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The Hamiltonian designed to describe the quantum dynamics of a nonrigid system comprising two polyatomic
molecules in terms of the separation of their centers of mass is somewhat generalized in an attempt to make
it more useful for dealing with systems in which the potential can be specified only incompletely.

1. Introduction

In their paper,1 Brocks et al. showed that the kinetic energy
operator for a system composed ofN > 3 nuclei each with mass
mi and with Cartesian coordinates defined in a laboratory frame
of referencexRi (R ) x, y, z, i ) 1, 2, 3, ...,N),

can be written as (using∇B as the usual vector gradient operator)-
with

by identifying two groups A and B in the system, dividing the
coordinates into two sets, and making the translationally
invariant coordinate choices

whereXF is the group center of mass coordinate so that the
total mass of the system isM ) MA + MB and the total center
of mass coordinate isX ) M-1(MAXA + MBXB).

The the first term in eq 2 represents the center of nuclear
mass motion. It is unimportant in the discussion and is separated
off. The simplicity of the remaining terms depends crucially
on the choice of the separation coordinate made in eq 6.
However, as van der Avoird, Wormer, and Moszynski point
out in their review,2 although the choice of separation coordinate
t0 made by Brocks et al. leads to a neat and elegant form for
the kinetic energy operator, it is not always the choice that is
most appropriate for computation. This is because the group
center of mass coordinates involve all of the coordinates
necessary to specify the geometry and orientation of the group.
The group separation coordinate therefore involves all of these
coordinates of both groups. It is thus not possible to express a

computed potential in terms of the group separation coordinate
unless it is known in terms of all of the group coordinates. But
in practice, we often want to consider a simplified problem in
which the potential is expressed in terms of an arbitrary
separation coordinate. Here, we show that a simple transforma-
tion of the Brocks et al. form leads to an account of the problem
in which the separation coordinate can be chosen in an
essentially arbitrary way, and the formulation that we shall
present contains the previous work as a special case. The price
paid for the freedom gained by this tactic (and what is newly
derived here) is a more complicated kinetic energy operator than
in the original case, part of which represents an extra element
of “vibration-rotation” interaction. In considering this term,
we shall also exhibit, rather more explicitly than previously,
precise forms of the angular momentum operators.

What follows can also be seen as generalizing the diatomic
molecule Hamiltonian as presented, for example, in Kolos and
Wolniewicz’s treatment.3 In the present work, the fragments
correspond to a pair of electrons in a diatomic and the angular
momentum of the polyatomic fragments plays the same formal
role as does the electronic angular momentum in the diatomic
case.

2. The Translationally Invariant Kinetic Energy
Operators for the Dimer in Terms of an Arbitrary
Separation Coordinate

An arbitrary separation coordinatet can be written in terms
of the transla- tionally invariant coordinates introduced above
as

For the translationally invariant part of the kinetic energy
operator, simple use of the chain rule leads to the expression

where
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with

and

3. The Kinetic Energy Operators Expressed in the Dimer
Frame

Following Brocks et al., we write the intergroup distance
vector t in polar coordinates (R, â, R), where tz ) R cos â.
Then, the orthogonal matrix

is such that

and the remaining Cartesian variables are transformed to
variables in the frame defined byC, the dimer frame, as

If we treat t as defined here in the way that Brocks et al.
treatedt0, we can rewrite the kinetic energy operators expressed
in the dimer frame. The second part of eq 8, which refers to
the fragments alone, changes only trivially to become

The first part becomes

and the last part becomes

where the components of the velocity operator are given by

Using the angular momentum operators as defined in ref 1,
we may write theD̂i

or

and

The operatorD̂1 is exactly as in ref 1 and thus may be
manipulated as in that paper. However, it is useful to rewrite it
and D̂2 explicitly in terms of the angular derivatives so that
direct comparison may be made with the equivalent diatomic
forms.

The operatorsĵ( are the standard raising and lowering operators
for the fragment wave function, andV̂( are defined just likeĵ(

but using the components of the velocity operator.
D̂1 andD̂2 are essentially identical with the angular parts of

eqs 12 and 13, respectively, in Kolos and Wolniewicz’s
treatment of the diatomic molecule.3 In the present work, the
angular momentum of the polyatomic fragments plays the same
formal role as does the electronic angular momentum in the
diatomic case.

4. The Construction of Wavefunctions and Matrix
Elements

A reasonable form for trial wave functions for the problem
is

wherednm
J , is a term in a standard rotation matrix element as

defined in ref 4 or equivalently in either ref 5 or 6.
If ψmjp

J is chosen to be an eigenfunction ofĵz with eigenvalue
pm and an eigenfunction ofĵ2 with eigenvaluep2j(j + 1) then

and

where the normalization factor in eq 20 is denoted byNJ and
cls

( is defined in the standard manner.
It should noted that the phase conventions adopted here are

not the same as those used in ref 3, so there are some sign
differences between this work and that.
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ĵ z

p(ĵ z
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If it is supposed, as it was in ref 1, that each of the two groups
is described in a local coordinate system oriented with respect
to the frame fixed in the body by a matrixCF specified by local
Euler angles denoted collectively asωF, then the wave function
for the group may be written generally as

Here,qF symbolizes the 3NF - 6 internal coordinates for the
fragment, and the angular momentum eigenfunction is assumed
to be expressed in terms of the Euler angles given collectively
by ωF. It will be assumed that the functions for one fragment
are orthogonal to those of the other fragment and that within a
fragment the functions form an orthonormal set. The angular
parts for the two groups may be coupled as

using the Clebsch-Gordan coefficients as defined in ref 4. The
total angular momentum eigenfunctions may be written in terms
of the products

The quantum numberm (mF) is the component ofj (jF) along
thez axis between the two groups, and the quantum numbern
is the component ofJ along thez axis of the frame fixed in the
laboratory, Although there is no upper limit to the value ofj,
subject to the value being properly composable from thejF
values, the maximum value ofm is J. The functionsψmjp

J may
be imagined expressed in terms of appropriately coupled
products of functions of the form in eq 23. With the use of eq
21, the matrix elements of eq 16 in this basis with respect to
the angular variables are of the form

That these are also diagonal inJ and inn has been left implicit
because all matrix elements in this formulation are diagonal in
these two quantum numbers. This would be the same as eq 42
of ref 1 but for a mistake in that equation (its last term should
be negative). It is given correctly in eq 26.

The matrix elements arising from eq 17 are not altogether
straightforward to construct in the absence of a specific choice
of coordinates to describe the individual group wave functions
and the velocity operator. Of course, because the components
of the velocity operator are writable in terms of the standard
components of a rank 1 irreducible tensor operator,1v, as1V0

) Vz and1V( ) -V(/x2, the form of the angular part of their
matrix elements can be constructed using the Wigner-Eckart
theorem. The problem is to get a form for the reduced matrix
elements. Without becoming too specific however, it is possible
to get a little further because rather general arguments (see ref
7) can be used to show that the Cartesian form of the first

derivative operator in a given coordinate system may be
expressed in a coordinate system related to it by an orthogonal
transformationC as follows

The matrixD is a function of the Euler angles only and the
matricesΩi andQi are functions of the internal coordinatesq
only. The angular momentum operator in the system specified
by C is

The components of this operator obey the standard commutation
conditions. Of course, specific choices will have to be made to
give definite form to this result. However, if we imagine that
we have made a choice ofC as CF moving from the dimer
frame to the frame local to the group and that a suitable set of
internal coordinates has been chosen, then forvF we can write

where

and ĵF is the form thatL̂ takes in this context.
It can be shown5 that, whatever the parametrization, for any

C in SO(3), the appropriate WignerD1 matrix can be written
as
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It is possible to develop this somewhat because the results
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where the 3- j symbols are as defined in ref 4.
The expected values of the components of the rank 1 tensor

operator with respect to the angular variables are therefore

The first three terms in eq 33 are exactly what would be
expected from the Wigner-Eckart theorem. These connect states
with a given j not only to states with the samej but also to
those withj ( 1. The states with givenmcan also be connected
to those withm ( 1 depending on the value ofs. Because no
angular momentum coupling is performed on the indicesk, the
3 - j symbols involvingk in eqs 32 and 33 will be relevant to
one or another of the fragments according to theC matrix from
which the Wigner matrix originates. The matrix elements
associated with a particular fragment will be diagonal in thek
value of the other fragment. The matrix elements that are
dependent onk have no dependence onm or s and are the
reduced matrix elements expected from the Wigner-Eckart
theorem. Thus eq 33 may be rewritten in a slightly different
somewhat more explicit way using the functional form given
in eq 24 as

with

whereĝF(j′F,k′F;jF,kF:qF) is composed as are the last two lines of
eq 33 but with reference to the individual fragments. Because
the velocity operator has been expressed in a local coordinate
system, eq 34 can now be used to give at least formal
expressions for their matrix elements. The matrix elements of
eq 17 are

The parameters arising from the angular integrations may be
evaluated by standard procedures, and provided that the deriva-
tives can be evaluated effectively, the remaining radial matrix
elements should prove no more difficult than those involved in
the integrations over the potential required in all approaches.

5. Conclusions

A formalism for a two-fragment polyatomic dimer has been
given that is not subject to stringent separation coordinate
requirements. Although the new kinetic energy term that must
be added to achieve such freedom makes this Hamiltonian more
complicated than the traditional one, it does seem likely that it
can form at least a basis for well-founded model calculations.
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