluids
that a second-order HTE equation of state in the long-range
approximation becomes inaccurate when the temperature is of
the order of 0.6Tc. We should conclude that the prediction given
near the I-L-N triple point in Figure 2 is approximated because
TT ≈ 0.3Tc. It is clear then that these limitations of the theory
restrict the validity of the predictions obtained in the low-
temperature region of the phase diagram.

Several studies have focused the attention in describing the
phase diagram of 4,4′-dimethoxyazoxybenzene (p-azoxyanisole,
PAA), which presents an I-N transition at 1 atm pres-
sure.19,23,39,40For example, Tjipto-Margo and Evans23 predicted
the phase diagram for this compound using a HTE VDW theory
for two biaxial cores, 3:1.4:1 and 3:1.45:1 withδ ) 0, and
determined the molecular parameters through a fitting procedure
consisting in to fix the value of the molecular volume to 230
Å3, and then fitting the potential well depthε to reproduce the
I-N transition temperature at 1 atm. Williamson19 used the same
approach with a first-order HTE EOS for an uniaxial core 3:1
andδ ) 0, but the pressure-temperature behavior prediction
in the I-N phase transition around 1 atm results to be poor.

We studied the PAA phase diagram with eq 25 using the
approach of Tjipto-Margo and Evans23 already explained. The
results are reported in Table 3. Because the reduced pressure
PVm/ε has a linear dependence withT*, the fitting procedure is
straightforward. The I-N transition temperatures predicted in
this way can be compared with experimental data (taken from
Chandrasekhar41) over a wide range of pressures, as indicated
in Figure 3 (solid line). The theoretical prediction obtained is
clearly very poor. Results cannot be improved with different
fitting values; for example, the short dot line in Figure 3
corresponds to a fitting at zero pressure and for a temperature
of 407 K.

The predictions can be improved if we consider the molecular
geometry for PAA derived from more accurate quantum
mechanical methods, such as the PM3 method.35 This approach

is used to find three bond lengths: 2a is taken as the distance
between hydrogens of the methoxy groups localized in the
extremes of the PAA molecule,b is the distance between
nitrogen (N1) and oxygen (O3) of the azoxy group (N1dN2sO3)
at the center of the molecule, and 2c is the distance between
hydrogens on the meta position in the benzene ring (see Figure
4). The PM3 values obtained area ) 7.60 Å,b ) 2.17 Å, and
c ) 2.15 Å, thena/b ≈ 3.5, and the corresponding molecular
volume is 70 Å3. Notice that the molecular volume obtained
by the PM3 method is considerably smaller than the fitted values
reported previously, and its effect on the thermodynamic
prediction is not negligible at all.

To implement the mapping of the PM3 volume into the HER
molecular geometry to be used in the thermodynamic perturba-
tion theory, we choose to keep the PM3 values of the molecular
volume and the aspect ratioa/b, which are the only parameters

TABLE 3: Comparison of Various Parameters Obtained Experimentally at the I-N Phase Transition at 1 atm Pressure and a
Temperature of 409 K for PAA with the Theoretical Prediction from VDW Theory and PT

property
expt (PAA)

(ref 41)
(this work)

(3.5:1)
(this work)

(3:1)
BH-PT (ref 19)

(3:1)
HTE (ref 23)

(3:1.4:1)
HTE (ref 23)

(3:1.45:1)

Vm (Å3) 70 230 230 230 230
ε/k (K) 307 515.8 486 695 738
(T (K))1 atm 409 409 409 408.8 406 411
η 0.62 0.519 0.562 0.548 0.523 0.523
∆η/η 0.0035 0.057 0.032 0.025 0.015 0.012
〈P2〉 0.36 0.69 0.63 0.57 0.40 0.36
〈P4〉 0.07 0.30 0.22 0.23 0.11 0.09
∆S/Nk 0.17 1.07 0.80 0.67 0.23 0.23

Figure 3. Pressure (in bar) plotted as a function of the temperature
(in K) at the I-N phase transition for the nematogen PAA. The solid
line represents the theoretical prediction of PT (3:1 core withδ ) 0)
fitted at 1 atm and 409 K. The short dot line represents the predictions
from the same theory fitted at zero pressure and 407 K and the boxes
represent the experimental data taken from Chandrasekhar.41

Figure 4. Minimum-energy geometry for p-azoxyanisole or 4,4′-
dimethoxyazoxybenzene (CH3OC6H4NONC6H4OCH3, PAA) obtained
by PM3 method.35
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required for the calculation of the thermodynamic properties,
as can be seen in eq 25. The mapped HER molecule with
volume of 70 Å3 has semi-axesc′ ) b′ and a′ ) 3.5b′, i.e.,
a′ ) 5.88 Å andb′ ) 1.68 Å, but the reader must bare in mind
that the values that are relevant for the theory are not the axes
lengths but the molecular aspect ratio and the molecular volume.
The PM3 molecular volume is used to determine the potential
well depth ε by reproducing the I-N temperature transition
T ) 409K for P ) 1 atm. In Figure 5 we report the prediction
obtained in this way (solid line), which is compared with the
other two predictions already explained above. We observe that
a considerable improvement in the prediction is obtained. If we
readjust the values to reproduce the conditionsT ) 407 K for
P ) 0 atm, then a better agreement is observed with the
experimental data (see solid line Figure 6). We can conclude
that a more accurate method for the calculation of the molecular
volume, as obtained here using a quantum mechanical method,

can improve the thermodynamic prediction. This approach is
quite different from a simple refitting procedure. On the other
hand, the thermodynamic correction obtained by using the PM3
method in combination with a free energy equation for a
primitive model gives a theoretical funded prediction for the
phase diagram.

In Table 3, we compare the theoretical predictions for the
I-N transition for P ) 1 atm obtained by us and by
Williamson19 for uniaxial cores, and Tjipto-Margo and Evans23

for biaxial cores. We observe that all of the theories predict
that the transition temperature is very close to the actual value
and that the packing fraction at the phase transition is under-
estimated, even when the biaxial cores are used. It has been
observed23,42 for systems formed by biaxial ellipsoids that the
I-N phase transition shifts to higher densities by increasing
biaxiality, so the opposite trend observed in Table 3 suggest
that the biaxial-core theory overestimates the angular depen-
dence of the attractive forces and then induce a shift of the phase
transition to lower densities. Biaxiality decreases the density
jump at the I-N transition and reduces the orientational order
in the nematic phase, effects that are predicted correctly by the
biaxial-core theory when compared to the uniaxial models. Also
the entropy change at the phase transition is better described
using biaxial-cores, an effect that can be explained because the
density jump for the I-N phase transition is smaller for these
models.

5. Conclusions

In this paper, we have shown the combined use of a
perturbation theory for liquid crystals and PM3 calculations in
order to predict the phase diagram of these systems. Calculating
an estimated value of the molecular volumeVm by PM3 instead
of the fitting method to thermodynamic properties, the theoreti-
cal prediction substantially improves its accuracy. The theory
works on the basis of a primitive model for a real liquid crystal,
assuming a decoupling of degrees of freedom and a long-range
approximation for the calculation of the perturbation terms.
Molecular features such as flexibility and polarity are neglected,
but they introduce important effects on the phase diagram, as a
recent computer simulation study has shown.43 It would be
desirable to incorporate the contributions to the free energy given
by these properties. Furthermore, on the basis of the results given
in Table 3, a cylindrical symmetrical core overestimates the
orientational order in the nematic phase, and the density jump
calculated is higher than the computer simulation predictions.
Since the PM3 method clearly indicates that the molecular
geometry is complex, we expect that the observed inaccuracies
could be corrected extending the thermodynamic perturbation
theory to molecules with more complex hard-core geometries.
Finally, we want to remark that the combined use of a
molecular-based thermodynamic perturbation theory and an
accurate quantum mechanical method for obtaining molecular
parameters give a more realistic and accurate representation of
real substances phase behavior. It is encouraging that the use
of accurate independent molecular-based methods (i.e., PM3
and thermodynamic perturbation methods) designed to describe
different features of a real LC substance (i.e., molecular
geometry and phase behavior, respectively) can give a consistent
better description of the phase diagram, and reducing to the
minimum the use of “fitting procedures”.
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