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The Quantum Dynamics of a System of Two Polyatomic Fragments
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The Hamiltonian designed to describe the quantum dynamics of a nonrigid system comprising two polyatomic
molecules in terms of the separation of their centers of mass is somewhat generalized in an attempt to make
it more useful for dealing with systems in which the potential can be specified only incompletely.

1. Introduction computed potential in terms of the group separation coordinate
unless it is known in terms of all of the group coordinates. But
in practice, we often want to consider a simplified problem in
which the potential is expressed in terms of an arbitrary
separation coordinate. Here, we show that a simple transforma-
tion of the Brocks et al. form leads to an account of the problem

In their papef, Brocks et al. showed that the kinetic energy
operator for a system composedf 3 nuclei each with mass
m and with Cartesian coordinates defined in a laboratory frame
of referencexy, (0 =X, y,z i =1, 2, 3, ...,N),

B2N 1 hz N 1 P in which the separation coordinate can be chosen in an
T=—— _viZE (1) essentially arbitrary way, and the formulation that we shall
2&m 2 E1m 4 0X 40Xy present contains the previous work as a special case. The price

~ paid for the freedom gained by this tactic (and what is newly
can be written as (using as the usual vector gradient operator)- derived here) is a more complicated kinetic energy operator than
with in the original case, part of which represents an extra element
of “vibration—rotation” interaction. In considering this term,

N 2 2 h? N we shall also exhibit, rather more explicitly than previously,
T=- ﬁv ) — VAt ) A Z Z G V(ti )-V(t) precise forms of the angular momentum operators.
2u Bij=L 2) What follows can also be seen as generalizing the diatomic
molecule Hamiltonian as presented, for example, in Kolos and
lu=1M, + 1IMg 3) Wolniewicz's treatment.In the present work, the fragments
correspond to a pair of electrons in a diatomic and the angular
GIT = éij/nf - 1M, F=AB (4) momentum of the polyatomic fragments plays the same formal

role as does the electronic angular momentum in the diatomic

by identifying two groups A and B in the system, dividing the Ccase.

coordinates into two sets, and making the translationally ) . o
invariant coordinate choices 2. The Translationally Invariant Kinetic Energy

Operators for the Dimer in Terms of an Arbitrary
ti': = xiF —Xg i=1,2,..N.—1, F=AB (5) Separation Coordinate

_ An arbitrary separation coordinatecan be written in terms
to=Xa = Xg (6) of the transla- tionally invariant coordinates introduced above

where X is the group center of mass coordinate so that the as
total mass of the system M = Ma + Mg and the total center F
of mass coordinate iX = M~Y(MaXa + MgXg). t=t,+ z Z uiFtiF (7)

The the first term in eq 2 represents the center of nuclear B &
mass motion. It is unimportant in the discussion and is separated
off. The simplicity of the remaining terms depends crucially For the translationally invariant part of the kinetic energy
on the choice of the separation coordinate made in eq 6.operator, simple use of the chain rule leads to the expression
However, as van der Avoird, Wormer, and Moszynski point
out in their review? although the choice of separation coordinate h?
to made by Brocks et al. leads to a neat and elegant form for — -V (t) T Z 2 G V(t ) V(t )~
the kinetic energy operator, it is not always the choice that is 2z BIJ= 1
most appropriate for computation. This is because the group
center of mass coordinates involve all of the coordinates 2 Z Z_(V(t) V(t )+V(t ) V(t)) (8)
necessary to specify the geometry and orientation of the group. F=AB
The group separation coordinate therefore involves all of these
coordinates of both groups. It is thus not possible to express awhere

2

Up=1u~+ Ly, + Lug 9
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with and
Ne—1 A o 2h. ~ . ik A
D,(op,2") ==v,+|J,— ], — - cot +
e =y Guu” (10) A0pZ) =72, ( y v ﬂ)yx
=1 ~f5 . ih A ana A A
B3, ~ 1, ~ 5 cotB) = (G~ 17, + 7,0, ~ 1)
and R
The operatorD; is exactly as in ref 1 and thus may be
1 Nt 1 N1t . manipulated as in that paper. However, it is useful to rewrite it
—= Z G, JF= ———5%u (12) and D, explicitly in terms of the angular derivatives so that
,F Fi= direct comparison may be made with the equivalent diatomic
forms.
3. The Kinetic Energy Operators Expressed in the Dimer
Frame 5

—h2’8—+cotﬂ 1 & 1 (AZ
Following Brocks et al., we write the intergroup distance ﬁ p smzﬁ da® sinzﬁ h

in pol i heret, = R : 77 ]
vectort in polar coordinatesR, 3, o), wheret cosf 2i cosf ) I (z+ 1) ' +j ( 9 4 cotﬁﬁ—i-

Then, the orthogonal matrix h A\R A2 AN
oo Cana i) i) "W )] 09
R —sinf 0 cosp D, = h[w(% — ﬁ — cotﬁ%z) + a(% + ﬁ +.
,—ci=o (13) cotiy h) (Hﬁ - ”%) (19)
R

The operator§*t are the standard raising and lowering operators
and the remaining Cartesian variables are transformed tofor the fragment wave function, arid are defined just likg*+

variables in the frame defined Iy, the dimer frame, as but using the components of the velocity operator.
D; andD; are essentially identical with the angular parts of
zi':= CTtiF, i=1,2,..N-—1 F=AB (14) egs 12 and 13, respectively, in Kolos and Wolniewicz's

treatment of the diatomic moleculdn the present work, the
If we treatt as defined here in the way that Brocks et al. angular momentum of the polyatomic fragments plays the same
treatedo, we can rewrite the kinetic energy operators expressed formal role as does the electronic angular momentum in the
in the dimer frame. The second part of eq 8, which refers to diatomic case.
the fragments alone, changes only trivially to become
4. The Construction of Wavefunctions and Matrix

A N e Elements
a EF:ZB £ G V(z)V(7) (15) A reasonable form for trial wave functions for the problem
' is
The first part becomes
;B R Z ) =
kINT_,_h_ZiRZi_FLf) (a,8.2) (16) inat 2 & I RA 78 (20

! Zl_tRZ R 9R 2,aR2 e E € 2]+ 1 nm(ﬁ)lpmjp( ,Z\Z ) ( )

and the last part becomes whered),, is a term in a standard rotation matrix element as
deflned in ref 4 or equivalently in either ref 5 or 6.
R'ZNT = ’T_‘ %@Z 1 o ¥ (17) If zpmjp is chosen to be an eigenfunctionjeivith eigenvalue

Am and an eigenfunction g# with eigenvalugi?(j + 1) then

where the components of the velocity operator are given by qu) thJ lna[dJ (ﬂ)UJJ- (J(J +O)+j(+1) -
nm mjp

nmjp

Ne—t 1 3 ~F 2mz) - CJm im rTH—l(ﬁ)l/)‘r]n—rljp m jim nm—l(ﬁ)wm—ljp] (21)
AP R
|F B =1y 3% FExB and
Using the angular momentum operators as defined in ref 1, b,d; . — h N, €[ Bl W 3p — @_wfrm]‘p) +

we may write theD; B B
(Cdenwl(ﬂ)U - ij nm+l )wm]p] (22)

where the normalization factor in eq 20 is denotedNyyand

c: is defined in the standard manner.

or It should noted that the phase conventions adopted here are
A F A3 | .2 A At aal not the same as those used in ref 3, so there are some sign
Dyapz)=[F+1"-23,-7JF -] J] differences between this work and that.

Bu(@pZ) =[O~ 17+ G, 1)+ F ootpG, — )|
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If it is supposed, as it was in ref 1, that each of the two groups derivative operator in a given coordinate system may be
is described in a local coordinate system oriented with respectexpressed in a coordinate system related to it by an orthogonal
to the frame fixed in the body by a matiGf specified by local transformationC as follows
Euler angles denoted collectively @§, then the wave function

for the group may be written generally as 9 _ in_0 i 0
| ot CQD8¢+QBq (27)
IF
Z CI)LFF(qF)UFkaFD (23) The matrixD is a function of the Euler angles only and the
ke=—jr matricesQ' andQ' are functions of the internal coordinates

) ) ) only. The angular momentum operator in the system specified
Here,g" symbolizes the B¢ — 6 internal coordinates for the by C is

fragment, and the angular momentum eigenfunction is assumed
to be expressed in terms of the Euler angles given collectively [ () = }:LD 0 o8
by oF. It will be assumed that the functions for one fragment (¢) = i 0 (28)
are orthogonal to those of the other fragment and that within a
fragment the functions form an orthonormal set. The angular The components of this operator obey the standard commutation
parts for the two groups may be coupled as conditions. Of course, specific choices will have to be made to
give definite form to this result. However, if we imagine that
i aKaigKai 0= z i gmamglimi sy ks djsmgks 0 (24) we have made a choice & as CF moving from the dimer
s Mg frame to the frame local to the group and that a suitable set of
internal coordinates has been chosen, thewfave can write
using the ClebschGordan coefficients as defined in ref 4. The
total angular momentum eigenfunctions may be written in terms Vi = CF(QFJAF + EQF i) (29)
of the products IS a9gF

| INaKajskeMO= [j KajgkaimN, €™d) () (25) where

The quantum numben (mg) is the component of (j£) along oF — NFfl_Qi - NFfl_ :
the z axis between the two groups, and the quantum number - Z e Q= / FQ
is the component aj along thez axis of the frame fixed in the T4 T4

laboratory, Although there is no upper limit to the valuejof
subject to the value being properly composable from jthe
values, the maximum value ofiis J. The functionszp;’njp may

be imagined expressed in terms of appropriately coupled
products of functions of the form in eq 23. With the use of eq
21, the matrix elements of eq 16 in this basis with respect to

andjF is the form that_ takes in this context.

It can be showhthat, whatever the parametrization, for any
C in SQ@3), the appropriate Wigne®/! matrix can be written
as

1yt
the angular variables are of the form I=xXCX (30)
e - S with
'K ki Y KT 1INj K j gkgimC=
0111,01,013 1,0k O 1 —V2 012
e > X=1-i2 0 —ilv2 (31)
1 9 p0 , QO+ +jG+1)—2nm) 01 0
Ol — —S 5 R 5+ - _ _ .
2uR? R IR 2uR? provided thatC,g is ordereda, 8 = X, y, zand the indices on

&' run +1, 0, —1 across each row and down each column.

(5mm+103+m0;n + 5mm—1C3m(%R )| (26) _ Dropping the superscripts on the matrixes in eq 29, multiply—
ing from the left by XT, and inserting the unit matrix ap-
propriately gives

1
2uR
That these are also diagonaldrand inn has been left implicit
because all matrix elements in this formulation are diagonal in
these two quantum numbers. This would be the same as eq 42
of ref 1 but for a mistake in that equation (its last term should
be negative). It is given correctly in eq 26. or
The matrix elements arising from eq 17 are not altogether
straightforward to construct in the absence of a specific choice Ly = gt (191]“ + ﬁlQ i)
of coordinates to describe the individual group wave functions aq
and the velocity operator. Of course, because the components
of the velocity operator are writable in terms of the standard
components of a rank 1 irreducible tensor operatarasivg
=y, andlvy = :Fyi/\/i, the form of the angular part of their
matrix elements can be constructed using the Wigikkart A s
theorem. The problem is to get a form for the reduced matrix WK | " imikE= ) ) ) )
elements. Without becoming too specific however, it is possible 1\ o wf 1 10|k wfl" 1]
. —D7@" + 1) D@E+1) _
to get a little further because rather general arguments (see ref m s m K p —k
7) can be used to show that the Cartesian form of the first (32)

XTy =1y = xTcx*(ngx*ij + ?XTQ %)

It is possible to develop this somewhat because the results
of the components df operating on the angular functions are
known and because
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where the 3— j symbols are as defined in ref 4. LN Kk |KINT | Inj K kM=
The expected values of the components of the rank 1 tensor
operator with respect to the angular variables are therefore  =(2j' + DYA2) + 1M K ka0 K ks 0B (— 1)

. . " 1j)a 9 1
oL Mo 1w J 1] : 112 6m’m(_J ) )__ mm(c;n(_j _ : )+
ImkK |["vdjmk= (—1)" (2’ + 1) s m(21+1) m 0 m/oR /oR m -1 m+1

+1 C-_( oL J )) —i(é ch

+1 jl 1 J Cjk Qpl jr 1 J N ™-m +1 m—1 \/ER mim1=Im
(—1)kﬁz , —+ (!, K'Q  — N . N .

K —(k+1) K —k po 1 _ 1
2 —(m+1) +1 m)" OmmIm—(m—1) —1 m

-1

(1' 1 J )Cjk_gpl + (1' 1 )E(lQ i) (33) The parameters arising from the angular integrations may be

K p—(k=-1) J2 K p —k/i\ ~ aq/p evaluated by standard procedures, and provided that the deriva-
tives can be evaluated effectively, the remaining radial matrix

The first three terms in eq 33 are exacﬂy what would be elements should prove no more difficult than those involved in

expected from the WignetEckart theorem. These connect states the integrations over the potential required in all approaches.

with a givenj not only to states with the sanjebut also to .

those withj = 1. The states with givem can also be connected 9 Conclusions

to those withm + 1 depending on the value sf Because no A formalism for a two-fragment polyatomic dimer has been
angular momentum coupling is performed on the indicebe given that is not subject to stringent separation coordinate
3 — j symbols involvingk in egs 32 and 33 will be relevantto  requirements. Although the new kinetic energy term that must
one or another of the fragments according toGh@atrix from be added to achieve such freedom makes this Hamiltonian more

which the Wigner matrix originates. The matrix elements complicated than the traditional one, it does seem likely that it
associated with a particular fragment will be diagonal inkhe  can form at least a basis for well-founded model calculations.
value of the other fragment. The matrix elements that are
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